
VOLE-PSI: Fast OPRF and Circuit-PSI from
Vector-OLE

Peter Rindal1 and Phillipp Schoppmann2

1 Visa Research
peterrindal@gmail.com

2 Humboldt-Universität zu Berlin
schoppmann@informatik.hu-berlin.de

Abstract. In this work we present a new construction for a batched
Oblivious Pseudorandom Function (OPRF) based on Vector-OLE and
the PaXoS data structure. We then use it in the standard transformation
for achieving Private Set Intersection (PSI) from an OPRF. Our overall
construction is highly efficient with O(n) communication and computa-
tion. We demonstrate that our protocol can achieve malicious security at
effectively no overhead compared to the semi-honest variant. For input
sizes n = 220, our malicious protocol needs 6.2 seconds and less than
59 MB communication. This corresponds to under 450 bits per element,
which is the lowest number for any published PSI protocol (semi-honest
or malicious) to date. Moreover, in theory our semi-honest (resp. mali-
cious) protocol can achieve as low as 219 (resp. 260) bits per element for
n = 220 at the added cost of interpolating a polynomial over n elements.
As a second contribution, we present an extension where the output
of the PSI is secret-shared between the two parties. This functionality
is generally referred to as Circuit-PSI. It allows the parties to perform
a subsequent MPC protocol on the secret-shared outputs, e.g., train a
machine learning model. Our circuit PSI protocol builds on our OPRF
construction along with another application of the PaXoS data struc-
ture. Our protocol achieves semi-honest security and allows for a highly
efficient implementation, up to 3x faster than previous work.

1 Introduction

We consider the problem of private set intersection (PSI) in a two-party setting.
Here, two mutually distrusting parties, a receiver and a sender, each hold a set
of identifiers X,Y respectively. The goal of the two parties is for the receiver
to learn the intersection X ∩ Y without revealing any additional information to
the parties. In particular, the sender should not learn any information about X
beyond the size of it. Similarly, the receiver should not learn anything about
X \ Y beyond the size of Y .

A common approach to PSI is based on oblivious pseudo-random functions
(OPRFs). An OPRF allows the receiver to input x and learn Fk(x), where F
is a PRF, and k is known to the sender. A straight-forward PSI protocol can

be obtained by running an OPRF protocol for each x ∈ X, and then having
the sender send {Fk(y) | y ∈ Y } to the receiver. The receiver can then locally
compare the sender’s OPRF values to her own to learn which elements of X are
in the intersection. This is the basis of several PSI protocols (see Section 1.4),
and our first contribution also follows this paradigm.

While PSI alone has interesting applications, such as private contact dis-
covery [Kis+17; DRRT18; Kal+19], other variants of PSI are gaining traction
from a practical perspective. For example, both Google [Ion+20] and Face-
book [Bud+20] have implemented variants of PSI that allow them to compute
functions of the intersection, where only the result of the function evaluation
and the intersection size is revealed, but not the intersection itself.

A generalization of these PSI-with-computation protocols yields circuit PSI,
where the output isn’t revealed to either party, but instead is secret-shared
between the parties. More precisely, the receiver learns a random vector ~b′ and
the sender learns ~b such that (bi ⊕ b′i) = 1 if i corresponds to an element x ∈ X
in the intersection, and (bi ⊕ b′i) = 0 otherwise. Note that this means that not
even the intersection size is revealed to either party. We additionally can allow
the sender (and/or receiver) to input an “associated value” vj for each yj ∈ Y .
In this case, the output also includes random vector ~u′ to the receiver and a
vector ~u to the sender such that (ui ⊕ u′i) = vj if xi = yj .

1.1 Contributions

PSI: We present a protocol for private set intersection (Section 4) based on
two building blocks. The first building block is a protocol known as Vector OLE
and presented in Figure 2. For this component we use an improved version of
the protocol of Schoppmann et al. [SGRR19]. The second building block is a
linear system solver, e.g. PaXoS [PRTY20], which we adapt for our purposes as
shown in Figure 1. Combining these two primitives in a novel way, we obtain
an OPRF protocol (Figure 4). This construction is highly efficient, requiring an
amortized 2.4κ bits of communication per input in our computationally efficient
version or just κ bits when optimized for communication. We also demonstrate
that malicious security can be obtained with only a very small overhead.

From an OPRF it is easy to obtain an PSI protocol which is our final goal.
This final step is shown in Figure 6. We show that the malicious variant of this
well known transformation can be optimized which reduces its overhead by as
much as 50% compared to prior art [PRTY20; CKT10]. Our final PSI protocol
is secure against both semi-honest and malicious adversaries, and we provide an
implementation for both threat models. This protocol is highly efficient, requiring
just 5.4 (resp. 6.2) seconds and less than 54 (resp. 59) MB communication in
the semi-honest (resp. malicious) setting.

Circuit PSI: Our second contribution is a protocol for circuit PSI. In Section 5,
we show that using the PaXoS solver along with any OPRF protocol will yields an
Oblivious Programmable PRF (OPPRF) protocol. Given this, we then construct
the final protocol in Section 6 with the additional help of data structure known as

a cuckoo hash table. We also implement two variants of our circuit PSI protocol
in the semi-honest model and show that they outperform the best previous
approach [PSTY19].

1.2 Notation

We use κ as the computational security parameter and λ for statistical security.
The receiver’s set is denoted as X while the sender’s is Y . Their respective
sizes are nx, ny. Often we will just assume both set are of size n. [a, b] denotes
the set {a, a + 1, ..., b} and [b] is shorthand for [1, b]. We denote row vectors
~A = (a1, ..., an) using the arrow notation while the elements are indexed without

it. A set S = {s1, ..., sn} will use similar notation. For a matrix M , we use ~Mi

to denote its i-th row vector, and Mi,j for the element at row i and column j.

〈 ~A, ~B〉 denotes the inner product of ~A, ~B. We use = to denote the statement
that the values are equal. Assignment is denoted as := and for some set S, the
notation s← S means that s is assigned a uniformly random element from S. If
a function F is deterministic then we write y := F (x) while if F is randomized
we used y ← F (x) to denote y := F (x; r) for r ← {0, 1}∗.

1.3 Overview

OPRF. We now present a simplified version of our main protocols. Our core
building block is a functionality known as (random) vector OLE which allows

the parties to sample random vectors ~A, ~B, ~C ∈ Fm and element ∆ ∈ F such
that ~C = ∆~A + ~B. The PSI receiver will hold ~A, ~C while the sender will hold
~B,∆. We note that in the vector OLE literature, the sender/receiver roles are
typically reversed.

The parties (implicitly) sample an exponentially large random matrix M∗ ∈
{0, 1}|F|×m. The receiver defines M ∈ {0, 1}n×m which is the submatrix indexed
by the rows x ∈ X. The receiver then solves the linear system

M ~P ᵀ = (0, ..., 0)ᵀ

for the unknown ~P ∈ Fm. For now let us assume ~P is some random solution and
not the trivial (0, ..., 0) solution3. The protocol proceeds by having the receiver

send ~A+ ~P to the sender who defines

~K := ~B +∆(~A+ ~P)

The crucial observation is that

M ~Kᵀ =M ~Bᵀ +∆(M ~Aᵀ +M ~P ᵀ)

=M ~Bᵀ +∆M ~Aᵀ

=M ~Cᵀ

3 In our malicious OPRF construction (Section 3.2), we will instead use a random
oracle H, and set M ~P ᵀ = (H(x0),H(x1), . . . ,H(xn)). We stick to the semi-honest
variant here for ease of presentation.

In particular, for each x ∈ X it holds that 〈 ~M∗x , ~K〉 = 〈 ~M∗x , ~C〉 where ~M∗x is the
x’th row of M∗. An OPRF can then be obtained by having the receiver apply a
random oracle as

H(〈 ~M∗x , ~C〉), x ∈ X
while the sender computes the output at any y as

F ~K(y) := H(〈 ~M∗y , ~K〉)

To ensure efficiency we will require M∗ to be of a special form such that solv-
ing M ~P ᵀ = (0, ..., 0)ᵀ is efficient while also computing 〈 ~M∗x , ~V 〉 in O(1) time.
Specifically, we will use the PaXoS solver [PRTY20] to enable these properties.

To achieve security it is crucial that the receiver can not compute the OPRF
F at any other point x 6∈ X. In the formulation above this effectively means that
it is hard to find a x 6∈ X, such that 〈 ~M∗x , ~P 〉 = 0. We demonstrate how such a
property can be obtained at little to no overhead.

PSI. We then employ our OPRF construction as a subroutine to obtain a PSI
protocol. This traditional transformation instructs the receiver to input their
set X into an OPRF protocol to obtain F (x) for x ∈ X. The sender can then
send Y ′ = {F (y) | y ∈ Y } which allows the receiver to identify the common
items. In the malicious setting, one must show how the simulator extracts the
set Y from observing Y ′. The traditional analysis [PRTY20; CKT10] effectively
achieves this by requiring the OPRF F to be second-preimage resistant and as
such each y′ ∈ Y ′ must be of length 2κ ≈ 256 bits. We demonstrate that in fact
preimage resistance is sufficient which allows the OPRF to have κ bit output
which reduces the communication overhead by approximately 33%, or as much
as 50% when |Y | � |X|.

Programmable OPRF. We present extension of our OPRF protocol to achieve a
functionality known as a Programmable OPRF (OPPRF) [PSTY19]. This build-
ing block will allow the sender to sample an OPPRF key k such that Fk(yi) = vi
for their choice of yi, vi. At all other locations the output of Fk will be random.

The parties first perform a normal OPRF protocol where the receiver inputs
their set X and receive F ′(x) for x ∈ X. Let F ′ denote the OPRF function. The
sender solves the system

M ~P ᵀ = (v1 − F ′(y1), ..., vn − F ′(yn))ᵀ

where M ∈ {0, 1}n×m the submatrix of M∗ indexed by the rows yi. The sender

will send ~P to the receiver who outputs

x′ := F ′(x) + 〈 ~M∗x , ~P 〉

for x ∈ X. Observe that at x = yi ∈ Y

x′ :=F ′(x) + 〈 ~M∗x , ~P 〉
=F ′(yi) + vi − F ′(yi)
=vi

as desired. It can be shown that at all other points y 6∈ Y , the output is com-
pletely random. One security concern is that ~P might leak information about Y .
Indeed, the PaXoS solver requires m larger than n, therefore several solutions
could exist, and which ~P is output by PaXoS may leak information. We show
that this is the case for PaXoS and then present an extension which is uniformly
distributed under some constraints. We call our extension XoPaXoS and present
it in Section 2. Our full protocol is presented in Section 5.

