GAP: Born to Break Hiding

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han

Univ Kookmin, Seoul, Republic of Korea,
{222z22605, dnwldms928, suzin22, soyeonp, christa}@kookmin.ac.kr

Abstract. Recently, Machine Learning (ML) is widely investigated in the side-channel
analysis (SCA) community. As an artificial neural network can extract the feature
without preprocessing, ML-based SCA methods relatively less rely on the attacker’s
ability. Consequently, they outperform traditional methods.

Hiding is a countermeasure against SCA that randomizes the moments of manip-
ulating sensitive data. Since hiding could disturb the neural network’s learning,
an attacker should design a proper architecture against hiding. In this paper, we
propose inherently robust architecture against every kind of desynchronization. We
demonstrated the proposed method with plenty of datasets, including open datasets.
As a result, our method outperforms state-of-the-art on every dataset.

Keywords: Side-Channel Analysis - Deep Learning - Global Average Pooling -
Desynchronization - Hiding

1 Introduction

Side-Channel Analysis (SCA) is a class of cryptanalysis that reveals secret information
via physical leakage of a cryptographic device, such as power consumption [KJJ99],
electromagnetic [GMOO1], acoustic [GST14], or photon [FH08]. The fundamental fact of
SCA is that the leakage is related to the manipulated data. An attacker discloses the secret
key by exploiting the relationship between the leakage and the sensitive intermediate value.
For that, the attacker should firstly characterize the time when sensitive information leaks
(also known as points of interest (Pol)). Hiding is a countermeasure against SCA that
randomizes the moments of manipulating the sensitive intermediate value, for instance,
shuffling [CKO09] or random insertion of dummy operations [VMKS12]. As the traditional
SCA methods, such as Differential Power Analysis (DPA) [KJJ99] or Template Attack
(TA) [CRRO2], require a leakage concentration, the attacker should realign the trace by
proper preprocessing technique, like elastic alignment [vyWWB11] or Fourier transform
[MG10]. Consequently, traditional SCAs highly rely on the attacker’s ability.

Recently, Machine Learning (ML) is widely applied to SCA [HGM™11,LBM14,LPMS18,
Tim19]. As an artificial neural network can automatically characterize Pol, unlike the
traditional SCAs, preprocessing is not mandatory. Instead of preprocessing, the attacker
should optimize hyperparameters, which determine the neural network model structure
and learning process structure. Significantly, the attacker should design a proper model
architecture to the characteristics of the data. For instance, convolutional neural network
(CNN) is robust to desynchronized trace because the hidden layer of CNN is translational
equivariance [CDP17]. Zaid et al. proposed the method to design efficient CNN archi-
tecture by the data characteristics: the number of Pol and the maximum amplitude of
desynchronization [ZBHV20]. Their method outperformed existing works, but it is hard to
apply universally because the attacker might not analyze the data characteristics due to
countermeasures. To the best of our knowledge, the model design method against all of
the hiding countermeasures does not exist; state-of-the-arts focused on desynchronization.

mailto:{zzzz2605, dnwldms928, suzin22, soyeonp, christa}@kookmin.ac.kr

2 GAP: Born to Break Hiding

Contributions. In this paper, we present the most efficient neural network architecture
against hiding, i.e., random delay, random insertion of dummy operations, and shuffling. We
design the neural network to identically operate regardless of the moment of leaking sensitive
information by replacing the fully-connected layer of CNN with Global Average Pooling
(GAP) proposed by Lin et al. [LCY14]. To demonstrate our method can extract the secret
information regardless of the existence of hiding countermeasure, we applied the proposed
method to the main public datasets and our CW-Lite (ChipWhisperer-Lite) [Inc] datasets
with strong hiding countermeasures. As a result, our method significantly outperforms
state-of-the-art [ZBHV20] even though we did not exhaustively search hyperparameter:
we just use a single hyperparameter for every dataset.

