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Abstract. We describe a simple method for solving the distributed dis-
crete logarithm problem in Paillier groups, allowing two parties to locally
convert multiplicative shares of a secret (in the exponent) into additive
shares. Our algorithm is perfectly correct, unlike previous methods with
an inverse polynomial error probability. We obtain the following appli-
cations and further results.

– Homomorphic secret sharing. We construct homomorphic secret
sharing for branching programs with negligible correctness error and
supporting exponentially large plaintexts, with security based on the
decisional composite residuosity (DCR) assumption.

– Correlated pseudorandomness. Pseudorandom correlation func-
tions (PCFs), recently introduced by Boyle et al. (FOCS 2020), allow
two parties to obtain a practically unbounded quantity of correlated
randomness, given a pair of short, correlated keys. We construct
PCFs for the oblivious transfer (OT) and vector oblivious linear
evaluation (VOLE) correlations, based on the quadratic residuosity
(QR) or DCR assumptions, respectively. We also construct a pseu-
dorandom correlation generator (for producing a bounded number
of samples, all at once) for general degree-2 correlations including
OLE, based on a combination of (DCR or QR) and the learning
parity with noise assumptions.

– Public-key silent OT/VOLE. We upgrade our PCF construc-
tions to have a public-key setup, where after independently posting
a public key, each party can locally derive its PCF key. This al-
lows completely silent generation of an arbitrary amount of OTs or
VOLEs, without any interaction beyond a PKI, based on QR, DCR,
a CRS and a random oracle. The public-key setup is based on a novel
non-interactive vector OLE protocol, which can be seen as a variant
of the Bellare-Micali oblivious transfer protocol.
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1 Introduction

Homomorphic secret sharing, or HSS, allows two parties to non-interactively
perform computations on secret-shared private inputs. In contrast to homo-
morphic encryption, where a single party carries out the computation on en-
crypted data, HSS can be viewed as a distributed variant where several servers
are each given a share of the inputs, and then (without further interaction)
can homomorphically evaluate these to obtain a share of the desired output.
Useful applications of HSS include succinct forms of secure multi-party compu-
tation [BGI16a, BGI17, BGMM20], private querying to public databases [GI14,
BGI15, WYG+17] and generating correlated randomness in secure computation
protocols [BCGI18, BCG+19]. In this work, we will focus on a strong flavour of
HSS with additive reconstruction, meaning that the server’s shares of the output
can be simply added together (in an abelian group) to give the result of the
computation.1

At Crypto 2016, Boyle, Gilboa and Ishai [BGI16a] constructed two-server
HSS for the class of polynomial-size branching programs based on the decisional
Diffie-Hellman (DDH) assumption. Branching programs are a class of compu-
tations that cover restricted classes of circuits such as NC1 and logspace com-
putations. One application of their construction is succinct secure computation
protocols for these types of computation, where the communication complexity
is proportional only to the input and output lengths [BGI17]. However, Boyle et
al. also managed to achieve secure computation for general, leveled circuits with
a communication cost that is sublinear in the circuit size by a logarithmic factor.
Previously, breaking this circuit-size barrier was only known to be possible using
fully homomorphic encryption, so this result positioned HSS as an alternative
path towards secure computation with low communication.

At the heart of the DDH-based construction [BGI16a] is a distributed discrete
log procedure, where two parties are given multiplicative shares of a secret gx (for
some fixed base g), and wish to locally convert these into additive shares of x.
Their method of solving this unfortunately has an inverse polynomial probability
ε of correctness error, which is expensive to keep small, since the workload in
homomorphic evaluation scales with O(1/ε).

Their original HSS construction has been extended in several works, in-
cluding a simpler “public-key” style sharing phase [BGI17], a variant based on
Paillier encryption [FGJS17], improved efficiency of the distributed discrete log
step [BCG+17, DKK18] and techniques for mitigating leakage that can arise
from the non-negligible correctness error [BCG+17].

Despite this progress, all these constructions still have the limitation of a non-
negligible chance of an incorrect computation, which requires a large amount of
extra work to keep small. In fact, Dinur et al. [DKK18] showed a conditional
lower bound that solving the distributed discrete log protocol with correctness
probability ε requires Ω(1/

√
ε) computation, unless the discrete logarithm prob-

1 This leads to a form of optimally succinct reconstruction that even fully homomor-
phic cannot achieve on its own.
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lem in an interval can be solved more efficiently. They also gave a matching upper
bound.

On the other hand, if we rely on the learning with errors (LWE) assumption,
instead of discrete log- or factoring-based assumptions, it is possible to obtain
HSS for arbitrary circuits [DHRW16, BGI+18], and with a negligible probability
of correctness error, when using LWE with a superpolynomial modulus. This
construction builds on fully homomorphic encryption [Gen09, BV11], and despite
much recent progress, this still involves a significant computational overhead.
When restricting computations to branching programs instead of circuits, and
limiting the number of servers to two, there is a much specialized construction
that reduces these costs [BKS19].

Pseudorandom Correlation Generators. A recent, promising application
of techniques based on HSS is to build pseudorandom correlation generators
(PCGs) [BCGI18, BCG+19], which are a way of expanding short, correlated
seeds into a large amount of correlated randomness. This correlated randomness
might be, for instance, a batch of oblivious transfers (OTs) on random inputs,
which can be used to obtain cheap, information-theoretic protocols for secure
computation of Boolean circuits. Other correlations can be used to securely
compute arithmetic circuits over a ring R, for example, in oblivious linear evalu-
ation (OLE), each sample has the form (a, b), (x, ax+ b) for random a, b, x ∈ R.
Another example is vector oblivious linear evaluation (VOLE), which has the
restriction that x is fixed for each sample of the correlation.

More concretely, a PCG is a pair of algorithms (Gen,Expand), where Gen
outputs a pair of short, correlated seeds, while Expand takes one of these seeds
and expands it into a longer output string. The security requirements are that
the joint distribution of both outputs is indistinguishable from the desired cor-
relation, and also that each seed preserves privacy of the other party’s output.

While PCGs can be constructed from suitably expressive HSS [BCG+19],
this requires homomorphic evaluation of a pseudorandom generator inside HSS
and typically leads to poor concrete efficiency. Instead, the most promising con-
structions so far are based on variants of the learning parity with noise (LPN)
assumption, and build upon practical constructions of HSS for point functions
(or, function secret sharing) [GI14, BGI15, BGI16b]. Using LPN, we can obtain
PCGs for the VOLE [BCGI18], OT [BCG+19] and OLE [BCG+19, BCG+20b]
correlations, and these can even be concretely efficient when relying on struc-
tured variants of LPN such as ring-LPN, or using quasi-cyclic codes.

Pseudorandom Correlation Functions. Very recently, Boyle et al. [BCG+20a]
extended the notion of PCG to a pseudorandom correlation function (PCF),
which allows generating an unbounded number of correlated outputs in an on-
the-fly manner, given a pair of correlated keys. This is similar to how a pseudo-
random function extends the concept of a pseudorandom generator. While PCFs
can be constructed in a generic but inefficient manner based on LWE, Boyle et
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al. also gave constructions based on new flavours of variable-density LPN as-
sumptions. The practical security and efficiency of these constructions has yet
to be determined, although their initial results suggest that the PCFs for the
OT and VOLE correlations could be concretely efficient.

1.1 Our Contributions

In this work, we present new constructions of homomorphic secret sharing and
pseudorandom correlation functions based on standard, number-theoretic as-
sumptions related to factoring. At the heart of most of our constructions is a sin-
gle, key technique, namely, an efficient algorithm for solving the distributed dis-
crete logarithm problem when using the Paillier cryptosystem over Z∗N2 (where
N is an RSA modulus). Unlike previous algorithms [BGI16a, FGJS17, DKK18],
which always incurred an inverse polynomial probability of error, our method is
very simple and has perfect correctness.

Building on this technique, we obtain the following results.

Homomorphic Secret Sharing. We construct homomorphic secret sharing
for branching programs with negligible correctness error and supporting compu-
tations on an exponentially large plaintext space. We present several variants.
The first two are based on circular security assumptions (of Paillier encryption
and of a Paillier-ElGamal hybrid, respectively); however, the second has the ad-
vantage of allowing for a public-key style setup. The third variant also allows
for a public-key setup, and additionally relies solely on the decisional composite
residuosity (DCR) assumption. However, it is less efficient.

This gives the first construction of negligible-error HSS for branching pro-
grams without relying on LWE with a superpolynomial modulus. Compared with
previous constructions based on discrete log-type assumptions [BGI16a, BGI17],
as well as the Paillier-based construction of Fazio et al. [FGJS17], we avoid their
limitations of a 1/poly correctness error and polynomial-sized plaintext space.
We also obtain smaller share sizes and much better computational efficiency.

Pseudorandom Correlation Functions and Pseudorandom Correlation
Generators. We construct PCFs for producing an arbitrary number of random
instances of vector oblivious linear evaluation, based on the DCR assumption,
and oblivious transfer, based on the quadratic residuosity (QR) assumption.
These constructions are very simple and have relatively small key sizes, consisting
of O(1) and O(λ) group elements, respectively (for security parameter λ). We
also construct a weaker pseudorandom correlation generator (for producing a
bounded number of samples, or, all at once) for general degree-2 correlations,
when assuming {DCR ∨ QR} ∧ LPN. Compared with a previous construction
based on only LPN [BCG+19], we reduce the key size by a factor O(λ) and
reduce the computational cost from quadratic to linear in the output length.
This can also be upgraded to a PCF, when assuming a recent, variable-density
version of LPN [BCG+20a].
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Public-key Silent OT and VOLE. We show how to upgrade our PCF con-
structions to have a public-key setup. After independently posting a public key,
which uses a CRS, each party can use the other party’s key, together with the
private randomness for its own key, to derive a key for the PCF. Using their PCF
keys, the parties can then silently compute an arbitrary quantity of OT or VOLE
correlations, all without any interaction beyond the PKI. To our knowledge, these
are the first such constructions that allow producing non-trivial correlations from
a reusable public-key setup, without relying on lattice-based assumptions and
homomorphic evaluation of PRGs inside multi-key FHE [DHRW16, BCG+19].
Note that we assume both a CRS and the random oracle model.

The public-key PCF for OT can be plugged into an existing construction
of two-round multi-party computation with an OT correlations setup [GIS18],
and reduces the complexity of its setup phase. This leads to a passively secure,
two-round MPC protocol based on the DCR and QR assumptions, which makes
a black-box use of a PRG, and has a PKI setup that scales independently of the
circuit size. This is in contrast to the strong PKI setup from [GIS18], where the
size of each public key scales linearly with the circuit size.

1.2 Comparison with Previous Results

We now give a more detailed comparison of our results with those from previous
work, and discuss some efficiency metrics.

Homomorphic Secret Sharing. As already mentioned, we avoid the 1/poly cor-
rectness error and small message space associated with previous constructions
based on DDH [BGI16a, BCG+17, BGI17] or Paillier [FGJS17]. This brings us
the additional benefit that the share size of our HSS is smaller, since in all these
constructions, each share of an input x contains encryptions of x · di, where di
are the bits of the secret key. Since we support a large message space, we can
instead choose di to be a much larger chunk of the secret key, so that each share
only contains a constant number of group elements, instead of O(λ). The smaller
share size and improved share conversion step in our construction also give us
much lower computational costs, since previous works require a workload that
scales with Ω(1/

√
ε), where ε is the correctness error probability [DKK18].

We can also compare our HSS with constructions based on LWE. Using LWE
with a superpolynomial modulus, these can also support negligible error and a
superpolynomial plaintext space [BKS19], and can even go beyond branching
programs to evaluate general circuits [DHRW16, BGI+18]. When restricted to
branching programs or low-depth circuits, and using ring-LWE, homomorphic
evaluation would likely be more efficient than our HSS, due to fast algorithms
for polynomial arithmetic in ring-LWE, compared with exponentiations in Pail-
lier. On the other hand, our scheme has much smaller shares, since ring-LWE
ciphertexts with a superpolynomial modulus are orders of magnitude larger than
Paillier ciphertexts (ranging from 100kB–3MB in [BKS19] vs under 1kB for Pail-
lier).
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Finally, we remark that LWE is a very different assumption to DCR. On the
one hand, it can plausibly resist attacks by quantum computers; however, in a
purely classical setting, factoring-based assumptions are arguably better studied
than ring-LWE with a superpolynomial modulus.

PCFs and PCGs. Compared with PCGs for OT and VOLE based on LPN
[BCGI18, BCG+19], our PCFs have the advantages of a public-key setup and the
ability to incrementally produce an unbounded number of outputs (which comes
with being a PCF and not just a PCG). In VOLE, our PCF has the additional
benefit of much smaller keys, since each party’s key only contains two Paillier
group elements, compared with Õ(λ2) bits using LPN. The key size in our PCF
for OT is around λ elements of ZN , which is comparable to the LPN-based PCG
keys at typical security levels. The main drawback of our constructions is their
computational efficiency, since our PCF for VOLE requires one exponentiation
in Z∗N2 to produce a single output in ZN , while the PCF for OT requires ≈ 128
exponentiations in Z∗N to obtain one string-OT (at the 128-bit security level).
Similarly, our PCG for OLE (based on both LPN and DCR) reduces the key
size of previous LPN-based PCGs for OLE by a factor of O(λ), at the cost of
requiring exponentiations and limited to OLEs over ZN or Z2, rather than more
general rings or fields.