Circuit-PSI. Finally, we present our Circuit PSI extension which allows the
output of the PSI to be secret shared between the two parties. Our protocol
builds on the previous approach of Pinkas et al.[PSTY19] by replacing their
OPPRF construction with ours. For completeness we present this construction
in Section 6.

1.4 Related Work

Early PSI protocols based on OPRFs/Diffie–Hellman (DH) have been around
since the 1980s [Mea86], and they still form the basis of many modern PSI
protocols [CT10; Ion+20; Bud+20]. The advantage of DH-based protocols is
their low communication cost and constant round complexity, which however
comes at the cost of high computational overhead. A more computationally
efficient protocol based on oblivious transfer extension [IKNP03] (as opposed
to OPRF based) was presented by Schneider et al. [PSSZ15] along with many
derivatives [PSZ14; KKRT16; RR17b; OOS17].

More recently, these two paradigms have begun to merge, and various OPRF
constructions have been proposed [DCW13; KKRT16; RR17a; PRTY19; PRTY20;
CM20] which more closely resemble [IKNP03]. All of these come with higher
communication cost than [Mea86], but they significantly reduce computation.
However, as the evaluation of Chase and Miao [CM20] has shown, the optimal
choice of protocol often depends on the network setting. Our work also follows
the OPRF-based approach, building on the recent PSI protocol of Pinkas et
al. [PRTY20], but significantly reducing communication. As our experiments in
Section 7 show, our protocol works particularly well in settings with limited
bandwidth and large input sizes. For an extended overview of the different ap-
proaches to PSI, see [Ion+20, Section 4.1] and [PSZ18, Section 1.2].

The first circuit PSI protocols were based entirely on generic techniques such
as garbled circuits [HEK12] or GMW [PSSZ15; PSZ18]. Subsequent works im-
proved computation and communication [CO18; PSWW18; PSTY19], and the
linear-complexity protocol of Pinkas et al. [PSTY19] forms the current state
of the art. Their protocol combines an oblivious programmable PRF (OPPRF)
based on polynomial interpolation with a relatively small GMW circuit. Our
circuit PSI protocol follows a similar approach, but uses our new OPRF con-
struction, as well as a novel way to program it based on PaXoS [PRTY20].

Parameters:

– Statistical security parameter λ and computational security parameter κ.
– Input length n.
– A finite group G.
– For m′ = 2.4n, let d = O(λ) upper bound the size of 2-core of a (m′, n)-Cuckoo

graph [PRTY20].
– Output length m = m′ + d+ λ.
– A random function row : G× {0, 1}κ → {0, 1}m s.t. ∀x, the weight of the first
m′ bits of row(x) is 2.

Encode ((z1, v1), ..., (zn, vn); r) :

1. Define row′ : G → {0, 1}m
′

and ˜row(z) s.t. row′(z)|| ˜row(z) = row(z, r) for all
z. Let

M :=

row(z1, r)
...

row(zn, r)

 ∈ {0, 1}n×m
and let M ′ ∈ {0, 1}n×m

′
, M̃ ∈ {0, 1}n×d+λ s.t. M ′||M̃ = M .

2. Let G = (V, E) be a graph with vertex set V = [m′] and edge set E = {(c0, c1) |
i ∈ [n],M ′i,c0 = M ′i,c1 = 1}. Let G̃ = (Ṽ, Ẽ) be the 2-core of G.

3. Let R ⊂ [n] index the rows of M in the 2-core, i.e. R = {i | M ′i,c0 = M ′i,c1 =

1 ∧ (c0, c1) ∈ Ẽ}. Let d̃ := |R| and abort if d̃ > d.

4. Let M̃ ′ ∈ {0, 1}d̃×d+λ be the submatrix of M̃ obtained by taking the row in-
dexed by R. Abort if M̃ ′ does not contain an invertible d̃×d̃ matrix. Otherwise
let M̃∗ be one such matrix and C ⊂ [d+ λ] index the corresponding columns
of M̃ ′.

5. Let C′ := {j | i ∈ R,M ′i,j = 1} ∪ ([d + λ] \ C + m′) and for i ∈ C′ assign

Pi ← G. For i ∈ R, define v′i := vi − (M ~P ᵀ)i where Pi is assumed to be zero
if unassigned.

6. Using Gaussian elimination solve the system M̃∗(PC1+m′ , ..., PCd̃
+m′)

ᵀ =

(v′R1
, ..., v′R

d̃
)ᵀ.

7. Let T ⊂ [m′] such that each tree in G has a single vertex in T . For i ∈ T ,
assign Pi ← G.

8. Let I := {j | i ∈ R,M ′i,j = 1} ∪ T and I := [m′] \ I.
9. While I 6= ∅, select an i ∈ I and do the following: Update I := I \{i} and I :=

I∪{i}. For all j ∈ {j | (j, i) ∈ E ∧j 6∈ I}. Identify k s.t. {h0(zk, r), h1(zk, r)} =
{i, j} and assign Pj := vk − Pi.

10. Return ~P .

Decode (~P , z, r) :

1. Return 〈row(z, r), ~P 〉.

Fig. 1: XoPaXoS algorithm.

2 Linear Solvers & PaXoS

Our constructions makes use of linear system solvers. As discussed before, we
will use these solvers to encode our input sets (z1, ..., zn) = Z and values

(v1, ..., vn) = V as a vector ~P ∈ Gm. There will exist a function Decode such

that Decode(~P , zi) = vi for i ∈ [n] and is linear with respect to ~P . There are
three main performance metrics that we are concerted with. The first is the
rate ρ = m/n which denotes how compact the encoding is, i.e. n items can be
encoded as m element vector. The last two metrics is the running time of the
encoder/solver and that of the decoder/matrix multiplier.

Each instance of a solver is parameterized by a finite group G, integer m ≥ n,
security parameter λ and an implicit random matrix M∗ ∈ G|G|×m. The instance
is fixed by sampling M∗ ←M from some setM which depends on the particular
solver. For any set X ⊂ G s.t. |X| = n, the solver will output ~P ∈ Gm s.t.

M ~P ᵀ = (v1, ..., vn)ᵀ

where M ∈ {0, 1}n×m is the submatrix of M∗ obtained by taking the rows in-
dexed by z ∈ Z. The target values v1, ..., vn ∈ G can be arbitrary. Our application
will require the solver to output a solution with probability 1−O(2−λ).

Since M∗ is exponential in size, it is more efficient to represent it as a random
seed r ∈ {0, 1}κ and define the i-th row as being the output of the random func-

tion row(i, r). Therefore we will have the property 〈row(xi, r), ~P 〉 = vi. For easy
of presentation we will further abstract this via the Decode function defined as
Decode(~P , xi, r) := 〈row(xi, r), ~P 〉. We note that this is a very general encoding
framework and encompasses several schemes, e.g. PaXoS, interpolation, bloom
filters, and many others.

The Vandermonde Solver. One example of this general approach is polynomial
interpolation. In this case we require G to also be a field and M contains only
the Vandermonde matrix, i.e. row(i, r) = (1, i, i2, ..., in−1) for all r. As such it
achieves an optimal rate of ρ = 1, i.e. m = n. In this case, solving the system
requires O(n log2 n) time using polynomial interpolation and decoding n points
also requires O(n log2 n) time [BM74]. For large n it is also possible to construct
row in such a way that t smaller systems of size O(λ) are constructed and solved
independently [PSTY19]. This so called binning technique effectively resulting
in a O(n log2 λ) running time while also maintaining near optimal rate ρ ≈ 1.

The PaXoS Solver. The PaXoS solver [PRTY20] significantly improves on poly-
nomial interpolation in that it achieves O(n) running time. However, it comes at
the cost of rate ρ ≈ 2.4, i.e., m ≈ 2.4n. Their scheme defines row as outputting
a binary vector s.t. the first m′ := 2.4n elements have weight 2 while the last
m − m′ = O(λ) bits are distributed uniformly. There is also a PaXoS variant
which achieves a slightly better rate of ρ = 2 but at an increased running time.
In this paper, we only make use of the first scheme.

Other Solvers. Other solvers have also been considered in the context of PSI
and OPRF. A garbled bloom filter [DCW13; RR17a] where row(i, r) is a random
weight κ vector of length m = 2κn. Another options is to let row : G×{0, 1}κ →
Gm be a random function with m = n + O(λ). The Bloom filter has a linear
time solver but very poor rate while the latter requires O(n3) time (via Guassian
elimination) and near optimal rate. Constructing more efficient solvers remains
an open question. With the advent of PaXoS we believe significant progress can
be made at achieving improved rates, i.e., ρ < 2, while at the same time main-
taining a linear running time. Evidence of this is that PaXoS is based on cuckoo
hashing which is known to achieve a significantly better rate when the matrix
has weight 3 instead of weight 2 used by PaXoS [DRRT18; PSZ18]. Moreover,
solvers for such systems have been presented [LM10; KS12], but it is unclear
whether they can be made robust enough to succeed with probability 1−O(2λ).
As we will see in Section 7, our communication overhead is dominated by ρκn
and as such the performance of the solver has a direct impact.

PaXoS Details. We now present the PaXoS solver [PRTY20] in detail. Let
M ′ ∈ {0, 1}n×m′ be the submatrix formed by the first m′ = 2.4n columns of
M which itself consists of rows row(z1, r), ..., row(zn, r). As such, each row of
M ′ has weight 2. The solver first analyses the sparse system formed by M ′

as follows. Let the graph G consisting of m′ vertices V = [m′] and the edge
set E = {(c0, c1) | i ∈ [n] ∧M ′i,c0 = M ′i,c1 = 1}. That is, for each constraint

vi = 〈~P , row(zi, r)〉 = Pc0 +Pc1 +... there is an edge between vertices (c0, c1) = ei.
G is called the cuckoo-graph [PRTY20].

