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Abstract. Key-Alternating Feistel (KAF) ciphers are a popular variant
of Feistel ciphers whereby the round functions are defined as x 7→ F(ki⊕x),
where ki are the round keys and F is a public random function. Most
Feistel ciphers, such as DES, indeed have such a structure. However,
the security of this construction has only been studied in the classical
CPA/CCA models. We provide the first security analysis of KAF ciphers
in the key-dependent message (KDM) attack model, where plaintexts can
be related to the private key. This model is motivated by cryptographic
schemes used within application scenarios such as full-disk encryption or
anonymous credential systems.
We show that the four-round KAF cipher, with a single function F

reused across the rounds, provides KDM security for a non-trivial set of
KDM functions. To do so, we develop a generic proof methodology, based
on the H-coefficient technique, that can ease the analysis of other block
ciphers in such strong models of security.

1 Introduction

The notion of key-dependent message (KDM) security for block ciphers was intro-
duced by Black, Rogaway, and Shrimpton [5]. It guarantees strong confidentiality
of communicated ciphertexts, i.e., the infeasibility of learning anything about
plaintexts from the ciphertexts, even if an adversary has access to encryptions
of messages that may depend on the secret key. This model captures practical
settings where possibly adversarial correlations between the secret key and en-
crypted data exist, as is for example the case in anonymous credential and disk
encryption systems; see [2, 5, 13, 18] and references therein.

Typically, block ciphers are based on well-known iterative structures such as
substitution-permutation or Feistel networks. The Feistel network, introduced in
the seminal Luby–Rackoff paper [20], is a construction that builds an (n1 + n2)-
bit pseudorandom permutation family from a smaller random function family
that takes n1-bit inputs and gives n2-bit outputs. The general network is a
repetition of a simple network (the one-round Feistel network as shown in
Figure 1) based on pseudorandom functions, which can be the same or different
for different rounds. Starting from the Luby–Rackoff result that the 3-round Feistel
scheme is a pseudorandom permutation [20], Patarin [24] proved that four rounds
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Fig. 1. Round functions of the Feistel network (left) and the KAF network (right).

is indistinguishable from a strong pseudorandom permutation, where chosen-
ciphertext attacks (CCAs) are considered. Other analyses gave better bounds for
r rounds with r ≥ 4; see for example [22, 26, 23]. Dai and Steinberger [10] proved
that the 8-round Feistel network is indifferentiable from a random permutation,
and Barbosa and Farshim gave an analysis in the related-key attack model [3].

Some Feistel networks are balanced in that the input is split into two equal-
length values L and R and use an n-bit to n-bit round function. For instance, DES
and Simon [4] are balanced. Other designs, notably BEAR, LION [1], MISTY [21]
and RC6 [17], are unbalanced [16]. Usually, the round functions of a practical
block cipher are instantiated with a single public random function and a round
key as shown in Figure 1. This design is known as the key-alternating Feistel
(KAF) cipher [19] and is of interest due to its practical use cases. For instance,
DES is a 16-round balanced KAF where all round functions are identical and
where each round key is derived from a master key.

More formally, a KAF cipher is a Feistel network where the i-th round
function Fi is instantiated by Fi(ki, x) = fi(ki ⊕ x) where the round functions
fi are public. The KAF construction is said to be idealized when the public
functions fi are modelled as random functions. Lampe and Seurin [19] analyzed
the indistinguishability of this construction and proved a security bound up to
2

rn
r+1 for 6r rounds using the coupling technique. In these settings the adversary

has to distinguish two systems (KAF, f1, . . . , fr) and (P, f1, . . . , fr) where fi are
the public random functions and P is a random permutation. They also observed
that two rounds of a KAF can be seen as a singly keyed Even–Mansour cipher.
Guo and Lin [14] proved that the 21-round KAF∗ construction, a variant of
KAF whereby the key ki is xored after the application of the functions fi, is
indifferentiable from a random permutation. A recent work [15] analyzes the
KAF construction with respect to short keys and in a multi-user setting. In the
following, we consider only balanced KAFs.

Key-dependent message (KDM) security. As mentioned above, the KDM
model gives the adversary the possibility of asking for encryptions of functions φ
of the encryption key k (without knowing this key). An encryption scheme is said
to be KDM secure with respect to some set Φ of functions φ mapping keys to
messages, if it is secure against an adversary that can obtain encryption of φ(k)
for any function φ ∈ Φ. KDM security for symmetric encryption was defined by
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Black, Rogaway and Shrimpton [5] and subsequently analyses for both symmetric
and asymmetric constructions were done in this model; see, e.g., [5, 13, 6, 7, 2].

The KDM security of the ideal cipher and the Even–Mansour construction [11]
were recently analyzed by Farshim, Khati, and Vergnaud [13]. They showed that
the ideal cipher is KDM secure with respect to a set Φ of claw-free functions, i.e.,
a set where distinct functions have distinct outputs with high probability when
run on a random input. The Even–Mansour (EM) is an iterated block cipher
based on public n-bit permutation. Farshim et al. proved that the 1-round EM
construction already achieves KDM security under chosen-ciphertext attacks if
the set of functions available to the attacker is both claw-free and offset-free. The
latter property requires that functions do not offset the key by a constant. On
the other hand, the 2-round EM construction achieves KDM security if the set
of functions available to the attacker is only claw-free (as long as two different
permutations are used). To achieve these results, Farshim et al. introduced a so-
called “splitting and forgetting” technique which is general enough to be applied
to other symmetric constructions and/or other security models. Unfortunately,
the analysis of KAF with r ≥ 4 rounds and a unique round function makes this
technique difficult to use.

Contributions. In this paper, we provide the first analysis of the KAF in
the key-dependent message attack model. To do so, we develop a generic proof
strategy, based on the H-coefficient technique of Patarin [24, 25, 28, 9], to analyze
the KDM security of block ciphers. We show how to adapt the H-coefficient
technique to take KDM queries into account. We show that the 4-round KAF,
where the internal functions are reused, is KDM secure for KDM sets Φ that
are claw-free, offset-free, and offset-xor free. The latter property requires that
functions do not offset the xor of two round keys by a constant. Although our
security proofs are somewhat intricate, they still simplify the “splitting and
forgetting” technique of [13].

In order to allow a convenient application of the H-coefficient technique when
proving the KDM security of a block cipher, we introduce an intermediate world
(in addition to the classical ideal world and real world), that we call the perfect
world (pw) which dispenses with the key. We believe this technique (whose
game-based analogues appear in [13]) might be of independent interest and can
potentially be applied in other settings. In particular, using our techniques we give
an arguably simpler proof of the KDM-security of the 1-round EM construction
(which was analyzed in [13]) with respect to claw-free and offset-free functions
(see Appendix A).

Moreover, we show in Section 5 that if the adversary is only constrained to
claw-free functions, it can indeed break the KDM indistinguishability game. We
also give sliding KDM attacks on the basic KAF configuration with a single
internal public function and either a single or two intervening keys, that recovers
the key(s) and is adaptable for any number of rounds.
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2 Preliminaries

Notation. Given an integer n ≥ 1, the set of all functions from {0, 1}n to
{0, 1}n is denoted Func(n). We let N := {0, 1, . . . } denote the set of non-negative
integers, and {0, 1}∗ denote the set of all finite-length bit strings. For two bit
strings X and Y , X|Y (or simply XY when no confusion is possible) denotes their
concatenation and (X,Y ) denotes a uniquely decodable encoding of X and Y .
By x←← S we mean sampling x uniformly from a finite set S. The cardinality of
the set S, i.e., the number of elements in the set S, is denoted |S|. We let L← []
denote initializing a list to empty and L : X denote appending element X to list
L. A table T is a list of pairs (x, y), and we write T (x)← y to mean that the pair
(x, y) is appended to the table. We let Dom(T ) denote the set of values x such that
(x, y) ∈ T for some y and Rng(T ) denote the set of values y such that (x, y) ∈ T
for some x. Given a function F, we let Fi(x) := F◦· · ·◦F(x) denote the i-th iterate
of F. For integers 1 ≤ b ≤ a, we will write (a)b := a(a − 1) · · · (a − b + 1) and
(a)0 := 1 by convention. Note that the probability that a random permutation
P on {0, 1}n satisfies q equations P (xi) = yi for distinct xi’s and distinct yi’s is
exactly 1/(2n)q.