The recent PCFs for OT and VOLE from variable-density LPN [BCG+20a]
overcome the PCG limitation of standard LPN-based constructions, although
still do not have a public-key setup. They also come with much larger keys
than their PCG counterparts, as well as our VOLE and OT constructions. Their
computational efficiency has not yet been demonstrated, although they may be
faster than our number-theoretic constructions due to being based on lightweight
primitives like distributed point functions.

1.3 Overview of Techniques

We start by recalling the share conversion procedure used by Boyle et al. [BGI16a].
The basic idea of their scheme allows two parties to locally multiply secrets
x, y ∈ Z, where x is encrypted and y is secret shared, obtaining a secret sharing
of the result z = xy. However, z is now multiplicatively (or, rather, divisively)
shared; that is, the parties have group elements g0, g1 ∈ G, such that g1 = g0 ·gz.
To continue evaluating a program, they would like to convert these into linear
(subtractive) shares, so they can be used in another multiplication (with a ci-
phertext).

Boyle et al. described an ingenious protocol for converting such divisive shares
to subtractive shares. To obtain subtractive shares of z, it is enough that the
parties agree upon some distinguished element h that is not too far away from
g0, g1 in terms of multiplications by g. If they find such an h, then party σ
can compute the distance of gσ from h by brute force: by multiplying h by g
repeatedly, and seeing how many such multiplications it takes to get to gσ. If
we’re guaranteed that h isn’t too far away, this should not be too inefficient. Let
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dσ be the distance of gσ from h — that is, hgdσ = gσ. Then,

g1 = g0 · gz ⇔ hgd1 = hgd0gz

⇔ gd1 = gd0gz

We can conclude that d1 ≡ d0 + z modulo the order of the subgroup generated
by g, and if d0, d1 are small then these shares can be recovered efficiently.

The major challenge is agreeing upon a common point h. Boyle et al. did so
by having the parties first fix a set of random, distinguished points in the group;
party σ then finds the closest point in this set to gσ. As long as both parties find
the same point, this will lead to a correct share conversion. To make this process
efficient, the distance t between successive points can’t be too large, since the
running time will be O(t). However, there is then an inherent ≈ 1/t probability
of failure, in case a point lies between the original two shares and they fail to
agree.

This leads to a tradeoff between running time and correctness of the share
conversion procedure. Dinur, Keller and Klein [DKK18] described an improved
conversion algorithm, which achieves 1/t error probability in only O(

√
t) steps.

On the negative side, they showed that any algorithm which beats this could
be used to improve the cost of finding discrete logarithms in an interval, a well-
studied problem that is believed to be hard.

Despite the correctness difficulty, this weaker form of HSS still suffices for
many applications including sublinear secure two-party computation, with some
additional work to correct for errors [BGI16a, BGI17].

Share Conversion in Paillier. By moving to a Paillier group (Z∗N2), we can
overcome the challenges of (a) agreeing on a distinguished point and (b) effi-
ciently finding the distance of a multiplicative share from that point, without
requiring a correctness / efficiency tradeoff.

The parties’ multiplicative shares will still have the form g0, g1 such that g1 =
g0 ·gz; however, now we take g = (1+N), which has order N in Z∗N2 . To find the
distinguished point h, the parties simply reduce their shares mod N . Remarkably,
this leads to the parties always agreeing upon the same value h, which is also
guaranteed to be the smallest value in the coset X = (g0, g0 · g, . . . , g0 · gN−1).
To see that parties agree on h, notice that since (1+N)x ≡ 1 (mod N), we have
g0 ≡ g1 (mod N). To see that h lies in X, write g0 = (h + h′N) and suppose
that h = g0(1 + N)s for some s. Then, since (1 + N)s ≡ (1 + sN) (mod N2),
we have h ≡ (h + h′N)(1 + sN) (mod N2), which we can easily solve to get
s ≡ −h′h−1 (mod N).

Given this, party σ can compute the distance from their multiplicative shares
to h without the use of brute force. They simply take h/gσ = (1+N)zσ , and then
take the discrete logarithm of this (exploiting the fact that discrete logs are easy
with base 1 +N) to find their additive share zσ satisfying z0 − z1 = z mod N .

As well as removing the correctness error, moving to Paillier groups has
removed the limitation that messages must be small, since we can efficiently
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apply share conversion to shares of any message in ZN . We are still missing
one step, however; to be able to continue the HSS computation, we need shares
of z over the integers, rather than modulo N . Using a trick previously used in
an LWE-based scheme [BKS19], if z is sufficiently smaller than N , with high
probability subtractive shares of z modulo N are already valid shares over the
integers. Assuming z to be much smaller than N is not very limiting, since we
can still have, say, z around

√
N and achieve both negligible failure probability

and exponentially large plaintexts.

HSS Variants. We use the trick described above to get homomorphic secret
sharing for branching programs. We subtractively share (digits of) the Paillier
decryption key d (where d ≡ 1 (mod N) and d ≡ 0 (mod φ(N))) between the
two parties. Similarly to [FGJS17], we can use such a sharing of the secret key to
go from a Paillier ciphertext to a divisive sharing of the underlying message x of
the form g1 = g0·(1+N)x. Once we have that, we can obtain a subtractive sharing
of x, as described above. Given subtractive shares of d times some y ∈ [N ], we
can similarly get a divisive sharing — and then a subtractive sharing — of xy.
Using encryptions of digits of the key d, we can maintain the invariant that we
always have subtractive shares of d times our intermediate values available, so
we can continue the computation and multiply more encrypted values by our
intermediate values.

There are two downsides to our Paillier-based HSS scheme: (1) it requires
trusted setup (to distribute shares of the key d), and (2) since we use encryp-
tions of digits of d, we need to assume the circular security of Paillier. We can
avoid trusted setup by instead using Paillier-ElGamal encryption [CS02, DGS03,
BCP03]. When using Paillier-ElGamal, once a modulus N is generated and pub-
lished, the parties need only do a public-key style setup, where each party in-
dependently generates a secret/public key pair, and publishes its public key,
following a previous ElGamal-based method [BGI17]. We can additionally avoid
assuming circular security by using the Brakerski-Goldwasser scheme [BG10],
which is provably circular-secure. The downside of using this scheme is much
larger ciphertexts.

Pseudorandom Correlation Functions. Our pseudorandom correlation func-
tions use techniques similar to our Paillier-based homomorphic secret sharing
construction, with the difference that the Paillier decryption key d is known to
one of the parties (whereas before, it was secret shared). Our PCF construc-
tions also crucially rely on the fact that Paillier ciphertexts can be obliviously
sampled; any element in Z∗N2 is in fact a valid ciphertext! In our PCF for the
VOLE correlation, one party knows d, the other party knows a value x, and dx
is subtractively secret shared between the two. Given a random ciphertext, the
party who knows d can decrypt it to learn a, and both parties can recover shares
of xa using the trick from our HSS construction.

We get a PCF for OT from similar techniques, but using the Goldwasser-
Micali bit-encryption scheme [GM82], which admits a simple distributed discrete
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log procedure (as also observed in [DGI+19]). We also construct the weaker
notion of a PCG for OLE, by essentially generating many instances of the
VOLE PCF setup, but compressing them in clever ways using the LPN as-
sumption together with function secret sharing, inspired by previous PCG con-
structions [BCGI18]. This construction also generalizes in several ways, to give
secret-shared degree-2 correlations over ZN or Z2, and to give PCFs when re-
lying on the variable-density LPN assumption [BCG+20a] instead of standard
LPN.

Public-key Setup for PCFs. Our PCF for VOLE requires a setup where
one party knows d, the other knows x, and both hold subtractive shares of
dx. (Our PCF for OT uses a similar setup.) We show that such setup can be
instantiated non-interactively ; each party locally generates a secret/public key
pair, and extracts the setup information it needs from its own key pair and the
other party’s public key.

The PCF setup itself can be seen as an OLE instance for values x and d. So,
our public-key setup is based on a novel non-interactive vector-OLE protocol
that can be seen as a variant of Bellare-Micali oblivious transfer [BM90] with a
CRS. Their original non-interactive oblivious transfer protocol allows two parties
to use a (non-reusable) PKI setup to non-interactively obtain an OT. In our
Paillier-based variant, instead of only producing OT – and crucially thanks to
our distributed discrete log procedure – we show how the parties can obtain a
vector OLE, where the sender’s input is x, the receiver’s input are some values
a1, . . . , an, and the parties end up with additive sharings of the product x · ai
for all i’s. This suffices to generate the keys for our PCF constructions non-
interactively.

2 Preliminaries

We work with Blum integers of the form N = pq, where p and q are safe primes.2

We let (N, p, q) ← GenPQ(1λ) be a randomized algorithm which, on input the
security parameter λ, samples two such random primes p, q of length ` = `(λ),
and outputs (N, p, q). In some of our constructions, N = pq will be a public
modulus generated by a trusted setup algorithm (such that no-one knows the
factorization p and q), while in other cases the factorization will be known to
one party.

2.1 Assumptions

In this paper, we leverage the following assumptions.

2 A safe prime p is equal to 2p′ + 1 where p′ is also prime. This is not actually
required by all our constructions, but for simplicity we use the same group generation
algorithm through the paper.
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Assumption 1 (Decisional Composite Residuosity (DCR) Assumption). For
(N, p, q) ← GenPQ(1λ), let g0 ← Z∗N2 , and g1 = gN0 mod N2. For b ← {0, 1},
for all PPT algorithms A,

Pr[A(N, gb) = b] ≤ 1

2
+ negl(λ).

Assumption 2 (Quadratic Residuosity (QR) Assumption). For (N, p, q) ←
GenPQ(1λ), let g0 ← Z∗N , and g1 = g20 mod N . For b ← {0, 1}, for all PPT
algorithms A,

Pr[A(N, gb) = b] ≤ 1

2
+ negl(λ).

We also leverage a lemma from Brakerski and Goldwasser [BG10] that refers
to the interactive vector game. We rephrase the lemma here in terms of Paillier
groups only. Consider the decomposition Z∗N2 = GR×GM , where GR is the group
of Nth residues modulo N2 and GM is the group of elements of orders that divide
N . The DCR assumption (Assumption 1) states that a random element from
GR is indistinguishable from a random element in Z∗N2 . In the interactive vector
game, the challenger samples a bit b ← {0, 1}, and (g1, . . . , gl) ← GlR (for a
parameter l). It sends (g1, . . . , gl) to the adversary. The adversary then makes
adaptive queries of the form (a1, . . . , al) ∈ GlM , to which the challenger responds
by sampling r from [N2] and returns (ab1g

r
1, . . . , a

b
l g
r
l ). Finally, the adversary

returns a guess b′ at the value of b.

Lemma 2.1 (Rephrased Lemma B.1 From [BG10]). Assuming the DCR
assumption, for all efficient adversaries A, the probability that A guesses b cor-
rectly in the interactive vector game is at most negligibly greater than half.

2.2 Encryption

KDM Security. In some of our constructions, we assume that (variants of)
the Paillier encryption scheme are key-dependent message (KDM) secure. The
definition we use is similar to the one given by Brakerski and Goldwasser [BG10],
with the differences that we only consider one key pair, and do not consider
adaptive adversary queries. (This makes for a weaker definition, and thus a
milder assumption.)

Definition 2.2 (KDM Security). An encryption scheme (ES.Gen,ES.Enc,ES.Dec)
is KDM secure over the set of programs F if for all security parameters λ ∈ N,
for all polynomial sets of fixed output length programs f1, . . . , fρ ∈ F and for all
PPT adversaries A,

∣∣∣∣∣∣∣∣∣∣
Pr

A(pk, ctβ,1, . . . , ctβ,ρ) = β

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← ES.Gen(1λ),
x0,i ← fi(sk) for i ∈ [ρ],

x1,i ← 0|x0,i| for i ∈ [ρ],
ctb,i ← ES.Enc(pk, xb) for b ∈ {0, 1}, i ∈ [ρ],
β ← {0, 1}

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).
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Paillier Encryption. While there are many known variants of the Paillier
cryptosystem [Pai99], we use the variant where the decryption key is an integer
d such that raising any ciphertext to the power d gives (1 + N)m (mod N2),
where m is the message and N the public modulus. Since it is easy to compute
discrete logarithms with base 1 + N in Z∗N2 , this gives an efficient decryption
procedure. We describe the Paillier cryptosystem below; its security is based on
the DCR assumption (Assumption 1).