First, let us assume that G has no cycles and therefore consists of one or
more trees. This case can be solved by doing a linear pass over the nodes and
assigning values. In particular: (1) Initialize Pi := 0 for i ∈ [m]. (2) Let I ⊆ V
s.t. each tree in G has a single vertex in I and I := V \ I. (3) Pick an i ∈ I and
for each edge (j, i) ∈ E such that j ∈ I, identify ek ∈ E , i.e. M ′k,i = M ′k,j = 1,
and update Pj := vk − Pi. Note that by construction Pi will not change value
later. Update I := I ∪ {j}. Finally, define I := I \ {i}, I := I ∪ {i} and if I 6= ∅,
go back to (3).

Observe that this algorithm does not work if G contains a cycle since at some
point in step (3) Pj will have already been updated. To address this, the solver

first identifies the so called 2-core graph G̃ which is the subgraph of G which only
contains the cycles along with any paths between these cycles. Observe that the
graph formed by G \ G̃ is acyclic.

The solver uses Gaussian elimination to solve the constraints contained in
G̃ = (Ṽ, Ẽ) with the use of the m −m′ additional columns of M . In particular,
Pinkas et al. [PRTY20] show that for m′ = 2.4n, the size of Ẽ is bounded by
d = O(λ) with overwhelming probability. Let the actual number of edges in G̃ be
d̃ < d. They then consider the submatix M̃ formed by the last m−m′ columns
of M and the d̃ rows corresponding to edges in G̃. In their parameterization they
set m = d + λ + m′. As such M̃ is a (d + λ) × d̃ random binary matrix. With
probability 1−O(2−λ) there exists an invertible d̃× d̃ submatrix M̃∗ within M̃ .

As such, the d̃ constraints in G̃ can be solved for using Gaussian elimination on
M̃∗ which requires O(d̃3) = O(λ3) time. The remaining Pi values corresponding
to G̃ and M̃ are assigned the value zero, and the remaining constraints in G \ G̃
can then be solved using the linear time algorithm described above.

X-oblivious PaXoS. We now present a modified scheme detained in Figure 1
which we denote as XoPaXoS. Looking forward our Circuit PSI protocol will
require an additional simulation property of the encode algorithm. Informally,
given that the vi values are uniform, we require the the distribution of ~P is
independent of the zi values. More formally, we will require that the distributions

D0(z1, ..., zn) := (Encode((z1, v1), ..., (zn, vn), r), r)

where r ← {0, 1}κ; vi ← G,∀i ∈ [n]

D1(z1, ..., zn) := (~P , r), where r ← {0, 1}κ; ~P ← Gm

be indistinguishable for any PPT adversary except with probability 2−λ.
However, this does not hold for the [PRTY20] construction outlined above.

In particular, the PaXoS algorithm assigns zero of Pi values in two locations.
When solving the 2-core using Gaussian elimination some of the column of M̃
are not used and therefore the corresponding Pi are assigned zero. The XoPaXoS
scheme rectifies this in Step 5 of Figure 1 by first assigning random values to
the redundant Pi positions and then solving the remaining (fully constrained)
system using Gaussian elimination. It is easy to verify that the Pi values output
by Gaussian elimination have the desired distribution.

Secondly, when performing the linear pass over the trees of G, a vertex i
from each tree is picked and Pi is assigned zero. In Step 7 of XoPaXoS, we
again replace this assignment with sampling Pi uniformly from G. Finally, the
remaining assignments have the form Pi := vk + Pj + ... where each assignment
contains a distinct uniform vk value and therefore Pi is uniform as desired.
These modifications make the Encode algorithm randomized even for a fixed r. In
particular, we assume Encode takes an addition random tape as input from which
the uniform Pi values are sampled. We note that the original PaXoS algorithm
can be obtained by omitting these addition steps and instead initializing all Pi
to zero.

3 Vole Based OPRF

3.1 Vector OLE

The VOLE functionality Fvole is presented in Figure 2. Let F be some finite field,
e.g. F = GF (κ). The parties have no input. The Sender obtains a random value

∆ ∈ F and a random vector ~B ∈ Fm which is of length m. The Receiver obtains
a random vector ~A′ ∈ Fm and the vector

~C = ~A′∆+ ~B.

That is, the i-th position of ~C is equal to A′i∆ + Bi. We note that several
definitions of VOLE have been introduced in the literature, for both chosen-input
and random variants [App+17; BCGI18; Boy+19; WYKW20]. In the context of
these previous works, the functionality described here can be seen as random
reversed vector OLE. We refer to it as VOLE for simplicity.

A naive implementation of a VOLE generator would be to run a two-party
multiplication protocol (e.g., Gilboa multiplication [Gil99]) for each i ∈ [m].
The drawback here is that communication is linear in m. Recently, significant
advances have been made in developing VOLE generators with sub-linear com-
munication. Boyle et al. [BCGI18] presented the first protocols in that direction
based on the LPN assumption. Their two protocols, a primal and a dual variant,
rely on two different flavors of LPN. While the primal variant can be instantiated
from LPN with cheap local linear codes, its communication grows asymptotically
with the square-root of the output size. The dual variant, on the other hand,
allows for logarithmic communication, but requires more computation.

A first implementation of a primal VOLE generator was provided by Schopp-
mann et al. [SGRR19], while concurrently, Boyle et al. [Boy+19] provide an im-
plementation of dual VOLE over binary fields. Recently, Yang et al. [Yan+20]
improved on the protocols of Schoppmann et al. [SGRR19], significantly reducing
the communication overhead. Their main observation is that the primal VOLE
generator works by expanding a size-O(

√
m) random seed correlation to a size-

m pseudorandom correlation. Now by applying this expansion iteratively, they
manage to get VOLE correlations of size m from a much shorter seed. Each
expansion still takes O(

√
m) communication, but as Yang et al. [Yan+20] show,

the LPN security parameters can be optimized so that the concrete communi-
cation complexity is still far below the non-iterative approach. Since they focus
on the application of VOLE to correlated OT, the implementation of Yang et al.
[Yan+20] is limited to binary fields. However, Weng et al. [WYKW20] extend
this paradigm to VOLE over general fields, for which they also provide a con-
sistency check for malicious security. In our implementation (Section 7), we use
an improved version of the library of Schoppmann et al. [SGRR19], incorporat-
ing the iterative approach of Yang et al. [Yan+20] and the consistency check of
Weng et al. [WYKW20].

3.2 Malicious Secure Oblivious PRF.

We now present our main (multi-input) OPRF construction in the Fvole-hybrid
model. Our construction Πoprf is detailed in Figure 4 and realizes the function-
ality Foprf from Figure 3 in the malicious setting. Our protocol will make use of
two random oracles, H : F× F→ {0, 1}out,HF : F→ F.

First, the receiver will solve the systemrow(x1)
...

row(xn)

 ~P ᵀ = (HF(x1), ...,HF(xn))ᵀ

Parameters: There are two parties, a Sender and a Receiver. Let F be a field. Let
m denote the size of the output vectors.

Functionality: Upon receiving (sender, sid) from the Sender and (receiver, sid)
from the Receiver.

– If the Receiver is malicious, wait for them to send ~C, ~A ∈ Fm. Sample ∆← F
and compute ~B := ~C − ~A∆. Otherwise,

– If the Sender is malicious, wait for them to send ~B ∈ Fm,∆ ∈ F. Sample
~A← Fm and compute ~C := ~B + ~A∆. Otherwise,

– Sample ~A, ~B ← Fm,∆← F and compute ~C := ~B + ~A∆.

The functionality sends ∆, ~B to the Sender and ~C := ~A∆+ ~B, ~A to the Receiver.

Fig. 2: Ideal functionality Fvole of random reversed Vector-OLE (vole).

as a function of the set X. Depending on the choice of row this can correspond
to polynomial interpolation, a bloom filter solver, PaXoS or some other fast
solver, see Section 2. Recall that for all x ∈ X it holds that Decode(~P , x) =

〈row(x), ~P 〉 = HF(x) and that Decode is a linear function in ~P . Another impor-

tant property is that Decode(~P , x) = HF(x) only for the elements in the set X,
except the negligible probability4.

The parties first invoke Fvole where the Receiver obtains ~A′, ~C ∈ Fm while
the Sender obtains ∆ ∈ F, ~B ∈ Fm. Recall that ~C = ~A′∆ + ~B. The Receiver
computes ~A := ~P+ ~A′ and sends this to the Sender who computes ~K := ~B+ ~A∆.
The parties will run a coin flipping protocol to then choose a random w ← F.

The Sender defines their the PRF function as

F (x) = H(Decode(~K, x)−∆HF(x) + w, x).

The Receiver outputs the values

X ′ := {H(Decode(~C, x) + w, x) | x ∈ X}.

To understand why F (x) = H(Decode(~C, x) + w, x) for x ∈ X, observe that

Decode(~K, x)−∆HF(x) =Decode(~B + ~P∆+ ~A′∆,x)−∆HF(x)

=〈 ~B + ~P∆+ ~A′∆, row(x)〉 −∆HF(x)

=〈 ~B + ~A′∆, row(x)〉+ 〈~P∆, row(x)〉 −∆HF(x)

=〈~C, row(x)〉+∆〈~P , row(x)〉 −∆HF(x)

=〈~C, row(x)〉+∆HF(x)−∆HF(x), ∀x ∈ X

=Decode(~C, x), ∀x ∈ X

When this is decoded at any x ∈ X recall that Decode(~P , x) = HF(x) and there-

fore the receiver will compute the correct value Decode(~C, x). Also recall that

4 In the case of a malicious Receiver and the choice of row, it may be possible for
|X| > n with noticeable probability. However, for PaXoS this can be bound as
|X| ≤ m ≈ 2.4n while interpolation ensures that |X| ≤ m = n.

this encoding has the property that at all other locations x′ 6∈ X it holds that
Decode(~P∆, x′) 6= HF(x′) and therefore the outputs will disagree. Finally, we ob-
tain an OPRF by hashing away the linear correlation using the hash function H.

The final random oracle H call also contains to x to facilitate extraction in the
case of a malicious Sender. In particular, our functionality requires the OPRF to
effectively behave like a random oracle for the Sender. This differs from a normal
PRF where there is no security with respect to the party holding the secret key.

Parameters: There are two parties, a Sender and a Receiver. Let n, n′ ∈ Z be
parameters such that if Receiver is malicious then |X| < n′ and otherwise |X| = n.
Let out ∈ Z be the output bit length.

Functionality: Upon input (sender, sid) from the Sender and (receiver, sid, X) from
the Receiver, the functionality samples F : F→ {0, 1}out and sends X ′ := {F (x) |
x ∈ X} to the Receiver.
Subsequently, upon input (sender, sid, y) from the Sender, the functionality returns
F (y) to the Sender.