Block ciphers. Given two non-empty subsets K andM of {0, 1}∗, called the
key space and the message space respectively, we let Block(K,M) denote the set
of all functions E : K×M→M such that for each k ∈ K the map E(k, ·) is (1) a
permutation onM and (2) length preserving in the sense that for all p ∈M we
have that |E(k, p)| = |p|. Such an E uniquely defines its inverse D : K×M→M.
A block cipher for key space K and message space M is a triple of efficient
algorithms BC := (K,E,D) such that E ∈ Block(K,M) and its inverse is D. In
more detail, K is the randomized key-generation algorithm which returns a key
k ∈ K. Typically K = {0, 1}k for some k ∈ N called the key length, and K endows
it with the uniform distribution. Algorithm E is the deterministic enciphering
algorithm with signature E : K ×M → M. Typically M = {0, 1}n for some
n ∈ N called the block length. (3) D is the deterministic deciphering algorithm
with signature D : K ×M→M. A block cipher is correct in the sense that for
all k ∈ K and all p ∈M we have that D(k,E(k, p)) = p. A permutation onM is
simply a block cipher with key space K = {ε}. We denote a permutation with P
and its inverse with P−. A permutation can be trivially obtained from a block
cipher (by fixing the key). For a block cipher BC := (K,E,D), notation ABC

denotes oracle access to both E and D for A. We abbreviate Block({0, 1}k, {0, 1}n)
by Block(k, n) and Block({ε}, {0, 1}n) by Perm(n).

Key-alternating Feistel (KAF) ciphers. For a given public function
F ∈ Func(n) and a key k ∈ {0, 1}n, the one-round KAF is the permutation
P ∈ Func(2n) defined via

PF
k(LR) := R|F(k ⊕R)⊕ L .

The values L and R are respectively the left and right n-bit halves of the input.
The left and right n-bit halves of the output are usually denoted S and T
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respectively. Given r public functions F1,F2, . . . ,Fr and r keys k1, k2, . . . , kr, the
r-round KAF is defined as

KAFF1,F2,...,Fr

k1,k2,...,kr
(LR) := PFr

kr
◦ · · · ◦ PF1

k1
(LR) .

In the following, we write keys k1, k2, . . . , kr as a key vector k = (k1, k2, . . . , kr).
When a single public function F is used we write r-round KAF as KAFF

k.

H-coefficient. The H-coefficient technique [28] was introduced by Patarin
and is widely used to prove the security of block cipher constructions such as
the Even–Mansour cipher [8] or Feistel schemes [27]. Consider a deterministic
adversary A that takes no input, interacts with a set of oracles w (informally
called a world or a game), and returns a bit b. We write this interaction as
Aw ⇒ b. Given two worlds w0 and w1, offering the same interfaces, the advantage
of A in distinguishing w0 and w1 is defined as

Advw0,w1(A) := |Pr[Aw0 ⇒ 1]− Pr[Aw1 ⇒ 1]| .

A transcript τ consists of the list of all query/answer pairs respectively made
by the adversary and returned by the oracles. Let XA,w be the random variable
distributed as the transcript resulting from the interaction of A with world w.
A transcript τ is said to be attainable for A and w if this transcript can be the
result of the interaction of A with world w, i.e., when Pr[XA,w = τ ] > 0.

Lemma 2.1 (H-coefficient). Let w0 and w1 be two worlds and A be a distin-
guisher. Let T be the set of attainable transcripts for A in w0, and let Tgood and
Tbad be a partition of T such that T = Tgood ∪ Tbad. Then if for some εbad

Pr[XA,w0 ∈ Tbad] ≤ εbad ,

and for some εgood we have that for all τ ∈ Tgood

Pr[XA,w1 = τ ]
Pr[XA,w0 = τ ] ≥ 1− εgood ,

then Advw0,w1(A) ≤ εgood + εbad.

For a given transcript QF and a function F, we say that F extends QF and
write F ` QF if v = F(u) for all (u, v) ∈ QF.

3 KDM Security and a Generic Lemma

3.1 Definitions

KDM functions. A key-dependent-message (KDM) function for key space K
and message space M is a function φ : K → M computed by a deterministic
and stateless circuit. A KDM set Φ is a set of KDM functions φ on the same key
and message spaces. We let ΦM denote the set of all constant KDM functions,
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i.e., KDM functions φ such that for some x ∈ M and ∀ k ∈ K, φ : k 7→ x. We
denote such functions by φ : k 7→ x and assume that the constant value x can be
read-off from (the description of) φ. We also assume membership in KDM sets
can be efficiently decided. In what follows, even though we work in an idealized
model of computation where all parties have access to some oracle O, we do not
consider KDM functions computed by circuits with O-oracle gates. We start by
defining the following three properties for KDM sets.

Definition 3.1 (Claw-freeness). Let Φ be a KDM set for key space K and
message spaceM. The claw-freeness of Φ is defined as

cf(Φ) := max
φ1 6=φ2∈Φ

Pr[k ←← K : φ1(k) = φ2(k)] .

Definition 3.2 (Offset-freeness). Fix integers n, ` > 0. Let Φ be a KDM set
for key space K = ({0, 1}n)` and message spaceM = {0, 1}n. The offset-freeness
of Φ is defined as

of(Φ) := max
i∈{1,...,`}

φ∈Φ, x∈{0,1}n

Pr[(k1, . . . , k`)←← K : φ(k1, . . . , k`) = ki ⊕ x] .

Definition 3.3 (Offset-xor-freeness). Fix integers n, ` > 0. Let Φ be a KDM
set for key space K = ({0, 1}n)` and message spaceM = {0, 1}n. The offset-xor-
freeness of Φ is defined as

oxf(Φ) := max
i6=j∈{1,...,`}
φ∈Φ, x∈{0,1}n

Pr[(k1, . . . , k`)←← K : φ(k1, . . . , k`) = ki ⊕ kj ⊕ x] .

Example KDM set. One may ask whether or not there are any KDM sets
that satisfy the above three conditions. Suppose K = {0, 1}k. Let Φd be the
sets of all functions mapping (k1, . . . , k`) to P (k1, . . . , k`) where P is a multi-
variate polynomial over GF(2k) of total degree at most d, with ⊕ being field
addition and multiplication defined modulo a fixed irreducible polynomial. We
consider a subset of Φd consisting of all P such that P (k1, . . . , k`) ⊕ ki and
P (k1, . . . , k`)⊕ ki ⊕ kj are non-constant for any distinct i and j. Then a direct
application of the (multi-variate) Schwartz-Zippel lemma [29] shows that this
KDM set satisfies the above three properties, with all advantages upper bounded
by d/2k, where d is the total degree of P . Note that this term is negligible for
total degree up to d = 2k−ω(log k).

KDM security. Consider a block cipher BCO := (K,EO,DO) with key space
K and message spaceM based on some ideal primitive O sampled from some
oracle space OSp. We formalize security under key-dependent message and chosen-
ciphertext attacks (KDM-CCA) as a distinguishing game between two worlds
that we call the real and ideal worlds. Given a KDM set Φ, the adversary A
has access to a KDM encryption oracle KDEnc which takes as input a function
φ ∈ Φ and returns a ciphertext y ∈M, a decryption oracle Dec which takes as
input a ciphertext y ∈M and returns a plaintext x ∈M, and the oracle O. We
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do not allow the adversary to ask for decryption of key-dependent ciphertexts as
we are not aware of any use cases where such an oracle is available. In the real
world, a key k is drawn uniformly at random from K and KDEnc(φ) returns
EO(k, φ(k)) while Dec(y) returns DO(k, y). The ideal world is similar to the real
world except that E(k, ·) and D(k, ·) are replaced by a random permutation P and
its inverse. To exclude trivial attacks, we do not allow decryption of ciphertexts
that were obtained from the encryption oracle and such queries are answered
by ⊥ in both worlds. (Otherwise the key can be recovered by decrypting the
encryption of φ(k) if φ is easily invertible.) The real and ideal world are formally
defined in Figure 2 (ignore the additional world pw for now). The KDM-CCA
advantage of an adversary A against BC with respect to Φ is defined as

Advkdm-cca
BCO (A,Φ) := Adviw,rw(A) .