Organization. The rest of this paper is organized as follows. Section 2 briefly describes
the CNN and the translational equivariance property of the convolutional layer. Section 3
compares the operations of the fully-connected layer and the GAP to present the reason
that GAP makes the neural network robust to the hiding countermeasures. In Section
4, to demonstrate the proposed network can break hiding countermeasures, we apply the
proposed neural network to the open datasets and our CW-Lite datasets and compare it
with the state-of-the-art. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Machine Learning-based Profiled Side-Channel Attacks

A profiled side-channel attack is a powerful SCA method that priory profiles the relationship
between leakage of a cryptographic device and sensitive information. It assumes that the
attacker can access the profiling device, which is identical to the target device and can be
fully controlled by the attacker. Profiled SCA can be divided into two phases: profiling step
and attack step. Firstly, the attacker generates a profile of the device. ML-based profiled
SCA generates the profile via a neural network: the attacker trains the neural network
to model the relationship between the physical leakage and the sensitive intermediate
value. The attacker trains the network treating the leakage as an input (feature in the ML
terms) and the intermediate value as an output (i.e., label). After creating the profile, the
attacker can calculate the probability of each intermediate value via the trained neural.
Consequently, the attacker calculates the probability of each key hypothesis by combining
the intermediate value and plaintext (ciphertext).

Guessing Entropy (GE), which is commonly used metric to measure the performance of
an attack, is defined as average rank of the right key [SMY09]. That is, zero GE indicates
that the attacker disclosed the secret key for every test. The attacker can evaluate the
attack performance by investigating the trend of GE according to the number of traces; the
attacker can estimate the minimum number of traces to disclosure (MTD). Let us denote
MTD the minimum number of traces to disclose the secret key for every attack. That is,
the guessing entropy is constant zero if the number of attack traces is greater than MTD.
In the rest of this paper, we use MT D as a metric to compare the models’ performance.

2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is generally used architecture for image classification
problems [LBBH98]. Generally, CNN consists of three components: convolutional layer,
pooling layer, Fully-Connected (FC) layer. Conventional CNN extracts the feature at the
hidden layer, composed of convolutional layers and pooling layers, and decides a class by
FC layers.

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han 3

The convolutional layer extracts the feature by convolution, which is a sum of element-
wise multiplication between kernel and feature. For instance, the output’s first element of
the left-side of Figure 1 is calculated by 0 x 14+0.3 x 24 0.2 x 3 = 1.2. As the convolutional
layer shares the weight, it ignores a location of data; consequently, it has a translational
equivariance property. Figure 1 shows the example of data is moved one point. Note that
the output’s internal elements of the right-side are moved one point as the input’s elements
are moved one point. Therefore, the convolutional layer can extract the feature regardless
of the position of the important feature.

0 0

03 2 B

0.2 2 0.3

0.5 3.6 0.2 22
1.0 1.0

0.8 2} 0.5 3.6

® 2.0 = ® 2.0 =

0.2 21 0.8 2.9
3.0 3.0

0.3 23 0.2 21

0.5 22 0.3 23

0.3 1.1 0.5 .

0 0
Original Feature Kernel Result Translated Feature Kernel Result

Figure 1: Example of the translational equivariance property

The pooling layer compresses the data after the convolutional layer by replacing part
of the data with a statistic, such as maximum (max pooling) or average (average pooling).
As the pooling layer reduces the dimension of the feature, it makes the model faster and
lighter. Moreover, it can reduce noise, such as data translation [?].

FC layer is an identical architecture to the Multi-Layer Perceptron (MLP) [MP87]. As
FC layer has a element-wise weight, unlike convolutional layer, this layer makes the neural
network sensitive to data translation.

In this paper, we propose the model building methodology against hiding countermea-
sure by removing the FC layer.

3 GAP: Most Efficient Way to Break Hiding

As we explained in Section 2.2, the FC layer makes the CNN sensitive to data translation,
while the convolutional layer and pooling layer makes the network robust to data translation.
To design the network that can break hiding countermeasure, we replace the FC layer with
the Global Average Pooling (GAP), whose output is defined as the average of each feature
map, as shown in Figure 2.

Note that the GAP layer does not consider the position of the feature, unlike the FC
layer; consequently, GAP is robust to data translation. In fact, the output of GAP is only
affected by newly inserted elements and removed elements, not the position when data is

4 GAP: Born to Break Hiding

-16.39

WA A S
1% Conv 254 Conv Last Conv —
‘ o >

0.0000

0.9996

w
o

-35.56 0.0002

Input Feature 1%t Conv Output Last Conv Output GAP Output Predictions
Feature Maps Feature Maps

Figure 2: Architecture of the Proposed CNN against Hiding

moved. Let us denote D the feature whose dimension is n, D; the i-th point of the D, T'D
p point translated data (T'D; = D;,), and W; ; weight of the FC layer. The difference
between outputs of GAP when D is moved p point is as follow:

GAP (D) — GAP (TD)

Il
\
]
S
+
]
S
\
| —
'M‘S
~
S
+
™
~
S

1=0 1=p =0 7 —p
p—1 n—p—1 n—p—1 n—1
leDﬁ-% > Dzﬂ)—% S D= Y TD; M)
=0 i=0 i=0 i=n—p
1 p—1 1 n—p—1 1 n—p—1 n—1
=-Y Di+— Y TD;—— > TDi—— > TD;
=0 =0 i=0 i=n—p
1 p—1 1 n—1
- EZ%Di—ﬁ AZ TD;
1= 1=n—p

As shown in Equation 1, when data is moved by p point, GAP’s output is slightly different
because of the newly inserted data T'D,,_p, -+ ,TD,_; and removed data Dg, -, Dp_1.
On the other hand, the FC layer’s output can be significantly changed as the feature is
moved:

FC (D), - FC(TD),

1 n—1 1 n—1
E Z wi,jDZ- — E Z wi,jTDi
=0 =0
n—p—1 n—p—1

= | | s @
E Zwm-Di + E Z ’LUZ‘+p7jTD1' - E Z wivaDi — E Z wm-TDi
=0 =0

=0 1=n—p
1 1 .
1 R 1 nr 1 n
= — sz’,jDi + — Z (wi+p7j — wi,j)TDi — - Z wi,jTDz'-
i=0 i=0 imep

Figure 3 shows the example of behavior of two layers when feature is moved one point.
As the GAP layer is not affected by data’s position, the difference between two output is
only 0.1, while the difference between FC layer is 2.49.

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han 5

> 1.0 1.0 3.0
=
% 0.3 0.3 0.2
[) 1.04+03+09+02 ') 10X3.0+03X02+09X25+0.2x0.1
2 " =| 0.6 : - 1533
=
Eﬂ 0.9 0.9 25
S
0.2 0.2 0.1
o 0.6 0.6 3.0
£
o 1.0 1.0 02
L_; ' 06+1.0+03+09 ' ' 06%3.0+1.0x02+03xX25+09x0.1
3 : =1 0.7 : - | 2.84
=
- 0.3 03 2.5
=]
&
= 0.9 0.9 0.1
Feature Map GAP Output Feature Map Weight FC Output

Figure 3: Comparison of GAP and FC behavior when data is translated

Recall that the hidden layer of the CNN (i.e., convolutional layer and pooling layer)
is translational equivariance. Thus, replacing the FC layer with GAP allows the neural
network to extract features regardless of the position of the feature. Therefore, the proposed
network can break hiding countermeasures.

4 Experimental Results

In this section, we demonstrate that the proposed CNN can break hiding countermeasure.
We compare the performance of our network with state-of-the-art methodology [ZBHV20]
via MTD. We set the identical hyperparameters of the proposed method for all datasets
while exhaustively searching for optimal hyperparameters for state-of-the-art, as described
in Appendix A. As the open datasets are not implemented strong hiding countermeasure, we
collected the data with ChipWhisperer-Lite board [Inc]. We implemented the AES [Sta02]
with three hiding countermeasures: shuffling, random jitter, and insertion of dummy
operation. And we applied the proposed method to the open datasets for impartial
comparison.

4.1 CW-Lite Dataset

We collected power consumption when performing the first SubBytes transformation with a
sample rate of 29.538MS/s. We recorded 50000 power consumption with variable keys for
training divided into two subsets: 45000 traces for the training, 5000 traces for validation,
and 10000 power consumption with fixed key for the attack. Each trace is classified with
the first byte of the first SubBytes output: SBox [Py ¢ k], where P, is the first byte of the
plaintext and k is the secret key. Three hiding countermeasures are implemented:

e Shuffling We uniformly shuffle the order of operation. For instance, the order of
substitute for each state is uniformly random in the SubBytes transformation. We
assume that Shuffling increases the number of Pol to (# of Pol) x (# of operation)
to apply state-of-the-art methodology.

o Random Jitter (RJ) We implemented the random jitter countermeasure based on
sobsen’s implementation presented at CHES Challenges 2016'. The random jitter

Lhttps://ctf.newae.com/flags/

GAP: Born to Break Hiding

is inserted every before an operation, and the maximum length of the jitter is 428.
Thus, we set the length of the filters and the pooling stride defining in the second
block of state-of-the-art are configured as 214.