Fig. 3: Ideal functionality Foprf batched Oblivious PRF.

Theorem 1. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious adversary in the random oracle, Fvole-hybrid model.

Proof. First observe that the protocol is correct. We prove the following two
Lemmas:

Lemma 1. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious Sender A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Sender as follows:

– S plays the role of Fvole. When A sends (sender, sid) to Fvole, S wait for A
to send ∆, ~B.

– On behalf of the Receiver, S sends uniform r, ~A to A.
– Whenever A queries H(q, y), if q = 〈 ~K, row(y, r)〉 −∆HF(y) +w and H(q, y)

has not previously been queried, S sends (sender, sid, y) to Foprf and programs
H(q, y) to the response. Otherwise H responds normally.

To prove that this simulation is indistinguishable consider the following hybrids:

– Hybrid 0: The same as the real protocol except S in this hybrid plays the
role of Fvole.

– Hybrid 1: S in this hybrid samples ~A uniformly as opposed to ~A := ~P + ~A′.
Since ~A′ is distributed uniformly in the view of the A, this hybrid has an
identical distribution.

– Hybrid 2: When S in this hybrid samples r, it aborts if any of the row(r, ·)
queries have previously been made. Since r is sampled uniformly the prob-
ability of this is O(2−κ) and therefore this hybrid is indistinguishable from
the previous.

Parameters: There are two parties, a Sender and a Receiver with a set X ⊆ F
where |X| = n.

Protocol: Upon input (sender, sid) from the Sender and (receiver, sid, X) from the
Receiver, the protocol specifies the following:

1. The Sender samples ws ← F and sends cs := HF(ws) to the Receiver.
2. The Receiver samples r ← {0, 1}κ, wr ← F and solves the systemsrow(x1, r)

...
row(xn, r)

 ~P = (HF(x1), ...,HF(xn))

for ~P as a function of their set {x1, ..., xn} = X ⊂ F.
3. The Sender sends (sender, sid) and the Receiver sends (receiver, sid) to Fvole

with dimension m and |F| ≈ 2κ. The parties respectively receive ∆, ~B and
~C := ~A′∆+ ~B, ~A′.

4. The Receiver sends r, wr, ~A := ~P + ~A′ to the Sender who defines ~K := ~B+ ~A∆.
5. The Sender sends ws to the Receiver who aborts if cs 6= HF(ws). Both parties

define w := wr + ws .
6. The Receiver outputs X ′ := {H(Decode(~C, x) + w, x) | x ∈ X}.

Subsequently, upon each input (sender, sid, y) from the Sender, the protocol speci-
fies that the Sender outputs F (y) = H(Decode(~K, y, r)−∆HF(y) + w, y).

Fig. 4: Protocol Πoprf which realizes the Oblivious PRF functionality Foprf.

– Hybrid 3: S in this hybrid does not call Encode, and so does not abort if
Encode fails. Since none of row(r, ·) queries have previously been made, the
PaXoS cuckoo-graph is uniformly sampled from all (n,m)-cuckoo graphs and
therefore the probability of abort is bounded by 2−λ [PRTY20]. Therefore
this hybrid is statistically indistinguishable from the previous. Observe that
this hybrid no longer uses the Receiver’s input.

– Hybrid 4: WheneverA queries H(q, y) after receiving ~A, if q = 〈 ~K, row(y, r)〉+
w and H(q, y) has previously been queried, this hybrid aborts. Otherwise it
sends (sender, sid, y) to Foprf and programs H(q, y) to the response.
Observe that r is uniformly distributed prior to it being sent. Therefore, any
given q = 〈 ~K, row(y, r)〉 − HF(y)∆ + w is similarly distributed and A has a
negligible probability of previously querying H(q, y). We conclude that this
hybrid is indistinguishable from the simulation.

Lemma 2. The Protocol Πoprf realizes the Foprf functionality against a Mali-
cious Receiver A in the random oracle, Fvole-hybrid model.

Proof. The simulator S interacts with the Receiver as follows:

– S plays the role of Fvole and receives ~A′, ~C from A.
– When A sends r, ~A, S computes ~P := ~A− ~A′. For each of the previous HF(x)

queries made by A, S checks if Decode(~P , x, r) = HF(x) and if so adds x
to set X. S sends (Receiver, sid, X) to Foprf and receives {F (x) | x ∈ X} in
response.

– Ssamples w ← {0, 1}κ. For each x ∈ X, S programs H(Decode(~C, x, r) +
w, x) := F (x). S sends w to A.

To prove that this simulation is indistinguishable consider the following hybrids:

– Hybrid 0: The same as the real protocol except the S plays the role of Fvole.
When A sends (receiver, sid) to Fvole, S waits to receive ~A′, ~C.

– Hybrid 1: When A sends r, ~A, S in this hybrid computes ~P := ~A − ~A′.
For each of the previous HF(x) queries made by A, this hybrid checks if

Decode(~P , x, r) = HF(x) and if so adds x to set X. This hybrid sends
(Receiver, sid, X) to Foprf and receives {F (x) | x ∈ X} in response.

– Hybrid 2: S in this hybrid does not sample ws at the beginning of the protocol
and sends a random value for cs instead H(ws). Right before ws is should
be sent, S samples ws and programs H(ws) := cs. Condition on H(ws) not
previously being queries this hybrid is identically distributed and therefore
indistinguishably in general since ws is uniform.

– Hybrid 3: When ws ← {0, 1}κ is sampled, S in this hybrid aborts if any

H(Decode(~C, x, r) + w, x) has been made by A. Since ws was just sampled,
each Decode(...) + ...+ ws is uniform and therefore the probability of abort
is at most O(2−κ).

S in this hybrid programs H(Decode(~C, x, r) + w, x) := F (x) for all x ∈ X
and sends ws to A. Since the F (x) are uniform, programming H does not
change the distribution.

– Hybrid 4: S in this hybrid aborts if A ever makes an H(v, x) query such that

(v, x) ∈ {(Decode(~K, x, r)−∆HF(x) + w, x) | x ∈ F \X}. Observe that

Decode(~K, x, r)−∆HF(x) = 〈 ~K, row(x, r)〉 −∆HF(x)

= 〈 ~B + ~P∆+ ~A′∆, row(x, r)〉 −∆HF(x)

= 〈~C + ~P∆, row(x, r)〉 −∆HF(x)

= ∆(〈~P , row(x, r)〉 − HF(x)) + 〈~C, row(x, r)〉

and recall that ∆ is uniformly distributed in the view of A. So for all x
s.t. 〈~P , row(x, r)〉 6= HF(x), the distribution of ∆(〈~P , row(x, r)〉 − HF(x)) is

uniform in the view of A. Now consider the case that 〈~P , row(x, r)〉 = HF(x).

W.l.o.g., let us assume that all HF(x) queries are made prior to sending ~A
and that for any given set (x1, ..., xm) = X ⊂ F and r ∈ {0, 1}κ, the matrix

with rows row(x1, r), ..., row(xm, r) is invertible. Recall that ~P ∈ Fm where
m ≈ 2.4n for PaXoS. Therefore, for any X s.t. |X| ≤ m, A can trivially

construct the unique ~P such that 〈~P , row(x, r)〉 = HF(x) for all x ∈ X. Now

consider the probability for any x′ ∈ F \ X, that 〈~P , row(x′, r)〉 = HF(x′).

Since HF(x) is a random function and all 〈~P , row(x′, r)〉 values are fixed, the
probability is O(1/|F|) = O(2−κ). Therefore we conclude that this hybrid
aborts with negligible probability and that the size of X is at most n′ = m.

4 Private Set Intersection

Using our OPRF protocol from the previous section, we now obtain a PSI pro-
tocol via the well known transformation shown in Figure 6. The ideal function-
ality for PSI is given in Figure 5. Given a malicious or semi-honest OPRF, this
transformation achieves malicious or semi-honest security, respectively. While
the general transformation is known and implicitly or explicitly used by used by
[CKT10; DCW13; RR17a; PRTY19; PRTY20; CM20], we provide a tight anal-
ysis in the malicious setting which reduces our communication by 20% to 50%
compared to [CKT10; PRTY20].

The OPRF to PSI transformation works as follows. The PSI receiver sends
their set X to the OPRF functionality Foprf and receives back F (x) for all x ∈ X.
The sender queries Foprf to learn F (y) for their y. The sender sends Y ′ := {F (y) |
y ∈ Y } to the receiver who can compute X ∩ Y := {x | x ∈ X ∧ F (x) ∈ Y ′}.

To ensure the correctness of this protocol it is crucial that there are not any
spurious collisions between the F (x) and F (y) values. In particular, since F is
a random function it is possible that x 6= y ∧ F (x) = F (y). In the semi-honest
setting, the standard approach is to define the output domain of F to be {0, 1}out
where out := λ+log2(nxny). Since the X,Y are fixed prior to randomly sampling
F , the probability for any x 6∈ Y to result in F (x) ∈ Y ′ is purely a statistical
problem5. In particular,

Pr
x,Y,F

[F (x) ∈ {F (y) | y ∈ Y } ∧ x 6∈ Y] = 2−outny = 2−out+log2(ny).

If we take the union bound over x ∈ X, the overall probability of a collision is
nx2
−out+log2(ny) = 2−out+log2(nynx) = 2−λ.
In the malicious setting the situation is complicated by the fact that the

simulator must extract the sender’s set Y by observing the sender’s Foprf queries
and the value of Y ′. The folklore approach is to extract Y := {y | y ∈ Y ∗∧F (y) ∈
Y ′} where Y ∗ is the set of inputs the sender queried the Foprf at. However, in
the event that there exists distinct y, y′ ∈ Y ∗ s.t. F (y) = F (y′), then more than
one y is extracted for each y∗ ∈ Y ∗.

The probability that there exists distinct y, y′ ∈ Y ∗ s.t. F (y) = F (y′) is at
most 2−out+2 log2(ny

∗) where ny
∗ := |Y ∗|. Therefore, it is expected to occur when

ny
∗ ≥ 2out/2. As such, in the folklore analysis and that of [CKT10; PRTY20], it

is required that out := 2κ in order for the security argument to hold.
We now present a new extraction procedure which allows out = κ. In our

protocol this effectively reduces the sender’s communication by half, therefore
reducing the overall communication by half when |X| � |Y |.