Without loss of generality we assume throughout the paper that the adversary
does not place repeat queries to its oracles. This is indeed without loss of generality
since all oracles are deterministic and repeat queries can be handled by keeping
track of queries made so far.

3.2 A generic lemma
In order to allow a convenient application of the H-coefficient technique when
proving the KDM security of a block cipher BCO, we introduce an intermediate
world, called the perfect world (pw), defined in Figure 2. Note that this world
does not involve any key. The encryption and decryption oracles lazily sample
two independent random permutations stored respectively in tables Tenc and
Tdec, except that consistency is ensured for constant functions φ ∈ ΦM: when a
decryption query Dec(y) is made with y /∈ Dom(Tdec), a plaintext x is sampled
fromM\ Rng(Tdec) and the world assigns Tdec(y) := x and Tenc(φ) := y, where
φ is the constant function k 7→ x.

The following lemma upper-bounds the distinguishing advantage between
the ideal and the perfect worlds. It does not depend on the block cipher at
hand (neither the ideal nor the perfect world depends on it) nor on the oracle O
(since neither in the ideal nor in the perfect world the encryption and decryption
oracles depend on it). For specific block ciphers, this allows us to focus on the
distinguishing advantage between the perfect and the real worlds, since by the
triangular inequality

Adviw,rw(A) ≤ Adviw,pw(A) + Advpw,rw(A) . (1)

Lemma 3.1. Let Φ be a KDM set for key space K and message spaceM. Let
A be an adversary making at most q queries to KDEnc or Dec. Then

Adviw,pw(A) ≤ q2 · cf(Φ) + q2

|M| − q
.

Proof. We apply the H-coefficient technique with w0 := pw and w1 := iw. Fix
a, without loss of generality, deterministic distinguisher A making at most q
encryption or decryption queries. We assume, without loss of generality, that
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Game rw // real

O←← OSp
k ←← K
L← []

Proc. KDEnc(φ)

if φ /∈ Φ return ⊥
x← φ(k)

L← L : {EO(k, x)}

return EO(k, x)

Proc. Dec(y)

if y ∈ L return ⊥

else return DO(k, y)

Proc. O(x)

return O(x)

Game pw // perfect

O←← OSp
Tenc ← []; Tdec ← []

Proc. KDEnc(φ)

if φ /∈ Φ return ⊥
if φ /∈ Dom(Tenc) then

Tenc(φ)←←M\ Rng(Tenc)
return Tenc(φ)

Proc. Dec(y)

if y ∈ Rng(Tenc) return ⊥
if y /∈ Dom(Tdec) then
x←←M\ Rng(Tdec)
Tdec(y)← x

Tenc(φ : k 7→ x)← y

return Tdec(y)

Proc. O(x)

return O(x)

Game iw // ideal

O←← OSp
k ←← K;L← []
P←← Perm(M)

Proc. KDEnc(φ)

if φ /∈ Φ return ⊥
x← φ(k)
L← L : {P(x)}
return P(x)

Proc. Dec(y)

if y ∈ L return ⊥

else return P−1(y)

Proc. O(x)

return O(x)

Fig. 2. The real world rw (left) and the ideal world iw (right) defining KDM-CCA
security. The intermediate perfect world pw (middle) is used in Lemma 3.1. Here K
denotes a key-generation algorithm.

– the adversary never repeats a query;
– the adversary never queries the constant function φ : k 7→ x to KDEnc if it

has received x as answer to some query Dec(y) before (since in both worlds
such a query would be answered by y); and

– the adversary never queries y to Dec if it has received y as answer to
some query KDEnc(φ) before (since in both worlds such a query would be
answered by ⊥).

We will refer to this as the no-pointless-query assumption.
We record the queries of the adversary to oracles KDEnc or Dec in a list

QBC: it contains all tuples (+, φ, y) such that A queried KDEnc(φ) and received
answer y, and all tuples (−, x, y) such that A queried Dec(y) and received answer
x. The queries of the adversary to oracle O are recorded in a list QO. After the
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adversary has finished querying the oracles, we reveal the key k in case the
adversary interacts with the ideal world, while in the perfect world we reveal a
uniformly random key independent of the oracle answers. Hence, a transcript is
a triple (QBC,QO, k).

Let T be the set of attainable transcripts for A and pw. An attainable
transcript τ = (QBC,QO, k) is said to be bad iff any of the following holds.

(C-1) there exist (+, φ, y) 6= (+, φ′, y′) ∈ QBC such that
(a) φ(k) = φ′(k) or
(b) y = y′;

(C-2) there exist (+, φ, y), (−, x, y′) ∈ QBC such that
(a) φ(k) = x or
(b) y = y′;

(C-3) there exist (−x, y) 6= (−, x′, y′) ∈ QBC such that
(a) x = x′ or
(b) y = y′.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad. We first
upper bound the probability of getting a bad transcript in the perfect world.

Claim. Pr[XA,pw ∈ Tbad] ≤ q2 · cf(Φ) + q2/(|M| − q).

Proof. We consider the probability of each condition in turn. Recall that in the
perfect world, the key k is drawn at random independently of the oracle answers.

(C-1) Fix two queries (+, φ, y) 6= (+, φ′, y′) ∈ QBC.
(a) By Definition 3.1, φ(k) = φ′(k) with probability at most cf(Φ) over the

choice of a random key k.
(b) By the no-pointless-queries assumption, φ 6= φ′ and hence necessarily

y 6= y′.
Summing over all possible pairs, (C-1) happens with probability at most
q2/2 · cf(Φ).

(C-2) Fix two queries (+, φ, y), (−, x, y′) ∈ QBC.
(a) If query (+, φ, y) came first, then x is uniformly random in a set of

size at least |M| − q and independent of φ(k). Hence φ(k) = x with
probability at most 1/(|M| − q). If query (−, x, y′) came first, then by
the no-pointless-query assumption, φ 6= (k 7→ x), so that φ(k) = x with
probability at most cf(Φ) (otherwise it would constitute a claw with
the constant function). All in all, φ(k) = x with probability at most
1/(|M| − q) + cf(Φ).

(b) If query (+, φ, y) came first, then by the no-pointless-query assumption
y′ 6= y. If query (−, x, y′) came first, then y is uniformly random in a
set of size at least |M| − q and independent of y′. Hence y = y′ with
probability at most 1/(|M| − q).

Summing over all possible pairs of queries, (C-2) happens with probability at
most q2/2 · (2/(|M| − q) + cf(Φ)).
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(C-3) Fix two queries (−, x, y) 6= (−, x′, y′) ∈ QBC. Then, by the no-pointless-
queries assumption, y 6= y′ and hence x 6= x′, so that condition (C-3) cannot
hold.

The result follows by applying the union bound.

Claim. Fix a good transcript τ = (QBC,QO, k). Then

Pr[XA,iw = τ ]
Pr[XA,pw = τ ] ≥ 1 .

Proof. Let qenc, resp. qdec, denote the number of queries to KDEnc, resp. Dec,
in QBC (with qenc + qdec = q). In the perfect world, queries to KDEnc and Dec
are answered by lazily sampling two independent injections Ienc : [qenc]→M and
Idec : [qdec]→M. This follows from the no-pointless-queries assumption which
implies that for any query KDEnc(φ) we have φ /∈ Dom(Tenc) and for any query
Dec(y) we have y /∈ Dom(Tdec). Hence, letting Qenc and Qdec respectively denote
the set of encryption and decryption queries in QBC and K the key-generation
algorithm we have

Pr[XA,pw = τ ] = Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · Pr
Ienc

[Ienc ` Qenc] · Pr
Idec

[Idec ` Qdec]

= Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · 1
(|M|)qenc · (|M|)qdec

.

We now compute the probability of obtaining a good transcript τ in the
ideal world. Consider the modified transcript Q′BC containing pairs (x, y) ∈M2

constructed from QBC as follows. For each triplet (+, φ, y) ∈ QBC, append
(φ(k), y) to Q′BC and for each (−, x, y) ∈ QBC, append (x, y) to Q′BC. Then, for
any (x, y) 6= (x′, y′) ∈ Q′BC, we have x 6= x′ (as otherwise condition (C-1a),
(C-2a), or (C-3a) would be met) and y 6= y′ (as otherwise condition (C-1b),
(C-2b), or (C-3b) would be met). Hence,

Pr[XA,iw = τ ] = Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · Pr
P←←Perm(M)

[P ` Q′BC]

= Pr
k′←←K

[k′ = k] · Pr
O←←OSp

[O ` QO] · 1
(|M|)q

.