Paillier.Gen(1λ) :
1. Sample (N, p, q)← GenPQ(1λ).
2. Compute d ∈ Z such that d ≡ 0 (mod φ(N)) and d ≡ 1 (mod N).
3. Output pk = N , sk = d.

Paillier.Enc(pk, x) :
1. Sample a random r ← [N2].
2. Output ct = rN (1 +N)x mod N2.

Observe that, since (1 + N)x ≡ 1 + xN (mod N2), (1 + N) has order N
in Z∗N2 . Additionally, observe that since the order of r in Z∗N2 must divide
Nφ(N),

ctd (mod N2) ≡ rNd(1 +N)dx (mod N2)

≡ rNd (mod Nφ(N))(1 +N)dx (mod N) (mod N2)

≡ (1 +N)x (mod N2)

≡ 1 + xN.

Paillier.Dec(sk, ct) :

1. Output x = (ctd mod N2)−1
N .

We will also use the following fact, namely, that the encryption function is
a bijection. In particular, this implies that a randomly chosen element of ZN2

defines a valid ciphertext with overwhelming probability.

Proposition 2.3 ([Pai99]). The following map is a bijection:

ZN × Z∗N → Z∗N2

(x, r) 7→ rN (1 +N)x

In our homomorphic secret sharing constructions (Section 4), we use two
other flavors of Paillier encryption: a Paillier-ElGamal hybrid, and the KDM-
secure scheme due to Brakerski and Goldwasser [BG10]. In Section 5, we also
use the Goldwasser–Micali cryptosystem [GM82].

2.3 Secret Sharing

We work with subtractive secret sharing. We let 〈x〉(m)
0 , 〈x〉(m)

1 denote a sub-

tractive sharing of x modulo m, such that 〈x〉(m)
1 − 〈x〉(m)

0 ≡ x (mod m). If one

12



share is chosen uniformly at random from [m] (and the other is chosen to satisfy
the equation above), each share alone perfectly hides x, while the two together
allow the reconstruction of x.

Similarly, we let 〈x〉(Z)0 , 〈x〉(Z)1 denote a subtractive sharing of x over the

integers, such that 〈x〉(Z)1 − 〈x〉(Z)0 = x. For x ∈ {0, . . . ,m− 1}, in order for each

share alone to statistically hide x, 〈x〉(Z)1 can be chosen uniformly at random
from the range {0, . . . ,m2κ − 1}, where κ is the statistical security parameter.

If 〈x〉(Z)0 is then defined as 〈x〉(Z)1 − x, then it is within statistical distance 2−κ

of the uniform distribution.

3 Share Conversion for Paillier Encryption

Suppose two parties hold respective values g0 and g1 in Z∗N2 , such that g1 ≡
g0(1 + N)x (mod N2) for some x ∈ ZN . The parties wish to locally convert
these multiplicative (or, rather, divisive) shares into subtractive shares of x.

We can view g0 and g1 as elements of the coset

Xg0 :=
{
g0, g0(1 +N), g0(1 +N)2, · · · , g0(1 +N)N−1

}
.

If both parties can agree upon a distinct element of this set, say h, without
communicating, then they can each calculate the distance (in terms of powers of
1 +N) between gi and h to obtain a subtractive share of x. In particular, if they
obtain h = g0(1 +N)z for some z, then P1 can compute the discrete logarithm
of g1/h = (1 +N)x−z and output z1 := x− z, while P0 uses g0/h = (1 +N)−z

to get z0 := −z, giving z1 − z0 ≡ x (mod N).
To agree upon such a representative h, we have the parties compute the

smallest element from Xg0 , defined by viewing elements of Z∗N2 as integers in
{0, . . . , N2 − 1}. Surprisingly, this can be done by simply computing h = gi
mod N . Since (1 + N)x ≡ 1 (mod N), it is clear that this gives the same h for
both g0 and g1. It remains to show that h lies in the same coset.

Proposition 3.1. Let g ∈ Z∗N2 , h = g mod N and h′ = bg/Nc. Then h can be
written as g(1 +N)−z, where z = h′h−1 mod N .

Proof. Suppose that we can write h = g(1 + N)−z mod N2, for some z ∈ Z.
Since g = h+ h′N , this is equivalent to

h = (h+ h′N) · (1− zN) mod N2

= h+ (h′ − zh)N mod N2

The above is satisfied if and only if h′N ≡ zhN (mod N2), or equivalently,
z ≡ h′h−1 (mod N).

This gives us a direct way to solve the distributed discrete log problem,
which we present in Algorithm 3.2. Instead of computing gi/h and then finding
the discrete logarithm with respect to 1 + N , we can simply compute z as in
Proposition 3.1.
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Algorithm 3.2: DDLogN (g)

1. Write g = h+ h′N , where h, h′ < N , using the division algorithm.
2. Output z = h′h−1 mod N .

Lemma 3.3. Let g0, g1 ∈ Z∗N2 such that g1 = g0(1 + N)x mod N2. If zb =
DDLogN (gb), then z1 − z0 ≡ x (mod N).

Proof. First, observe that since each gi is in Z∗N2 , it must have an inverse modulo
N , so DDLog will not fail.

From Proposition 3.1, each zi satisfies h ≡ gi(1 + N)−zi (mod N2), where
h = g0 mod N = g1 mod N . This gives

g1(1 +N)−z1 ≡ g0(1 +N)−z0 (mod N2)

⇔ (1 +N)x−z1 ≡ (1 +N)−z0 (mod N2)

⇔ x ≡ z1 − z0 (mod N).

Remark 3.4. We can alternatively interpret the share conversion procedure by
viewing each input gi as a Paillier ciphertext gi = (1 + N)xirN for some (un-
known) message xi, and the same randomness r. Under this condition, share
conversion allows each party to locally obtain a subtractive share of x = x1−x0.
Note that this does not violate the security of Paillier, because we were given
two ciphertexts with the same randomness.

3.1 Using a Secret Shared Decryption Key

Getting g0, g1 such that g1 = g0(1 + N)x given a Paillier encryption g = (1 +

N)xrN of x can be done using subtractive shares (over the integers) 〈d〉(Z)0 , 〈d〉(Z)1

of the Paillier decryption key d (where 〈d〉(Z)1 − 〈d〉(Z)0 = d, d ≡ 1 (mod N), and
d ≡ 0 (mod φ(N))).

Using our ciphertext g = (1 +N)xrN , we compute

g0 = g〈d〉
(Z)
0 = (1 +N)x〈d〉

(Z)
0 (r〈d〉

(Z)
0 )N mod N2,

and
g1 = g〈d〉

(Z)
1 = (1 +N)x〈d〉

(Z)
1 (r〈d〉

(Z)
1 )N mod N2.

Since d ≡ 0 (mod φ(N)), it follows that d = 〈d〉(Z)1 −〈d〉
(Z)
0 ⇒ 〈d〉(Z)0 ≡ 〈d〉(Z)1

(mod φ(N)) and therefore

r〈d〉
(Z)
1 N ≡ r〈d〉

(Z)
0 N (mod N2).

Then, as desired,
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g1
g0
≡ (1 +N)x(〈d〉

(Z)
1 −〈d〉

(Z)
0 ) (mod N2)

≡ (1 +N)x (mod N2).

Remark 3.5. If, instead of subtractive shares of d, we have shares of yd (that is,

〈yd〉(Z)0 , 〈yd〉(Z)1 such that 〈yd〉(Z)1 − 〈yd〉(Z)0 = yd), we can use these as described
above to get g0, g1 such that g1 ≡ g0(1 +N)xy (mod N2).

3.2 Getting Shares Over Integers

The previous sections describe how to use g1 = g0(1 + N)x mod N2 to get
subtractive shares of x over ZN . However, we often want subtractive shares of x
over the integers. This can be done as long as x is sufficiently smaller than N .

Observe that, if z1−z0 ≡ x (mod N), then z1−z0 = x as long as z1−x ≥ 0.
There are only x values of z1 such that this isn’t true; so, for x < N/2κ and
uniform choice of z1 ∈ ZN , z1 − z0 = x over Z, except with probability ≤ 2−κ.

4 Homomorphic Secret Sharing

4.1 Definitions

We base our definitions of homomorphic secret sharing (HSS) on those given by
Boyle et al. [BKS19].

Definition 4.1 (Homomorphic Secret Sharing). A (2-party, public-key)
Homomorphic Secret Sharing (HSS) scheme for a class of programs P over a ring
R with input space I ⊆ R consists of PPT algorithms (HSS.Setup,HSS.Input,
HSS.Eval) with the following syntax:

– HSS.Setup(1λ) → (pk, (ek0, ek1)): Given a security parameter 1λ, the setup
algorithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– HSS.Input(pk, x)→ (I0, I1): Given public key pk and private input value x ∈
I, the input algorithm outputs input information (I0, I1).

– HSS.Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1},

evaluation key ekσ, vector of ρ input values and a program P ∈ P with ρ
input values, the homomorphic evaluation algorithm outputs yσ ∈ R, which
is party σ’s share of an output y ∈ R.

Note that, in the constructions we consider, we have I0 = I1. We say that
(HSS.Setup,HSS.Input,HSS.Eval) is a homomorphic secret sharing scheme for
the class of programs P if the following conditions hold:

– Correctness. For all security parameters λ ∈ N, for all programs P ∈ P,
for all x(1), . . . , x(ρ) ∈ I (where I is the input space of P ), for (pk, ek0, ek1)

← HSS.Setup(1λ) and for (I
(i)
0 , I

(i)
1 )← HSS.Input(pk, x(i)), we have
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ExpHSS,secA,σ,b (λ) :

(x0, x1, state)← A(1λ)
(pk, (ek0, ek1))← HSS.Setup(1λ)
(I0, I1)← HSS.Input(pk, xb)
b′ ← A(state, pk, ekσ, Iσ)
return b′

Fig. 1. Security of HSS.

Pr
[
y0 + y1 = P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ),

where
yσ ← HSS.Eval(σ, ekσ, (I

(1)
σ , . . . , I(ρ)σ ), P )

for σ ∈ {0, 1} where the probability is taken over the random coins of HSS.Setup,
HSS.Input and HSS.Eval.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A (of size poly-
nomial in the security parameter λ), it holds that∣∣∣Pr[ExpHSS,secA,σ,0 (λ) = 1]− Pr[ExpHSS,secA,σ,1 (λ) = 1]

∣∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpHSS,secA,σ,b (λ) for b ∈ {0, 1} is as defined in
Fig. 1.

Restricted Multiplication Straight-line Programs. Our HSS schemes sup-
port homomorphic evaluation for a class of programs called Restricted Multipli-
cation Straight-line (RMS) programs [Cle91, BGI16a]. An RMS program is an
arithmetic circuit, with the restriction that every multiplication must be be-
tween an input value and an intermediate value of the computation, called a
memory value. This class of programs captures polynomial-size branching pro-
grams, which includes arbitrary logspace computations and NC1 circuits.

Definition 4.2 (RMS programs). An RMS program consists of a magnitude
bound Bmsg and a sequence of instructions of the four types described below. The
inputs to the program are initially provided as a set of input values Ix, for each
input x ∈ Z. We consider the class of programs where the absolute value of all
memory values during the computation is bounded above by Bmsg.

– ConvertInput(Ix)→ Mx: Load an input x into memory.
– Add(Mx,My)→ Mz: Add two memory values, obtaining z = x+ y.
– Add(Ix, Iy)→ Iz: Add two input values, obtaining z = x+ y.
– Mul(Ix,My)→ Mz: Multiply a memory value by an input, obtaining z = x ·y.
– Output(Mx, nout) → x mod nout: Output a memory value, reduced modulo
nout (for some nout ≤ Bmsg).
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We additionally assume that each instruction is implicitly assigned a unique
identifier id ∈ {0, 1}∗.

If at any step of execution the size of a memory value exceeds the bound Bmsg

or becomes negative (i.e. z > Bmsg or z < 0), the output of the program on the
corresponding input is undefined. Otherwise, the output is the sequence of Output
values. Note that we consider addition of input values merely for the purpose of
efficiency.

Remark 4.3. It may seem restrictive that we do not support negative values;
however, our construction can easily be modified to support negative values by
viewing integers modulo N as ranging from −N2 to N

2 instead of from 0 to
N − 1, as done by Boyle et al. [BKS19]. (We would then use multiplicative and
additive sharings instead of divisive and subtractive ones.) We choose to work
with non-negative values for the sake of notational simplicity.

4.2 HSS from Paillier

We follow the blueprint from Fazio et al. [FGJS17], based on Boyle et al. [BGI16a]
to build an HSS scheme for RMS programs. Our scheme requires that an en-
cryption of the secret decryption key be available. However, for correctness, our
scheme also requires that all ciphertexts encrypt values much smaller than N ;
so, we are forced to decompose our secret key into digits before encrypting it.
We use Bsk to refer to the base used for this decomposition, or, in other words,
as an upper bound on the size of each digit. Bsk affects the efficiency of our
scheme, since it will take ` = logBsk

(N2) ciphertexts to contain our secret key.
Bsk is also related to the bound Bmsg on our message space, since we require
that all our input and memory values times a digit of the secret key be at least
2κ times smaller than N : we get Bmsg = N

Bsk2κ
.