Our extraction procedure is to only extract y ∈ Y ∗ if it is distinct. Intuitively,
the reason security still holds is that collisions within Y ∗ are unlikely to collide
with the receiver’s set X. In particular, the receiver’s set X is first fixed and
then the function F is sampled. Thus, the probability that there exists a y ∈ Y ∗
and y 6∈ X, yet F (x) = F (y) is at most

2−out+log2(nxny
∗) = O(2−out+log2(κ)+log2(ny

∗))

5 In the Foprf hybrid where F is truly random.

and therefore if out := κ the probability is O(2−κ+log(κ)+log(ny
∗)). Concretely, if

κ = 128, nx = 230 then the sender would have to make an expected ny
∗ = 298

Foprf queries in order to expect to distinguish as opposed to 249 queries via the
folklore analysis.

Parameters: There are two parties, a sender with set Y ⊂ F and a receiver with
a set of key X ⊆ F. Let ny, nx, nx

′ ∈ Z be public parameters where nx ≤ nx
′.

Functionality: Upon receiving (sender, sid, Y) from the sender and
(receiver, sid, X) from the receiver. If |Y | > ny, abort. If the receiver is ma-
licious and |X| > nx, then abort. If the receiver is honest and |X| > nx, then
abort.
The functionality outputs X ∩ Y to the receiver.

Fig. 5: Ideal functionality Fpsi of Private Set Intersection.

Parameters: There are two parties, a sender with set Y ⊂ F and a receiver with
a set of key X ⊆ F.
In the Semi-honest setting, let out := λ + log2(nx) + log2(ny). In the malicious
setting let out := κ. Let Foprf be the OPRF functionality with n = nx and nx

′ := n′

and the output length out.

Protocol:

1. The sender sends (sender, sid) and receiver sends (receiver, sid, X) to Foprf. The
receiver receives X ′ = {F (x) | x ∈ X}.

2. For y ∈ Y , the sender sends (sender, sid, y) to Foprf and receives back F (y).
3. The sender sends Y ′ := {F (y) | y ∈ Y } to the receiver in a random order.
4. The receiver outputs {x | F (x) ∈ Y ′, x ∈ X}.

Fig. 6: Protocol Πpsi which realizes the PSI functionality Fpsi.

Theorem 2. The Protocol Πpsi realizes the Fpsi functionality against a Mali-
cious adversary in the Foprf-hybrid model.

Proof. Consider a malicious sender. The simulator interacts with the sender as:

– The simulator plays the role of Foprf. The simulator observes all the (sender, sid, y)
messages. Let Y ∗ be the set of all such y.

– When the sender sends Y ′, the simulator computes Ŷ := {y | y ∈ Y ∗ ∧@y′ ∈
Y ∗ s.t. y 6= y′ ∧ F (y) = F (y′)} and extracts Y := {y | y ∈ Ŷ ∧ F (y) ∈ Y ′}
and sends Y to Fpsi.

First, conditioned on there not being any F (y) = F (y′) collisions, it is easy to
verify that the simulation above is correct and indistinguishable.

Now consider some collision F (y) = F (y′). Observe that the simulator only
needs to extract y, y′ if there is a noticeable probability of one of them being

in X. W.l.o.g., let us assume y ∈ X. Therefore, consider the probability of
F (y′) = F (x) for some x ∈ X. Since |X| = nx = O(κ), the probability of the
sender finding such a (target preimage) collision is O(2−κ).

Consider a malicious receiver. The simulator is as follows:

– The simulator plays the role of Foprf.
– When the receiver sends (receiver, sid, X) to Foprf, the simulator observes X

and sends X ′ back as the Foprf would.
– The simulator forwards X to Fpsi and receives Z = X ∩ Y in response.
– The simulator computes Y ′ as containing all {F (z) | z ∈ Z} along with
ny − |Z| uniform values from {0, 1}out \X ′. The simulator sends Y ′.

This simulation is identical to the real protocol except for the dummy items
being sampled from {0, 1}out \X ′ instead of {0, 1}out. However, since 2out−|X| =
O(2κ) this change is indistinguishable.

5 Oblivious Programmable PRF

We now turn our attention to constructing our circuit PSI protocol. To achieve
this, we first construct a type of protocol known as an oblivious programmable
PRF (OPPRF). The functionality is shown in Figure 7. The sender has a set
of input pairs (y1, z1), ..., (yn, zn). The functionality samples a key k such that
Fk(yi) = zi and at all other input points it outputs a random value. The receiver
on input points x1, ..., xn then obtains Fk(xi) for all i.

Parameters: There are two parties, a sender with input L =
{(y1, ỹ1), ..., (yny , ỹny)} where yi ∈ F, ỹ ∈ {0, 1}out and a receiver with a set
X ⊆ F where |X| = nx.

Functionality: Upon input (sender, sid, L) from the sender and (receiver, sid, X)
from the receiver, the functionality samples a random function F : F → {0, 1}out
such that Fk(y) = ỹ for each (y, ỹ) ∈ L and sends X ′ := {Fk(x) | x ∈ X} to the
receiver.
Subsequently, upon input (sender, sid, y) from the sender, the functionality returns
F (y) to the sender.

Fig. 7: Ideal functionality Fopprf of Oblivious Programmable PRF.

We instantiate this functionality using an OPRF protocol, and the XoPaXoS
solver. The parties call the OPRF functionality Foprf with X being the receiver’s
input. The sender obtains k while the receiver obtains X ′ = {Fk(x1), ..., Fk(xn)}.
The sender constructs a solver for ~P such that Decode(~P , yi) = zi−Fk(yi) using

XoPaXoS and sends ~P to the receiver who then outputs x∗i := x′i+Decode(~P , xi)
for all i. In the case that xi = yj is then equal to

x∗ := Fk(xi) + Decode(~P , xi) = Fk(xi) + zj − Fk(xi) = zj

The sender then outputs the key k∗ := (k, ~P) where the OPPRF function is
defined as F ∗k∗(x) := Fk(x) + Decode(P, x).

With respect to security, first observe that the vi values outside the intersec-
tion are information theoretically hidden in the Foprf hybrid. What remains to

be shown is that the distribution of ~P does not depend on Y \X. Recall from
Section 2 that this is the exact issue XoPaXoS addresses compared to PaXoS.
Intuitively, XoPaXoS ensures that each position of ~P is either assigned a uni-
formly random value or is the sum of previous positions and some zi − Fk(yi).
We prove security of this protocol in Theorem 3.

Parameters: There are two parties, a sender with L = {(y1, z1), ..., (y`, z`)} and
a receiver with a set X ⊆ F where |X| = n.

Protocol: Upon input (sender, sid, L) from the sender and (receiver, sid, X) from
the receiver, the parties do the following:

1. The sender sends (sender, sid, L) and the receiver sends (receiver, sid, X) to Foprf

with |F̂| ≈ 2κ. The parties respectively receive k and X ′ = {Fk(x) | x ∈ X}.
2. The sender uses the XoPaXoS solver to compute ~P ∈ Fm over the field F such

that ~P ← Encode((y1, z1 − Fk(y1)), ..., (y`, z` − Fk(y`))) and sends it to the
receiver.

3. The receiver outputs {x∗1, ..., x∗n} such that x∗i := x′i + Decode(P, xi).

Subsequently, upon input (sender, sid, y) from the sender, output: Fk(x) +
Decode(P, x).

Fig. 8: Protocol Πopprf which realizes the Oblivious Programmable PRF func-
tionality Fopprf.

Theorem 3. The Protocol Πopprf realizes the Fopprf functionality against a semi-
honest adversary in the Foprf-hybrid model.

Proof. Consider a semi-honest sender. Observe that the protocol is correct. Since
the receiver does not send any messages the simulation is trivial.

Consider a malicious receiver. The simulator generates the receiver’s tran-
script as follows:

– The simulator samples uniform values Fk(x) for x ∈ X.
– The simulator sends X to Fopprf functionality and receives back x′1, ..., x

′
n.

– Samples ~P uniformly from all vectors such that Decode(~P , xi) = x′i−Fk(xi).

– The simulator outputs ({Fk(x) | x ∈ X}, ~P) as the transcript.

Clearly the Fk(x) values are identically distributed. What remains to be

shown is that ~P has the same distribution as it would in the real protocol.
Recall from Section 2 that XoPaXoS assign values to ~P in four ways

– During Step 5, Pi ← G for i ∈ C ′. Recall that Step 4 identifies d̃ of the
last d + λ columns which form an invertible matrix for the 2-core. These
columns are indexed by C. Then C ′ is defined as C ′ = {j | i ∈ R,M ′i,j =

1} ∪ ([d + λ] \ C + m′) indexes all positions of ~P which interact with the
2-core along with all of the last d+ λ columns which are not used to invert.

– Next, in Step 6, the remaining d̃ positions of ~P corresponding are assigned
a value such that Decode(~P , yi) = v′i − Fk(yi) for the i in the 2-core which
is equivalent to solving

M̃∗(PC1+m′ , ..., PCd̃+m
′)ᵀ = (y′R1

, ..., y′Rd̃
)ᵀ.

Since this is a fully determined system, there is exactly one solution.
– In Step 7 a single node i from each tree in G is assigned a uniform value.
– Lastly, observe that the rest of the system is fully determined. That is, each

the the remaining Pi position are assigned a value with the form

Pi := v′k − Fk(yk)−
∑
j∈{...}

Pj .

The analysis above can be reordered such that Step 5, 7 are performed first.
Then there is exactly one solution to the correctness constraint.

6 Circuit PSI

We now construct a circuit PSI protocol from our OPPRF. Our construction
(Figure 10) builds on the approach of Pinkas et al. [PSTY19], using our novel
XoPaXoS and VOLE-based OPPRF from the previous section. As we will see in
the experiments (Section 7), this translates into a significant speedup compared
to [PSTY19]. The ideal functionality for circuit PSI is given in Figure 9. It
allows both sender and receiver to input a set of associated values, which will be
secret-shared alongside the elements in the intersection. The associated values
corresponding to elements in the intersection can then be used in any subsequent
MPC phase, and could for example be used to compute sums [Ion+20] or inner
products [SGRP19] of the intersection.