Thus,
Pr[XA,iw = τ ]
Pr[XA,pw = τ ] = (|M|)qenc · (|M|)qdec

(|M|)q
≥ 1 ,

where the inequality follows from qenc + qdec = q.

Lemma 3.1 follows by combining the above two claims with Lemma 2.1.

4 Four-Round KAF

In this section we study the 4-round KAF cipher with a single round function
F : {0, 1}n → {0, 1}n and key k = (k1, k2, k3, k4) ∈ ({0, 1}n)4 where k1 and
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k4 are uniformly random. Our results do not rely on any assumptions on the
distributions of k2 and k3 (which could be, for example, both set to 0). Given a
KDM function φ with range {0, 1}2n, we let φL and φR to respectively denote
the functions that return the n leftmost and the n rightmost bits of φ. Given a
KDM set Φ for message spaceM = {0, 1}2n, we define ΦL := {φL : φ ∈ Φ} and
ΦR := {φR : φ ∈ Φ}.

The theorem below states that the 4-round KAF with the same round function
and uniformly random round keys k1 and k4 is KDM-CCA secure if the set Φ
of key-dependent functions has negligible claw-freeness (cf. Definition 3.1) and
ΦR has negligible offset-freeness and offset-xor-freeness (cf. Definition 3.2 and
Definition 3.3).

Theorem 4.1. Let KAFF
k be the 4-round key-alternating Feistel cipher based on

a single round function F : {0, 1}n → {0, 1}n where the key k = (k1, k2, k3, k4)
is such that k1 and k4 are uniformly random and independent. Let A be an
adversary making at most q ≤ 2n queries to KDEnc or Dec and at most qf
queries to F, which is modeled as a random oracle. Then,

Advkdm-cca
KAFF

k
(A,Φ) ≤ q2 ·

(
2·cf(Φ)+3/2·oxf(ΦR)+22/2n

)
+qqf ·

(
of(ΦR)+7/2n

)
.

Proof. Fix an adversary A attempting to distinguish the real and ideal worlds
defined in Figure 2, where OSp := Func(n) and BC = KAFF. Assume that A
makes at most q ≤ 2n queries to KDEnc or Dec and qf queries to F. By
Equation 1 and Lemma 3.1, we have

Advkdm-cca
KAFF

k
(A,Φ) ≤ q2 · cf(Φ) + q2/(|M| − q) + Advpw,rw(A)

≤ q2 · cf(Φ) + q2/2n + Advpw,rw(A) ,

where we used that |M| = 22n and 1/(22n − q) ≤ 1/2n. Hence, it remains to
upper bound Advpw,rw(A). We prove below that

Advpw,rw(A) ≤ q2 · (cf(Φ) + 3/2 · oxf(ΦR) + 21/2n) + qqf · (of(ΦR) + 7/2n) ,
(2)

from which the result follows.

The remainder of this section is devoted to the proof of Equation 2. Without
loss of generality, we make the same no-pointless-query assumption that we made
in the proof of Lemma 3.1. Our proof will use the H-coefficient technique. A
transcript τ is a tuple (QBC,QF,k), where QBC is the list of all forward queries
(+, φ, ST ), with φ ∈ Φ the query to KDEnc and ST the corresponding answer,
together with all backward queries (−, L′R′, S′T ′) with L′R,S′T ′ ∈ ({0, 1}n)2

and L′R′ the answer of Dec when called on S′T ′. List QF contains queries
(u, v) ∈ ({0, 1}n)2 to the public function F, where v is the answer of the oracle
F when called on input u. The key k is only revealed to the adversary after it
has finished its queries, and is drawn independently of the oracle answers in
the perfect world using the key-generation algorithm K (whose first and fourth
components are uniform but not necessarily its second or third components).
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We first define bad transcripts and upper bound the probability of obtaining
such a transcript in the perfect world. Informally, a transcript is said to be
bad if an unexpected collision occurs in the set of all inputs to the first or the
fourth round functions. Note that the adversary can let some inputs collide with
probability 1, for example by querying Dec(ST ) and Dec(ST ′); bad transcripts
only capture collisions that happen “by chance.” We formalize this next.

Definition 4.1. A transcript τ = (QBC,QF,k) with k = (k1, k2, k3, k4) in the
perfect world is said to be bad iff any of the following holds.

(C-1) there exist (+, φ, ST ) ∈ QBC and (u, v) ∈ QF such that
(a) φR(k)⊕ k1 = u or
(b) S ⊕ k4 = u;

(C-2) there exist (−, LR, ST ) ∈ QBC and (u, v) ∈ QF such that
(a) R⊕ k1 = u or
(b) S ⊕ k4 = u;

(C-3) there exist (+, φ, ST ) 6= (+, φ′, S′T ′) ∈ QBC such that
(a) φ(k) = φ′(k) or
(b) S = S′;

(C-4) there exist (+, φ, ST ), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such that
φR(k)⊕ k1 = S′ ⊕ k4;

(C-5) there exist (−, LR, ST ) 6= (−, L′R′, S′T ′) ∈ QBC such that R = R′;
(C-6) there exist (−, LR, ST ), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct) such

that R⊕ k1 = S′ ⊕ k4;
(C-7) there exist (+, φ, ST ), (−, L′R′, S′T ′) ∈ QBC such that

(a) φ(k) = L′R′ or
(b) ST = S′T ′ or
(c) φR(k)⊕ k1 = S′ ⊕ k4 or
(d) S ⊕ k4 = R′ ⊕ k1.

Let Tbad denote the set of bad transcripts and let Tgood := T \ Tbad.

Lemma 4.1. Let A be a distinguisher making at most q ≤ 2n queries to KDEnc
or Dec and qf queries to F. With Tbad defined as above,

Pr[XA,pw ∈ Tbad] ≤ q2 · (cf(Φ) + 3/2 · oxf(ΦR) + 6/2n) + qqf · (of(ΦR) + 3/2n) .

Proof. We compute the probability of each condition in turn. Recall that in pw,
the key k = (k1, k2, k3, k4) is drawn at random and independently of all oracle
answers at the end.

(C-1) Fix an encryption query (+, φ, ST ) ∈ QBC and a query to the public function
(u, v) ∈ QF.
(a) By Definition 3.2, φR(k) = k1 ⊕ u with probability at most of(ΦR);
(b) Since k4 is uniformly random and independent of the query transcript,

k4 = S ⊕ u with probability at most 1/2n.
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Summing over all possible pairs, condition (C-1) happens with probability at
most qqf(of(ΦR) + 1/2n).

(C-2) Fix a decryption query (−, LR, ST ) ∈ QBC and a query to F (u, v) ∈ QF.
(a) Since k1 is uniformly random and independent of the query transcript,

R⊕ u = k1 with probability at most 1/2n.
(b) Since k4 is uniformly random and independent of the query transcript,

S ⊕ u = k4 with probability at most 1/2n.
Summing over all possible pairs, condition (C-2) happens with probability at
most 2qqf/2n.

(C-3) Fix two queries (+, φ, ST ) 6= (+, φ′, S′T ′) ∈ QBC. Since the adversary never
repeats queries, we have φ 6= φ′.
(a) By Definition 3.1, φ(k) = φ′(k) with probability at most cf(Φ) over the

choice of a random k.
(b) Since φ 6= φ′, the output S′T ′ is sampled uniformly at random in a set

of size at least 22n − q and independently of ST . Thus S = S′ with
probability at most 2n/(22n − q) ≤ 1/(2n − 1) ≤ 2/2n.

Summing over all possible distinct pairs, condition (C-3) happens with
probability at most q2/2 · (cf(Φ) + 4/2n).

(C-4) Fix two queries (+, φ, ST ), (+, φ′, S′T ′) ∈ QBC. By Definition 3.3, φR(k) =
S′⊕k1⊕k4 with probability at most oxf(ΦR) over the choice of k. Summing
over all possible pairs, condition (C-4) happens with probability at most
q2 · oxf(ΦR).