Insertion of Dummy Operations We inserted the dummy operation, which
performs an identical operation as an actual operation but calculates with a random
value. Two types of countermeasures are implemented: a random number of dummy
operations (RD) and a fixed number of dummy operations (FD). The number of
dummy operations of RD is chosen from discrete uniform distribution {0, 16}, and
it of FD is fixed at 16.

As shown in Table 1 MTDs of the proposed method are 2. Note that MTD = 1 is
practically impossible because it indicates that the neural network can correctly classify
the trace for every trace (i.e., the validation accuracy is 100%.): the performance cannot be
more optimized in realistic. These results show that the proposed architecture can classify
the trace regardless of sensitive leakage position: the proposed method can break the
hiding. On the other hand, state-of-the-art success revealed the secret key with few traces
when the hidden countermeasures’ intensity is low, i.e., when only one countermeasure
exists.

4.2

Table 1: Comparison of the minimum traces to disclosure on CW-Lite datasets

| State-of-the-art [ZBHV20] | Our methodology

Unprotected 3 2
Shuffling 79 2
Shuffling & FD 1085 2
Shuffling & RD 527 2
RJ 10 2

RJ & Shuffling 1713 2
RJ & Shuffling & FD >5000 2
RJ & Shuffling & RD >5000 2

Open Datasets

We used four commonly used datasets: ASCAD?, DPA-contest v43, AES RD*, and
AES_HD®. For the comparison, we used the identical number of traces and the target
intermediate value to the state-of-the-art.

e« ASCAD is obtained from an 8-bit AVR microcontroller where a masking counter-

measure is implemented [PSBT18]. It contains the desynchronized trace that was
manually desynchronized with a 50 or 100 samples window maximum jitter. We
target the third byte of the first SubBytes transformation: SBox [Ps @ k.

DPA-contest v4 is obtained from an Atmel ATMega-163 smart-card where a
masking countermeasure is implemented. As the existing works targeted the masked
intermediate value, we classify each trace by the first byte of the first SubBytes
transformation: SBox [Py ® k] ® M, where M is the mask.

AES__HD is obtained from FPGA without any countermeasure [PHJ"19]. The
target intermediate value is the difference between the last round’s input and output:
SBox ! [C12 @ k] & Cg, where C; is the i-th byte of the ciphertext.

2https://github.com/ANSSI-FR/ASCAD
Shttp://www.dpacontest.org/v4/42_traces.php
4https://github.com/ikizhvatov/randomdelays-traces
Shttps://github.com/AESHD/AES_HD_Dataset

https://github.com/ANSSI-FR/ASCAD
http://www.dpacontest.org/v4/42_traces.php
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/AESHD/AES_HD_Dataset

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han 7

2.0
——— State-of-the-art
2 154
5 —— Our methodology
g 101
&
‘w054
1%}
L
=3 M~
O 00
-0.5 T T T T
0 1 2 3 4 5
The number of traces
(a) Unprotected
125
——=- State-of-the-art
> 100
g —— Our methodology
= 751
M A
2 s
;N
o
S 251%
&) .
0 F—==
0 250 500 750 1000
The number of traces
(c¢) Shuffling & FD
20
=== State-of-the-art
2154
5 \ Our methodology
= 1
5 10 1y
2 |\
g s\
8 \
=] ~
S 0 =
-5 T T T
0 5 10 15 20
The number of traces
(e) RJ
150
o === State-of-the-art
2 —_
£ 100 Our methodology
]
o
o0
g
2 50+
[}
= —————
&}
0

0 1000 2000 3000 4000 5000
The number of traces

(¢) RJ & Shuffling & FD)

100
——-— State-of-the-art
> 80
é‘* \ —— Our methodology
= 60-“
= \
& 404
4 \\
S 204
G) . \\\
0 2‘0 4‘0 6‘0 8‘0 100
The number of traces
(b) Shuffling
125
——=- State-of-the-art
> 100
g‘ —— Our methodology
= 75
5 h
.%D 50
2 \‘
Q
S 251%
G)
0 -
0 200 400 600 800
The number of traces
(d) Shuffling & RD
125
=== State-of-the-art
> 100
& —— Our methodology
= 759
o I
2 st
z I\
S 254
&)
04—==
0 500 1000 1500 2000
The number of traces
(f) RJ & Shuffling
150
o L === State-of-the-art
= —_ thodol
£ 100 Our methodology
=}
=
on
£
2 50
[}
=3
&}
0
0 1000 2000 3000 4000 5000

The number of traces

(h) RJ & Shuffling & RD

Figure 4: Guessing entropy of the CW-Lite datasets

« AES_ RD is obtained from 8-bit AVR microcontroller where a random delay coun-
termeasure is implemented [CK09]. We target the first byte of the first SubBytes

GAP: Born to Break Hiding

transformation: SBox [Py @ k.

As shown in Table 2, our methodology outperforms state-of-the-art, especially when
the hiding countermeasure is applied (AES_RD, ASCAD__desync50, ASCAD__desync100).
Note that MTD of state-of-the-art on ASCAD increases as the strength of the jitter
increases. On the other hand, our method is not affected by the strength. This phenomenon
shows that our architecture can extract proper features regardless of the position of sensitive

information.
25
=== State-of-the-art
> 20§
IS Our methodology
s 154\
= \
= \
an 10 - 1}
B! \
% o544\
B N
O pb——==a
) T T T T
0 2 4 6 8 10
The number of traces
(a) DPA-contest v4
25
— == State-of-the-art
> 20 1
g © —— Our methodology
E 1514y
8 \
a5)
op 101
R=! “
w2
201 N
&) 0 So o
-5 T T T T
0 2 4 6 8 10
The number of traces
(c) AES_RD
10 Y
\ ——— State-of-the-art
> 8 \
§ —— Our methodology
= 64
25|
2 4
172]
g 2
S 2
G)
0 -
0 50 100 150 200 250 300

The number of traces

(e) ASCAD_ desync50

(f

150
o === State-of-the-art
2l —
£ 100- Our methodology
=
&3
on
£
2 50+
Q
=
&)
0 .
0 500 1000 1500
The number of traces
(b) AES_HD
10 1
1 ——=— State-of-the-art
> 8141
§ ! —— Our methodology
s 67
[Sa) .
< i \
o 4
.5 \
2]
£ 2
&)
0 -
0 5|0 I(I)O 15|0 260 250 300
The number of traces
(d) ASCAD
10 i
\ — == State-of-the-art
> 8 \
? % —— Our methodology
= 67
m
2 4
w2
wn
g 2
)
0 -
0 5‘0 l(l)O 150 2(I)O 25IO 300

The number of traces

) ASCAD_ desync100

Figure 5: Guessing entropy of the open datasets

To search for proper hyperparameters of state-of-the-art methodology, we investigated

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han 9

Table 2: Comparison of the minimum traces to disclosure on open datasets

| State-of-the-art [ZBHV20] [Our methodology

DPA-contest v4 3 2
AES_HD 1050 925

AES RD 5 2
ASCAD 191 181
ASCAD_ desynch0 244 214
ASCAD_ desyncl00 270 209

216 combinations for each dataset, whereas we set identical hyperparameters of the
proposed method for every dataset. Nevertheless, our method significantly outperformed
state-of-the-art for every dataset. As we described in the introduction, Zaid’s method
requires prior knowledge of the data, such as the number of Pol and the maximum
amplitude of desynchronization, which is challenging when the hiding countermeasure
exists. Contrastively, our method does not require any prior knowledge; moreover, the
proposed architecture outperforms the existing method with a single hyperparameter. It
indicates that our method allows the attacker to search optimal hyperparameter without
searching a huge hyperparameter set. Consequently, our method allows the attacker to
train the network much faster than the existing method, practically.

5 Conclusion

In this paper, we present the neural network architecture that inherently robust to hiding
countermeasures. As our model operates regardless of the physical leakage position, it can
extract sensitive information even though the hiding countermeasure exists.

We demonstrated the robustness of the proposed network with plenty of datasets, in-
cluding four main SCA open datasets: ASCAD, DPA-contest v4, AES_RD, and AES_ HD.
Our network outperforms on every dataset even though we exhaustively searched optimal
hyperparameters of the existing method for each dataset, while our method’s hyperparame-
ter is fixed for every dataset. This phenomenon indicates that the attacker can find optimal
hyperparameter easily: the attacker can practically train the neural network faster.

References

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures - profil-
ing attacks without pre-processing. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 45—68. Springer,
2017.

[CKO09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random
delay generation in embedded software. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 156-170.
Springer, 2009.

[CRRO2] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, Cryptographic

10

GAP: Born to Break Hiding

[FHOS]

[GMOO1]

[GST14]

[HGM™*11]

[Inc]

[KJJ99]

[LBBHOS]

[LBM14]

[LCY14]

[LPMS18]

[MG10]

[MP87]

Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13—28. Springer, 2002.

Julie Ferrigno and Martin Hlavdc. When AES blinks: introducing optical side
channel. IET Information Security, 2(3):94-98, 2008.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings, number Generators, pages 251-261, 2001.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Advances in Cryptology - CRYPTO 201
- 84th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, pages 444-461, 2014.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293-302, 2011.

NewAE Techonology Inc. ChipWhisperer-Lite. https://rtfm.newae.com/
Capture/ChipWhisperer-Lite/.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 388-397, 1999.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. Int. J. Appl. Cryptogr.,
3(2):97-115, 2014.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In Yoshua
Bengio and Yann LeCun, editors, 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada, April 1/-16, 2014,
Conference Track Proceedings, 2014.

Liran Lerman, Romain Poussier, Olivier Markowitch, and Francois-Xavier
Standaert. Template attacks versus machine learning revisited and the curse of
dimensionality in side-channel analysis: extended version. J. Cryptogr. Eng.,
8(4):301-313, 2018.

Edgar Mateos and Catherine H. Gebotys. A new correlation frequency analysis
of the side channel. In Proceedings of the 5th Workshop on Embedded Systems
Security, WESS 2010, Scottsdale, AZ, USA, October 24, 2010, page 4. ACM,
2010.

Marvin Minsky and Seymour Papert. Perceptrons - an introduction to compu-
tational geometry. MIT Press, 1987.

https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/

Ju-Hwan Kim, Ji-Eun Woo, Soo-Jin Kim, So-Yeon Park and Dong-Guk Han 11

[PHJT19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209-237, 2019.

[PSBT18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. TACR Cryptol. ePrint Arch., 2018:53, 2018.

[SMY09] Francois-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Antoine Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture
Notes in Computer Science, pages 443-461. Springer, 2009.

[Sta02] William Stallings. The advanced encryption standard. Cryptologia, 26(3):165-
188, 2002.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107—
131, 2019.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and Francois-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 740-757. Springer, 2012.

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improv-
ing differential power analysis by elastic alignment. In Aggelos Kiayias, editor,
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA
Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings,
volume 6558 of Lecture Notes in Computer Science, pages 104-119. Springer,
2011.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient CNN architectures in profiling attacks. TACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2020(1):1-36, 2020.

12

GAP: Born to Break Hiding

A Configuration of neural network

Table 3: Hyperparameters

| State-of-the-art [ZBHV20] | Our methodology

Optimizer Adam ‘
Activation function SeLLU ReLU
Learning Rate One-Cycle policy ‘
Batch size {64, 256} 64
Epochs {20, 50, 100} 50
of kernels (Conv layers) {2, 4, 8}
of neurons (FC layers) {1, 2, 3}
of layers (FC layers) {2, 10, 15, 20}
Kernel size 9
Pooling Average pooling Max pooling

[Batch Normalization |

[Batch Normalization]

(Conv Block (n))

I I
I I
I I
I I
I I
I I
I I
I I
Conv Block (32) i Conv Block (32) i
Conv Block (64) i Conv Block (64) i Convld (n)
Conv Block (128) ! Conv Block (128) ! Batch Normalization
Conv Block (256) ! Conv Block (256) ! ReLU
Conv Block (256) ! Conv Block (256) ! Convld (n)
¢ 1 1 Batch Normalization
i i ReLU
Convld (256) | Convld (256) | e
Global Average Pooling | | [Global Average Pooling | | Max Pooling (2)
Softmax ! FC Block (256) ieieiniiiiii——
] FC Block (256) L FC Block (n))
1 FC Block (256) 1 I
i FC (256) i
i Softmax ! FC (n)
: : Batch Normalization
! : ReLU

Figure 6: Configuration of the Proposed CNN against hiding (left: for unmasked trace,

right: for masked trace)

	Introduction
	Preliminaries
	Machine Learning-based Profiled Side-Channel Attacks
	Convolutional Neural Network

	GAP: Most Efficient Way to Break Hiding
	Experimental Results
	CW-Lite Dataset
	Open Datasets

	Conclusion
	Configuration of neural network