Cuckoo Hashing. We make use of a data structure known as a cuckoo hash
table. Given a set X, one can create a hash table T of size m = ε|X|. This
table is parameterized by k hash functions h1, . . . , hk : {0, 1}∗ → {1, 2, ...,m}.
There is a procedure [PSZ18; DRRT18] s.t. with overwhelming probability for
all x ∈ X, x can be storied in T at T [hj(x)] for a j ∈ [k], and only one item will
be stored at any position of T . We discuss concrete parameter choices for ε and
k in Section 7.2.

We will also refer to a procedure known as simple hashing of a set Y where
we store y ∈ Y at all locations T [hj(y)]. For simple hashing, each position of T
may hold more than one value. It can be shown that if the table has m = O(|Y |)
positions, then any given location of the table will hold at most O(log |Y |) items.

Parameters: There are two parties, a sender with set Y ⊂ F, associated values
Ỹ ⊂ {0, 1}σy and a receiver with a set of keysX ⊆ F, associated values X̃ ⊂ {0, 1}σx
where |Y | = |Ỹ | = ny, |X| = |X̃| = nx. The functionality is parameterized by
Reorder : Fn → (π : [n]→ [m]) which on input X outputs a injective function π.

Functionality: Upon receiving (sender, sid, Y, Ỹ) from the sender and
(receiver, sid, X, X̃) the functionality computes π ← Reorder(X) and uniformly
samples Q0, Y 1 ∈ {0, 1}m, Z0, Z1 ∈ {0, 1}(σx+σy)×m such that

q0i′ ⊕ q1i′ = 1, z0i′ ⊕ z1i′ = (x̃i′ ||ỹi) if ∃xi ∈ X, yj ∈ Y s.t. xi = yj ,

q0i′ ⊕ q1i′ = 0, z0i′ ⊕ z1i′ = 0 otherwise

where i′ = π(i). The functionality output q0, z0, π to the receiver and q1, z1 to the
sender.

Fig. 9: Ideal functionality Fcpsi of Circuit Private Set Intersection.

Parameters: There are two parties, a sender with set Y ⊂ F, associated values
Ỹ ⊂ {0, 1}σy and a receiver with a set of key X ⊆ F, associated values X̃ ⊂
{0, 1}σx where |Y | = |Ỹ | = ny, |X| = |X̃| = nx. The protocol is parameterized
by an expansion factor ε, cuckoo hash table size m = εnx, and k hash functions
hj : {0, 1}∗ → m.

Protocol:

1. The receiver constructs a cuckoo hash table Tx of X such that x ∈ X, there
exists a j ∈ [k] such that H(x||j) = Tx[hj(x)].

2. The sender constructs a simple hash table Ty of Y such that y ∈ Y , for all
j ∈ [k] it holds that H(y||j) ∈ Ty[hj(y)].

3. For all i, the sender samples random ri ∈ {0, 1}`, wi ∈ {0, 1}σy and for all
y′ ∈ Ty[i], the receiver defines L := {(y′, ri||ỹ⊕wi)} ∈ (F×{0, 1}`+σy)m where
ỹ is associated value for y s.t. y′ = H(y, j).

4. The sender sends (sender, sid, L) and the receiver sends (receiver, sid, Tx) to
Fopprf. The receiver receives X∗ = {(r′i||w′i) | i ∈ [m]}.

5. For each i, the sender sends (receiver, sid, r′i||w′i) and the receiver sends
(sender, sid, ri||wi||x̃) to F2pc where x̃ is the associated value with x ∈ Tx[i]
(or zero is no x) and C is the circuit that compute qi := 1 if r′i = ri and qi := 0
otherwise and outputs secret shares of zi := qi(w

′
i ⊕ wi||x̃) to the parties.

Fig. 10: Protocol Πcpsi which realizes the circuit PSI functionality Fcpsi.

Protocol. The full circuit PSI protocol is constructed using the OPPRF and
cuckoo hashing. The receiver will construct a cuckoo hash table Tx of their set
X. The sender will construct a simple has table Ty of their set Y .

For each i ∈ [m] the sender will sample a random value ri ← {0, 1}` where
` := λ + log2m. For all i and y ∈ Ty[i], the sender will construct a list L =
{(y′, ri)} where y′ = H(y, j) and j is defined such that i = hj(y). That is, j
is the hash function index that mapped y to this bin. The receiver constructs
set X ′ which is defined as the collection of all H(x, j) such that x is stored at
Tx[hj(x)]. The sender then provides L as their input to Fopprf while the receiver
inputs X ′. In response the receiver obtains the set X∗.

As an explanation of this, let us focus on some bin index i such that x was
mapped to bin Tx[i] due to hash function hj , i.e., Tx[i] = x and hj(x) = i.
Furthermore, let us assume that there is some y ∈ Y s.t. x = y. Since the sender
did simple hashing, they too mapped y to bin Ty[i] since hj(y) = i. For this
y, they programmed the OPPRF with the pair (H(y, j), ri). When the receiver
inputs H(x, j) to the OPPRF they receive the value ri in response. If x 6∈ Y ,
then the receiver will receive a random value. Therefore, for each i, the receiver
now has a value r′i which is equal to ri (held by the sender) if Tx[i] ∈ Y and
otherwise r′i is random per the OPPRF security definition.

The final step of the protocol is to use a generic MPC protocol to compare
each r′i with ri to check if they are equal. The output of this generic MPC will
be secret shared which will be the output of the protocol.

In the event that the sender has “associated values”, then they will program
the OPPRF with L = {(y′, ri||v ⊕wi)} where v is the associated value for bin i
and wi is an random value that the sender samples for each bin i ∈ {1, 2, ...,m}
in the same way as ri. The receiver will then obtain r′i||w′i from the OPPRF
protocol for each i. The generic MPC will then take as input {(r′i, w′i)} from
the receiver and {ri, wi} from the sender. For each i the MPC computation will
compute br := (r′i = ri) and vi := bi(w

′
i ⊕ wi) and then output secret shares of

{(bi, vi)} which the parties will output as the final result. Since this protocol is
effectively the same as [PSTY19] with the substitution of our OPPRF and F2pc

implementation, we defer the proof of security to [PSTY19].

Parameters: There are two parties, a sender and a receiver. The functionality is
parameterized by a circuit C : {0, 1}in1+in2 → {0, 1}out1+out2 .

Functionality: Upon receiving (sender, sid, X) from the sender and
(receiver, sid, Y) where X ∈ {0, 1}in1 and Y ∈ {0, 1}in2 , the functionality
computes (Z1, Z2) := C(X,Y) and returns Z1 ∈ {0, 1}in1 to the receiver and
Z2 ∈ {0, 1}in2 to the sender.

Fig. 11: Ideal functionality F2pc of generic two party computation.

7 Performance Evaluation

7.1 Theoretical Comparison.

All protocols compared here are largely based on efficient symmetric key prim-
itives – with the exception of the DH-PSI protocol – and can be instantiated
with O(nx + ny) running time. Since these protocols are asymptotically similar,
it becomes difficult to compare them. As we do below, one metric is to imple-
ment the protocol and compare their running times. However, the quality of the
implementation has a large impact on running time. Arguably a more objective
metric is the total communication which is independent of the implementation.

Table 1: Comparison of theoretical communication cost of various PSI protocols.
Several protocols have additional parameters which have been approximated in
terms of κ, λ. In particular, the coefficients shown below often vary (non-linearly)
as a function of n, κ, λ. In these cases we chose representative values. The third
column contains the overhead for fixed λ = 40, κ = 128 while the last three
columns also fix the set sizes.

Protocol Communication
n = ny = nx

216 220 224

Semi-Honest

DH-PSI 4κnx + (λ+ log(nxny))ny 512nx + 40ny + log(nxny)ny 584n 592n 600n

[KKRT16] 6κnx + 3(λ+ log(nxny))ny 768nx + 120ny + 3 log(nxny)ny 984n 1008n 1032n

[PRTY19] Low-Comm 3.5κnx + 1.02(2 + λ+ log(nx))ny 450nx + 43ny + 1.02 log(nx)ny 509n 513n 517n

[PRTY19] Fast 3.5(1 + 1/λ)κnx + 2(λ+ log(nxny))ny 461nx + 80ny + 2 log(nxny)ny 603n 619n 635n

[PRTY20] 9.3κnx + (λ+ log(nxny))ny 461nx + 40ny + log(nxny)ny 1208n 1268n 1302n

[CM20] 4.8κnx + (λ+ log(nxny))ny 620nx + 40ny + log(nxny)ny 678n 694n 702n

Ours total (PaXoS) 2.4κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 307nx + 40ny + log(nxny)ny 914n 426n 398n

Ours total (interpolation) κnx + (λ+ log(nxny))ny + 217κnx
0.05 224nx

0.05 + 128nx + 40ny + log(nxny)ny 702n 245n 219n

Ours online (PaXoS) 2.4κnx + (λ+ log(nxny))ny + 213κnx
0.13 220nx

0.13 + 307nx + 40ny + log(nxny)ny 502n 398n 396n

Ours online (interpolation) κnx + (λ+ log(nxny))ny + 213κnx
0.13 220nx

0.13 + 128nx + 40ny + log(nxny)ny 310n 218n 217n

Malicious

[PRTY20] 11.8κnx + 2κny 1512nx + 256ny 1766n 1766n 1766n

Ours total (PaXoS) 2.4κnx + κny + 217κnx
0.05 224nx

0.05 + 307nx + 128ny 960n 474n 438n

Ours total (interpolation) κnx + κny + 217κnx
0.05 224nx

0.05 + 128nx + 128ny 754n 293n 259n

Ours online (PaXoS) 2.4κnx + κny + 213κnx
0.13 220nx

0.13 + 307nx + 128ny 558n 446n 436n

Ours online (interpolation) κnx + κny + 213κnx
0.13 220nx

0.13 + 128nx + 128ny 366n 266n 257n

Table 1 shows a theoretical comparison of the communication required by
various PSI protocols. We present the communication overhead in three ways.
The general case in terms of nx, ny, κ, λ; when we fix κ = 128, λ = 40; and when
we fix all the parameters. Many protocols contain addition parameters that allow
a for some type of tradeoff. In these we chose representative parameters.

Our semi-honest protocol requires sending ρκnx +(λ+log(nyny))ny bits plus
the overhead of performing a VOLE of size ρnx. Here, ρ is the rate of the linear
system solver which is being employed by the protocol. We consider two values
of ρ. The first is ρ = 2.4 which corresponds to the PaXoS solver while the second
is ρ = 1 when Vandermonde/interpolation solver is used.