(C-5) Fix two decryption queries (−, LR, ST ) 6= (−, L′R′, S′T ′) ∈ QBC. The value
L′R′ is sampled uniformly at random in a set of size at least 22n − q and
independently of LR. Thus, R = R′ with probability at most 2n/(22n − q) ≤
1/(2n − 1) ≤ 2/2n. Summing over all possible distinct pairs, condition (C-5)
happens with probability at most q2/2n.

(C-6) Fix two decryption queries (−, LR, ST ), (−, L′R′, S′T ′) ∈ QBC. As k1 and
k4 are randomly sampled, R⊕ S′ = k1 ⊕ k4 with probability at most 1/2n.
Summing over all possible distinct pairs, condition (C-6) happens with
probability at most q2/2n.

(C-7) Fix an encryption query (+, φ, ST ) ∈ QBC and a decryption query
(−, L′R′, S′T ′) ∈ QBC.
(a) By Definition 3.1, φ(k) = L′R′ with probability at most cf(Φ).
(b) We distinguish two cases. If the encryption query occurs before the

decryption query, then necessarily ST 6= S′T ′ due to the no-pointless-
query assumption (the adversary cannot ask Dec to decrypt a value that
was received as an answer to the KDEnc oracle). If the decryption query
occurs before the encryption query, then ST is uniformly random in a
set of size at least 22n − q and independent of S′T ′. Hence, the condition
occurs with probability at most 1/(22n − q) ≤ 1/2n.

(c) By Definition 3.3, φR(k) = S′⊕k1⊕k4 with probability at most oxf(ΦR)
over the choice of k.
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(d) Since k1 and k4 are drawn uniformly at random and independently of the
query transcript, the probability that k1 ⊕ k4 = S ⊕R′ is at most 1/2n.

Summing over all possible distinct pairs, condition (C-7) happens with
probability at most q2/2 · (cf(Φ) + oxf(ΦR) + 4/2n).

The result follows by applying the union bound over conditions (C-1) to
(C-7).

We now lower bound Pr[XA,rw = τ ]/Pr[XA,pw = τ ] for a good transcript
τ . To this end, we introduce the following definition of a bad function F with
respect to a good τ . Informally, this definition states that there is a collision
among the set of all inputs to the second or third-round functions (conditions
(C′-3), (C′-5), and (C′-7)) or among these and direct, first-round, or second-round
queries (conditions (C′-1) and (C′-2)).

Definition 4.2. Fix a good transcript τ = (QBC,QF,k). Let

Dom(F) := {u ∈ {0, 1}n : ∃(u, v) ∈ QF}, and

Dom′(F) :=

u ∈ {0, 1}n :

∃(+, φ, ST ) ∈ QBC, u = φR(k)⊕ k1 ∨
∃(+, φ, ST ) ∈ QBC, u = S ⊕ k4 ∨
∃(−, LR, ST ) ∈ QBC, u = R⊕ k1 ∨
∃(−, LR, ST ) ∈ QBC, u = S ⊕ k4

 .

A function F is said to be bad with respect to τ , denoted Bad(F, τ), iff any
of the following holds.

(C′-1) there exists (+, φ, ST ) ∈ QBC such that
(a) φL(k)⊕ F(φR(k)⊕ k1)⊕ k2 ∈ Dom(F) ∪ Dom′(F) or
(b) T ⊕ F(S ⊕ k4)⊕ k3 ∈ Dom(F) ∪ Dom′(F);

(C′-2) there exists (−, LR, ST ) ∈ QBC such that
(a) L⊕ F(R⊕ k1)⊕ k2 ∈ Dom(F) ∪ Dom′(F) or
(b) T ⊕ F(S ⊕ k4)⊕ k3 ∈ Dom(F) ∪ Dom′(F);

(C′-3) there exist (+, φ, ST ) 6= (+, φ′, S′T ′) ∈ QBC such that
(a) φL(k)⊕ F(φR(k)⊕ k1) = φ′L(k)⊕ F(φ′R(k)⊕ k1) or
(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4);

(C′-4) there exist (+, φ, ST ), (+, φ′, S′T ′) ∈ QBC (not necessarily distinct) such that
φL(k)⊕ F(φR(k)⊕ k1)⊕ k2 = T ′ ⊕ F(S′ ⊕ k4)⊕ k3;

(C′-5) there exist (−, LR, ST ) 6= (−, L′R′, S′T ′) ∈ QBC such that
(a) L⊕ F(R⊕ k1) = L′ ⊕ F(R′ ⊕ k1) or
(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4);

(C′-6) there exist (−, LR, ST ), (−, L′R′, S′T ′) ∈ QBC (not necessarily distinct) such
that L⊕ F(R⊕ k1)⊕ k2 = T ′ ⊕ F(S′ ⊕ k4)⊕ k3;

(C′-7) there exist (+, φ, ST ), (−, L′R′, S′T ′) ∈ QBC such that
(a) φL(k)⊕ F(φR(k)⊕ k1) = L′ ⊕ F(R′ ⊕ k1) or
(b) T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4) or
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(c) φL(k)⊕ F(φR(k)⊕ k1)⊕ k2 = T ′ ⊕ F(S′ ⊕ k4)⊕ k3 or
(d) T ⊕ F(S ⊕ k4)⊕ k3 = L′ ⊕ F(R′ ⊕ k1)⊕ k2.

Lemma 4.2. Fix a good transcript τ = (QBC,QF,k). Then

Pr
F←←Func(n)

[Bad(F, τ) |F ` QF] ≤ 4 · qqf/2n + 14 · q2/2n .

Proof. First, note that |Dom(F)| = qf and |Dom′(F)| ≤ 2q. We now consider each
condition in turn.4

(C′-1) Fix an encryption query (+, φ, ST ) ∈ QBC.
(a) By ¬(C-1a), φR(k) ⊕ k1 is a fresh input for the function F and hence

F(φR(k)⊕ k1) is uniformly random. Thus, φL(k)⊕ F(φR(k)⊕ k1)⊕ k2 ∈
Dom(F) ∪ Dom′(F) with probability at most (qf + 2q)/2n.

(b) By ¬(C-1b), S⊕k4 is a fresh input for the function F and hence F(S⊕k4)
is uniformly random. Thus, T ⊕F(S⊕ k4)⊕ k3 ∈ Dom(F)∪Dom′(F) with
probability at most (qf + 2q)/2n.

Summing over all encryption queries, condition (C′-1) happens with proba-
bility at most 2q(qf + 2q)/2n.

(C′-2) Fix a decryption query (−, LR, ST ) ∈ QBC.
(a) By ¬(C-2a), R⊕k1 is a fresh input for the function F and hence F(R⊕k1)

is uniformly random. Thus, L⊕F(R⊕ k1)⊕ k2 ∈ Dom(F)∪Dom′(F) with
probability at most (qf + 2q)/2n.

(b) By ¬(C-2b), S ⊕ k4 is a fresh value for the function F and hence T ⊕
F(S⊕k4)⊕k3 ∈ Dom(F)∪Dom′(F) with probability at most (qf + 2q)/2n.

Summing over all decryption queries, condition (C′-2) happens with proba-
bility at most 2q(qf + 2q)/2n.

(C′-3) Fix (+, φ, ST ) 6= (+, φ′, S′T ′) ∈ QBC.
(a) By ¬(C-1a), we have φR(k) ⊕ k1 /∈ Dom(F) and φ′R(k) ⊕ k1 /∈ Dom(F).

Moreover, by ¬(C-3a), we have that φ(k) 6= φ′(k). We distinguish two
cases. If φR(k) 6= φ′R(k), then F(φR(k) ⊕ k1) and F(φ′R(k) ⊕ k1) are
uniformly random and independent, so that φL(k) ⊕ F(φR(k) ⊕ k1) =
φ′L(k) ⊕ F(φ′R(k) ⊕ k1) with probability 1/2n. If φR(k) = φ′R(k), then
necessarily φL(k) 6= φ′L(k), so that the condition cannot hold. Hence,
this condition holds with probability at most 1/2n.

(b) By ¬(C-1b), S ⊕ k4 /∈ Dom(F) and S′ ⊕ k4 /∈ Dom(F); moreover, by
¬(C-3b), S 6= S′, so that F(S ⊕ k4) and F(S′⊕ k4) are uniformly random
and independent; hence, T ⊕F(S⊕k4) = T ′⊕F(S′⊕k4) with probability
at most 1/2n.

Summing over all possible pairs of distinct encryption queries, condition
(C′-3) happens with probability at most q2/2n.

4 In what follows, we will argue using the fact that the transcript is good by referring
to which specific condition defining a bad transcript would hold, saying e.g., “By
¬(C-ix), . . . ”.
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(C′-4) Fix two (possibly equal) encryption queries (+, φ, ST ), (+, φ′, S′T ′) ∈ QBC.
By ¬(C-1a), φR(k) ⊕ k1 /∈ Dom(F) and by ¬(C-1b), S′ ⊕ k4 /∈ Dom(F);
moreover, by ¬(C-4), we have φR(k)⊕ k1 6= S′ ⊕ k4, so that F(φR(k)⊕ k1)
and F(S′ ⊕ k4) are uniformly random and independent; hence, φL(k) ⊕
F(φR(k) ⊕ k1) ⊕ k2 = T ′ ⊕ F(S′ ⊕ k4) ⊕ k3 with probability at most 1/2n.
Summing over all possible pairs, condition (C′-4) happens with probability
at most q2/2n.

(C′-5) Fix two decryption queries (−, LR, ST ) 6= (−, L′R′, S′T ′) ∈ QBC.
(a) By ¬(C-2a), R ⊕ k1 /∈ Dom(F) and R′ ⊕ k1 /∈ Dom(F); moreover, by
¬(C-5), R 6= R′ so that F(R⊕ k1) and F(R′ ⊕ k1) are uniformly random
and independent. Hence, L⊕F(R⊕k1) = L′⊕F(R′⊕k1) with probability
at most 1/2n.

(b) By ¬(C-2b), S⊕k4 /∈ Dom(F) and S′⊕k4 /∈ Dom(F). We distinguish two
cases. If S 6= S′ then F(S⊕ k4) and F(S′⊕ k4) are uniformly random and
independent and hence T ⊕ F(S ⊕ k4) = T ′ ⊕ F(S′ ⊕ k4) with probability
at most 1/2n. If S = S′ then necessarily T 6= T ′ since the adversary does
not repeat queries and hence the condition cannot hold. In all cases, the
conditions hold with probability at most 1/2n.

By summing over all possible pairs of distinct decryption queries, condition
(C′-5) happens with probability at most q2/2n.

(C′-6) Fix two (possibly equal) decryption queries (−, LR, ST ), (−, L′R′, S′T ′) ∈
QBC. By ¬(C-2a), R ⊕ k1 /∈ Dom(F) and by ¬(C-2b), S′ ⊕ k4 /∈ Dom(F);
moreover, by ¬(C-6), R ⊕ k1 6= S′ ⊕ k4 so that F(R ⊕ k1) and F(S′ ⊕ k4)
are uniformly random and independent; hence, L⊕ F(R⊕ k1)⊕ k2 = T ′ ⊕
F(S′ ⊕ k4) ⊕ k3 with probability at most 1/2n. Summing over all possible
pairs, condition (C′-6) happens with probability at most q2/2n.

(C′-7) Fix an encryption query (+, φ, ST ) ∈ QBC and a decryption query
(−, L′R′, S′T ′) ∈ QBC. By respectively ¬(C-1a), ¬(C-1b), ¬(C-2a), and
¬(C-2b), φR(k)⊕ k1, S ⊕ k4, R′ ⊕ k1, and S′ ⊕ k4 are all fresh input values
to F.
(a) By ¬(C-7a), φ(k) 6= L′R′. We distinguish two cases. If φR(k) 6= R′, then

F(φR(k) ⊕ k1) and F(R′ ⊕ k1) are uniformly random and independent
and thus φL(k)⊕ F(φR(k)⊕ k1) = L′ ⊕ F(R′ ⊕ k1) with probability at
most 1/2n. If φR(k) = R′, then necessarily φL(k) 6= L′ and hence the
condition cannot hold. In all cases, the condition holds with probability
at most 1/2n.

(b) By ¬(C-7b), ST 6= S′T ′. If S 6= S′, then F(S ⊕ k4) and F(S′ ⊕ k4)
are uniformly random and independent and hence T ⊕ F(S ⊕ k4) =
T ′⊕F(S′⊕ k4) with probability at most 1/2n. If S = S′, then necessarily
T 6= T ′ and the condition cannot hold. In all cases, the condition holds
with probability at most 1/2n.

(c) By ¬(C-7c), φR(k)⊕k1 6= S′⊕k4 so that F(φR(k)⊕k1) and F(S′⊕k4) are
uniformly random and independent and thus φL(k)⊕F(φR(k)⊕k1)⊕k2 =
T ′ ⊕ F(S′ ⊕ k4)⊕ k3 with probability at most 1/2n.
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(d) By ¬(C-7d), S⊕k4 6= R′⊕k1 so that F(S⊕k4) and F(R′⊕k1) are uniformly
random and independent and thus T⊕F(S⊕k4)⊕k3 = L′⊕F(R′⊕k1)⊕k2
with probability at most 1/2n.

By summing over all possible pairs, condition (C′-7) happens with probability
at most 2q2/2n.

The result follows by applying the union bound over all conditions.

Lemma 4.3. Fix a good transcript τ = (QBC,QF,k). Then

Pr
F←←Func(n)

[KAFF
k ` QBC |F ` QF ∧ ¬Bad(F, τ)] = 1

(2n)2q .

Proof. Let qenc and qdec respectively denote the number of queries to KDEnc
and Dec in QBC (with qenc + qdec = q). Using an arbitrary ordering, let

QBC =
[
(+, φ1, S1T1), . . . , (+, φqenc , SqencTqenc),

(−, Lqenc+1Rqenc+1, Sqenc+1Tqenc+1), . . . , (−, LqRq, SqTq)
]
.

For a given function F, let wi and zi be the i-th input to F in the second and
third rounds respectively, i.e.,

wi = φi,L(k)⊕ F(φi,R(k)⊕ k1)⊕ k2 for 1 ≤ i ≤ qenc

= Li ⊕ F(Ri ⊕ k1)⊕ k2 for qenc + 1 ≤ i ≤ q
zi = Ti ⊕ F(Si ⊕ k4)⊕ k3 for 1 ≤ i ≤ q .

Then event KAFF
k ` QBC is equivalent to{

F(wi) = φi,R(k)⊕ Ti ⊕ F(Si ⊕ k4)
F(zi) = Si ⊕ φi,L(k)⊕ F(φi,R(k)⊕ k1) for 1 ≤ i ≤ qenc (3){
F(wi) = Ri ⊕ Ti ⊕ F(Si ⊕ k4)
F(zi) = Si ⊕ Li ⊕ F(Ri ⊕ k1) for qenc + 1 ≤ i ≤ q . (4)

Conditioned on event ¬Bad(F, τ), we have that w1, . . . , wq, z1, . . . , zq are 2q
distinct values as otherwise one of the conditions (C′-3)–(C′-7) would be fulfilled.
Moreover, all these 2q values are distinct from values in Dom(F) ∪ Dom′(F), as
otherwise condition (C′-1) or (C′-2) would be fulfilled. This implies that, even
conditioned on F ` QF, the 2q random values F(w1), . . . ,F(wq),F(z1), . . . ,F(zq)
are uniform and independent of F(φi,R(k)⊕ k1) for 1 ≤ i ≤ qenc, F(Ri ⊕ k1) for
qenc + 1 ≤ i ≤ q, and F(Si ⊕ k4) for 1 ≤ i ≤ q. Hence, Equations (3) and (4) hold
with probability (1/2n)2q.

Lemma 4.4. Fix a good transcript τ = (QBC,QF,k). Then,

Pr[XA,rw = τ ]
Pr[XA,pw = τ ] ≥ 1− 4 · qqf/2n − 15 · q2/2n .
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Proof. Let τ = (QBC,QF,k) with k = (k1, k2, k3, k4) be a good transcript, and
let qenc, resp. qdec, denote the number of queries to KDEnc, resp. Dec, in QBC,
with qenc + qdec = q.

Exactly as in the proof of Lemma 3.1, one can show that

Pr[XA,pw = τ ] = Pr
k′←←K

[k′ = k] · 1
(2n)qf

· 1
(22n)qenc

· 1
(22n)qdec

. (5)

where K is the key-generation algorithm.
We now lower bound the probability that XA,rw = τ .

Pr[XA,rw = τ ] (6)
= Pr

k′←←K
[k′ = k] · Pr

F←←Func(n)
[KAFF

k ` QBC ∧ F ` QF]

= Pr
k′←←K

[k′ = k] · Pr
F←←Func(n)

[F ` QF] · Pr
F←←Func(n)

[KAFF
k ` QBC |F ` QF]

= Pr
k′←←K

[k′ = k] · 1
(2n)qf

· Pr
F←←Func(n)

[KAFF
k ` QBC |F ` QF]

= Pr
k′←←K

[k′ = k] · 1
(2n)qf

· Pr
F←←Func(n)

[KAFF
k ` QBC |F ` QF ∧ ¬Bad(F, τ)]

· (1− Pr
F←←Func(n)

[Bad(F, τ) |F ` QF]) . (7)

Combining Equation 7 and Equation 5 we get

Pr[XA,rw = τ ]
Pr[XA,pw = τ ] = (22n)qenc · (22n)qdec · Pr[KAFF

k ` QBC |F ` QF ∧ ¬Bad(F, τ)]

· (1− Pr[Bad(F, τ) |F ` QF]) ,

where all probabilities are over F←← Func(n). Using Lemma 4.3 and Lemma 4.2,
we obtain

Pr[XA,rw = τ ]
Pr[XA,pw = τ ] ≥

(22n)qenc · (22n)qdec

(2n)2q ·
(

1− 4qqf

2n −
14q2

2n

)
(8)

=
(

1− 4qqf

2n −
14q2

2n

)
·
qenc−1∏
i=0

(
1− i

22n

)
·
qdec−1∏
i=0

(
1− i

22n

)
(9)

≥
(

1− 4qqf

2n −
14q2

2n

)
·
(

1− q2
enc

2 · 22n

)
·
(

1− q2
dec

2 · 22n

)
(10)

≥ 1− 4qqf

2n −
15q2

2n . (11)

Combining Lemma 2.1 with Lemma 4.1 and Lemma 4.4, we finally obtain
Equation 2, which concludes the proof of Theorem 4.1.
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5 Attacks

5.1 Necessity of offset-freeness

We start by showing that the condition that ΦR is offset-free is necessary for
the KDM-CPA security of 4-round KAF (with the same round function F and
independent keys k = (k1, k2, k3, k4)).5 This attack takes advantage of a collision
at the inputs to the third-round F within two encryption queries:

– Adversary A chooses two distinct values x and x′ and obtains F(x), F(x′),
F2(x) and F2(x′) and builds the values

∆L := F2(x)⊕ x,∆R := F(x), ∆′L := F2(x′)⊕ x′, ∆′R := F(x′) .

– A then calls the KDEnc oracle twice on inputs φ = (φL, φR) and φ′ =
(φ′L, φ′R) where

φL(k) := k2 ⊕∆L and φR(k) := k1 ⊕∆R ,

φ′L(k) := k2 ⊕∆′L and φ′R(k) := k1 ⊕∆′R .

The adversary receives ST and S′T ′ as the respective answers. Note that any
set ΦR containing both φR and φ′R is not offset-free.

– A returns 1 iff S ⊕ S′ = x⊕ x′.

The adversary returns 1 with probability 1 in the real world whereas it returns 1
with probability 1/2n in the ideal world. To see the former, note that the input
k2 ⊕ F2(x)⊕ x|k1 ⊕ F(x) is processed though the first three rounds as follows:

k2 ⊕ F2(x)⊕ x|k1 ⊕ F(x)
↓

k1 ⊕ F(x)|x⊕ k2

↓
x⊕ k2|k1

↓
k1|x⊕ k2 ⊕ F(k1 ⊕ k3).

Thus the left half of the output is x⊕ k2 ⊕ F(k1 ⊕ k3). Hence the xor of the left
halves of two encryptions with constants x and x′ is x⊕ x′. Note that this attack
triggers a collision in the third round function.

5 Note that for a set Φ, if ΦR is offset-free then so is Φ, but not necessary the other
way round.
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Fig. 3. Backwards construction of inputs leading to a particular output.
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Fig. 4. Sliding attack on 4-round KAF with reuse of keys and round functions.
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5.2 Sliding attacks

We now analyze the most simple KAF configuration whereby all round functions
and keys are identical. This construction is already known to be insecure in the
CPA model for any number of rounds: using two encryption queries we have
KAF(LR) = ST and KAF(TS) = LR, which is unlikely for the ideal cipher. In
the KDM model, however, we are able to give a stronger key-recovery attack
using a single query. The adversary chooses an arbitrary value ∆ ∈ {0, 1}n and
calls KDEnc on function φ, where

φR(k) := k ⊕ F(∆)⊕ F
(
F2(∆)⊕∆

)
φL(k) := k ⊕ F2(∆)⊕∆⊕ F

(
F(∆)⊕ F(F2(∆)⊕∆)

)
.

It receives a value ST as the answer and returns T as its guess for the k. This
attack is depicted in Figure 4.

This attack can be generalized for any number of rounds. Instead of giving
a direct expression for any number of rounds r (which we believe would be
somewhat hard to read) we give a recursive definition based on Figure 4. The idea
is that we arrange an input Lr|Rr to the r-round KAF so that its output S|T is
L0|R0 = k⊕∆|k. To this end, following the decryption circuit (see Figure 3), for
i > 0 we define

Li+1 | Ri+1 := F(Li ⊕ k)⊕Ri | Li .

Observe that Lr|Rr corresponds to the decryption of L0|R0 and hence an encryp-
tion of Lr|Rr will result in L0|R0. We also let L∗0 | R∗0 := ∆ | 0n and similarly
define

L∗i+1 | R∗i+1 := F(L∗i )⊕R∗i | L∗i .

We claim that for any i ≥ 0,

Li | Ri = L∗i ⊕ k | R∗i ⊕ k .

Now since L∗i+1 | R∗i+1 is independent of k, we can define two maps φL(k) :=
L∗r ⊕ k and φR(k) := R∗r ⊕ k that offset the key by constants. Next we query
KDEnc on (φL, φR), which corresponds to encrypting Lr|Rr, the result of which
will be L0|R0, and from which the key k can be read off.

We now prove the claim inductively. The claim trivially holds for i = 0.
Suppose now that the claim holds for i. We show that it holds for i+ 1:

Li+1 | Ri+1 = F(Li ⊕ k)⊕Ri | Li
= F(L∗i ⊕ k ⊕ k)⊕R∗i ⊕ k | L∗i ⊕ k
= F(L∗i )⊕R∗i ⊕ k | L∗i ⊕ k
= L∗i+1 ⊕ k | R∗i+1 ⊕ k .

In the above, the first equality is by the definition of Li+1 | Ri+1, the second by
the induction hypothesis, and the last by the definition of L∗i+1 | R∗i+1.

The attack generalizes further to r-round KAF where two keys k1 and k0
are alternatively used in odd and even-numbered rounds. We define L0 :=
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kr mod 2 ⊕∆,R0 := kr+1 mod 2, L
∗
0 := ∆, and R∗0 := 0n . Following the decryption

circuit we set

Li+1 | Ri+1 := F(Li ⊕ ki+r mod 2)⊕Ri | Li, and
L∗i+1 | R∗i+1 := F(L∗i )⊕R∗i | L∗i .

Note, once again, that L∗i+1 | R∗i+1 is independent of the key and the sequence
can be computed via access to F. We prove inductively that

Li | Ri = L∗i ⊕ ki+r mod 2 | R∗i ⊕ ki+r+1 mod 2 .

This is trivial when i = 0. Furthermore,

Li+1 | Ri+1 = F(Li ⊕ ki+r mod 2)⊕Ri | Li
= F(L∗i ⊕ ki+r mod 2 ⊕ ki+r mod 2)⊕R∗i ⊕ ki+r+1 mod 2 | L∗i ⊕ ki+r mod 2

= F(L∗i )⊕R∗i ⊕ ki+r+1 mod 2 | L∗i ⊕ ki+r mod 2

= L∗i+1 ⊕ k(i+1)+r mod 2 | R∗i+1 ⊕ k(i+1)+r+1 mod 2 .

Hence keys k1 and k0 can be extracted by querying KDEnc(φL, φR), where
φL(k) := L∗r ⊕ k0 and φR(k) := R∗r ⊕ k1 as the response will be L0|R0 =
kr mod 2 ⊕∆|kr+1 mod 2.

6 Discussion

We developed a generic proof strategy, based on the H-coefficient technique to
analyze the KDM security of block ciphers. In Appendix A, we show that our
technique can be applied in other settings and we revisit the KDM security of
the basic Even–Mansour cipher with only a single round [13, Section 6.1]. We
obtain another (arguably simpler) proof of the KDM security of the 1-round
EM construction if the set of functions available to the attacker is claw-free and
offset-free.

We studied the KDM-CCA security of the 4-round KAF cipher with a single
round function if the set of key-dependent functions has negligible claw-freeness,
offset-freeness and offset-xor-freeness. An important open problem is to find the
minimal k such that the k-round KAF cipher with a single round function achieves
KDM-CCA security assuming only that the set of key-dependent functions has
(only) negligible claw-freeness. Our attack shows that necessarily k ≥ 5. Our
proof strategy does go through directly for k ∈ {5, 6, 7} since an adversary can
cause a collision in inputs to the first and third round function if it can use offsets
as key-dependent functions. We do not claim that k-round KAF for k ∈ {5, 6, 7}
are KDM-CCA-insecure for some class of claw-free key-dependent functions but
only that our technique cannot disprove it. It seems doable to prove the security
of 8-round KAF in this setting using our technique but the proof would be much
harder along lines we have considered.
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A KDM Security of Even–Mansour via H-Coefficient

Following [13], the r-round Even–Mansour (EM) cipher in a model of computa-
tion with access to r permutations P±1 , . . . ,P±r with domain M = {0, 1}n is a
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block cipher with key space K = {0, 1}(r+1)n and enciphering and deciphering
algorithms

EP1,...,Pr ((k1, . . . , kr+1), p) := Pr(· · ·P2(P1(p⊕ k1)⊕ k2) · · · )⊕ kr+1 ,

DP−1 ,...,P
−
r ((k1, . . . , kr+1), p) := P−1 (· · ·P−r−1(P−r (p⊕ kr+1)⊕ kr) · · · )⊕ k1 .

We revisit the KDM security of the basic Even–Mansour cipher with only a
single round [13, Section 6.1]. We obtain another (arguably simpler) proof of the
KDM security of the 1-round EM construction if the set of functions available to
the attacker is claw-free and offset-free. The same restrictions are made in [13,
Section 6.1].

Theorem A.1. Let Φ be a KDM set that is claw-free and offset-free. Then
EMP

k1,k2
is Φ-KDM-secure. More precisely,

Advkdm-cca
EMP

k1,k2
(A,Φ) ≤ 2q2 · cf(Φ) + qqp · of(Φ) + 3/2 · q2/(2n − 1) + 3qqp · 1/2n ,

where q is the number of queries of A to either KDEnc or Dec and qp is the
number of its queries to P± in either direction.

Proof. By Equation 1 and Lemma 3.1, we have

Advkdm-cca
EMP

k1,k2
(A,Φ) ≤ q2 · cf(Φ) + q2

2n − q + Advpw,rw(A) .

Applying the H-coefficient technique to the perfect and real worlds as well as
Lemma A.1 and Lemma A.2 below gives

Advpw,rw(A) ≤ q2 · cf(Φ) + qqp · of(Φ) + q2/2 · 1/(2n − q) + 3qqp/2n .

Combining the above two inequalities gives the result.

Real vs. Perfect. In the following, we give the analysis that bounds the
advantage of any adversary distinguishing the perfect world pw and the real
world rw. We define the bad transcripts for 1-round Even–Mansour as transcripts
that contain queries where non-trivial/unexpected collisions exist.

Definition A.1. A transcript τ = (QEM, qp,k) with k = (k1, k2) is said to be
bad iff any of the following conditions holds.

(C-1) there exist (+, φ, y) 6= (+, φ′, y′) ∈ QEM such that
(a) φ(k) = φ′(k) or
(b) y = y′;

(C-2) there exist (+, φ, y) 6= (−, x′, y′) ∈ QEM such that
(a) φ(k) = x′ or
(b) y = y′;

(C-3) there exist (+, φ, y) ∈ QEM and (u, v) ∈ QP such that
(a) φ(k)⊕ k1 = u or
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(b) y ⊕ k2 = v;
(C-4) there exist (−, x, y) ∈ QEM and (u, v) ∈ QP such that

(a) x⊕ k1 = u or
(b) y ⊕ k2 = v.

Lemma A.1. Let OSp := Perm(n) and BC := EMP
k1,k2

. Let A be a distinguisher
making at most q ≤ 2n queries to KDEnc or Dec and qp queries to P± in either
direction. Then with Tbad as defined above,

Pr[XA,pw ∈ Tbad] ≤ q2 · cf(Φ) + q2/2 · 1/(2n − q) + qqp · of(Φ) + 3qqp/2n .

Proof. We analyze the probability of each condition in Definition A.1 in the
perfect world pw where the keys k1 and k2 are sampled at random independently
of the oracle answers.6

(C-1) For two encryption queries in QEM, by Definition 3.1, the probability of
condition (C-1a) is at most cf(Φ). The probability of condition (C-1b) is zero
by the no-pointless-query assumption. Summing over all the possible distinct
pairs, condition (C-1) happens with probability at most q2/2 · cf(Φ).

(C-2) Fix an encryption query (+, φ, y) ∈ QEM and a decryption query (−, x′, y′) ∈
QEM.
(a) Here the function φ is different from the constant function k 7→ x′ as

otherwise there is a repeat/pointless query (+, φ, y) = (−, x′, y′) ∈ QEM.
As the key vector k is sampled uniformly at random after all encryp-
tion/decryption query, the probability that φ(k) = x′ is, by Definition 3.1,
at most cf(Φ).

(b) The decryption query has to come before the encryption query in the
transcript as otherwise the encryption query would be a pointless one.
Thus the value y is sampled in a set of size at least 2n−q independently of
the value y′. Hence the probability that φ(k) = x′ is at most 1/(2n − q).

Summing over all the possible distinct pairs, condition (C-2) happens with
probability at most q2/2 · 1/(2n − q) + q2/2 · cf(Φ).

(C-3) Fix a query to the encryption oracle (+, φ, y) ∈ QEM and a query to the
public permutation (u, v) ∈ QP.
(a) By Definition 3.2, φ(k)⊕ k1 = u with probability at most of(Φ).
(b) As k2 is sampled uniformly at random and independently of all queries,

the collision y ⊕ k2 = v happens with probability at most 1/2n.
Summing over all the possible pairs, condition (C-3) happens with probability
at most qqp · of(Φ) + qqp/2n.

(C-4) Fix a decryption query (−, x, y) ∈ QEM and a public permutation query
(u, v) ∈ QP. The keys k1 and k2 are drawn uniformly and independently at
random at the end. Thus collisions due to (C-4a) and (C-4b) each happen
with probability at most 1/2n. Summing over all possible pairs, condition
(C-4) happens with probability at most 2qqp/2n.

6 We note that the analysis also holds when k1 and k2 are set to a common random
value.

26



The result follows by applying the union bound.

Lemma A.2. Let τ be a good transcript. Then

Pr[XA,rw = τ ]
Pr[XA,pw = τ ] ≥ 1 .

Proof. Let τ = (QEM,QP,k) with k = (k1, k2) be a good transcript, and let qenc
and qdec respectively denote the number of queries to KDEnc and Dec, with
qenc + qdec = q. Recall that one has

Pr
P←←Perm(n)

[XA,pw = τ ] = 1
|K|
· 1

(2n)qenc

· 1
(2n)qdec

· 1
(2n)qp

, (12)

where K := ({0, 1}n)2 denotes the key space of 1-round Even–Mansour.
In the real world, one obtains the transcript (QEM,QP,k) iff P satisfies q+ qp

distinct and “compatible” equations. Thus

Pr
P←←Perm(n)

[XA,rw = τ ] = 1
|K|
· 1

(2n)q+qp

. (13)

Combining Equation 12 and Equation 13 we obtain Lemma A.2.
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