If we want Bmsg = 2κ, then we get Bsk = N
22κ . As long as N is at least 3κ

bits long, Bsk will be at least κ bits long; so, we will need around 6 ciphertexts
to contain our secret key.

As in RMS programs, we consider input values and memory values. Input
values, denoted I, are the inputs to the computation, consisting of Paillier encryp-
tions. Memory values, denoted M, are subtractively secret-shared intermediate
values. More concretely, let d(0), . . . , d(`−1) denote the digits of d (modulo some
base Bsk), where d is the Paillier decryption key.

– An input value Ix consists of X, which is a Paillier encryption of x, and
X(0), . . . , X(`−1), which are Paillier encryptions of d(0)x, . . . , d(`−1)x.

– A memory value Mx = (Mx,0,Mx,1) consists of subtractive sharings of x and
d(0)x, . . . , d(`−1)x over the integers. That is, party σ’s memory value for x is

Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(`−1)〉(Z)σ ).

We describe our HSS scheme for RMS programs in Construction 4.5.

Theorem 4.4. Construction 4.5 is a secure HSS scheme assuming the KDM
security of the Paillier encryption scheme, and assuming that F (N) is a secure
PRF.
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Proof. We prove the correctness and security of our construction separately be-
low.

Correctness. For computations where all input, intermediate and output val-
ues are much smaller than N , correctness largely follows by inspection. Correct-

ness could only be violated if, during multiplication, when taking 〈zd(i)〉(Z)σ =

〈zd(i)〉(N)
σ , we get 〈zd(i)〉(N)

1 − 〈zd(i)〉(N)
0 6= zd(i). If zd(i) � N and 〈zd(i)〉(N)

1

is uniformly distributed in ZN , this happens with negligible probability, as

described in Section 3.2. Recall that 〈zd(i)〉(N)
1 is computed as 〈zd(i)〉(N)

1 =

DDLogN ((X(i))〈yd〉
(Z)
1 ) +F

(N)
kprf

(id, i) (mod N). Since F (N) outputs values in [N ],

by the security of F (N), 〈zd(i)〉(N)
1 will be indistinguishable from random in ZN .

Security. We show security in a series of hybrids (described below) played
with a PPT adversary A. Hybrid 0 gives the adversary inputs produced in accor-
dance with the HSS security definition (Definition 4.1). We then alter the way
the adversary’s inputs are produced in three steps; each change should not affect
the adversary’s probability of successfully guessing b by more than a negligible
amount. In the last hybrid, the adversary’s probability of guessing b is exactly
1
2 , since its view in that hybrid is entirely independent of b. It follows that the
adversary’s probability of guessing b in the original hybrid can be only negligibly
greater than 1

2 .

Hybrid 0: We begin by producing inputs for A in accordance with the security
definition.

Hybrid 1: Now, during Setup, choose each element of ekσ from [2κBsk] uni-
formly at random. These are statistically close in distribution to a correctly
generated ekσ. If A guesses b with probability significantly different than in
hybrid 0, then A can be leveraged to distinguish between two statistically
close distributions.

Hybrid 2: Now, during Setup, instead of producing encryptionsD(0), . . . , D(`−1)

of digits of the secret key honestly, we set them all to be independent en-
cryptions of 0. If A guesses b with probability significantly different than in
hybrid 1, then A can be run by a KDM adversary AKDM to break KDM se-
curity. (Note that at this point, AKDM does not need to use the secret key to
produce any of the inputs for A.) AKDM then outputs the guess b′ produced
by A.

Hybrid 3: Now, during Input, instead of encrypting xb, we always encrypt x0.
If A guesses b with probability significantly different than in hybrid 2, then
A can be run by an algorithm ASS to break the semantic security of Paillier
encryption.

Note that here, A’s probability of guessing b is exactly 1
2 , since its view is

completely independent of b.
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Construction 4.5: Construction HSSPaillier

Setup(1λ): Set up the scheme.
1. Sample (pkPaillier = N, sk = d) ← Paillier.Gen(1λ). Let d(0), . . . , d(`−1)

denote the digits of d base Bsk.
2. Subtractively secret share the digits of d as 〈d(i)〉(Z)0 , 〈d(i)〉(Z)1 such that

〈d(i)〉(Z)1 −〈d(i)〉
(Z)
0 = d(i). Each 〈·〉(Z)1 is drawn uniformly at random from

[2κBsk]; 〈·〉(Z)0 is selected to complete the subtractive sharing.
3. Sample a key kprf for the prf F (2κ) which outputs values in [2κ].

4. For σ ∈ {0, 1}, let ekσ = (kprf , 〈d(0)〉(Z)σ , . . . , 〈d(`−1)〉(Z)σ ).
5. Encrypt the digits of d asD(0) ← Paillier.Enc(pkPaillier, d

(0)), . . . ,D(`−1) ←
Paillier.Enc(pkPaillier, d

(`−1)).
6. Let pk = (pkPaillier, D

(0), . . . , D(`−1)).
7. Output (pk, (ek0, ek1)).

Input(pk, x): Generate an input value for x.
1. Generate a Paillier ciphertext X ← Paillier.Enc(pkPaillier, x).
2. For i ∈ [0, . . . , ` − 1], generate an encryption X(i) of d(i)x by homo-

morphically multiplying D(i) by x, and then re-randomizing. Concretely
using Paillier, X(i) = rNi (D(i))x for a randomly sampled ri ← Z∗N2 .

3. Let I = (X,X(0), . . . , X(`−1)).
4. Output (I0 = I, I1 = I).

ConvertInput(σ, ekσ, I = (X,X(0), . . . , X(`−1))): Convert an input to a memory

value. First, we take a canonical secret sharing of 1 as 〈1〉(Z)1 = F
(2κ)
kprf

(1) +

1 mod N , and 〈1〉(Z)0 = F
(2κ)
kprf

(1). Then we create a memory value for 1

as M1,σ = (〈1〉(Z)σ , 〈d(0)〉(Z)σ , . . . , 〈d(`−1)〉(Z)σ ) for σ ∈ {0, 1}, and evaluate
Mul(σ, ekσ, Ix,M1,σ).a

Add(σ, ekσ,Mx,σ,My,σ): Add two memory values.

1. Parse Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(`−1)〉(Z)σ ), and

My,σ = (〈y〉(Z)σ , 〈yd(0)〉(Z)σ , . . . , 〈yd(`−1)〉(Z)σ ).

2. Let 〈z〉(Z)σ = 〈x〉(Z)σ + 〈y〉(Z)σ , and 〈zd(i)〉(Z)σ = 〈xd(i)〉(Z)σ + 〈yd(i)〉(Z)σ for
i ∈ [0, . . . , `− 1].

3. Output Mz,σ = (〈z〉(Z)σ , 〈zd(0)〉(Z)σ , . . . , 〈zd(`−1)〉(Z)σ ).
Add(pk, Ix = (X,X(0), . . . , X(`−1)), Iy = (Y, Y (0), . . . , Y (`−1))): Add two input

values by homomorphically evaluating addition on the ciphertexts to get
Iz = (Z,Z(0), . . . , Z(`−1)). Concretely using Paillier, Z = XY mod N2, and
Z(i) = X(i)Y (i) mod N2. Output Iz.

Mul(σ, ekσ, Ix,My,σ)): Multiply an input value and a memory value. We let id be
the index of this multiplication; all such indices are assumed to be unique.
1. Parse Ix = (X,X(0), . . . , X(`−1)).

2. Parse My,σ = (〈y〉(Z)σ , 〈yd(0)〉(Z)σ , . . . , 〈yd(`−1)〉(Z)σ ).

3. Let 〈yd〉(Z)σ =
∑`−1
i=0 Bsk

i〈yd(i)〉(Z)σ be a subtractive share of yd over the
integers.

4. Let

〈z〉(N)
σ = DDLogN ((X)〈yd〉

(Z)
σ ) + F

(N)
kprf

(id) (mod N).

This yields a subtractive sharing of z = xy (mod N). Since z � N , we
can take this to be a share of z over the integers; that is,

〈z〉(Z)σ = 〈z〉(N)
σ .
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5. Similarly, let

〈zd(i)〉(N)
σ = DDLogN ((X(i))〈yd〉

(Z)
σ ) + F

(N)
kprf

(id, i),

and
〈zd(i)〉(Z)σ = 〈zd(i)〉(N)

σ .

6. Output Mz,σ = (〈z〉(Z)σ , 〈zd(0)〉(Z)σ , . . . , 〈zd(`−1)〉(Z)σ ).

Output(σ, ekσ,Mx,σ = (〈x〉(Z)σ , 〈xd(0)〉(Z)σ , . . . , 〈xd(`−1)〉(Z)σ ), nout):

Output 〈x〉(Z)σ mod nout.

a Note that in our HSS construction based on Paillier, we do not actually use
〈1〉(Z)σ in the multiplication; it is only necessary for Output. However, in HSS
constructions based on PaillierEG and BG described in Appendix B, this will
be needed.)

4.3 HSS Variants

The HSS construction in the previous section has two drawbacks: (1) it requires
a local trusted setup for each pair of parties, and (2) its security relies on the
assumption that Paillier is KDM secure. We address both these issues by giving
two alternative HSS constructions. In the first one we replace Paillier encryption
with the Paillier-ElGamal encryption scheme [CS02, DGS03, BCP03], which is
essentially ElGamal over the group Z∗N2 . In this variant multiple users can share
the same modulus N , and the decryption key is a random exponent d (as in
ElGamal). This has the advantage of only requiring a public-key style setup,
where each party publishes a public key, and each can then non-interactively de-
rive their shared public key and their own evaluation key. Note that the trusted
setup now only contains the modulus N , and can be used by any number of
parties. In the last construction we replace Paillier encryption with the provably
KDM secure encryption scheme of Brakerski and Goldwasser [BG10]. This has
the unexpected advantage that generating encryptions of the digits of the se-
cret key can trivially be done having access to the public key only. While both
alternative constructions follow the same blueprint as the one from “regular”
Paillier, several details need to be taken care of. The details of the constructions
are deferred to Appendix B.

5 Pseudorandom Correlation Functions

In this section, we present our constructions of pseudorandom correlation func-
tions (PCFs). We first recap the syntax and definitions of a PCF in Section 5.1.
Then, in Section 5.2, we give our PCF for the vector oblivious linear evalua-
tion (VOLE) correlation, based on the DCR assumption, and in Section 5.3, our
PCF for the oblivious transfer (OT) correlation based on quadratic residuosity.
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Our public-key variants of these PCFs are deferred until Section 6. Finally, in
Section 5.4, we also construct the weaker notion of a pseudorandom correlation
generator (PCG) for the oblivious linear evaluation (OLE) correlation, based on
a combination of the DCR and learning parity with noise assumptions.

5.1 Definitions

To formalize our constructions for VOLE and OT, we use the concept of a pseu-
dorandom correlation function (PCF) by Boyle et al. [BCG+20a]. Informally, a
pseudorandom correlation function enables two parties to sample an arbitrary
amount of correlated randomness, given a one-time setup that outputs a pair
of short, correlated keys. This extends the previous notion of a pseudorandom
correlation generator [BCG+19], analogously to how a PRF extends a PRG,
where in the latter, the outputs are typically of bounded length and/or must be
computed all at once.

One example of desirable correlated randomness is an instance of random
oblivious transfer (OT), where one party obtains (s0, s1) uniform over {0, 1}2,
and the other obtains (b, sb) for b uniform over {0, 1}. Another example is vector
oblivious linear evaluation (VOLE) over a ring R, where the parties obtain re-
spective outputs (u, v) ∈ R2 and (x,w) ∈ R2, where u, v are random, w = ux+v,
and x is sampled at random, but fixed for all samples from the correlation.

We model a target correlation as a probabilistic algorithm Y, which produces
a pair of outputs (y0, y1) for the two parties. To define security, we additionally
require the correlation to be reverse-sampleable, meaning that given an output
yσ, there is an efficient algorithm which produces a y1−σ from the distribution
of Y conditioned on yσ. Note that in the case of VOLE, due to the fixed x, we
also use a master secret key msk which parametrizes the algorithm Y. Such a
correlation with a master secret key is called a correlation with setup, which we
focus on below.

Definition 5.1 (Reverse-sampleable correlation with setup). Let 1 ≤
`0(λ), `1(λ) ≤ poly(λ) be output-length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that

– Setup, on input 1λ, returns a master key msk, and
– Y, on input 1λ and msk, returns a pair of outputs (y0, y1) ∈ {0, 1}`0(λ) ×
{0, 1}`1(λ).