To estimate the overhead of the VOLE protocol we experimentally deter-
mined that our implementation requires a total of 217κ 20

√
nx bits. We note that

this is the approximate overhead of our implementation and may not be asymp-
totically correct for nx � 224. Since the cost of the VOLE is highly sublinear,
the overhead it contributes quickly diminishes as nx increase. For example, the
VOLE requires 27, 800 bits per element for nx = 210 while only requiring 38 bits
per element for nx = 220. From this we can conclude that our protocol works
best for large sets, e.g. nx ≥ 216.

We also consider a setting where we perform a one time VOLE preprocessing
phase. In this case the bulk of the VOLE computation can be performed before
the X,Y sets or their sizes nx, ny are known. This is akin to performing base
OTs ahead of time as is done by all the protocols compared below (except
DH-PSI). With preprocessing the online overhead of the VOLE decreases to
approximately 213κ 8

√
nx bits, an improvement of 16×. In addition, sublinear

VOLE constructions are relatively new and there are likely more optimizations
opportunities, like the recent work of Yang et al. [Yan+20] which we utilize.

When compared to other protocols, our protocol performs significantly bet-
ter. The three [PRTY19; PRTY20] protocols shown below mostly differ in their
linear system encoding rates. [PRTY19] considers two different types of Vander-
monde/interpolation solvers which achieve rate ρ ≈ 1 while [PRTY20] achieves
rate ρ = 2.4 via their PaXoS solver and a significantly improved running time.
Both of these works use an OT-extension type protocol which results in sending
approximately 3.5κ bits per element in their encoding. We on the other hand de-
part from this OT-extension based technique and utilize sublinear VOLE. This
has the advantage that we send only κ bits per item in the encoding. For the
final PSI-from-OPRF construction, the sender will additionally send their set
encoded under the OPRF which requires λ+ log(nxny) bits per item in Y .

[KKRT16] does not encode their input into a linear system and instead uses
cuckoo hashing which has a rate of ρ ≈ 1.7. This work is also a OT-extension
type protocol which requires sending 3.5κ bits per hash table element which
results in an overhead of 6κnx. However, the cuckoo hashing approach results in
the sender needing to send 3 OPRF values per item in Y . The core advantage
of [KKRT16] is that cuckoo hashing is extremely efficient compared to solving a
linear system and as such obtains very small running times.

In the case of malicious security, the overhead of our protocol is effectively
identical except that the sender now must send larger OPRF values, i.e. κ bits per
element in Y as opposed to λ+log(nxny) bits. On the other hand, the protocol of
[PRTY20] requires increasing the number of bits per item in the linear encoding
from 3.5κ to 5κ. This has the effect that they must send an overall encoding size
of 11.8κnx. Our protocol more naturally achieves malicious security and only
requires sending κ per encoding position. In addition, the [PRTY20] analysis
states the sender must send OPRF values of size 2κ. However, we demonstrate
that our protocol remains secure when only κ bits are sent.

7.2 Experimental Evaluation

Implementation. We implement all our protocols in C++. We use an extended
version of the VOLE implementation of Schoppmann et al. [SGRR19], support-

ing iterative bootstrapping [Yan+20] and a consistency check for malicious secu-
rity [WYKW20], and assuming LPN with regular noise [see BCGI18; WYKW20].
For computing the 2-core of the cuckoo graph in our PaXoS implementation, we
use igraph [Igr], and we rely on libOTe [Rin] for oblivious transfers and the
GMW implementation used in our circuit PSI protocol.

To compare our protocols to previous work [KKRT16; CM20; PRTY20;
PSTY19], we perform experiments in different network settings. To that end,
we use two Amazon EC2 M5.2xlarge VMs, each featuring 8 cores at 2.5 GHz
and 32 GiB of RAM. For comparability, we limit each protocol to a single core.
In the LAN, without any artificial constraints, we measured a bandwidth of 5
Gbps between our machines. For settings with lower bandwidth, we use Won-
dershaper [HGS] to limit incoming and outgoing traffic.

PSI. Here, we compare our semi-honest and malicious PSI implementations
against the works of Kolesnikov et al. [KKRT16], Chase and Miao [CM20], and
Pinkas et al. [PRTY20]. The protocol of Kolesnikov et al. [KKRT16] is particu-
larly fast, but comes with a comparatively large communication overhead. The
semi-honest protocol of Chase and Miao [CM20] on the other hand comes with
a lower communication overhead, but more expensive computation. Finally, the
PaXoS protocol of Pinkas et al. [PRTY20] features fast computation, but in-
creased communication compared to [CM20]. We do not compare against the
SpOT-light protocol [PRTY19], since [CM20] outperforms it in high-bandwidth
settings6, and our protocol has even lower communication than SpOT-low.

The results of our evaluation in the semi-honest setting are shown in Table 2.
As expected, [KKRT16] outperforms all other protocols in the LAN setting, but
is less effective with reduced bandwidth. For medium input sizes and bandwidths,
[CM20] and [PRTY20] sometimes outperform our protocols and [KKRT16]. Our
protocols particularly shine in medium to low bandwidth settings, and with large
input sizes, which is to be expected given its low communication cost.

In the malicious setting, the state of the art is presented by [PRTY20]. Again,
we compare communication and running time in different bandwidth settings,
and present our results in Table 3. While in the LAN, [PRTY20] sometimes out-
performs our implementation, we are consistently faster as bandwidth decreases.

Since the vector OLE implementation underlying our protocols uses the it-
erative bootstrapping approach of Yang et al. [Yan+20], our protocols have the
distinctive feature that a part of the computation can be performed in a one-time,
data-independent setup phase. Our implementation of this setup phase could be
improved by tuning the LPN parameters (and thus the bootstrapping iteration
sizes) to the input set sizes. Currently we use the parameters from [BCGI18;
Yan+20] without any additional tuning. In our tables, we highlight the best
protocols when setup is amortized in gray. It can be seen that in that case, our
protocol more consistently outperforms previous work.

6 In low communication settings (10 Mbps and 1 Mbps), [CM20] takes 15% longer
than [PRTY19], but at the same time up to 75% longer than our protocol.

Table 2: Comparison of our PSI protocols to previous works in the semi-honest
setting. We compare the amount of data sent by both parties, as well as the
total running time with different bandwidths. A dash (–) indicates experiments
that either crashed or did not finish, or where only the total communication
is reported. The best protocol within a setting is marked in blue if setup is
included, and in gray if setup is excluded.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100 Mbps 10 Mbps 1 Mbps

216

[KKRT16] – – 7.730 0.1160 0.7250 6.884 68.82
[CM20] 0.5790 4.764 5.343 0.5853 0.6437 4.870 47.49

[PRTY20] 12.62 0.5898 13.21 0.6460 1.682 11.86 112.8
Ours 0.9965 2.702 3.699 0.1720 0.4510 3.277 31.18

Ours (w/setup) 1.171 3.062 4.232 0.5030 1.067 6.742 63.33

218

[KKRT16] – – 31.88 0.5850 2.968 28.46 283.6
[CM20] 2.520 19.23 21.75 2.017 2.194 19.50 193.8

[PRTY20] 51.94 2.621 54.56 1.517 5.976 47.66 464.2
Ours 3.066 10.30 13.37 1.227 2.192 12.26 114.1

Ours (w/setup) 3.622 10.68 14.31 1.985 3.279 16.65 151.5

220

[KKRT16] – – 128.5 2.441 11.93 114.8 1143
[CM20] 10.03 77.63 87.66 8.148 9.071 78.38 780.0

[PRTY20] 214.0 10.49 224.5 5.885 24.09 195.6 1910
Ours 12.06 40.55 52.61 4.398 8.496 48.69 449.7

Ours (w/setup) 12.62 40.93 53.55 5.396 9.850 53.35 487.7

222

[KKRT16] – – 530.1 10.19 49.30 473.6 4718
[CM20] 44.08 313.5 357.6 34.70 41.54 319.4 3182

[PRTY20] 815.7 46.14 861.9 22.94 93.67 751.3 –
Ours 47.28 161.7 208.9 23.93 40.67 199.0 1794

Ours (w/setup) 47.84 162.0 209.9 25.88 42.97 204.7 1834

224

[KKRT16] – – 2137 43.90 199.1 1910 –
[CM20] 176.3 1266 1442 189.6 198.1 1289 12 860

[PRTY20] 3364 184.5 3548 101.7 392.0 – –
Ours 204.2 645.7 849.9 90.74 156.4 814.2 7296

Ours (w/setup) 204.7 646.1 850.9 92.81 158.7 819.9 7335

Table 3: Comparison of our PSI protocols to [PRTY20] in the malicious setting.

n Protocol
Communication (MB) Total running time (s)

P1 P2 Total LAN 100 Mbps 10 Mbps 1 Mbps

216
[PRTY20] 12.62 2.097 14.71 0.6510 1.808 13.13 125.5

Ours 1.390 2.702 4.092 0.2250 0.5260 3.627 34.77
Ours (w/setup) 1.564 3.062 4.626 0.5560 1.147 7.109 66.72

218
[PRTY20] 51.94 8.389 60.33 1.556 6.469 52.57 513.1

Ours 4.639 10.30 14.94 1.279 2.464 13.96 127.6
Ours (w/setup) 5.195 10.68 15.88 2.046 3.558 18.37 165.0

220
[PRTY20] 214.0 33.55 247.6 6.119 26.12 215.2 2410

Ours 17.31 40.55 57.86 5.150 9.599 54.09 495.0
Ours (w/setup) 17.86 40.93 58.79 6.157 10.94 58.76 532.6

222
[PRTY20] 815.7 134.2 950.0 23.37 101.2 826.1 –

Ours 68.25 161.7 229.9 26.50 45.19 222.5 1975
Ours (w/setup) 68.81 162.0 230.9 28.46 47.50 228.3 2015

224
[PRTY20] 3364 536.9 3901 102.8 422.1 – –

Ours 271.3 645.7 917.0 104.0 174.5 881.0 7876
Ours (w/setup) 271.9 646.1 918.0 106.0 176.8 886.7 7914

Table 4: Comparison of our Circuit-PSI protocol to Pinkas et al. [PSTY19].
Values marked with an asterisk (*) were not measured, but computed from the
theoretical communication costs [PSTY19, Section 7.3].

n Protocol Total comm. (MB)
Total running time (s)

5 Gbps 100 Mbps

212 [PSTY19] 9* 0.965 1.34
Ours (IKNP) 13.4 0.495 1.19

Ours (SilentOT) 4.79 0.737 1.07

216 [PSTY19] 149* 5.01 11.3
Ours (IKNP) 171 1.52 9.03

Ours (SilentOT) 21.1 4.05 5.34

220 [PSTY19] 2540* 72.0 172
Ours (IKNP) 2830 23.3 149

Ours (SilentOT) 277 103 120

Circuit PSI. We also compare our circuit-PSI implementation to the state of
the art protocol [PSTY19]. We use the same cuckoo hashing parameters as
[PSTY19], ε = 1.27 and k = 3 hash functions, following the analysis of [PSZ18].
We note, however, that there is some disagreement in the literature regarding
the correct cuckoo hashing parameters for a given statistical security level λ. For
example, for k = 3, n = 220, and λ = 40, [PSZ18] and [DRRT18] report quite
different expansion factors (1.27 vs. 1.54). In our own experiments, we found the
security level to be approximated by λ = 240ε − 256 − log2 n, which requires
ε = 1.32 for n = 220 and λ = 40. Still, we stick to the parameters used by Pinkas
et al. [PSTY19] for comparability.