We say that the tuple (Setup,Y) defines a reverse sampleable correlation with
setup if there exists a probabilistic polynomial time algorithm RSample such that

– RSample, on input 1λ, msk, σ ∈ {0, 1} and yσ ∈ {0, 1}`σ(λ), returns y1−σ ∈
{0, 1}`1−σ(λ) such that for all msk,msk′ in the image of Setup and all σ ∈
{0, 1}, the following distributions are statistically close:

{(y0, y1) | (y0, y1)← Y(1λ,msk)}

{(y0, y1) | (y′0, y′1)← Y(1λ,msk′), yσ ← y′σ, y1−σ ← RSample(1λ,msk, σ, yσ)}
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ExpprA,Q,0(λ) :

msk← Setup(1λ)
for i = 1 to Q(λ):
x(i) ← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1 )← Y(1λ,msk)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[Q(λ)])

return b

ExpprA,Q,1(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to Q(λ):
x(i) ← {0, 1}n(λ)

for σ ∈ {0, 1}: y(i)σ ← PCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[Q(λ)])

return b

Fig. 2. Pseudorandom Y-correlated outputs of a PCF.

A PCF for a correlation Y consists of a key generation algorithm, Gen, which
outputs a pair of correlated keys, together with an evaluation algorithm, Eval,
which is given one of the keys and a public input, and produces a correlated
output. In a weak PCF, we only consider running Eval with randomly chosen
inputs, whereas in a strong PCF, the inputs can be chosen arbitrarily. Boyle et al.
[BCG+20a] show that any weak PCF can be used together with a programmable
random oracle to obtain a strong PCF, so from here on, our default notion of
PCF will be a weak PCF.

There are two security requirements for a PCF: firstly, a pseudorandomness
requirement, meaning that the joint distribution of both parties’ outputs of Eval
are indistinguishable from outputs of Y. Secondly, there is a security property,
which intuitively requires that pseudorandomness still holds even when given
one of the parties’ keys.

Definition 5.2 (Pseudorandom correlation function (PCF)). Let (Setup,
Y) fix a reverse-sampleable correlation with setup which has output length func-
tions `0(λ), `1(λ), and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let
(PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

– PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ,
outputs a pair of keys (k0, k1);

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈
{0, 1}`σ(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) pseudorandom correlation function
(PCF) for Y, if the following conditions hold:

– Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-
uniform adversary A of size poly(λ), and every Q = poly(λ), it holds that∣∣∣Pr[ExpprA,Q,0(λ) = 1]− Pr[ExpprA,Q,1(λ) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where ExpprA,Q,b(λ) for b ∈ {0, 1} is as defined
in Figure 2. (In particular, where the adversary is given access to Q(λ)
samples.)
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ExpsecA,Q,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
for i = 1 to Q(λ):
x(i) ← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x(i))

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[Q(λ)])

return b

ExpsecA,Q,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
msk← Setup(1λ)
for i = 1 to Q(λ):
x(i) ← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ,msk, σ, y

(i)
σ )

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[Q(λ)])

return b

Fig. 3. Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as
in Definition 5.1.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ),
and every Q = poly(λ), it holds that∣∣Pr[ExpsecA,Q,σ,0(λ) = 1]− Pr[ExpsecA,Q,σ,1(λ) = 1]

∣∣ ≤ negl(λ)

for all sufficiently large λ, where ExpsecA,Q,σ,b(λ) for b ∈ {0, 1} is as defined in
Figure 3 (again, with Q(λ) samples).

5.2 PCF for Vector-OLE From Paillier

Vector oblivious linear evaluation, or VOLE, over a ring R = R(λ), is a cor-
relation defined by an algorithm Setup, which outputs msk = x for a random
x ∈ R, and an algorithm YVOLE, which on input msk, samples random elements
u, v ∈ R, computes w = ux + v and outputs the pair ((u, v), (w, x)). Note that
w, v can be viewed as a subtractive secret sharing of the product ux. Since x is
fixed, this means that a batch of VOLE samples can be used to perform scalar-
vector multiplications on secret-shared inputs, as part of, for instance, a secure
two-party computation protocol.

The main idea behind our PCF for VOLE is the following. In the standard
Paillier cryptosystem, every element of Z∗N2 defines a valid ciphertext, which
makes it possible to obliviously sample an encryption of a random message,
without knowing the underlying message. We exploit this by having both par-
ties locally generate the same random ciphertexts3, which are then viewed as
encryptions of random inputs a in the HSS construction. Then, given a subtrac-
tive secret sharing of xd, where d is the secret key and x ∈ ZN is some fixed
value, the parties can use the distributed multiplication protocol from the HSS
scheme to obtain shares z0, z1 such that z1 = z0 + ax. If one party is addition-
ally given the secret key d (and hence learns the a’s) and the other party is
given x, then this process can be repeated to produce an arbitrarily long VOLE
correlation.

3 E.g. with a random oracle, or some other public source of randomness.
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In the PCF construction, shown in Construction 5.4, the values x, d and
shares of xd are distributed by the PCF Gen algorithm, while the random ci-
phertexts are given as public inputs to the Eval algorithm, since we are only
building a weak PCF and not a strong one. Additionally, the parties use a PRF to
randomize their output shares and ensure that these are uniformly distributed.

Theorem 5.3. Suppose the DCR assumption holds, and that F is a secure PRF.
Then Construction 5.4 is a secure PCF for the VOLE correlation, YVOLE, over
the ring ZN .

Proof. We first argue the pseudorandomness property, namely, that the joint
distribution of outputs from Eval are indistinguishable from outputs of YVOLE (see
game in Fig. 2). First, note that by the correctness of DDLog (Lemma 3.3), and
the fact that each random input c lies in Z∗N2 , the outputs satisfy z1 − z0 = ax.
Also, note that x is uniform in ZN in both the PCF and the ideal YVOLE outputs.

Therefore, it suffices to show that the first party’s input/output samples
given by (c, a, z0), where a = Paillier.Dec(d, c) and z0 = DDLogN (cy0) + Fkprf (c),
are computationally indistinguishable from samples of the form (c, a′, z′0), where
a′, z′0 are uniform in ZN . We can first replace each z0 with a random z′0 from
ZN , which is indistinguishable due to the security of the PRF F (remember that
in the pseudorandomness definition of Fig. 2 the distinguisher does not see the
PRF key). Next, we also replace each a with random values a′ in ZN , instead
of decryptions of c; this is indistinguishable under the DCR assumption, by the
semantic security of Paillier encryption.

We now argue the security property from Definition 5.2. First consider the
case σ = 0. We want to show that, given the key k0 = (N, kprf , y0, d) from Gen, no
adversary can distinguish a set of random inputs and evaluations (c, z1, x) com-
puted from k1 from random, reverse-sampled values conditioned on the (z0, a)
computed from k0. Note that the reverse-sampling algorithm simply picks a ran-
dom x ∈ ZN as its setup, and then on input (z0, a), outputs z1 = z0 + ax. It
is clear that the two distributions are identical, due to the correctness property
and the fact that the key k0 is sampled independently of x.

For the case σ = 1, in the real distribution the adversary is given k1 =
(N, kprf , y1, x) and a set of input/output samples of the form (c, z0, a), where
z0, a are computed using Eval(0, k0, c). We consider the following sequence of
hybrids.

In the first hybrid, instead of computing z0 as in Eval, we compute z0 =
z1 − ax. This is identically distributed to the original experiment, due to the
correctness of DDLog.

Next, we sample the share y1 uniformly from [N32κ], instead of computing
y1 = y0 + x · d. Since y0 is uniform in [N32κ] and xd < N3, this is within
statistical distance 2−κ of the previous distribution.

Finally, we replace each a by a uniform value from ZN . This is identical
to the reverse-sampled distribution, and computationally indistinguishable from
the previous case, since all other values seen by the adversary are independent of
the secret key, so we can rely on the semantic security of Paillier under DCR.
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Construction 5.4: PCF for Vector Oblivious Linear Evaluation

Let F : {0, 1}λ × {0, 1}λ → ZN be a pseudorandom function.

Gen: On input 1λ:

1. Sample (N, p, q)← GenPQ(1λ).
2. Compute d ∈ Z such that d ≡ 0 (mod ϕ(N)) and d ≡ 1 (mod N).
3. Sample x← [N ], y0 ← [N32κ], and let y1 = y0 + x · d over the integers.
4. Sample kprf ← {0, 1}λ.
5. Output the keys k0 = (N, kprf , y0, d) and k1 = (N, kprf , y1, x).

Eval: On input (σ, kσ, c), for a random input c ∈ Z∗N2 :

– If σ = 0, parse k0 = (N, kprf , y0, d):
1. Compute a = Paillier.Dec(d, c).
2. Compute z0 = DDLogN (cy0) + Fkprf (c) mod N .
3. Output (z0, a)

– If σ = 1, parse k1 = (N, kprf , y1, x):
1. Compute z1 = DDLogN (cy1) + Fkprf (c) mod N .
2. Output (z1, x)

5.3 PCF for Oblivious Transfer From Quadratic Residuosity

To build a PCF for OT, we will first build a PCF for XOR-correlated OT, where
the sender’s messages are all of the form z1, z1⊕s for some fixed string s. This is
formally defined by a correlation Y⊕-OT, where the setup algorithm Setup picks
a random msk = s ← {0, 1}λ, and then each call to Y⊕-OT(msk) first samples
b← {0, 1}, z0 ← {0, 1}λ, lets z1 = z0 ⊕ b · s, and outputs the pair (z0, b), (z1, s).

Our PCF construction proceeds analogously to the VOLE case, except we
rely on the Goldwasser-Micali cryptosystem instead of Paillier.

GM Encryption. We use the Goldwasser–Micali (GM) cryptosystem [GM82],
with the simplified decryption procedure by Katz and Yung [KY02], which allows
threshold decryption when p, q are both 3 (mod 4).4

GM.Gen(1λ) :
1. Sample (N, p, q)← GenPQ(1λ).
2. Let d = φ(N)/4 = (N − p− q + 1)/4.
3. Output pk = N , sk = d.

GM.Enc(pk, x ∈ {0, 1}) :
1. Sample a random r ← ZN .
2. Output ct = r2(−1)x mod N .

4 One can also obtain a similar threshold-compatible decryption under more general
requirements for the modulus; see Desmedt and Kurosawa [DK07].
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Observe that, if x = 0, ct will be a random quadratic residue modulo N ; if
x = 1, ct will be a random non-residue.

GM.Dec(sk, ct) :
1. Compute y = ctd mod N , which is in {1,−1}, and output x = 0 if y = 1,

or x = 1 if y = −1.

Notice that in the GM cryptosystem, JN (the elements of ZN with Jacobi
symbol 1) defines the set of valid ciphertexts. This allows us to sample a random
ciphertext without knowing the corresponding message, by generating a random
element of ZN and testing that it has Jacobi symbol 1, which can be done
efficiently.

We also use the distributed discrete log procedure DDLogGM, shown in Al-
gorithm 5.5. By inspection, it can be seen that for any two inputs a0, a1 ∈ Z∗N
satisfying a1/a0 = (−1)b for a bit b, we have DDLogGM(a0)⊕DDLogGM(a1) = b.
Note that this procedure was previously used to construct trapdoor hash func-
tions [DGI+19].

Algorithm 5.5: DDLogGM(a ∈ ZN )

1. Map a to an integer in {0, . . . , N − 1}.
2. If a < N/2 then output z = 1, otherwise, output z = 0.

PCF for Oblivious Transfer. The construction proceeds similarly to the
VOLE case, except instead of one sharing, the Gen algorithm samples λ sub-
tractive sharings of sj · d, where d is the GM secret key and sj is one bit of the
sender’s fixed correlated OT offset. Then, given a random encryption of a bit b
in Eval, the parties run DDLogGM λ times to obtain XOR shares of the string
b · s ∈ {0, 1}λ, giving a correlated OT as required.

Construction 5.6: PCF for Oblivious Transfer

Let F : {0, 1}λ × ZN → {0, 1}λ be a pseudorandom function.

Gen: On input 1λ:

1. Sample (N, p, q)← GenPQ(1λ), and let d = ϕ(N)/4.
2. Sample kprf ← {0, 1}λ.
3. For j = 1, . . . , λ, sample sj ← {0, 1}, y0,j ← [N2κ], and let y1,j = y0,j + sj ·d

over the integers. Write s = (s1, . . . , sλ).
4. Output the keys k0 = (N, kprf , {y0,j}j∈[λ], d) and k1 = (N, kprf , {y1,j}j∈[λ], s).

Eval: On input (σ, kσ, c), for a random input c ∈ JN :

– If σ = 0, parse k0 = (N, kprf , {y0,j}j∈[λ], d):
1. Compute b = GM.Dec(d, c) in {0, 1}.
2. For j = 1, . . . , λ, compute z0,j = DDLogGM(cy0,j ).
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3. Let z0 = (z0,0, . . . , z0,λ)⊕ Fkprf (c).
4. Output (z0, b).

– If σ = 1, parse k1 = (N, kprf , {y1,j}j∈[λ], s):
1. For j = 1, . . . , λ, compute z1,j = DDLogGM(cy1,j ).
2. Let z1 = (z1,1, . . . , z1,λ)⊕ Fkprf (c).
3. Output (z1, s).

Theorem 5.7. Suppose the QR assumption holds, and that F is a secure PRF.
Then Construction 5.6 is a secure PCF for the correlated OT correlation, Y⊕-OT.

Proof. We first argue Y⊕-OT-pseudorandomness. For each query on input c,
where b = Dec(d, c), by the correctness of DDLogGM we have z1,j⊕z0,j = sj ·b, for
each j = 1, . . . , λ, which implies z1⊕ z0 = b · s as required. Further, by the same
argument as for the PCF for VOLE, the input/output pairs c, (z0, b) for party
σ = 0 are computationally indistinguishable from random, due to the security
of the PRF, and the pseudorandom ciphertexts property of Goldwasser-Micali.
This completes the pseudorandomness property.

Next, we consider the security property for σ = 0. Just as with the proof
of Theorem 5.3, the expanded outputs of party 1 are identically distributed to
reverse-sampled outputs from Y⊕-OT (conditioned on the outputs from k0), so
we have perfect security due to the fact that k0 is entirely independent of the
sender’s secret s.

When σ = 1, we follow the same sequence of hybrid games as in Theorem 5.3.
First, we replace each y1,j with a uniform element of [N2κ], which is statistically
close to the real y1,j since sjd < N . Then, we replace each bit b with a random
bit, instead of using d to decrypt c, which is computationally indistinguishable
under the QR assumption.

Extension to random oblivious transfer. A correlated OT can be lo-
cally coverted into a random OT, where both of the sender’s messages are
independently random, using a hash function and the technique of Ishai et
al. [IKNP03]. The sender simply applies the hash function to compute its out-
puts H(z1),H(z1⊕ s), while the receiver outputs H(z0) = H(z1⊕ b · s). Assuming
a suitable correlation robustness property of H, the resulting OT messages are
pseudorandom. It was shown by Boyle et al. [BCG+19, BCG+20a] that this
transformation can be used to convert any PCF or PCG for correlated OT into
one for the random OT correlation. Hence, we obtain the following.

Corollary 5.8. Suppose the QR assumption holds, and there is a secure correlation-
robust hash function. Then, there exists a secure PCF for the random oblivious
transfer correlation.

27



5.4 PCG for OLE and Degree-2 Correlations From LPN and
Paillier

In Section 5.2, we showed how to build a PCF for VOLE, where the parties obtain
(u, v) ∈ R2 and (x,w) ∈ R2, respectively, such that u, v are random, w = ux+v,
and x is fixed for all samples from the correlation. In this section we show how
to upgrade this to more general degree-2 correlations, including OLE, where x
is sampled freshly at random for each instance. Of course, if we could get many
VOLE PCF setups, each one of those could yield one OLE instance (if we only
use it once!). Here, we show how to get m setups for the VOLE construction all
at once from a smaller amount of correlated randomness, in what amounts to a
PCG for OLE. (We emphasize that this is a pseudorandom correlation generator,
not function, since it produces a fixed number of correlations.) Later, we also
observe that this PCG for OLE can be generalized in several ways, to obtain a
PCG for general degree-2 correlations over ZN , or Z2 when replacing Paillier by
QR, and finally even to a pseudorandom correlation function, when replacing
LPN by a variable-density variant of LPN [BCG+20a].

In the main construction we fix N , as well as the associated Paillier decryp-
tion key d, which we give to party 0, across all m instances. Our goal is run m
copies of Construction 5.4 so we would like to give party 1 m random values
x1, . . . , xm, and secret share each dxi over the integers between the two par-
ties. However, this doesn’t give us a PCG, because the size of our setup would
be the same as the number of correlations we are able to produce. In order to
keep our setup size much smaller than m, we instead produce the setup with a
variant of a PCG based on the LPN assumption [BCGI18]. We give party 1 a
sparse n-element vector e of elements in [N ], for m < n, which only contains
t = poly(λ) non-zero elements. (Since it is sparse, it can actually be represented
in t log(n) log(N) � n bits.) By the dual form of the LPN assumption, H · e
for such a sparse e and some public H ∈ Zm×n looks pseudorandom (if e is
unknown), so we can expand e to give m psuedorandom elements. In order to
similarly compress a sharing of d · e, we use a function secret sharing of the
multi-point function defined by d · e. (Note that we need to use a large enough
modulus in the function secret sharing so that the output shares the parties
obtain are shares over the integers with overwhelming probability.) This allows
both parties to obtain shares of d · e, and then to compute shares of H · (d · e).
This completes the setup of m instances of our VOLE PCF; the parties then use
each of those instances once, to get m instances of the OLE correlation.

We present the complete PCG in Construction 5.10. Preliminaries on FSS
are deferred to Appendix A.

Theorem 5.9. Let H be a random oracle, F a secure PRF, and suppose that
both the LPN and DCR assumptions hold. Then Construction 5.10 is a secure
PCG for the OLE correlation.

Proof. We first argue the pseudorandomness property, by showing that the out-
puts of PCGOLE are indistinguishable from a set of m random OLEs. The outputs
are given by (a, z0), (b, z1), where each zσ is obtained by first taking an FSS
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output y′σ, then multiplying by H, and finally applying DDLog and adding a
PRF value to each entry of the vector.

Hybrid 0: First, we consider a hybrid where we replace the FSS output y′1
with y′0 + d · e in ZN32λ . Due to the correctness of FSS, this is statistically
indistinguishable from the previous experiment.

Hybrid 1: Next, we replace the other party’s FSS output, y′0, with a uniform
vector in ZN32λ , and compute y′1 using this. By the pseudorandom outputs
property of FSS, this is computationally indistinguishable.

Hybrid 2: In this hybrid, instead of computing y′1 = y′0 + d · e in ZN32λ , we
compute it over the integers. Since each entry of d · e is less than N3, and
y′0 is uniform in {0, . . . , N32λ}, this is statistically close to hybrid 1.
Note that now, we have y1 − y0 = d · (H · e) over Z, so by the correctness
of DDLog and the fact that aj = Decd(cj), it holds that z1,j − z0,i = ai · bi
(mod N) (where bj is the j-the entry of H · e modN).

Hybrid 3: In this hybrid, we replace the outputs z0 with a uniform vector in
ZmN , and compute z1 = z0 + a ∗ b mod N . Since the outputs in Hybrid
2 already satisfied this relation, the two experiments are computationally
indistinguishable due to the PRF.

Hybrid 4: Next, instead of computing b = H ·e mod N , we sample b uniformly
at random from ZmN . This is indistinguishable from Hybrid 3 under the LPN
assumption.

Hybrid 5: In the final hybrid, instead of computing aj by decrypting cj (which
is an output of the random oracle), we sample aj uniformly at random.
This is indistinguishable from the previous hybrid under DCR, following the
semantic security of Paillier. It is also identical to the ideal YOLE distribution.

Security, σ = 0. Here, we rely on the LPN assumption, as well as the security
of FSS. Recall that the distinguisher is given k0 = (N, kprf , k

fss
0 , d), and party

1’s expanded outputs (b, z1). By the same argument as the first two hybrids
previously, this is indistinguishable from the case where z1 is computed as z0+a∗
b (due to correctness of FSS and DDLog). We next consider a hybrid where kfss0 is
replaced with a key generated from the FSS simulator, which is computationally
indistinguishable from the real key. Since everything in the distinguisher’s view,
except for b = He, is now now generated independently of the error vector e,
we can now use the LPN assumption to replace b with a uniform vector.

Security, σ = 1. This argument proceeds symmetrically to the case where σ = 0,
except here, instead of replacing b with a random vector based on LPN, the final
step is to replace a with a random vector, relying on the DCR assumption.

Construction 5.10: PCGOLE

Let H : {0, 1}∗ → ZN2 be a hash function, modelled as a random oracle, and
F : {0, 1}λ × {0, 1}λ → ZN be a PRF.
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Let m,n be length parameters with m < n, and H ∈ Zm×n be a matrix for
which the dual-LPN problem is hard over ZN .

Gen: On input 1λ:

1. Sample (N, p, q)← GenPQ(1λ).
2. Compute d ∈ Z such that d = 0 mod ϕ(N) and d = 1 mod N .
3. Sample kprf ← {0, 1}λ.
4. Sample a vector e ∈ ZnN with t random, non-zero entries, and zero elsewhere.
5. Generate FSS keys kfss0 , k

fss
1 for the multi-point function defined by d · e, with

domain size n and range ZN′ , for N ′ = N32κ.a

6. Output the seeds k0 = (N, kprf , k
fss
0 , d) and k1 = (N, kprf , k

fss
1 , e).

Expand: On input (σ, kσ):

– If σ = 0, parse k0 = (N, kprf , k
fss
0 , d):

1. Let y′0 = FSS.FullEval(0, kfss0 ) in Zn.
2. Compute y0 = H · y′0 in Zm.
3. For j = 1, . . . ,m:

(a) Let cj = H(sid, j) in ZN2

(b) Compute aj = (cd − 1)/N in ZN .
(c) Compute z0,j = DDLogN (c

y0,j
j ) + Fkprf (j).

4. Output a = (a1, . . . , am) and z0 = (z0,1, . . . , z0,m).
– If σ = 1, parse k1 = (N, kprf , k

fss
1 , e):

1. Let y′1 = FSS.FullEval(1, kfss1 ) in Zn.
2. Compute y1 = H · y′1 in Zm and b = H · e in ZmN .
3. For j = 1, . . . ,m:

(a) Let cj = H(sid, j) in ZN2

(b) Compute z1,j = DDLogN (c
y1,j
j ) + Fkprf (j).

4. Output b = H · e and z1 = (z1,1, . . . , z1,m), both in ZmN .

a This ensures that d · e is always much less than N ′, so we get shares over the
integers.

Extensions to Degree-2 Correlations, and PCF. We now describe three
natural extensions to the above construction, to degree-2 correlations over ZN ,
degree-2 correlations over Z2, and PCFs. Firstly, note that in step 3c of PCGOLE,
the parties use DDLog to obtain shares of aj · bj . However, they could just
as easily multiply ai · bj , for any i 6= j, by using instead the corresponding
ciphertext ci. This means the parties can actually use the same PCG seeds to
get shares of f(a, b), where f is any degree-2 function of a, b. This PCG for
degree-2 correlations can be used, for instance, to get shares of matrix products
and correlations for circuit-dependent preprocessing [BCG+20b].

Secondly, notice that the same construction also applies when using Goldwasser-
Micali instead of Paillier. We use FSS in the same way to obtain shares of d · e,
where now d is the GM decryption key (as in Construction 5.6). We also replace
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the matrix H with a binary matrix, used for LPN over Z2, and perform the
DDLog step in the same way, using the corresponding algorithm for GM. This
leads to a PCG for general, degree-2 correlations over Z2, based on LPN and
QR.

Finally, we remark that all of these constructions can be upgraded to give a
pseudorandom correlation function, where the number of outputs is not polyno-
mially bounded, and they can be computed on-the-fly. This can be done by re-
placing the matrix H with a variable-density matrix, relying on variable-density
LPN [BCG+20a]. The idea is that both H and e are chosen to be exponentially
large, but sparse enough that they can still be compressed so that a single entry
of the product H ·e can be computed efficiently. This follows by directly applying
the variable-density LPN assumption introduced in [BCG+20a].

6 Public-key Setup for PCFs

6.1 Non-Interactive VOLE

In this section, we present our protocol for non-interactive VOLE with semi-
honest security, based on Paillier. Party PA has input values a1, . . . , an, while
party PB has a single input value x, and the goal is to obtain additive shares
of ai · x modulo N , by exchanging just one simultaneous message. We assume
that the modulus N has been generated as a trusted setup, and no-one knows
its factorization.

Our protocol starts off in the spirit of Bellare-Micali OT [BM90], where PB

sends gs for a random s, and PA sends gri · Cai , for random ri, where g and C
are some fixed random group elements. Note that in Bellare-Micali, ai is a bit,
whereas here it is in ZN . At this point (where we depart slightly from [BM90]),
PA can compute the keys gris, while PB can compute, gris·Cais (without knowing
ai). We then have that the ratio of each of the two parties’ keys is Cais. Next,
we additionally have PB send a correction value D = Cs · (1 +N)x, which allows
PA to adjust its key so that the ratios become (1 + N)aix. Finally, each party
locally applies the distributed discrete log procedure to convert each key into an
additive share of ai ·x modulo N . To allow for simulation, both parties randomize
their output shares. Since we are dealing with passive security, it is enough for
one of the parties (PA) to sample those values. The full protocol is specified
in Construction 6.3.

Theorem 6.1. The protocol in Construction 6.3 securely implements Function-
ality 6.2 in the presence of passive, static corruptions under the DCR and QR
assumptions.

Proof. It is easy to verify that each pair of keys Ki,K
′
i satisfies the right relation,

that is:

K ′i/Ki = Bri ·Dbi/Asi = Cais · (1 +N)xai/Cais = (1 +N)xai

Then by Lemma 3.3 we have that, for each i, y0,n − y1,n = xai.
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Towards proving security, note that the view of a corrupt PB only consists of
(A1, . . . , An, t1, . . . , tn). The Ai’s can be efficiently simulated by simply choosing
uniform values from Z∗N2 . However we also need to ensure that the outputs of of
the computation are the same in the real and ideal protocol. Towards this, we
set the ti to be the unique values consistent with the output of the functionality
i.e., ti = y0,i−DDLogN (Asi ). We then prove security with the following series of
hybrids.

Hybrid 0: This is the simulated protocol i.e., on input (x, y0,1, . . . , y0,n) the
simulator picks a random s ← [N2], samples uniformly random Ai ← Z∗N2 ,
and then programs ti = y0,i − DDLogN (Asi ).

Hybrid 1: We replace the random (g, C) in the CRS and the Ai’s with random
N -th residues, that is, (g′)N , (C ′)N , (A′i)

N , for random g′, C ′, A′i ∈ Z∗N2 . By
the DCR assumption, these are indistinguishable.

Hybrid 2: Instead of sampling g′, C ′, A′i at random, we choose them to be ran-
dom squares in Z∗N2 ; this ensures that (g, C,Ai) are 2N -th residues, which
have order p′q′ (since N is a product of safe primes). This step is indistin-
guishable from the previous hybrid under the QR assumption.

Hybrid 3: We now compute Ai as in the protocol i.e., by sampling a random
ri and setting Ai = griCai . Since g, C,Ai are all of order p′q′, this hybrid is
distributed statistically close to the previous one (due to the choice of ri).

Hybrid 4: We replace (g, C) in the CRS with uniform random elements from
Z∗N2 . As in Hybrids 1–2, this is indistinguishable due to DCR and QR. Note
that Hybrid 4 corresponds to the real protocol, with the only exception
that the ti’s are programmed in this hybrid while they are random in the
real protocol. However, note that each ti is in fact identically distributed in
the hybrid and in the real protocol, since it is the only value that leads to
the correct output y0,i. Therefore this concludes the proof of security for a
corrupt PB.

The view of a corrupt PA consists of the tuple (B,D). This can be simu-
lated essentially by running the protocol as an honest PB with input x = 0.
Indistinguishability of the view follows due to Lemma 2.1. As for the case of the
corrupted PB, we program the random values ti’s to be the only value which
would produce the right output, namely ti = y1,i − DDLogN (BriDai). We then
prove security with the following series of hybrids.

Hybrid 0: This is the simulated protocol where on input (a1, . . . , an, y1,1, . . . , y1,n)
the simulator picks a random s ← [N2] and computes (B,D) = (gs, Cs),
samples uniformly random ri ← [N2], and then programs ti = y0,i−DDLogN (BriDbi).

Hybrid 1: We replace (g, C) in the CRS to be random N -th residues. Indistin-
guishability follows from DCR.

Hybrid 2: We replace D with Cs(1 +N)x. Indistinguishability from the previ-
ous hybrid follows from Lemma 2.1.

Hybrid 3: We replace g, C in the CRS with uniformly random elements from
Z∗N2 . This is indistinguishable due to DCR.
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Note that Hybrid 3 corresponds to the real protocol, with the only exception
that the ti’s are programmed in this hybrid while they are random in the real
protocol. However, note that each ti is in fact identically distributed in the hybrid
and in the real protocol, since it is the only value that leads to the correct output
y1,i. Therefore this concludes the proof of security for a corrupt PA.

Functionality 6.2: FZN -VOLE

The functionality interacts with parties PB, PA and an adversary A.

On input a1, . . . , an ∈ ZN from PA and x ∈ ZN from PB, the functionality does
the following:

– Sample y0,i ← ZN , for i = 1, . . . , n, and set y1,i = y0,i + ai · x.
– Output (y0,1, . . . , y0,n) to PB and (y1,1, . . . , y1,n) to PA.

Construction 6.3: Non-interactive VOLE protocol

CRS: The algorithms below implicitly have access to crs = (N, g, C), where
(N, p, q)← GenPQ(1λ), and g, C ← Z∗N2 .

Message from PA: On input (a1, . . . , an) ∈ ZnN , sample ri ← [N2], ti ← ZN ,
compute Ai = gri · Cai and send (Ai, ti) for i = 1, . . . , n.

Message from PB: On input x ∈ ZN , sample s← [N2] and send (B,D) where
B = gs, D = Cs · (1 +N)x.

Output of PA: On receiving (B,D), compute K′i = Bri · Dai and output
(y1,1, . . . , y1,n), where y1,i = DDLogN (K′i) + ti.

Output of PB: On receiving (A1, . . . , An, t1, . . . , tn), compute Ki = Asi and
output (y0,1, . . . , y0,n), where y0,i = DDLogN (Ki) + ti.

6.2 Public-Key Silent PCFs

We can plug our non-interactive VOLE protocol into the PCFs of Section 5 to
obtain a public-key variant of those protocols where, after independently posting
a public key, each party can locally derive its PCF key. Using their PCF keys,
together with a random oracle to generate the public random inputs, the parties
can then silently compute an arbitrary quantity of OT or VOLE correlations,
without any interaction beyond the PKI.

Formally speaking, we can model this by defining a public-key PCF the same
way as a standard PCF, except we replace the Gen algorithm with two separate
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algorithms GenA and GenB, which output key pairs (skA, pkA) and (skB, pkB).
After running these algorithms, we define the two parties’ PCF keys to be
(skA, pkA, pkB) and (skB, pkA, pkB), respectively, and the rest of the definition
follows the same way as before.

We sketch the constructions below. To distinguish between the different mod-
uli involved, we refer to the modulus in the CRS (needed for the NIVOLE pro-
tocol) as Ñ , and we refer to the modulus in the PCF as N .

Public-Key Silent VOLE. We replace the Gen algorithm of Construction 5.4
with the following: Both parties generate the first message of a non-interactive
key exchange (NIKE) protocol (this will be used to derive the PRF key kprf).
Party 0 runs (N, p, q) ← GenPQ(1λ) and computes d as in Gen, while party 1
picks a random x, and they run the protocol in Construction 6.3 with n = 1
(that is, they implement a single OLE). They both include the message from
the NIOLE and NIKE protocol in their public key, while party 0 includes the
modulus N too. Upon receiving the public key of the other party, they can
compute their PCF key kσ by completing the NIKE and NIOLE protocols. Note
that we require y0, y1 to be a share of x · d over the integers, so this requires the
modulus Ñ in the CRS for the NIOLE to be sufficiently large i.e., Ñ > N32κ.

Public-Key Silent OT. We replace the Gen algorithm of Construction 5.6 with
the following: As above both parties generates the first message of a NIKE. Party
0 runs (N, p, q) ← GenPQ(1λ) and computes d as in Gen, while party 1 picks
random bits sj ∈ {0, 1} for j ∈ [λ], and they run the protocol in Construction 6.3
with n = λ (that is, this is a “proper” instance of VOLE). They both include
the message from the NIVOLE and NIKE protocol in their public key, while
party 0 includes the modulus N too. Upon receiving the public key of the other
party, they can compute their PCF key kσ by completing the NIKE and NIOLE
protocol. Note that we require y0, y1 to be a share of sj · d over the integers, so

this requires the modulus Ñ in the CRS for the NIVOLE to be sufficiently large
i.e., Ñ > N2κ.
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A Function Secret Sharing

Function secret sharing [BGI15, BGI16b] is a way of splitting up a function f
into several shares, or keys, fi, such that individually each fi hides the function,
but can be locally evaluated on any public input x to give fi(x), such that∑
i fi(x) = f(x).
In this work, we consider two-party FSS for classes of functions with domain

{1, . . . , n} and range G, where (G,+) is an abelian group, and both n,G may
depend on the security parameter λ. For consistency with the rest of the paper,
we use subtractive reconstruction instead of the standard additive shares.

Definition A.1 (Function Secret Sharing). A function secret sharing (FSS)
scheme for an infinite family of functions F = {f : [n]→ G} with input domain
[n] and output range an abelian group (G,+) (both possibly depending on f), is
a pair of PPT algorithms FSS = (FSS.Gen,FSS.Eval) with the following syntax:

– FSS.Gen(1λ, f), given security parameter λ and description of a function
f ∈ F , outputs a pair of keys (K0,K1);

– FSS.FullEval(σ,Kσ), given a key Kσ for party σ ∈ {0, 1}, the full-domain
evaluation algorithm outputs 2n group elements (y1σ, . . . , y

n
σ ) ∈ Gn.

The scheme should satisfy the following requirements:

– Correctness: For any f ∈ F and x ∈ [n], we have

Pr

[
FSS.Eval(1,K1, x)−FSS.Eval(0,K0, x) = f(x)

∣∣ (K0,K1)← FSS.Gen(1λ, f)

]
= 1

– Security: For any σ ∈ {0, 1}, there exists a PPT simulator S such that for
any sequence fλ ∈ F of polynomial-size function descriptions, the distribu-
tions

{(σ, fλ,Kσ)
∣∣ (K0,K1)← FSS.Gen(1λ, fλ)} and {(σ, fλ,Kσ)

∣∣ Kσ ← S(1λ, Leak(fλ))}

are computationally indistinguishable.

In the constructions we use, the leakage function Leak : {0, 1}∗ → {0, 1}∗ is given
by Leak(fλ) = (n,G), namely it outputs a description of the input and output
domains of f .
We use FSS.FullEval(σ,Kσ) to refer to an evaluation of the entire domain.

We also require that outputs of the Eval algorithm are pseudorandom.

Definition A.2 (FSS with Pseudorandom Outputs). An FSS scheme (FSS.Gen,FSS.Eval)
for F has pseudorandom outputs if for any σ ∈ {0, 1}, any sequence of polynomial-
size function descriptions fλ ∈ F and any n = poly(λ), the distribution

{
(y(i))ni=1

∣∣ y(i) ← FSS.Eval(σ,Kσ, i), (K0,K1)← FSS.Gen(1λ, fλ)
}
λ∈N

is computationally indistinguishable from the uniform distribution on Gn.
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Multi-point FSS. We consider FSS for the class of multi-point functions with
output space ZN ′ . Each function in the class is specified by a domain size n,
modulus N ′ and set of points (xi, yi) ∈ [n] × ZN ′ , for i = 1, . . . , t, and defined
by

f(x) =

{
yi if x = xi

0 o.w.

We can equivalently define a function in the class by a vector e ∈ ZnN ′ with t
non-zero coordinates, where we use the set of points (i, ei), where ei is a non-zero
entry of e.

FSS for multi-point functions can be constructed using distributed point
functions [GI14, BGI16b], for which there are very efficient constructions based
only on one-way functions. The size of each key for a t-point FSS with domain
size n can be O(tλ log n) bits.

Dual-LPN Assumption. For a vector e, we denote by HW(e) the number of
non-zero entries of e.

Assumption 3 (Dual-LPN Over ZN ). Let N,n,m, t ∈ ZN and H ∈ Zm×nN (with
m < n) be parameters that depend implicitly on the security parameter λ. The
dual learning parity with noise assumption over ZN states that the distribution

(H,He), e← ZnN such that HW(e) = t

is computationally indistinguishable from (H,u) where u← ZmN .

When H is a uniform matrix, Dual-LPN is equivalent to the standard LPN
assumption with a bounded number of samples, and also to the syndrome decod-
ing problem for random linear codes via a search-to-decision reduction [AIK09].
For greater efficiency, one can use a more structured matrix using, say, quasi-
cyclic codes, which allow computing He with a quasi-linear number of arithmetic
operations. In our construction, we assume that given a modulus N , the par-
ties have some way of locally agreeing upon an H for which LPN is hard. This
could be done, for instance, by taking some pre-agreed H ′ over the integers and
reducing this modulo N , or by generating H as the output of a random oracle.

B HSS Variants

In this section we describe two variants of our HSS scheme: one from Paillier-
ElGamal encryption [CS02, DGS03, BCP03], and one from the circular-secure
encryption scheme due to Brakerski and Goldwasser [BG10].

B.1 HSS from Paillier-ElGamal

We show how to build HSS from a different encryption scheme — Paillier-
ElGamal. This has the advantage of only requiring a public-key style setup,
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where each party publishes a public key, and each can then non-interactively
derive their shared public key and their own evaluation key. We also require a
common reference string containing N ; however, this can be reused by many
different pairs of parties running HSS.

Paillier-ElGamal Encryption. We use Paillier-ElGamal encryption [CS02,
DGS03, BCP03], which is essentially ElGamal over the group Z∗N2 . In this set-
ting, we consider N and g, sampled in Gen for completeness, to be public pa-
rameters available to all algorithms. In our HSS scheme, these will be part of a
common reference string (CRS).

PaillierEG.Gen(1λ) :
1. Sample (N, p, q)← GenPQ(1λ).
2. Sample a random g′ ← [N2], and let g = (g′)2N mod N2.
3. Sample a random d← [N2].
4. Output pk = gd mod N2, sk = d.

PaillierEG.Enc(pk, x) :
1. Sample a random r ← [N ].
2. Output ct = (gr, pkr(1 +N)x).

PaillierEG.Dec(sk, ct = (ct0, ct1)) :
1. Let ct′ = ct1(ct0)−d (mod N2).

2. Output x = ct′−1
N .

The security of this scheme can be based only on the DCR assumption (As-
sumption 1); it can be shown as a simple corollary of Lemma 2.1 with l = 2,
G = Z∗N2 , GR being the group of Nth residues modulo N2, and GM being the
group generated by (1 +N).

We take an adversary APEG who can break the semantic security of the
Paillier-ElGamal encryption scheme, and build an adversary AIV who can win
the interactive vector game. AIV obtains (g1, g2) from its challenger CIV; it sets
the generator g = g22 , and forwards pk = g21 to APEG. (Because N is a product of
safe primes, g is a generator of the cyclic subgroup of 2Nth residues modulo N2,
so pk is distributed appropriately.) Upon receiving a challenge x0, x1 ∈ G2

M , it
sends (a1 = 0, a2 = x1) to CIV. It forwards the output to APEG, and forwards the
output of APEG to CIV as b′. If CIV used b = 1, then the ciphertext sent to APEG

would be a valid encryption of x1. Otherwise, its totally independent of both
messages. (By a standard argument, if APEG is able to distinguish an encryption
of x0 from an encryption of x1, it should be able to distinguish an encryption of
one of those from something independent of both messages.)

Building HSS. Using Paillier-ElGamal, we can build an HSS scheme which
has the advantage of not requiring any correlated randomness. We still require
setup in the form of the modulus N2 and generator g known to all parties, and a
public key infrastructure (PKI); however, there is no need to share and encrypt
digits of the decryption key d in a trusted way, since d is now not constrained to
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have any specific value mod N or φ(N), and so can be generated in a distributed,
non-interactive way by the two participating parties.

Note that in the previous construction, during setup, our parties acquired
subtractive shares of the digits of d, and encryptions of those same digits. How-
ever, it is not actually important that the shares and encryptions correspond
to actual digits of d: these must simply be small values (relative to N) such
that a known linear combination of those values gives d (over the integers). This
property will be useful later.

We next describe the setup and multiplication steps of HSS from Paillier-
ElGamal. All the other steps remain the same, with small caveats: all instances
of Paillier.Enc are replaced with PaillierEG.Enc, and during Input, X(i) is com-

puted as (gri(D
(i)
0 )x, pkriPEG(D

(i)
1 )x), which corresponds to re-randomization and

homomorphic multiplication by a known value in this encryption scheme.

Setup: Now, setup is split into several steps: the setup of a common reference
string (CRS) containing N and g, the setup of a PKI, and the use of the PKI to
obtain the keys ekσ used in HSS.

CRS: N sampled via GenPQ, and g sampled as per PaillierEG.Gen, are published
as a CRS. Additionally, a PRF key kprf is sampled and published.

PKI: Each party σ:

– Chooses sσ uniformly at random from [N2]. Let d
(0)
σ , . . . , d

(`−1)
σ denote

the digits of dσ in base Bsk.

– Lets pkPEG,σ = gdσ (mod N2), and produces encryptions P
(i)
σ = (P

(i)
σ,0,

P
(i)
σ,1) = PaillierEG.Enc(pkPEG,σ, d

(i)
σ ; r

(i)
σ ) (using fresh randomness r

(i)
σ ).

– Sets its public key pkσ = (pkPEG,σ, P
(0)
σ , . . . , P

(`−1)
σ ), and its secret key

skσ = (dσ, r
(0)
σ , . . . , r

(`−1)
σ ).

Obtaining pk and ekσ: We define d as d = d0 + d1, and d(i) as d(i) = d
(i)
0 +

d
(i)
1 . These are no longer digits base Bsk, since it could be that d(i) ≥ Bsk.

However, it is still true that

d =

`−1∑
i=0

Biskd
(i).

– Both parties compute pkPEG = pkPEG,0pkPEG,1 (mod N2).

– To obtain the sharings of the pseudo-digits d(i) of d, party 1 lets its

subtractive share 〈d(i)〉(Z)1 be F
(2κBsk)
kprf

(i) + d
(i)
1 , where F (2κBsk) is a PRF

outputting elements of [2κBsk]. Party 0 lets its subtractive share 〈d(i)〉(Z)0

be F
(2κBsk)
kprf

(i)− d(i)0 .
– Obtaining encryptions of digits of the joint key d under that same shared

key is a bit more tricky. We follow the blueprint of Boyle et al. [BGI17].

Party σ can obtain encryptions of d
(i)
σ under d = d0 + d1, by taking

D(i)
σ = (D

(i)
σ,0, D

(i)
σ,1) = PaillierEG.Enc(pkPEG, d

(i)
σ ; r(i)σ ).
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It can then obtain encryptions of d
(i)
1−σ under the same key by taking

D
(i)
1−σ = (D

(i)
1−σ,0, D

(i)
1−σ,1) = (P

(i)
1−σ,0, P

(i)
1−σ,1(P

(i)
1−σ,0)dσ ).

Note that both parties will obtain the same ciphertexts. They can then
both compute the same encryption of d(i) as

D(i) = (D
(i)
1,0D

(i)
0,0, D

(i)
1,1D

(i)
0,1).

Multiplication. Multiplication is exactly as in the regular Paillier version of HSS,
with the only difference being how the inputs to DDLog are obtained. Letting
X = (X0, X1) be the ciphertext, the subtractive shares of z are now obtained as

〈z〉(N)
σ = DDLogN ((X1)〈y〉

(Z)
σ (X0)−〈yd〉

(Z)
σ ) + F

(N)
kprf

(id) (mod N).

To see that these inputs to DDLog are divisive shares of (1 + N)xy (mod N2),
recall that X = (X0, X1) = (gr, pkrPEG(1 +N)x).

(X1)〈y〉
(Z)
1 (X0)−〈yd〉

(Z)
1

(X1)〈y〉
(Z)
0 (X0)−〈yd〉

(Z)
0

=
(pkrPEG(1 +N)x)〈y〉

(Z)
1 (gr)−〈yd〉

(Z)
1

(pkrPEG(1 +N)x)〈y〉
(Z)
0 (gr)−〈yd〉

(Z)
0

= (pkrPEG(1 +N)x)〈y〉
(Z)
1 −〈y〉

(Z)
0 (gr)−〈yd〉

(Z)
1 +〈yd〉(Z)0

= (pkrPEG(1 +N)x)y(gr)−yd

= (1 +N)xy.

The subtractive shares of zd(i) are obtained analogously.

Security. Correctness is straightforward to see, as in the Paillier-based HSS
construction. For security, we can use the same argument as before, with the
caveat that in all games, we allow party σ to run its setup correctly, so game 1
is skipped. In hybrid 2, party 1 − σ publishes encryptions of 0; in hybrid 3, as
before, we always encrypt x0.

B.2 HSS from Circular-Secure Paillier

Circular-Secure Paillier-Based Encryption. In order to avoid making as-
sumptions about circular security, we would sometimes prefer to use a scheme
which was proven circular secure. One such scheme, based on the DCR assump-
tion (Assumption 1), was introduced by Brakerski and Goldwasser [BG10]. It
uses an additional security parameter l which parameterizes the KDM-security
of the scheme, and is polynomially related to λ. As before, we consider N and
g1, . . . , gl, sampled in Gen, to be public parameters available to all algorithms.

BG.Gen(1λ) :
1. Sample (N, p, q)← GenPQ(1λ).
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2. Sample g1, . . . , gl as random Nth residues in Z∗N2 .

3. Sample a length-l bit vector d = (d(1), . . . , d(l)) ∈ {0, 1}l.
4. Output pk = g0 =

∏l
i=1 g

d(i)

i mod N2, sk = d.
BG.Enc(pk, x) :

1. Sample a random r ← [N ].
2. Output ct = (gr1, . . . , g

r
l , g

r
0(1 +N)x).

BG.Dec(sk, ct = (ct1, . . . , ctl, ct0)) :

1. Let ct′ = (
∏l
i=1 ct

−d(i)
i )ct0 (mod N2).

2. Output x = ct′−1
N .

We can use the circular-secure encryption scheme by Brakerski and Gold-
wasser [BG10] to avoid having to assume Paillier is circular secure. The downside
is that ciphertexts are much larger; they contain a number l of Z∗N2 elements,
where l is polynomial in the security parameter λ.

On the plus side, the secret key in the BG scheme is already used in terms
of its individual bits, and it is possible to obtain a ciphertext that decrypts to
any one of those bits from the public key alone. (Note that this ciphertext will
be distributed differently from an honestly generated one; however, decryption
will work just the same.) We create a ciphertext that decrypts to d(i) by taking

cti = (gr1, . . . , g
r
i−1, (1 +N)−1gri , g

r
i+1, . . . , g

r
l , g

r
0).

We can confirm that decryption outputs d(i) as follows:

ct′i = (

l∏
j=1

ct−d
(j)

j )ct0 (mod N2) ≡ (

l∏
j=1

gd
(j)

j )−r(1 +N)d
(i)

gr0 (mod N2)

≡ g−r0 (1 +N)d
(i)

gr0 (mod N2)

≡ (1 +N)d
(i)

(mod N2).

Finally, ct′−1
N = d(i). Obtaining a ciphertext that decrypts to a multiple of d(i)

— say, xd(i) — can be similarly done by multiplying gri by (1 +N)−x.
We next go over the setup and multiplication phases of BG-based HSS. As

with PaillierEG-based HSS, the other phases are largely unchanged, except in
trivial ways.

Setup:

CRS: N sampled via GenPQ, and g1, . . . , gl sampled as per BG.Gen, are pub-
lished as a common reference string. Additionally, a PRF key kprf is sampled
and published. (For notational simplicity, we re-use kprf for multiple PRFs;
assume that this key contains multiple keys, and the appropriate one is al-
ways used.)

PKI: Each party σ:

– Chooses dσ = (d
(1)
σ , . . . , d

(l)
σ ) uniformly at random from {0, 1}l.
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– Lets pkσ =
∏l
i=1 g

d(i)σ
i mod N2. Note that in this scheme, there is no

need to publish encryptions of the bits of dσ, as those can be publicly
computed from the public key, as described above.

Obtaining pk and ekσ:
– Both parties compute pk := pk0pk1 (mod N2). We define d(i) as d(i) :=

d
(i)
0 + d

(i)
1 . Note that, by inspection, encryptions to pk will correctly

decrypt using d = (d(1), . . . , d(l)).
– To obtain the sharings of the pseudo-digits d(i) of d, party 1 lets its

subtractive share 〈d(i)〉(Z)1 be F
(2κ)
kprf

(i) + d
(i)
1 , where F (2κ) is a PRF out-

putting elements of [2κ]. Party 0 lets its subtractive share 〈d(i)〉(Z)0 be

F
(2κ)
kprf

(i)− d(i)0 .

– Both parties can obtain encryptions of d(i) under pk by taking r =

F
(N)
kprf

(i) and computing

D(i) = (gr1, . . . , g
r
i−1, (1 +N)−1gri , g

r
i+1, . . . , g

r
l , pk

r).

Multiplication: As in the PaillierEG-based HSS, multiplication is done similarly
to the way it is done in the regular Paillier-based HSS, with several differences.

First, since d is only ever used bit by bit, the shares 〈yd〉(Z)σ need never be
assembed. Second, the inputs to DDLog are obtained differently. Letting X =
(X1, . . . , Xl, X0) be the ciphertext, the subtractive shares of z are now obtained
as

〈z〉(N)
σ = DDLogN (ct′σ) + F

(N)
kprf

(id) (mod N),

where

ct′σ = (X0)〈y〉
(Z)
σ

(
l∏
i=1

X
−〈yd(i)〉(Z)σ
i

)
(mod N2).

To see that ct′0, ct
′
1 are divisive shares of (1+N)xy (mod N2), recall that (

∏l
i=1X

−d(i)
i )X0

(mod N2) = (1 +N)x.

(X0)〈y〉
(Z)
1

(∏l
i=1X

−〈yd(i)〉(Z)1
i

)
(X0)〈y〉

(Z)
0

(∏l
i=1X

−〈yd(i)〉(Z)0
i

) ≡ Xy
0

(
l∏
i=1

X−yd
(i)

i

)
(mod N2)

≡
(
X0

l∏
i=1

X−d
(i)

i

)y
(mod N2)

≡ (1 +N)xy. (mod N2)

The subtractive shares of zd(i) are obtained analogously.

Security. Correctness is straightforward to see, as in the Paillier-ElGamal con-
struction. The security of the construction follows in the same way as the se-
mantic security of the BG cryptosystem [BG10].
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