Like [PSTY19], our construction uses a generic two-party computation phase
in the end (Step 5 in Figure 10). We implement two variants of this step: one
using the standard IKNP OT extension [IKNP03] to implement the GMW offline
phase, and one using the more recent SilentOT [Boy+19].

Our results in Table 4 show that our protocols outperform [PSTY19] in
both high and low-bandwidth settings. Since the main communication bottle-
neck is the GMW phase, the SilentOT variant works particularly well in the
low-communication setting. In the LAN, our IKNP variant still outperforms
[PSTY19] (who also used IKNP) in terms of running time, which showcases the
efficiency of our novel OPPRF construction.

8 Conclusion

In this paper, we have shown how to combine two cryptographic primitives,
namely Vector-OLE and linear system solvers like (Xo)PaXoS, into highly effi-
cient O(P)PRF and PSI protocols. Our final protocols outperform previous work
in terms of communication, and as a consequence, in terms of running time in
bandwidth-constrained environments. From a theoretical perspective, we provide
a more efficient reduction from OPRF to PSI.

As discussed in Section 2, there are many ways to implement the linear
system solvers we require for VOLE-PSI. One approach, based on polynomial
interpolation, promises to result in the lowest communication complexity, but
as previous work has shown, this comes at the cost of expensive computation.
The approach presented in this paper, using PaXoS, allows for fast computation,
but incurs a higher communication blowup of asymptotically 2.4κn. It remains
an open question whether there are more efficient (i.e., smaller) data structures
that also allow for linear encoding and decoding. Should these become available,
they will directly improve the communication complexity of our protocols.

References

[App+17] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen,
and Lior Zichron. “Secure Arithmetic Computation with Constant
Computational Overhead”. In: CRYPTO (1). Vol. 10401. Lecture
Notes in Computer Science. Springer, 2017, pp. 223–254.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai.
“Compressing Vector OLE”. In: ACM Conference on Computer
and Communications Security. ACM, 2018, pp. 896–912.

[BM74] Allan Borodin and R. Moenck. “Fast Modular Transforms”. In: J.
Comput. Syst. Sci. 8.3 (1974), pp. 366–386.

[Boy+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, Peter Rindal, and Peter Scholl. “Efficient Two-Round OT
Extension and Silent Non-Interactive Secure Computation”. In:
ACM Conference on Computer and Communications Security.
ACM, 2019, pp. 291–308.

[Bud+20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho
Sengupta, Erik Taubeneck, and Vlad Vlaskin. “Private Matching
for Compute”. In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 599.

[CKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. “Linear-
Complexity Private Set Intersection Protocols Secure in Malicious
Model”. In: ASIACRYPT. Vol. 6477. Lecture Notes in Computer
Science. Springer, 2010, pp. 213–231.

[CM20] Melissa Chase and Peihan Miao. “Private Set Intersection in the
Internet Setting from Lightweight Oblivious PRF”. In: CRYPTO
(3). Vol. 12172. Lecture Notes in Computer Science. Springer,
2020, pp. 34–63.

[CO18] Michele Ciampi and Claudio Orlandi. “Combining Private Set-
Intersection with Secure Two-Party Computation”. In: SCN.
Vol. 11035. Lecture Notes in Computer Science. Springer, 2018,
pp. 464–482.

[CT10] Emiliano De Cristofaro and Gene Tsudik. “Practical Private Set
Intersection Protocols with Linear Complexity”. In: Financial
Cryptography. Vol. 6052. Lecture Notes in Computer Science.
Springer, 2010, pp. 143–159.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. “When private set
intersection meets big data: an efficient and scalable protocol”.
In: ACM Conference on Computer and Communications Security.
ACM, 2013, pp. 789–800.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. “PIR-
PSI: Scaling Private Contact Discovery”. In: Proc. Priv. Enhanc-
ing Technol. 2018.4 (2018), pp. 159–178.

[Gil99] Niv Gilboa. “Two Party RSA Key Generation”. In: CRYPTO.
Vol. 1666. Lecture Notes in Computer Science. Springer, 1999,
pp. 116–129.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. “Private Set Inter-
section: Are Garbled Circuits Better than Custom Protocols?” In:
NDSS. The Internet Society, 2012.

[HGS] Bert Hubert, Jacco Geul, and Simon Séhier. wondershaper: Com-
mand-line utility for limiting an adapter’s bandwidth. url: https:
//github.com/magnific0/wondershaper.

https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper

[Igr] igraph: Library for the analysis of networks. url: https : / /

github.com/igraph/igraph.
[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Ex-

tending Oblivious Transfers Efficiently”. In: CRYPTO. Vol. 2729.
Lecture Notes in Computer Science. Springer, 2003, pp. 145–161.

[Ion+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel,
Shobhit Saxena, Karn Seth, Mariana Raykova, David Shana-
han, and Moti Yung. “On Deploying Secure Computing: Private
Intersection-Sum-with-Cardinality”. In: EuroS&P. IEEE, 2020,
pp. 370–389.

[Kal+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias
Senker, and Christian Weinert. “Mobile Private Contact Discovery
at Scale”. In: USENIX Security Symposium. USENIX Association,
2019, pp. 1447–1464.

[Kis+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny
Pinkas. “Private Set Intersection for Unequal Set Sizes with Mobile
Applications”. In: Proc. Priv. Enhancing Technol. 2017.4 (2017),
pp. 177–197.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni
Trieu. “Efficient Batched Oblivious PRF with Applications to
Private Set Intersection”. In: ACM Conference on Computer and
Communications Security. ACM, 2016, pp. 818–829.

[KS12] Kazuki Kobayashi and Tomoharu Shibuya. “Generalization of Lu’s
linear time encoding algorithm for LDPC codes”. In: ISITA. IEEE,
2012, pp. 16–20.

[LM10] Jin Lu and José M. F. Moura. “Linear time encoding of LDPC
codes”. In: IEEE Trans. Inf. Theory 56.1 (2010), pp. 233–249.

[Mea86] Catherine A. Meadows. “A More Efficient Cryptographic Match-
making Protocol for Use in the Absence of a Continuously Avail-
able Third Party”. In: IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1986, pp. 134–137.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. “Actively Se-
cure 1-out-of-N OT Extension with Application to Private Set In-
tersection”. In: CT-RSA. Vol. 10159. Lecture Notes in Computer
Science. Springer, 2017, pp. 381–396.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
“SpOT-Light: Lightweight Private Set Intersection from Sparse
OT Extension”. In: CRYPTO (3). Vol. 11694. Lecture Notes in
Computer Science. Springer, 2019, pp. 401–431.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. “PSI
from PaXoS: Fast, Malicious Private Set Intersection”. In: EU-
ROCRYPT (2). Vol. 12106. Lecture Notes in Computer Science.
Springer, 2020, pp. 739–767.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
“Phasing: Private Set Intersection Using Permutation-based Hash-

https://github.com/igraph/igraph
https://github.com/igraph/igraph

ing”. In: USENIX Security Symposium. USENIX Association,
2015, pp. 515–530.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and
Avishay Yanai. “Efficient Circuit-Based PSI with Linear Com-
munication”. In: EUROCRYPT (3). Vol. 11478. Lecture Notes in
Computer Science. Springer, 2019, pp. 122–153.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. “Efficient Circuit-Based PSI via Cuckoo Hashing”. In:
EUROCRYPT (3). Vol. 10822. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 125–157.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Faster
Private Set Intersection Based on OT Extension”. In: USENIX
Security Symposium. USENIX Association, 2014, pp. 797–812.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Scalable
Private Set Intersection Based on OT Extension”. In: ACM Trans.
Priv. Secur. 21.2 (2018), 7:1–7:35.

[Rin] Peter Rindal. libOTe: A fast, portable, and easy to use Oblivi-
ous Transfer Library. url: https://github.com/osu-crypto/
libOTe.

[RR17a] Peter Rindal and Mike Rosulek. “Improved Private Set Inter-
section Against Malicious Adversaries”. In: EUROCRYPT (1).
Vol. 10210. Lecture Notes in Computer Science. 2017, pp. 235–
259.

[RR17b] Peter Rindal and Mike Rosulek. “Malicious-Secure Private Set In-
tersection via Dual Execution”. In: ACM Conference on Computer
and Communications Security. ACM, 2017, pp. 1229–1242.

[SGRP19] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and
Benny Pinkas. “Make Some ROOM for the Zeros: Data Sparsity
in Secure Distributed Machine Learning”. In: ACM Conference on
Computer and Communications Security. ACM, 2019, pp. 1335–
1350.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mari-
ana Raykova. “Distributed Vector-OLE: Improved Constructions
and Implementation”. In: ACM Conference on Computer and
Communications Security. ACM, 2019, pp. 1055–1072.

[WYKW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
“Wolverine: Fast, Scalable, and Communication-Efficient Zero-
Knowledge Proofs for Boolean and Arithmetic Circuits”. In: IACR
Cryptol. ePrint Arch. 2020 (2020), p. 925.

[Yan+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. “Ferret: Fast Extension for Correlated OT with Small Com-
munication”. In: CCS. ACM, 2020, pp. 1607–1626.

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

	VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE

