Leakage Resilient Value Comparison With
Application to Message Authentication

Christoph Dobraunig!? and Bart Mennink?3

! Lamarr Security Research, Graz, Austria
2 Graz University of Technology, Graz, Austria
3 Radboud University, Nijmegen, The Netherlands
christoph.dobraunig@lamarr.at
b.mennink@cs.ru.nl

Abstract. Side-channel attacks are a threat to secrets stored on a de-
vice, especially if an adversary has physical access to the device. As an
effect of this, countermeasures against such attacks for cryptographic
algorithms are a well-researched topic. In this work, we deviate from
the study of cryptographic algorithms and instead focus on the side-
channel protection of a much more basic operation, the comparison of a
known attacker-controlled value with a secret one. Comparisons sensitive
to side-channel leakage occur in tag comparisons during the verification
of message authentication codes (MACs) or authenticated encryption,
but are typically omitted in security analyses. Besides, also comparisons
performed as part of fault countermeasures might be sensitive to side-
channel attacks. In this work, we present a formal analysis on comparing
values in a leakage resilient manner by utilizing cryptographic building
blocks that are typically part of an implementation anyway. Our results
indicate that there is no need to invest additional resources into imple-
menting a protected comparison operation itself if a sufficiently protected
implementation of a public cryptographic permutation, or a (tweakable)
block cipher, is already available. We complement our contribution by
applying our findings to the SuKS message authentication code used by
lightweight authenticated encryption scheme ISAP, and to the classical
Hash-then-PRF construction.

Keywords: leakage resilience - value comparison - tag verification

1 Introduction

Side-channel attacks have been introduced to the public in the late 1990s [40,41].
Especially differential power analysis (DPA) [41] turned out to be a very potent
threat to implementations of cryptographic algorithms. A practical and sound
countermeasure against differential power analysis is masking [12,29], and hence,
a lot of research has been conducted in this direction bringing forward a myriad
of different masking schemes [13,14,31,32,37,48,49,53,54,58]. Since the cost of
masking is tied to the cryptographic primitive it protects, many newly designed

cryptographic primitives take protection against DPA into account and have
been designed to reduce the cost of masking [3,10,15,17,22, 28,30, 33,55].

Later, a research direction called leakage resilient cryptography [7,19,23-27,
34,52,57,60] emerged. In principle, leakage resilient cryptography leads to modes
of operation that take side-channel attacks into account and, thus, ease the in-
vestment on side-channel countermeasures on the primitive level (e.g., the pro-
tection of the public cryptographic permutation or block cipher). For instance,
research in this direction lead to modes of operation that protect against (higher-
order) DPA without the need of applying (higher-order) masking [20,21,45,46],
or restrict the use of masking to a fraction of the building blocks [5, 8,35, 51].
However, it is worth noting that leakage resilient modes can only solve part
of the problem. Thus, the protection of primitives against potent and skillful
attackers that can perform simple power analysis or template attacks is still
crucial [39]. Nevertheless, leakage resilient schemes have been implemented on
micro-controllers and practical evaluation shows that protection against side-
channel attacks can be efficiently achieved in practice against a set of realistic
adversaries [59)].

An operation that is part of many cryptographic schemes, but also part of
some fault countermeasures, is the comparison of two values for equality. In cases
where this comparison is made between a value that an attacker should not know
with a known and potentially chosen value, side-channel countermeasures for this
comparison have to be in place.

Alternatively, one can perform the comparison using a cryptographic prim-
itive. During the last years, many authenticated encryption schemes have been
proposed that use a “perfectly” protected (tweakable) block cipher as the last
step before the tag output [5,7,8,35]. The advertised advantage of these schemes
is that in the case of verification, the inverse of the “perfectly” protected (tweak-
able) block cipher can be applied to the candidate tag T'. Then, the comparison
of equality does not have to be done on the tag T directly but rather on an inter-
mediate value. Therefore, the correct value of the tag T is never computed and
cannot leak via side-channel attacks. Hence, the comparison operation itself does
not need any protection against side-channel attacks. An alternative avenue is to
use a public cryptographic permutation as, e.g., suggested in the ISAP v2.0 [20]
specification. This approach was believed to have comparable advantages, with
the added benefit that no key material needs to be protected.

Although various articles on this very topic appeared recently, culminating at
a CRYPTO 2020 article [6], these works typically see the leakage resilient value
comparison as integral part of a scheme or abstract the actual leakage resilience
of the final value comparison and assume that it is “sufficiently leakage resilient
secure.” A formal qualitative and quantitative analysis of leakage resilient value
comparison as a general method suitable for a wide range of applications is,
despite its practical relevance, lacking.

1.1 Formal View on Leakage Resilient Value Comparison

In this paper, we present a formal leakage resilience study of comparing a secret
value with a value chosen by an attacker, as would, e.g., typically happen during
verification of a tag. By considering the problem in isolation, it allows for a
neater model and cleaner bound, that compose properly with broader schemes
like authenticated encryption schemes or fault countermeasures.

In detail, the formal model considers a set of u secretly computed target
values T7,...,T),, and an adversary that can guess values T™ for which value
comparison succeeds. To resolve the fact that unprotected implementations of
this comparison allow for DPA to recover any of the T;’s [6], we will incorporate a
value processing function and consider comparison of processed values. This value
processing function takes as additional input a salt S, tied to the target value
T}, and is based on a cryptographic primitive. The adversary wins the security
game if it ever makes value comparison succeed, where it may be aided with side-
channel leakage coming from the value processing and value comparison. This
model captures the non-adaptive bounded leakage of the cryptographic functions
and the leakage of the value comparison, a non-adaptive leakage model, and
works in the standard model and ideal model dependent on the cryptographic
function in use. It is described in Section 3.

1.2 Two Practical Solutions

In Sections 4 and 5, we present two concrete solutions that tackle the protec-
tion of value comparison. The first construction, PVP (“permutation-based value
processing”) of Section 4, processes the tag T' and user input T* along with a
salt S using a cryptographic permutation to obtain an intermediate value U
and U*, upon which comparison is evaluated. The cryptographic permutation
can be a public permutation like Keccak-f [10] or a block cipher instantiated
with a secret key like AESk [18]. The construction with a public permutation is
inspired by the informal proposal of the designers of ISAP v2.0 [20] to perform
secure comparison. However, for PVP also the instantiation with a secret permu-
tation is relevant, noting that this variant is naturally of use in implementations
of schemes based on block ciphers that have an implementation of a heavily
protected block cipher anyway, such as [1,38,42-44]. The scheme achieves very
strong leakage resilience under the model defined in Section 3.

The second construction, TPVP (“tweakable permutation-based value pro-
cessing”) of Section 5, resembles much of PVP but is instantiated with a crypto-
graphic tweakable permutation, which could in turn be a tweakable block cipher
instantiated with a secret key like SKINNY g [2]. The construction is particu-
larly inspired by the idea to use a strongly protected tweakable block cipher for
value comparison, as suggested by Berti et al. [8]. This construction, although
different in nature from PVP, achieves comparable security.

These results are under the assumption that all target values 71, ...,T}, come
with a unique and distinct salt Si,...,S,. In Section 6 we discuss how the results
on PVP and TPVP extend if one takes random salts or no salts at all.

1.3 Application to Message Authentication

A particularly interesting application is message authentication and authenti-
cated encryption, after all the cradle of the problem that we tackle. In Section 7
we take a close look at how to apply the results from Sections 4 and 5 to message
authentication.

The first construction that we present is StP (“SuKS then PVP”), a con-
struction built as composition of the SuKS (“suffix keyed sponge”) message au-
thentication code [9,21,24] and the PVP value comparison function. In this
construction, the SuKS function outputs a tag, and one also takes a salt from
the internal computation of SuKS, and these values are fed to PVP for value
comparison. We demonstrate that, in fact, leakage resilience of StP follows from
the leakage resilient PRF security of SuKS and the leakage resilient value com-
parison security of PVP, provided that the two individual constructions are built
on independent cryptographic primitives. In other words, the functions compose
nicely and cheaply.

The second construction that we present is HaFuFu (“hash function func-
tion”), a hash-then-PRF message authentication code that uses the same PRF
for value comparison. As the message authentication code and the value com-
parison function use the same cryptographic primitive, black-box composition
is not an option. Instead, we prove direct security of HaFuFu, while still reusing
many aspects of the security analysis of the schemes from Sections 4 and 5.

1.4 Comparison of Proposed Solutions

Our solutions fall into two categories depending on whether or not the used
(tweakable) permutation is public or secret. In the case of public primitives, real-
world instances would typically be based on public cryptographic permutations
like Keccak-f [10], whereas for secret (tweakable) primitives, one would typically
resort to (tweakable) block ciphers like AES [18] or SKINNY [2].

The most significant difference between using a public cryptographic per-
mutation versus a (tweakable) block cipher is that the latter uses a secret key.
Hence, this key has to be protected against a side-channel adversary that can
freely choose inputs to this (tweakable) block cipher. As typical in this scenario,
we assume that the block cipher is then perfectly protected [5,7,8,35], meaning
that the secret key cannot be extracted using a side-channel attack.

In contrast, basing the value comparison on public cryptographic permuta-
tions does not require to protect an additional secret value in addition to the
candidate tag T'. Hence, we do not require the assumption that the public cryp-
tographic permutation is perfectly protected. We provide further discussion of
the two approaches in Appendix A.

2 Preliminaries

Throughout the entire work, the parameters k,m,n,c,r, s, t,u,p, q, €, u, A\, \ are
natural numbers. We denote by {0, 1}" the set of n-bit strings. By func(m,n) we

define the set of all functions from {0,1}™ to {0,1}", by perm(n) C func(n,n)
the set of permutations on {0,1}", and by perm(k,n) the set of families of 2*
permutations on {0, 1}"™. We will write func(x,n) for the set of all functions from
{0,1}* to {0,1}™.

For a finite set S, S < S denotes the uniformly random drawing of an
element S from S. We will sometimes abuse the notation a bit for infinite sets,
as long as uniformly random sampling is possible. An example set is the family
of functions func(x,n), for which uniformly random sampling can be simulated
by lazy sampling (for each new input to the function, a random string of length
n bits is generated). We denote by S £ S the drawing of an element S from S
according to such a distribution that Pr (S = s) < 2¢/|5| for any s € S. Here,
€ is some fixed constant which is typically required to be < logy(|S]). Slightly
abusing notation, we denote by (Si,...,5,) & (S)* the independent drawing
of p values S1,...,S5, such that Pr(S; =s) <2¢/|S|forall j=1,...,p.

For a string S € {0,1}", if m < n, we denote by left,,(S) (resp., right,,(5))
the m leftmost (resp., rightmost) bits of S. For a predicate A, [A] equals 1 if A
is true and 0 otherwise.

2.1 Multicollision Limit Function

We will use the notion of a multicollision limit function of Daemen et al. [16].
Consider the experiment of throwing ¢ balls uniformly at random in 2" bins,
and let p denote the maximum number of balls in a single bin. We define the

multicollision limit function mlff, , as the smallest € N that satisfies

Pr(u>x)§2%.

Daemen et al. [16] demonstrated that this function is of the following order of
magnitude:

2m
" (m+n)/logy <q> , for g <2m
m,n ~
(m+n)-2im, for ¢ > 2™.

In addition, if the balls are not thrown uniformly at random, but rather according
to a distribution D that prescribes that the probability P that the i-th ball ends
up in a certain bin satisfies

2m — (i — 1) on
Bl A — 1
gmtn _(j—1) = T 2mtn_(i—1)’ (

~—

the corresponding multicollision function, defined as mlfﬁ’%, satisfies mlfﬁ:’fl <
mlfi‘f,n [16, Lemma 6].

2.2 Block Ciphers and Tweakable Block Ciphers

A block cipher E : {0,1}* x {0,1}" — {0,1}" is a family of n-bit permutations
indexed by a key K € {0,1}*. Its security is typically measured by the PRP-
advantage. In detail, an adversary is given query access to either Ex for random
and secret key K < {0,1}*, or to a random permutation P & perm(n), and its
goal is to distinguish both worlds:

Advi?P(A) = ‘Pr (K & {0,1}F . APk = 1) —Pr (P & perm(n) @ AP = 1)‘ .
Denoting by Advg™?(¢,7) the maximum advantage over any adversary making
q construction queries and operating in time 7, the block cipher E is called
PRP-secure if Advi™(q,7) is small.

A tweakable block cipher TE : {0, 1}*x {0,1}" x{0,1}" — {0,1}" is a family
of n-bit permutations indexed by a key K € {0,1}* and a tweak R € {0,1}". Its
security is typically measured by the TPRP-advantage. In detail, an adversary is
given query access to either TEx for random and secret key K < {0,1}*, or to
a family of random permutations TP <~ perm(r,n), and its goal is to distinguish
both worlds:

AQVIP() =
'Pr (K & 0,1}k © ATEx = 1) —Pr (TP & perm(r,n) : AP = 1)’ .

Denoting by AdvtTpErp(q7 7) the maximum advantage over any adversary making

q construction queries and operating in time 7, the block cipher TE is called
TPRP-secure if AdvixP(g,7) is small.

3 Security Model for Value Comparison

We will present a security model for leakage resilient value comparison. To do so,
we first describe how, perhaps pedantically, value comparison in the black-box
model can be modeled (Section 3.1). Then, we explain how value comparison in
a leaky model can be described in Section 3.2. The model of leakage resilient
value comparison is then given in Section 3.3.

3.1 Value Comparison in Black-Box Model

In a black-box setting, value comparison is trivial. If a tag T* € {0, 1}’ must
be tested against a target value T € {0, 1}, one simply performs a comparison,
and outputs 1 if and only if the values are correct. We can capture this by the
following, trivial, value comparison function VC : {0,1}* x {0,1}* — {0,1}:

VC(T, T*) = HT L T*H . (2)

For the pure sake of understanding the model of leakage resilient value com-
parison in Section 3.3, it makes sense to formally define value comparison security
in the black-box model. The model is entirely trivial, but we write it in a slightly
more complex way to suit further discussion. This is done by considering an ad-
versary A that engages in the following game. Prior to the game, a list of u target
values T = (T, ..., T,) < ({0,1}%)* is randomly generated. The adversary has
query access to a value comparison oracle

. ?
Or: (j,T%) — [[jj :2*]] :
It wins if Or ever outputs 1:

AdvilH(A) = Pr (T & (0,1}« AOT wins) . (3)

For completeness, we can define by Adv‘g[“ } (¢) the maximum advantage over
any adversary making ¢ queries. To confirm that the model is entirely trivial:
if A has q guessing attempts, its success probability is at most ¢/2!. However,
as mentioned, it makes sense to describe this model as starter for the model of
leakage resilient value comparison in Section 3.3.

3.2 Value Comparison in Leaky Model

In a leaky setting, plain value comparison as in Section 3.1 is risky: performing
the comparison may potentially leak data [6]. In detail, an adversary can re-
peatedly perform verification attempts against a single target value T}, and each
verification attempt might leak a certain number of bits of information about
T;. In addition, leakage obtained in a verification attempt against one target
value T; might be useful for a later verification against another target value 7}.
Besides securing (masking) the comparison itself, another method proposed to
counter such side-channel attacks is to pre-process tags with a cryptographic
value processing function, and compare the processed tags. This value processing
function is, in turn, based on a cryptographic function.

Let N € perm(r,n) be a cryptographic primitive. A value processing function
is a function VP™ : {0,1}% x {0,1}* — {0,1}* that gets as input a salt S, value
T, and processes it using cryptographic primitive 1 to obtain a value U. Now,
the basic idea is to not perform value comparison on (7', 7*) directly (as in (2)),
but rather on the subtags:

VC(VP(S,T), VP (S, T)) = [[VP”(S, T) £ vP'(s, T*)]] . (4)

Remark 1. Looking ahead, for » = 0, the cryptographic primitive 1 might be
a public permutation that can in practice then be instantiated with a strong
permutation like Keccak-f [10], or it could be a secret permutation that could
for instance be instantiated with AESk [18] for a secret key. The difference is
subtle. In the former case, an adversary knows the permutation and can make

queries to it. In the latter case, the adversary cannot make primitive evaluations,
but this instantiation comes at the cost of the PRP-security of AES. In addition,
the implementation of AESg must then be strongly protected to prevent the key
from leaking. We will elaborate on this in Sections 4.2 and 4.3.

Likewise, if r > 0, the cryptographic primitive N might be a public tweak-
able permutation (like keyless SKINNY) or a secret tweakable permutation that
could for instance be instantiated with SKINNY [2]. Also here, the same dif-
ferences between the two cases surface. We will elaborate on these two cases in
Sections 5.2 and 5.3.

Remark 2. Although our focus is on value processing functions instantiated with
a (public or secret) family of permutations, the definition and later security
models readily extend to instantiations with a different type of primitive, such
as an arbitrary function F € func(r,n).

3.3 Security Model for Leakage Resilient Value Comparison

A straightforward generalization of the security model of Section 3.1 would be to
consider a random I < perm(r,n), a list of p distinct salts S = (S1,...,5,) C
{0,1}* and a list of p target values T = (T1,...,T}) <= ({0,1}"), where we
recall that each of the p values T; has min-entropy of at least ¢ — €. This allows
us to model the information an attacker might get via side-channels during the
generation of the values Tj outside of our observation that just focuses on the
value comparison and the leakage occurring there. Furthermore, we consider an
adversary that has query access to a value comparison oracle

O (. T) = VP18, 1) £ VP(s;,)] - (5)

The adversary can learn the salts S. It a priori has bi-directional access to I (if
I is a secret permutation, the number of queries to 1 is bounded to 0, below).

However, it is not as simple as that: we will consider value comparison se-
curity in case of leakage resilience. We will restrict our focus to non-adaptive
L-resilience of Dodis and Pietrzak [25], where the adversary receives leakage un-
der any leakage L € L of the scheme under investigation. In our case, leakage
of secret data can occur in two occasions: evaluation of 1 within the two eval-
uations of VP™, and the value comparison. Therefore, £ consists of a Cartesian
product of two leakage sets.

Let £n = {Ln: {0,1}" x {0,1}" x {0,1}" — {0,1}*} be a fixed set of leakage
functions on the primitive 1 within the value processing function VP, and let
Lc={Lc: {0,1}*x{0,1}* — {0,1}*'} be a fixed set of leakage functions on the
value comparison function VC. All functions are independent of I, i.e., they do

not internally evaluate M or M~!. Write £ = Lp x Lc. For any leakage function

L = (Ln,Lc) € L, define by [Og'}n] ,an evaluation of O\S”?:’rn of (5) that not only

returns the response of this function, but also leaks the following values:
Ln (X,Y) € {0,1}* (¥ M-evaluation (X,Y) in VP"(S;,T})),
Ln (X,Y) € {0,1}* (V M-evaluation (X,Y) in VPn(Sj,T*)))
Lc (VP”(Sj,Tj),VPn(Sj,T*)) e {0, 11V
The security model of Section 3.2 now extends as suggested in the beginning
of this section, but with A having access to the leaky variant of ng}n. In detail,

consider an adversary A that, for any given tuple of leakage functions L =
(Lm,Lc) € £ and any tuple of p distinct salts S C {0,1}*, has query access to

{(’)\S/ZLH}] and bi-directional access to I (bounded to 0 queries if I1 is a secret

permutation). The adversary wins if [ngq‘an] ever outputs 1:
Sl
Advl(g'v‘;c[” J4) = max max

L=(Ln,Lc)e£ SC{0,1}*
Pr (ﬂ & perm(r,n), T < ({0,1})* : A[O\gﬂt’ni(S) Wins) . (6)
Ir-ve([p)

For completeness, we can define by Adv . " (¢,p) the maximum advantage

over any adversary making g queries to [O\S/an} and p bi-directional queries
<L

to M*. In the bigger picture, g refers to the number of verification queries an
adversary can make. In case the primitive 1 is a secretly keyed primitive, one
restricts to p = 0.

4 Value Comparison Based on Permutation

Let P € perm(n) be a permutation (for now, we will not yet limit ourselves
to secret or public permutation). Assume that logy(u) < s and s + t,u < n.
Define the following, arguably most straightforward, permutation-based value
processing function PVPY : {0,1}% x {0,1}* — {0,1}*:

PVPP(S,T) = left, (P(S || T || 0"*7%)). (7)

Value verification then follows as in (4), using above value processing function
PVP (see also Figure 1):

PVC(PVPP(5,T), PVPP(5,77)) = [PVPP(5,7) L PVPP(s, 7] . (8)

A general security bound of value comparison using PVP is given in Sec-
tion 4.1. Note that we did not put any stringent condition on s, ¢, u, and n yet:
all we need is that s + ¢,u < n. Depending on whether P is a secret or public
permutation, an additional condition is needed. Both cases are rather different
in nature, in practical appearance, and in the security level that they achieve.
We elaborate on the case of secret permutation in Section 4.2, and on the case
of public permutation in Section 4.3.

() ()
§ — e UL U — 5
T — P Pl——T*
Y R ST I PR
—/ —/

Fig. 1: Depiction of leakage resilient value comparison using permutation.

4.1 Leakage Resilience of Value Comparison With PVP

We derive a general bound on the leakage resilience of value comparison using
PVP,

OFF": (. T%) = [PVPP(8;, 1) £ PVPP(85,77)] |)

in the security definition of (6) against any adversary making ¢ construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, s, t,u,q,p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires t,u < n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sections 4.2 and 4.3.

Theorem 1. Assume that logy () < s and s + t,u < n. For any adversary A
with construction complexity q and primitive complexity p,

N 2(q +p)
Ad lr-ve[u] < .
V opve ("4) — 9min{t—e—Au} _ (,u +q +p)
2m|fi‘fn_up mlfiftn—"

+ on—max{t,u+A} _ (M +q —|—p) T n—u

Proof. Let L = (Lp,Lc) € £ be any two leakage functions and let S C {0,1}® be
a list of g distinct salts. Let P & perm(n) be a random permutation, and let T' &
({0, 1}*)* be a list of p target values T, where each T} has at least a min-entropy
of at least t —e. For any j € {1,...,u}, define P(S;|7};||0"~5~*) = U, ||V}, where
U; € {0,1}* and V; € {0,1}"*. By definition, we have U; = PVPY(S;,T}).
Consider any adversary A that can make ¢ queries (j,7™) to OEY;’P of (9), and
p direct queries to PE. For each of the ¢ construction queries, A also learns the
following values:

Le (S;1IT5110"*7*, U;[V5) € {0,1}*,
Lp (S5 170", P(S; | T*(j0"~*)) € {0,1}*,
Lc (Uj, PVPP(Sj,T*)> € {0,1}".

Note that, as Lp and L¢ are fixed, predetermined, functions, the adversary learns
at most A bits of leakage on T}, A bits of leakage on V}, and A+¢\ bits of leakage
on Uy, for any j € {1,...,u}.

10

The adversary wins if any of its ¢ construction queries returns 1. However,
the probability for this to occur depends on “lucky” primitive queries. In detail,
if the adversary happens to make a primitive query of the form

(Sj H ! ” Onis*tﬂ Uj ” *nfu),

for any 7 € {1,...,u}, it can use this to make the construction oracle output 1
with probability 1. Therefore, we also say that the adversary wins if any of its p
primitive queries is of above form. Finally, it turns out that the adversary might
have a significantly increased success probability if there exists a multicollision
in {Uy,...,U,}. We will also count that as a win for the adversary.
More detailed, write m = mlfi‘f n—ny for brevity. We denote by bad the event
that there exist m + 1 distinct indices j1,...,Jm+1 € {1,..., u} such that U;, =
-=Uj,,,- In addition, for i € {1,...,q+ p}, we denote by win; the event that
the i-th query is

— a construction query (j,T*) that satisfies PVPP(Sj,T*) =Uj, or
— a primitive query (X,Y) that satisfies left,(X) = S, right,_, ,(X) =
0"~ 57" and left, (Y) = U; for some j € {1,...,u}.

Write win = \/?7 win;. Our goal is to bound

Pr (win) < Pr (win A —bad) + Pr (bad)

q+p
=Pr <\/ win; A ﬁbad> + Pr (bad)
=1
q+p
< Z Pr (wml A —|Win1__,»_1 A —|bad) + Pr (bad) y (10)

i=1

where win;_o = false by definition.

Bound on Pr (win; A —winy_;_1 A —bad). Consider any i € {1,...,q + p}, and
consider the i-th query. We will make a distinction between a construction query,
forward primitive query, and inverse primitive query.

— Construction query. Consider any construction query (j,7*) to OEY;’P. If
there were an earlier primitive query of the form S;||7*[|0"~*~* then by
—winy_;—1 its outcome is not of the form Uj|[+"~*, and the oracle will not
output 1. Therefore, we can assume that this query has not been made
directly to P yet.

The oracle outputs 1 if:

o T* =T}. As the values T are randomly generated with a min-entropy
of at least t — ¢, and as the adversary has so far learned at most A bits
of leakage on T, this condition is set with probability at most 1/ Qt—e=A,

e T* # T; but PVPP(S;,T*) = U;. As there was no earlier evaluation of
P(S;||T*]]0™~=~*), the result will be randomly drawn from a set of size at
least 2" — (u+i—1) > 2" — (u+ g+ p) values, and at most 2"~ of these
satisfy PVPP(Sj,T*) = Uj. Thus, the condition is set with probability
at most 274 /(2"™ — (u+ q + p)).

11

Adding both cases, we get

Pr (win; A =winy_;_1 A i-th query to construction) <
2

- ;o (11
omin{t—e—X\u} _ (,U, +q+ p) ()

— Forward primitive query. Consider any forward primitive query (X,Y) to P.
Without loss of generality, X = S;||T*||0" 5~ for some j € {1,...,u} and
T* € {0,1}" (otherwise, the query cannot set win;). Note that the value j is
unique as S is assumed to contain no collisions. We can also assume that
neither this query has been made to P yet, nor (j,7*) has been queried to
the construction oracle before.

Now, the forward primitive query sets win; if T* = Tj or if Y = Uj;||x" ™",
and the analysis is identical to that of construction queries. We thus obtain

Pr (win; A =winy ;1 A i-th query to forward primitive) <
2 .
omin{t—e—X\u} _ ('u +q+ p) ’

(12)

— Inverse primitive query. Consider any inverse primitive query (X,Y) to P.
We can assume that this query has not been made to P yet. At the point
of making this primitive query, the adversary has learned at most A + g\’
bits of information about all U;’s. We will be more generous, and assume
w.l.o.g. that any inverse query is of the form U;||V* for some j € {1,...,u}
and V* € {0,1}"“. Note that the value j might not be unique as there

might be collisions in {Uy,...,U,}. However, due to —bad, the largest size
of a multicollision is at most mIf2, _ . Therefore, there are at most mlf;". _,

possible values j.
The inverse primitive query sets win; if for any of these possible values j:

o VV* = Vj;. As the adversary has so far learned at most A bits of leakage
on Vj, this condition is set with probability at most 1/2n—u=A,

o V* £ V; but X = S;||T*[|0"*~* for some T*. As there was no earlier
evaluation of P~1(U;||V*), the result will be randomly drawn from a set
of size at least 2™ — (u + i — 1) > 2™ — (u + ¢ + p) values, and at most
2" of these satisfy left,(X) = S; and right,,_,_,(X) = 0""*"*. Thus, the
condition is set with probability at most 2t/(2" — (u + q + p)).

Adding both cases, and summing over all < mlfi‘f n—v Dossible value j, we
get

Pr (win; A =winy_;_1 A i-th query to inverse primitive) <

2mifs"
(13)

on—max{t,u+A} _ (:U/ +q +p) .

Bound on Pr (bad). The values U; are all uniformly randomly drawn from a set
of size 2™ — (j — 1) values, and they are truncated to take any value from a set

12

of 2" elements. The event is thus a balls-and-bins experiment in the notation
of Section 2.1 with p balls randomly thrown into 2“ bins, in such a way that
any of the bins contains more than mlfif” .., balls. The distribution satisfies the

condition of (1). Therefore, we obtain that

mlfzunfu
Pr (bad) < 2”7*" (14)
Conclusion. The adversary makes ¢ construction queries, each of which succeeds
with probability at most (11), and p primitive queries, each of which succeeds
with probability the maximum of (12) and (13). For simplicity, we do not max-
imize, but rather take the sum. Finally, we have to add (14). We thus obtain
from (10) that

r-ve 2(q * p)
Ad 1 [K] < .
VoPVP (A) — 2m1n{t*€*)\’u} — (,LL -+ q + p)
2m|fifbn7up mlffffnfu

+ on—max{t,u+A} _ (:U' +q +p) + om—u
The reasoning holds for any adversary making ¢ construction queries and p
primitive queries, and this completes the proof. a

4.2 PVP with Secret Permutation

Let E : {0,1}*¥ x {0,1}"® — {0,1}" be a block cipher. If E is PRP-secure (see
Section 2.2), one can instantiate the secret permutation P in the value processing
function PVPP using the block cipher with a secret key, and de facto consider

EVPEX (S, T) = left, (Ex(S || T || 0"*7%)). (15)

A value comparison via an inverse block cipher call is part of the constructions
proposed in [8].

The security bound of Theorem 1 carries over to EVP, with the following
four changes:

— The term Adv{™P(q,7) is added (where ¢ is exactly the number of queries
described in Theorem 1 and 7 is an additional time complexity measure on
A);

— The function Ex must be strongly protected, so that the function leaks no
information about its inputs and outputs;

— The number of primitive queries is bounded to p = 0;

— As the number of primitive queries is bounded to p = 0, the auxiliary bad
event bad has become obsolete, and hence the term mlfi’f /2™ disap-
pears.

More formally, we obtain the following corollary. Notably, the sole term with
gn—max{t.u} in the denominator disappeared, and we do not need to put any
condition on n — max{t, u}.

13

Corollary 1 (Value Comparison Using Block Cipher). Assume that
logy(1) < s and s +t,u < n. Let E : {0,1}* x {0,1}" — {0,1}" be a block
cipher that is perfectly protected. For any adversary A with construction com-
plexity q and operating in time T,

Ir-v 2q T
Advii ™ (A) < s rg AN,

4.3 PVP with Public Permutation

Assuming that P is a public permutation, the permutation-based value processing
function PVP of (7) is similar to the one proposed by the designers of NIST
Lightweight Cryptography candidate ISAP [20]. In this case, the adversary can
evaluate the public primitive, or in terms of Theorem 1: p > 0. This also means
that, for the last term of this theorem to be small, we require t,u < n. We
obtain the following corollary:

Corollary 2 (Value Comparison Using Permutation). Assume that
logo(u) < s < n—t and t,u < n. Let P € perm(n) be a permutation that
s assumed to be perfectly random. For any adversary A with construction com-
plexity q and primitive complezity p,

N 2(q +p)
Ad Ir-ve[u] < .
V opve (’A) — omin{t—e—Au} _ (,u +q +p)
2m|fi‘fn_up mlfi‘fn—"

+ on—max{t,u+A} _ (/”"" q _|_p) + on—u

5 Value Comparison Based on Tweakable Permutation

Let TP € perm(r,n) be a cryptographic family of permutations (for now, we
will not yet limit ourselves to families of secret or public permutations). Assume
that s < r and ¢,u < n. Define the following tweakable permutation-based value
processing function TPVPTP : {0,1}* x {0,1}* — {0,1}%:

TPVPTP(S,T) = left, (TP(S || 07,7 || 0"7%)). (16)

Tag verification then follows as in (4), using above value processing function
TPVP (see also Figure 2):

TPVC(TPVPTP(S,T), TPVP™P(S, %)) = [[TPVPTP(S, T) < TPVPTP(s, T*)]] .

(17)

As before, we did not put any stringent condition on r, s, t, u, and n yet:

all we need is that s < r and ¢,u < n. Depending on whether TP is a family

of secret or public permutations, an additional condition is needed. A general

security bound of value comparison using TPVP is given in Section 5.1. We

elaborate on the case of families of secret permutations in Section 5.2, and on
the case of families of public permutations in Section 5.3.

14

S”O’I"*S S”OT*S

TP TP

—/ —/

Fig. 2: Leakage resilient value comparison using a tweakable permutation.

5.1 Leakage Resilience of Value Comparison With TPVP

We derive a general bound on the leakage resilience of value comparison using
TPVP,

O (G, 17) [TPVPTR(8;, 1) ZTPVPT (s,)] (1)

in the security definition of (6) against any adversary making ¢ construction
queries and p primitive queries. We note that the bound is meaningless for certain
choices of n, 1, s,t,u, q,p: in particular, if p > 0 (i.e., if we consider instantiation
using a public permutation), one requires ¢, u < n. The bound is nevertheless
derived in full generality, and will only be interpreted for the specific cases in
Sections 5.2 and 5.3.

Theorem 2. Assume that log,(pn) < s < r and t,u < n. For any adversary A
with construction complexity q and primitive complexity p,

r-v 2(q+p) 2p
Advisdi) < — .
Voreve (‘A) — omin{t—e—Au} _ (u +q _|_p) + on—max{t,u+A} _ (u +q _|_p)

The proof is a direct simplification of the proof of Theorem 1. Most importantly,
as the salt S; is processed by TP as tweak input in both forward and inverse
primitive queries, the adversary restricts itself to a unique choice of j (as salts are
assumed not to collide) and hence there is no need to bother about multicollisions
in {Ui,...,U,}. This means that event bad, as well as its analysis, drops out.
A second change is in the analysis of the probability that an inverse primitive
queries sets win;: now we need that either “V* = V;” or “V* # V; but X =
T*||0™~*”. The resulting bound is identical to the one before, with the term
mlf2# removed. A formal proof is included in Appendix B.

un—u

5.2 TPVP with Secret Tweakable Permutation

Let TE : {0,1}* x {0,1}" x {0,1}™ — {0,1}" be a tweakable block cipher. If
TE is TPRP-secure (see Section 2.2), one can instantiate the secret tweakable

15

pTP

permutation TP in the value processing function TPV using the block cipher

with a secret key, and de facto consider
TEVPTEX (S, T)) = left, (TEx(S || 0775, T || 0"7%)). (19)

A variant of this using tweakable block ciphers is, in fact, proposed in NIST
Lightweight Cryptography candidate Spook [5].

Identical to the analysis in Section 4.2, the security bound of Theorem 2
carries over to TEVP, with the following three changes:

— The term Advi:P(q,7) is added (where g is exactly the number of queries
described in Theorem 2 and 7 is an additional time complexity measure on
A);

— The function TEx must be strongly protected, so that the function leaks no
information about its inputs and outputs;

— The number of primitive queries is bounded to p = 0.

More formally, we obtain the following corollary, in analogy with Corollary 1.

Corollary 3 (Value Comparison Using Tweakable Block Cipher). As-
sume that logy(p) < s < r and t,u < n. Let E : {0,1}* x {0,1}" x {0,1}" —
{0,1}" be a tweakable block cipher that is perfectly protected. For any adversary
A with construction complexity q and operating in time T,

r-vciu 2
AdVIC)TEV[PI](A) < a

tprp
— omin{t—e—Au} _ (,LL + q) + AdVTE (qu) .

5.3 TPVP with Public Tweakable Permutation

If one takes a block cipher E : {0,1}" x {0,1}" — {0,1}" (see Section 4.2 for
the definition) that does not only satisfy that its PRP-security is strong, but
that does not even have any inherent weaknesses and that can be modeled as
an ideal cipher, one can use this block cipher as tweakable permutation in the
TPVP construction. Just like in Section 4.3, the adversary can evaluate the public
primitive, or in terms of Theorem 2: p > 0. This also means that, for the last
term of this theorem to be small, we require t,u < n. We obtain the following
corollary:

Corollary 4 (Value Comparison Using Tweakable Permutation). As-
sume that logy(p) < s < r and t,u < n. Let TP € perm(r,n) be a family of
permutations that is assumed to be perfectly random. For any adversary A with
construction complezity q and primitive complexity p,

r-vc 2(q + p) 2p
Ad 1 (1] A < _ .
Vore (A) < o Ry (L+q+p) " gy (L+q+p)

16

6 Freedom of Salts

In the security model of Section 3.3, the salts S € ({0,1}*)* are unique and
paired to the values in T' <= ({0,1}*)*. This might require state and/or another
technique to obtain these salts. Nevertheless, it appears that this condition can
be released at almost no efficiency or security cost. In this section, we consider
various cases and inspect how the bounds of Theorem 1 and 2 deteriorate. First,
in Section 6.1 we consider the case of randomly generated salts. Then, in Sec-
tion 6.2, we discuss how the bounds change if the salts are omitted. Finally, we
briefly elaborate on the theoretical benefit of not disclosing salts to the adversary
in Section 6.3.

6.1 Random Salts

One can simply take uniformly random S < ({0,1}*)*. This will induce an
additional term to the proof of Theorem 1. In detail, for the probability that the
i-th query is a forward primitive query and sets win;, we rely on the uniqueness
of the values S;. (In fact, closer inspection shows that it suffices to rely on
uniqueness of the values S;||T};, but the distribution of the T);’s might be a
bit odd and might not fit the modeling of multicollisions as per Section 2.1.)
This means that we need to expand the bad event bad to cover multicollisions
in § & ({0,1}%), leading to an additional term mif{,/2*. Subsequently the
multiplication of p in the numerator of the first term of the bound of Theorem 1
by mlf{ ,. Here, when defining the multicollision event, we had some freedom to
choose the value of the denominator, which we set to ¢ to match the denominator
in the first term of the bound. In total, the complete bound becomes:

2(q+ mlf‘s"tp) N 2m|fi‘fn7up N mlfi‘fnfu mlf’;’t
omin{t—e—Xu} _ (/i +q +p) on—max{t,u+A} _ (‘LL +q +p) on—u ot
(20)

We remark that the changes are obsolete if we consider a secret primitive, in
which case p = 0, and also the two last terms of above equation disappear (see
also the explanation before Corollary 1).

For the bound of TPVP, there was no bad event bad in the first place.
However, we must consider multicollisions in {S1|T1,...,S,|T,.} as well as
in {S1]|U1,...,S,||Us}. As before, subtleties arise in the distribution of the
Ty’s as well as in the Uj’s, and we will restrict our focus to multicollisions in

S & ({0,1}*)*. This can be bound by mlff,/2*. The expanded bound becomes
2(q+ mlffj’tp) N 2m|ff’tp mlf’;’t
omin{t—e—X\u} _ (M +q +p) on—max{t,u+A} _ (M +q +p) ot -

6.2 Omission of Salt

In practice, it might not be that straightforward to pair salts with tags. However,
an option that is always available is to just use the same salt for every tag.

17

Compared to the random selection of salts in Section 6.1, we do not have a
strong bound on the largest multicollision on S. Instead, in the worst case we
have a single p-collision. Hence, in contrast to Section 6.1, we do not need to
introduce an additional term miff, / 2! since we cannot have more than a single
p-collision on p-values. Akin to (20), the complete bound for the PVP scenario
becomes:

2 2
2(‘] + ﬂp) + Zmlfulfn—up i mlfuttn—u
omin{t—e—X\u} _ (u +q +p) gn—max{t,u+A} _ (’u +q +p) on—u -

Since using a tweakable permutation with a single tweak/salt gives a single
permutation scenario we omit to spell out the TPVP case.
Furthermore, we note that the term 2n,in{t,xil)"i(u+q+p)
birthday-like trade-off in the bound between number of tags p and primitive
calls p stems from the ability of a side-channel adversary to recover all p possible
U;’s. In absence of a side-channel adversary, the bound in the black-box model
omits this term. In particular, for fixed S and no leakage, we would allow the

adversary access to a oracle similar to (9):

that introduces a

07"+ (5, 7%) v [PVPP(Ty) = PV ()]
and the adversary wins if O;VP’P ever outputs 1:
Adv‘(’g‘;(i,[éf],, (A)=Pr (P & perm(n), T < ({0,1}H)" - AT pE Wins) .
T

pve(u]
PVP,P
O

any adversary making g queries to O;VP’P and p bi-directional queries to P*.

For completeness, we can define by Adv (¢, p) the maximum advantage over

Proposition 1 (Saltless Value Comparison using Permutation in the
Black-Box Model). Assume that t,u < n. Let P € perm(n) be a permutation
that is assumed to be perfectly random. For any adversary A with construction
complezity q and primitive complexity p,

ve 2q

AdVI(;;v[#,]P (A) < Wu}—q .
Proof. Since we work in the black-box model, the only thing an adversary learns
from a failed verification query is that T; # 7. What an adversary learns from
a successful verification query does not matter, since the adversary has won
anyway. As a consequence, an adversary cannot detect matches of forward prim-
itive queries (+]|0™~*, U*||*"~%) with U* = U, only if it already won. The same
counts for inverse primitive queries, hence the adversary does not profit from
calls to P.

The possibilities for an adversary to win on a single query to the construction
is to either guess the tag T} correctly, or to be lucky that an incorrect guess still

18

leads to the same U. Summing over g construction queries and considering that
all U;’s are computed via a perfectly random permutation, we hence get:

pvelu] 2q
AdVOI;VP,P(A) < gmin{tu} — g’
The reasoning holds for any adversary making ¢ construction queries and p
primitive queries, and this completes the proof. a

6.3 Note on Disclosing Salts

We remark that the security model of Section 3.3 prescribes that A actually
obtains the salts. In practice, it might often be more practical to not disclose
them. This will, clearly, only improve security.

7 Application to Message Authentication

Our leakage resilient solutions have many applications. We already mentioned
some in Section 1. In this section, we will consider the application of our so-
lutions to message authentication. In Section 7.2, we consider a composition of
SuKS with PVP, dubbed StP. The composition is very powerful against leakage
resilience, even though it requires that the building blocks (SuKS and PVP) are
built from independent cryptographic permutations. The result has immediate
application to the ISAP authenticated encryption scheme [20,21], that is cur-
rently in submission to the NIST Lightweight Cryptography competition. This
function uses SuKS for message authentication.

In Section 7.3, we go one step further, and stretch the analysis to a MAC con-
struction whose cryptographic primitive is related to that in value verification.
In detail, we present HaFuFu, a hash-then-PRF message authentication code
that uses the same PRF for value comparison, and prove that this construction
is a leakage resilient MAC function. The result can be relevant for many other
submissions to the NIST Lightweight Cryptography competition [50], given the
prevalence of the hash-then-PRF construction.

Both results are derived in a model for leakage resilient message authen-
tication plus value verification, that is described in Section 7.1. It is a slight
extension of the model of Section 3.3.

7.1 Security Model for Leakage Resilient MAC Plus Value

Comparison

We will describe the security model for leakage resilient message authentication
with integrated value comparison in generality, so as it is applicable to both StP
and HaFuFu.

Let N € prims be a cryptographic primitive or a set of cryptographic primi-
tives, taken from a set of primitives prims from which uniform sampling is possi-
ble. A message authentication code MAC™ : {0,1}* x {0,1}* — {0, 1} takes as

19

input a key K and an arbitrarily-long message M, and uses the cryptographic
primitive I to generate a tag T'. Associated to MAC" is a verification function
VEY™ 2 {0,1}% x {0,1}* x {0,1}* — {0,1} that gets as input a key K, a mes-
sage M, and a tag T, and it outputs 1 if the tag belongs to the message and
0 otherwise. Whereas typical verification function do plain value comparison of
MAC', (M) with T*, in our case verification will include leakage resilient value
comparison. Before proceeding, we remark that the key input to MAC" may be
optional: sometimes, I is a secretly keyed primitive (like a secret permutation)
and the key would be implicit.

As before, we consider non-adaptive L-resilience [25], where the adversary
receives leakage under any leakage L € L of the scheme under investigation. Any
cryptographic evaluation of secret material may leak information, and a proper
definition of £ depends on the scheme and primitive under consideration. For
StP and HaFuFu, the set will thus be formalized as soon as we go on to prove
leakage resilience (in Sections 7.2.3 and 7.3.2, respectively). For any leakage

function L € £, define by [MAC?(] am evaluation of MACR of (25) that not only

returns the response of this function, but also leaks secret material in consistency
with the evaluation of L (details for the two specific schemes will follow in the

corresponding sections). The function [VFYHK}) is defined analogously.

Leakage resilience of the MAC function now extends from the conventional
definition of unforgeability, but now with the adversary A having access to the
leaky oracles. In detail, let L € £ be any tuple of leakage functions. Consider

an adversary A that has query access to {M/—\C?(] and [VFY?(} . It wins if
L L
[VFY?(] ever outputs 1 on input of a message/tag tuple that was not the result
L

of an earlier query to [MAC';(] K

Advieec() = max Pr (K & 40,137, N & prims - AMACE][VEYR], wins) .
€

(21)

For completeness, we can define by Adviae™ (¢, v) the maximum advantage over

any adversary making ¢ authentication queries to [MAC?(} and v verification
L

queries to [VFY?(} 5

7.2 StP: SuKS-then-PVP

7.2.1 Description of SuKS. Assume that ¢ +r = n and k,s,t < n. Let
P € perm(n) be a cryptographic permutation and G : {0,1}* x {0,1}* — {0,1}*
be a keyed function. The suffix keyed sponge SuKS : {0,1}* x {0,1}* — {0,1}¢,
formalized by Dobraunig and Mennink [24], is depicted in Figure 3.

20

M, M, N Y
JL . ' . L gl e i g
| Lo Tt dp prhs
P n—s—t 7(7LL. .n.f'u. n—s—t 0
0 = ¢ n—s nt L L
J
SuKS PVP

Fig. 3: The SuKS-then-PVP construction StP. The message M is first injectively
padded into r-bit blocks M ... M,.

Dobraunig and Mennink [24] proved that if P is a random permutation, G has
good uniformity and universality,* then SuKS behaves like a random function.
In addition, if G is strongly protected and any evaluation of P only leaks A bits
of data non-adaptively, SuKS still behaves like a random function.

The security model under consideration is PRF-security under non-adaptive
leakage (as in Section 3.3). Let Lp = {Lp: {0,1}" x {0,1}* — {0,1}*} be a
fixed set of leakage functions on the primitive P, and let £ = {Lg: {0,1}* x
0,1} x {0,1}* — {0,1}'} be a fixed set of leakage functions on the function
G. All functions are independent of P, i.e., they do not internally evaluate P or
P~1. Write £ = Lp x Lg. For any leakage function L = (Lp,Lg) € L, define
by {SUKS?(L an evaluation of SuKS; of Figure 3 that not only returns the
response of this function, but also leaks the values Lg (K, lefts(Q), lefts(R)) and
Lp(R, W) (see Figure 3 for the values @, R, and W). Then, non-adaptive leakage

resilient pseudorandom function (LR-PRF) security is defined as the maximum
advantage of any distinguisher to distinguish the following two worlds:

AdvERE(A) = [Pr (K & {0,1)", P & perm(n) 5 AIPKSRLSKSIP)

Pr (K & {0,1}%, P & perm(n), F & func(x,t) : A[SUKSK] PP 1)’ .

Under this model, Dobraunig and Mennink proved the following result.

Proposition 2 (Leakage Resilience of SuKS [24, Theorem 3]). Assume
that c+1r =mn and k, s,t < n. Consider the SuKS construction of Figure 3 based
on random permutation P < perm(n) and a function G : {0,1}F x {0,1}* —
{0,1}°. Assume that G is strongly protected 2° -uniform and 2~ -universal. For
any adversary A with construction complexity q > 2 and primitive complexity

4 Uniformity means that the probability (over the drawing of K) that any fixed input
X maps to any fixed output Y is at most 27°. Universality means that the probability
(over the drawing of K) that any fixed distinct inputs X, X’ map to the same value
is at most 27°.

21

p<2nh
9p? mif2 =9 mif2? 9 . p miffd,_, - p

AdvePH(A) <
SuKS()— 9c on—s 2min{6,£}—m|f§ff‘l:§))\ 2n7t7)\

2(p—q)

o . . . mif
One term that is important in this bound is m;n*’j:“ . In the proof of SuKS,

the authors upper bound the maximum size of a multicollision on lefts(Q) by

mlfif,’; :g). The fact that this bounding is already performed in the proof of SuKS

itself will become useful when we consider composition of SuKS with PVP.

7.2.2 Description of StP. Let P,P’ € perm(n), and let MACP"" : {0,1}* x
{0,1}* — {0,1}" be the SuKS message authentication code:

MAC":P' (M) = SuKSP (K, M) =T (22)

Verification VFYPP" : {0, 1}#x {0, 1}* x {0, 1}* — {0, 1; now incorporates PVP? .
It takes S = lefts(Q) from the computation of SuKS™ (K, M) (see Figure 3) as
salt, and is defined as follows:

VY (M, T*) =
[t (P(s | MACR® (A1) [07271)) L et (P(S | T* || 0"~=~)], (23)

where S = left;(Q) is a function of M as specified in Figure 3.

7.2.3 Leakage Resilience of StP. We will prove security of StP, provided
that P, P’ & perm(n) are two random permutations.

In StP, leakage occurs on evaluations of P, G, P/, and in the value comparison.
Let £p = {Lp: {0,1}" x {0,1}" — {0,1}*} be a fixed set of leakage functions
on the primitive P, and let £g = {Lg: {0,1}* x {0,1}* x {0,1}* — {0,1})‘/}
be a fixed set of leakage functions on the function G. Let Lpr = {Lp:: {0,1}" x
{0,1}™ — {0,1}*} be a fixed set of leakage functions on the value processing
function P/, and let £c = {Lc: {0,1}* x {0,1}* — {0,1}*'} be a fixed set of
leakage functions on the value comparison within VFY. All functions are inde-
pendent of P and P’. Write £ = Lp x L X Lp: X Lc. For any leakage function
L = (Lp,Lg,Lp/,Lc) € L, define by [MAC%P/} ,an evaluation of MACE(’P/ of (22)
that not only returns the response of this function, but also leaks the following
values:

Lo(K, lefty(Q), left (R)) € {0,1}*,
Lp(R, W) € {0,1}*,

where K, @, R, and W are values related to the computation of MACIP(’P' (K, M),
as outlined in Figure 3. Similarly, define by [VFY;’Pl] . an evaluation of VFYIP(’P'

22

of (23) that not only returns the response of this function, but also leaks the
following values:

Lo(K, left,(Q), left, (R)
Lp(R, W

Le: (S|IT]j0" =", U||V) € {0,1}*,
Le: (SIT*[j0" ==, U*([V*) € {0,1}*,
Lc (U,U*) € {0,1},

c€{0,1}*,

)
) € {0,1}*,

where K,Q,R,W,S5,T,U,U*,V, and V* are values related to the computation
of VFY;’P (M, T*) as outlined in Figure 3.

We can now prove leakage resilience of StP in the security model of Sec-
tion 7.1.

Theorem 3. Assume that k, s+t,u < n. Consider the StP construction based on
two random permutations P,P’ < perm(n) and a function G : {0,1}F x{0,1}* —
{0,1}%. Assume that G is strongly protected 2~°-uniform and 2~¢-universal. For
any adversary A with construction query q and verification complexity v, with
g +v > 2, and primitive complexity p < 271,

2(p—q) 2(p—q) 2(q+v)

Advlr—maC(A) < 2p2 mlfs,’rzl)fg mlfn psg P mlftrg t

StP - 9c on—s 2m1n{58} mlff(f fi)/\ on—t—X
2(v+m|f§(fz Z)p) 2m|f21n uP mIfZ“n u

+ 2min{t—2)\,u} _ (2’U _|_p) + 2n—max{t,u+)\} — (21] +p) + oan—u

Proof. Let L = (Lp,Lg,Lpr,Lc) € L be any four leakage functions, let K &
{0,1}* and P,P’ & perm(n). Consider any adversary .4 that aims to mount a

forgery against StP';{’P/. It can make ¢ construction queries, v verification queries,
and p primitive queries to both P and P’.

It is important to note that the functions SukKS% and PVP® are indepen-
dent primitives. In addition, SuKS; is a pseudorandom function under leakage.
Concretely, up to the bound of Proposition 2, each new evaluation of SuKS%
outputs a T' that has min-entropy at least ¢ — A and is independent of earlier
evaluations of the construction, and associated with this value T is a value S

that is not secret but that has the property that if the construction is evaluated

(r—9)
S,n— s

q times, the maximum size of a multicollision is mlf>

In fact, within StP, SuKSh % gets evaluated up to ¢ times for different inputs
and at most v additional times in new verification queries. Say that the number
of unique messages under which A queries SuKS; is ¢’. Then, we can replace
SuKS% by generating a list of random elements T = (T1,...,T,) < ({0,1}})7
with e = A, and an arbitrary randomly generated list S = (S1,...,Sy) of which
2(p—dq’) < mif? (p LJ)

Sn—s . This replacement comes at

each element occurs at most mlf

23

the cost of

22 mif2n?) mif27) mif2?_, . p

2¢ on—s 2min{6,5}7m|f§$5:zl))\ on—t—X
- % mlfi(f:g) mlfi(f;g) p mlfi(gi_f) : (24)
- 2¢ n=s Qmin{é,s}—mlfifﬁiz))\ on—t—A

Having made this replacement, one can then see that, as evaluations of
SuKSE(are independent for different messages, only the elements in T and S
that are considered in the evaluation of PVPF are useful. Therefore, the game of
mounting a forgery against the resulting construction is equivalent to the game
of mounting an attack against the value comparison function PVPP" in the model
of Section 3.3, where y = v.

In summary, we have obtained that

AdvER™(A) < (24) + Adviadl(A),

for some adversary A’ with construction complexity v and primitive complexity
p, that operates in the game with salts that may repeat up to mlfi,(f:g) times.
We can take the bound of Theorem 1 with the p in the numerator of the first
2(p—q)

s,n—s

term multiplied by mlf (or, alternatively, take (20) with mif{ , replaced by

mlfif,’z:g) and with the last term dropped as it is already accounted for in the
bound of SuKSY,), for u = v, e = A, and ¢ = v. O

7.3 HaFuFu: MAC Plus Value Comparison With Same Primitive

7.3.1 Description of HaFuFu. We will describe the HaFuFu message au-
thentication with dependent value comparison. Given the non-triviality of the
problem, we consider a simpler scenario compared to the results of Section 4
and 5, namely one based on a random function (cf., Remark 2). In addition,
for simplicity we assume that s + ¢ = n (the analysis easily extends to the case
of s+t <n)and t = u. Let H € func(x,n) be a cryptographic hash function,
and F € func(n,t) a (secret) cryptographic function. As F is a secret primi-
tive, there is no key involved. Define the following message authentication code
MACHF . {0,1}* — {0,1}":

MACHF (M) = F(H(M)) =T . (25)

The corresponding verification function VFYMHF : {0,1}* x {0,1}* — {0,1} is
defined as follows:

2

VYU (M, T7) = [Fleft,(H(M)) [MACH (A1) £ F(teft, (H(M)))], (26)

The function is depicted in Figure 4. The picture also includes definitions of
intermediate values R, S,T,U, and U*, that we will use when analyzing MAC
and VFY. Note that the name HaFuFu is derived from the verification oracle,
that operates in a Hash-then-Function-then-Function mode.

24

Fig.4: HaFuFu algorithms MAC and VFY of (25) and (26), respectively. H is a
cryptographic hash function and F a secret random permutation.

7.3.2 Leakage Resilience of HaFuFu. We will prove security of HaFuFu,
provided that H <~ func(x,n) is a random oracle, and F <~ func(n,t) a secret
random function. In practice, one might consider instantiating H with any good
cryptographic hash function, and F by a strongly protected PRF, which can in
turn be built from a (tweakable) block cipher with n-bit block size, followed by
truncation [4,11,36,47,56].

In HaFuFu, leakage occurs on evaluations of F and in the value comparison.
Let £r = {Lg: {0,1}" x {0,1}! — {0,1}*} be a fixed set of leakage functions on
the value processing function F, and let Lc = {Lc: {0,1}* x {0,1}* — {0,1}*}
be a fixed set of leakage functions on the value comparison within VFY. All
functions are independent of F itself, i.e., they do not internally evaluate F. Write

L = Lg% Lc. For any leakage function L = (Lg, Lc) € £, define by {I\/I/—\CH’F}) an

evaluation of MAC™F of (25) that not only returns the response of this function,
but also leaks the following value:

I—F (R7T) € {Oa 1})\)

where R and T are values related to the computation of I\/IACH’F(M), as outlined
in Figure 4. Similarly, define by {VFYH’F] , an evaluation of VFYMF of (26) that
not only returns the response of this function, but also leaks the following values:
Le (R,T) € {0,1}*,
Le (S|, U) € {0,1}*,
Le (ST, U™) € {0,1}*,
Lc (U, U*) € {0,1}",
where R, S,T,U, and U* are values related to the computation of VFYH"F(M7)
as outlined in Figure 4.

We can now prove leakage resilience of HaFuFu in the security model of
Section 7.1.

Theorem 4. Assume that s +t = n. Consider the HaFuFu construction based
on a random oracle H < func(x,n) and a secret random function F < func(n, t).
For any adversary A with construction query q and verification complexity v,

r-mac 2q 2(q+1))
Adv}-IaFuFu (A) S 2t72)\ + 22 .

25

Proof. Let L = (Lg,Lc) € £ be any two leakage functions, let H & func(x,n) be

a random oracle and F < fu nc(n,t) a random function. Consider any adversary
A that aims to mount a forgery against HaFuFu"F. It can make q construction
queries and v verification queries. For each verification query VFYH’F(M ,T%), A
learns the following values:

Le (R, T) € {0,1}*,

Le (S|, U) € {0,1}*,
Le (ST, U*) € {0, 1},
Lc (U, U*) € {0,1}" .

Here, R, S,T,U, and U* are as described in Figure 4. Under the assumption that
outputs of H never collide, we can observe that these are the only functions that
leak information about R,T, and U for this message M. In other words, under
this assumption, leakages for different messages are independent. As Lg and L¢
are fixed, predetermined, functions, they adversary learns at most 2\ bits of
leakage on T and at most A + v\’ bits of leakage on U, for any message M.

The adversary wins if any of its ¢ construction queries returns 1. However, as
suggested above, we have to argue based on the non-existence of collisions in the
output of H, labeled R. In fact, it turns out that the adversary also has a gain
if there are collisions in the values S||U. Therefore, we will count both types of
collisions as a win for the adversary.

More detailed, we denote by bad the event that there exist two queries to
MACHF and VFYPF that satisfy R = R or S|U = §'||U". For i € {1,...,v},
we denote by win; the event that the i-th verification query succeeds. Write
win = \/!_, win;. Our goal is to bound

Pr (win) < Pr (win A —bad) + Pr (bad)

=Pr (\/ win; A —\bad> + Pr (bad)

i=1

S Z Pr (wml N _\Winl__i_l N _\bad) + Pr (bad) s (27)

i=1

where win;_o = false by definition.

Bound on Pr (win; A =winy_;_1 A —bad). Consider any i € {1,...,v}, and con-
sider the i-th query (M,T™). By —bad, message M defines a unique R, so the
construction query is independent of all other construction queries that were not
made for the message M. The oracle outputs 1 if:

— T* = T. As the adversary has so far learned at most 2\ bits of leakage on
T, this condition is set with probability at most 1/2t=2*;

— T* # T but F(S||T*) = U. Clearly, if there were an earlier message M’ for
which §' = S and T" = T*, the equation F(S||T*) = U would contradict

26

with the assumption that there is no collision S||U = S’||U’. Therefore,
necessarily, there was no earlier evaluation of F(S||T*), and the result will
be randomly drawn from a set of size at least 2¢ values. Thus, the condition
is set with probability at most 1/2¢.

Adding both cases, we get

2

Pr (win; A ~win_;_;) < ST

(28)
Bound on Pr (bad). The hash function is invoked a total number of ¢ + v times,
and any pair of invocations has colliding R = R’ with probability 1/2™ and
colliding S||U = S’||U’ with probability s +¢. As we assumed that s+ ¢ = n, we
obtain that

2("3")

27L

(29)

Conclusion. The adversary makes ¢ construction queries, each of which succeeds
with probability at most (28). Next, we have to add (29). We thus obtain from
(27) that

) 2q 2(Q+U)
Ir-mac
AdVHaFuFu (A) S 2t—2)\ + 22 .

The reasoning holds for any adversary making ¢ construction queries and v
verification queries, and this completes the proof. a

8 Conclusion

In this paper, we examined leakage resilient value comparison via cryptographic
building blocks. In short, we showed that is possible to perform value comparison
via cryptographic building blocks in a sound and leakage resilient way without
the need to protect the comparison operation at all. Hence, there is no strict need
in putting resources into the additional protection of the comparison operation.
Instead, implementers could choose an area/speed trade-off by just saving the
area needed to implement a protected verification operation in exchange for two
additional primitive executions during verification.

The probability that an adversary guesses the right value in ¢ attempts for
just a plain tag comparison in the black box setting is ¢/2!. When comparing
this with the security bounds we get for value comparison via cryptographic
functions, we see that doing the comparison cryptographic functions give the
adversary a slightly bigger advantage in succeeding. The main reason for this is
that U and U* can have the same value although 7" and 7™ might differ. We
consider this advantage to be negligible in most practical cases and value the
benefits in resistance against side-channel attacks more. However, in case this
additional advantage over a plain comparison is a concern, it is possible to lessen
it by increasing the size of U and U™*.

27

ACKNOWLEDGEMENTS. This work has been supported in part by the Austrian
Science Fund (FWF): J 4277-N38, and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402).

References

10.

11.

. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tis-

chhauser, E., Yasuda, K.: COLM v1. CAESAR, second choice for defense in depth,
https://competitions.cr.yp.to/caesar-submissions.html (2016)

Beierle, C., Jean, J., Kolbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki,
Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-
latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryp-
tology - CRYPTO 2016. LNCS, vol. 9815, pp. 123-153. Springer (2016), https:
//doi.org/10.1007/978-3-662-53008-5_5

Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. TACR Transac-
tions on Symmetric Cryptology 2019(1), 545 (2019), https://doi.org/10.13154/
tosc.v2019.11.5-45

Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to prp to prf conversion.
Cryptology ePrint Archive, Report 1999/024 (1999)

Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander,
G., Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.X., Ud-
varhelyi, B., Wiemer, F.: Spook: Sponge-based leakage-resistant authenticated en-
cryption with a masked tweakable block cipher. ITACR Transactions on Symmetric
Cryptology 2020(S1), 295-349 (Jun 2020), https://tosc.iacr.org/index.php/
ToSC/article/view/8623

Bellizia, D., Bronchain, O., Cassiers, G., Grosso, V., Guo, C., Momin, C., Pereira,
O., Peters, T., Standaert, F.X.: Mode-level vs. implementation-level physical
security in symmetric cryptography - A practical guide through the leakage-
resistance jungle. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptol-
ogy - CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 369-400. Springer (2020),
https://doi.org/10.1007/978-3-030-56784-2_13

Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Tedt, a leakage-
resist AEAD mode for high physical security applications. JACR Transactions
on Cryptographic Hardware and Embedded Systems 2020(1), 256-320 (2020),
https://doi.org/10.13154/tches.v2020.11.256-320

Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authen-
ticated encryption with decryption leakages. TACR Transactions on Symmetric
Cryptology 2017(3), 271-293 (2017), https://doi.org/10.13154/tosc.v2017.
13.271-293

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (January 2011)

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK reference.
Submission to NIST (Round 3) (2011), https://keccak.team

Bhattacharya, S., Nandi, M.: A note on the chi-square method: A tool for proving
cryptographic security. Cryptogr. Commun. 10(5), 935-957 (2018), https://doi.
org/10.1007/s12095-017-0276-z

28

https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://tosc.iacr.org/index.php/ToSC/article/view/8623
https://tosc.iacr.org/index.php/ToSC/article/view/8623
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tosc.v2017.i3.271-293
https://doi.org/10.13154/tosc.v2017.i3.271-293
https://keccak.team
https://doi.org/10.1007/s12095-017-0276-z
https://doi.org/10.1007/s12095-017-0276-z

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptol-
ogy - CRYPTO ’99. LNCS, vol. 1666, pp. 398-412. Springer (1999), https:
//doi.org/10.1007/3-540-48405-1_26

Daemen, J.: Changing of the guards: A simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2017. LNCS, vol. 10529, pp. 137-153.
Springer (2017), https://doi.org/10.1007/978-3-319-66787-4_7

Daemen, J., Dobraunig, C., Eichlseder, M., Grof}, H., Mendel, F., Primas, R.: Pro-
tecting against statistical ineffective fault attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(3), 508-543 (2020), https:
//doi.org/10.13154/tches.v2020.13.508-543

Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of xoodoo
and xoofff. TACR Transactions on Symmetric Cryptology 2018(4), 1-38 (2018),
https://doi.org/10.13154/tosc.v2018.i4.1-38

Daemen, J., Mennink, B., Assche, G.V.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology
- ASTACRYPT 2017. LNCS, vol. 10625, pp. 606—637. Springer (2017), https:
//doi.org/10.1007/978-3-319-70697-9_21

Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher
(2000), nessie Proposal

Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020), https://doi.org/10.1007/978-3-662-60769-5

Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: The case of au-
thenticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryp-
tology - ASTACRYPT 2019. LNCS, vol. 11922, pp. 209-240. Springer (2019),
https://doi.org/10.1007/978-3-030-34621-8_8

Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas,
R., Unterluggauer, T.: Isap v2.0. IACR Transactions on Symmetric Cryptology
2020(S1), 390-416 (2020), https://doi.org/10.13154/tosc.v2020.iS1.390-416
Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Transactions on
Symmetric Cryptology 2017(1), 80-105 (2017), https://doi.org/10.13154/tosc.
v2017.11.80-105

Dobraunig, C., Eichlseder, M., Mendel, F., Schliffer, M.: Ascon v1.2. Submission
to NIST Lightweight Cryptography (2019)

Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASTACRYPT 2019.
LNCS, vol. 11923, pp. 225-255. Springer (2019), https://doi.org/10.1007/
978-3-030-34618-8_8

Dobraunig, C., Mennink, B.: Security of the suffix keyed sponge. IACR Transac-
tions on Symmetric Cryptology 2019(4), 223-248 (2019), https://doi.org/10.
13154/to0sc.v2019.14.223-248

Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) Advances in Cryptology - CRYPTO
2010. LNCS, vol. 6223, pp. 21-40. Springer (2010), https://doi.org/10.1007/
978-3-642-14623-7_2

Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE Sympo-
sium on Foundations of Computer Science, FOCS 200. pp. 293-302. IEEE Com-
puter Society (2008), https://doi.org/10.1109/F0CS.2008.56

29

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.13154/tches.v2020.i3.508-543
https://doi.org/10.13154/tches.v2020.i3.508-543
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.13154/tosc.v2019.i4.223-248
https://doi.org/10.13154/tosc.v2019.i4.223-248
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1109/FOCS.2008.56

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2012. LNCS, vol. 7428, pp. 213-232. Springer (2012),
https://doi.org/10.1007/978-3-642-33027-8_13

Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that are
easier to mask: How far can we go? In: Bertoni, G., Coron, J.S. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2013. LNCS, vol. 8086, pp. 383—-399.
Springer (2013), https://doi.org/10.1007/978-3-642-40349-1_22

Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Kog, C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES’99. LNCS, vol. 1717, pp. 158-172. Springer (1999), https://doi.
org/10.1007/3-540-48059-5_15

Goudarzi, D., Jean, J., Kolbl, S., Peyrin, T., Rivain, M., Sasaki, Y., Sim, S.M.:
Pyjamask: Block cipher and authenticated encryption with highly efficient masked
implementation. JACR Transactions on Symmetric Cryptology 2020(S1), 31-59
(Jun 2020), https://tosc.iacr.org/index.php/ToSC/article/view/8617

Grof}, H., Mangard, S.: Reconciling d+1 masking in hardware and software. In:
Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2017. LNCS, vol. 10529, pp. 115-136. Springer (2017), https://doi.org/
10.1007/978-3-319-66787-4_6

Grof3, H., Mangard, S., Korak, T.: An efficient side-channel protected AES im-
plementation with arbitrary protection order. In: Handschuh, H. (ed.) Topics
in Cryptology - CT-RSA 2017. LNCS, vol. 10159, pp. 95-112. Springer (2017),
https://doi.org/10.1007/978-3-319-52153-4_6

Grosso, V., Leurent, G., Standaert, F.X., Varici, K.: Ls-designs: Bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
Fast Software Encryption - FSE 2014. LNCS, vol. 8540, pp. 18-37. Springer (2014),
https://doi.org/10.1007/978-3-662-46706-0_2

Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. JACR
Transactions on Symmetric Cryptology 2020(1), 6-42 (2020), https://doi.org/
10.13154/tosc.v2020.i1.6-42

Guo, C., Standaert, F.X., Wang, W., Yu, Y.: Efficient side-channel secure message
authentication with better bounds. IACR Transactions on Symmetric Cryptology
2019(4), 23-53 (2019), https://doi.org/10.13154/tosc.v2019.1i4.23-53

Hall, C., Wagner, D.A., Kelsey, J., Schneier, B.: Building prfs from prps. In:
Krawczyk, H. (ed.) Advances in Cryptology - CRYPTO ’98. LNCS, vol. 1462,
pp. 370-389. Springer (1998), https://doi.org/10.1007/BFb0055742

Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003.
LNCS, vol. 2729, pp. 463-481. Springer (2003), https://doi.org/10.1007/
978-3-540-45146-4_27

Jean, J., Nikoli¢, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. CAESAR, first choice for
defense in depth, https://competitions.cr.yp.to/caesar-submissions.html
(2016)

Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(3), 243—
268 (2020), https://doi.org/10.13154/tches.v2020.13.243-268

Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO

30

https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://tosc.iacr.org/index.php/ToSC/article/view/8617
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.13154/tosc.v2020.i1.6-42
https://doi.org/10.13154/tosc.v2020.i1.6-42
https://doi.org/10.13154/tosc.v2019.i4.23-53
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.13154/tches.v2020.i3.243-268

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

’96. LNCS, vol. 1109, pp. 104-113. Springer (1996), https://doi.org/10.1007/
3-540-68697-5_9

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology - CRYPTO ’99. LNCS, vol. 1666, pp. 388-397. Springer
(1999), https://doi.org/10.1007/3-540-48405-1_25

Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) Fast Software Encryption - FSE 2011. LNCS, vol. 6733,
pp. 306-327. Springer (2011), https://doi.org/10.1007/978-3-642-21702-9_18
Krovetz, T., Rogaway, P.. The OCB authenticated-encryption algorithm. RFC
7253, 1-19 (2014), https://doi.org/10.17487/RFCT253

McGrew, D.A., Viega, J.: The security and performance of the galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) Progress in
Cryptology - INDOCRYPT 2004. LNCS, vol. 3348, pp. 343-355. Springer (2004),
https://doi.org/10.1007/978-3-540-30556-9_27

Medwed, M., Standaert, F.X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient prfs. In: Prouff, E., Schaumont, P. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2012. LNCS, vol. 7428,
pp. 193-212. Springer (2012), https://doi.org/10.1007/978-3-642-33027-8_12
Medwed, M., Standaert, F.X., Nikov, V., Feldhofer, M.: Unknown-input at-
tacks in the parallel setting: Improving the security of the CHES 2012 leakage-
resilient PRF. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 602-623 (2016), https://doi.org/10.
1007/978-3-662-53887-6_22

Mennink, B.: Linking Stam’s bounds with generalized truncation. In: Matsui,
M. (ed.) Topics in Cryptology - CT-RSA 2019. LNCS, vol. 11405, pp. 313-329.
Springer (2019), https://doi.org/10.1007/978-3-030-12612-4_16

Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and
Communications Security - ICICS 2006. LNCS, vol. 4307, pp. 529-545. Springer
(2006), https://doi.org/10.1007/11935308_38

Nikova, S., Rijmen, V., Schléffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292-321 (2011), https:
//doi.org/10.1007/s00145-010-9085-7

NIST: Lightweight Cryptography (February 2019), https://csrc.nist.gov/
Projects/Lightweight-Cryptography

Pereira, O., Standaert, F.X., Vivek, S.: Leakage-resilient authentication and en-
cryption from symmetric cryptographic primitives. In: Ray, 1., Li, N., Kruegel,
C. (eds.) ACM SIGSAC Conference on Computer and Communications Security
2015. pp. 96-108. ACM (2015), https://doi.org/10.1145/2810103. 2813626
Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) Advances in
Cryptology - EUROCRYPT 2009. LNCS, vol. 5479, pp. 462-482. Springer (2009),
https://doi.org/10.1007/978-3-642-01001-9_27

Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology
- CRYPTO 2015. LNCS, vol. 9215, pp. 764-783. Springer (2015), https://doi.
org/10.1007/978-3-662-47989-6_37

Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Systems, CHES
2010. LNCS, vol. 6225, pp. 413-427. Springer (2010), https://doi.org/10.1007/
978-3-642-15031-9_28

31

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.17487/RFC7253
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-662-53887-6_22
https://doi.org/10.1007/978-3-662-53887-6_22
https://doi.org/10.1007/978-3-030-12612-4_16
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1007/978-3-642-01001-9_27
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

55. Simon, T., Batina, L., Daemen, J., Grosso, V., Massolino, P.M.C., Papagiannopou-
los, K., Regazzoni, F., Samwel, N.: Friet: An authenticated encryption scheme
with built-in fault detection. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryp-
tology - EUROCRYPT 2020. LNCS, vol. 12105, pp. 581-611. Springer (2020),
https://doi.org/10.1007/978-3-030-45721-1_21

56. Stam, A.J.: Distance between sampling with and without replacement. Statistica
Neerlandica 32(2), 81-91 (1978), https://dx.doi.org/10.1111/j.1467-9574.
1978.tb01387.x

57. Standaert, F.X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography un-
der empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) Advances
in Cryptology - CRYPTO 2013. LNCS, vol. 8042, pp. 335-352. Springer (2013),
https://doi.org/10.1007/978-3-642-40041-4_19

58. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003)

59. Unterstein, F., Schink, M., Schamberger, T., Tebelmann, L., Ilg, M., Heyszl, J.:
Retrofitting leakage resilient authenticated encryption to microcontrollers. TACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(4), 365—
388 (2020), https://doi.org/10.13154/tches.v2020.14.365-388

60. Yu, Y., Standaert, F.X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
Conference on Computer and Communications Security CCS 2010. pp. 141-151.
ACM (2010), https://doi.org/10.1145/1866307.1866324

A Usage of Public Vs. Secret (Tweakable) Permutation

The choice between public versus secret primitives in the first place has an
affect at the implementation side on the assumed protection level. First, we
take a look at the case of a secret (tweakable) permutation, which in practice
will usually be implemented using a (tweakable) block cipher. The (tweakable)
block cipher uses a secret key, and its implementation is assumed not to leak any
information on this secret key or other internal intermediate computation results.
Typically, this means that the implementation of the (tweakable) block cipher
relies on higher-order masking. In contrast, a public cryptographic permutation
does not use a key. So, it is sufficient for the implementation of the public
cryptographic permutation to limit the entropy loss of the target tag T" to A bits.
Coincidentally, this matches with ISAP’s requirements on the implementations
of its permutations, e.g., that the implementation has to be protected against
simple power analysis (SPA) [21].

Another obvious difference lies in the security bounds. For the sake of sim-
plicity, consider the bound we get for value comparison when using a public
cryptographic permutation given in Corollary 2, and the use case of a secret
tweakable permutation, typically a tweakable block cipher, as given in Corol-
lary 3. To get a better grasp and visualization of the differences between the
bounds, we instantiate them with typical parameters that we find for 128 bits of
black-box security. First, we assume that p rises with ¢ and that e = A = 2. In
the case of a public permutation, we assume Ascon-like [22] dimensions, setting

32

https://doi.org/10.1007/978-3-030-45721-1_21
https://dx.doi.org/10.1111/j.1467-9574.1978.tb01387.x
https://dx.doi.org/10.1111/j.1467-9574.1978.tb01387.x
https://doi.org/10.1007/978-3-642-40041-4_19
https://doi.org/10.13154/tches.v2020.i4.365-388
https://doi.org/10.1145/1866307.1866324

n =320 and ¢ = u = 128, where we set mlf2,_ = mif2,q o, ~ 640. We get,
according to Corollary 2:

g 2(¢+p) 1280p 1280
Advidd(4) < : 30
Vorve () = 9l24 _ (2q er) 92190 _ (2q +p) 2192 ()
For the tweakable block cipher, we assume SKINNY-like [2] parameters, having
a key, tweak, and block size of 128 bits and hence, n =t =u=r =s=128. In
this case, we get, according to Corollary 3:
AdvEid () < — 29 4 Advier (g r) (31)
OTEVP = 9124 _ 9y T \4,T)-
A visualization of the bounds (30) and (31) is given in Figure 5, where we can see
that for practical parameter choices, the bounds behave similarly. Please note
that the given bounds are not necessarily tight. Especially, in the case of using
a tweakable block cipher without truncation (31), it is likely that the bound can
be improved slightly.

1 T I I I I I
—— PVP with Ascon-like parameters (34)
- - - TEVP with SKINNY-like parameters (35)
(o)
oD
<
=
@
>
°
<
0 | | | | | | | |
21 218 235 252 269 286 2103 2120

(p+q)orq

Fig. 5: Leakage resilient value comparison security if using a public permutation
with Ascon-like parameters, (30), or if using a secret tweakable block cipher with
SKINNY-like parameters, (31).

Another difference between Corollary 2 and Corollary 3 lies in the disappear-
ance of the parameter p in Corollary 3, and hence, only the (online) construction
complexity g remains visible. This, however, does not mean that tweakable block
cipher-based solutions can only be broken with a massive number of queries to
the construction. Offline computations an attacker can do in the case of Corol-
lary 3 affect the term Advi®P(g, 7). This term in turn covers, e.g., brute force
attacks to recover the secret key of the tweakable block cipher.

33

B Proof of Theorem 2

Let L = (Ltp, Lc) € £ be any two leakage functions and let S C {0,1}° be a list
of ¢ distinct salts. Let TP & perm(r,n) be a family of random permutations, and
let T << ({0,1})* be a list of target values T}, where each T; has min-entropy at
least t —e. For any j € {1,...,u}, Define TP(S;|07%, T;(|0"~*) = U, ||V}, where
U; € {0,1}* and V; € {0,1}"*. By definition, we have U; = TPVPT"(S;, T}).
Consider any adversary A that can make ¢ queries (j,T*) to O;?%/P’TP of (9),

and p direct queries to TP*. For each of the q construction queries, A also learns
the following values:

Lve (5501072, Ty[0"~, Uy |V5) € {0,1}*,
Lre (S5[1077, 710", TP(S;[j07~*, T*||0"~")) € {0,1}*,
Le (U5, TPVPTR(5;, 7)) € {0, 11

Note that, as Lyp and Lc are fixed, predetermined, functions, the adversary
learns at most A bits of leakage on T}, A bits of leakage on V;, and A + ¢\’ bits
of leakage on Uj, for any j € {1,...,u}.

The adversary wins if any of its ¢ construction queries returns 1. However,
the probability for this to occur depends on “lucky” primitive queries. In detail,
if the adversary happens to make a primitive query of the form

(S [10m==, " [l Om=*, Uy | +77),

for any j € {1,...,u}, it can use this to make the construction oracle output 1
with probability 1. Therefore, we also say that the adversary wins if any of its
p primitive queries is of above form.

More detailed, for i € {1,...,q + p}, we denote by win; the event that the
i-th query is

— a construction query (j, T*) that satisfies TPVPTP(Sj,T*) =Uj, or
— a primitive query (R, X,Y) that satisfies R = S;||0"~%, right,,_,(X) = 0",
and left, (Y) = U; for some j € {1,...,u}.

Write win = \/%7 win;. Our goal is to bound

q+p q+p
Pr (win) = Pr (\/ wini> <> Pr(win; A -winy ;1) (32)

i=1 i=1

where winy o = false by definition.

Bound on Pr (win; A =win;_;_1). Consider any i € {1,...,q + p}, and consider
the i-th query. We will make a distinction between a construction query, forward
primitive query, and inverse primitive query.

34

— Construction query. Consider any construction query (j,7*) to O;?%/P’TP.

Clearly, if there were an earlier primitive query of the form (S;||0" %, T*||0"~*),
then by —winq_,_; its outcome is not of the form Uj||«"~*, and the oracle
will not output 1. Therefore, we can assume that this query has not been
made directly to TP yet.

The oracle outputs 1 if:

o T* =T}. As the values T are randomly generated with a min-entropy
of at least t — ¢, and as the adversary has so far learned at most A bits
of leakage on T, this condition is set with probability at most 1/ Qt—e=A,

o T* # T but TPVPTP(S;,T*) = U;. As there was no earlier evaluation
of TP(S;]]0"~#,T*||0"~*), the result will be randomly drawn from a set
of size at least 2™ — (u+ i — 1) > 2™ — (u + ¢ + p) values, and at most
2"~ of these satisfy TPVPTF(S;,T*) = U;. Thus, the condition is set
with probability at most 2"7%/(2" — (u + q + p)).

Adding both cases, we get

Pr (win; A —=winy_;_1 A i-th query to construction) <
2

omin{t—e—XAu} _ (:U/ +q+ p) ’ (33)

— Forward primitive query. Consider any forward primitive query (R, X,Y") to
TP. Without loss of generality, R = S;[|0""% and X = T*||0"* for some
je{l,...,u} and T* € {0,1}! (otherwise, the query cannot set win;). Note
that the value 7 is unique as S is assumed to contain no collisions. We can
also assume that neither this query has been made to TP yet, nor (j, 7*) has
been queried to the construction oracle before.
Now, the forward primitive query sets win; if 7% = T or if Y = Uj|[+" ™",
and the analysis is identical to that of construction queries. We thus obtain

Pr (win; A =winy ;1 A i-th query to forward primitive) <
2 .
omin{t—e—X\u} _ ('u +q+ p) ’

(34)

— Inverse primitive query. Consider any inverse primitive query (R, X,Y) to
TP. Without loss of generality, R = 5;||0"° for some j € {1,...,u}. Note
that the value j is unique as S is assumed to contain no collisions. At the
point of making this primitive query, the adversary has learned at most
A+ g)\ bits of information about U;. We will be more generous, and assume
w.l.o.g. that the inverse query is of the form Uj||V* for some V* € {0,1}" ™.
We can assume that this query has not been made to TP yet.

The inverse primitive query sets win; if for any of these possible values j:
o VV* =V;. As the adversary has so far learned at most A bits of leakage
on Vj, this condition is set with probability at most 1/2n—u=A,
o V* £V, but X = T*||0"* for some T™*. As there was no earlier eval-
uation of TP~'(S;]|0"~*,U;||V*), the result of will be randomly drawn
from a set of size at least 2" — (u+1i—1) > 2™ — (u+ ¢ + p) values, and

35

at most 2¢ of these satisfy right,,_,(X) = 0"~‘. Thus, the condition is
set with probability at most 2¢/(2" — (1 + q + p)).
Adding both cases, we get

Pr (win; A =winy_;_1 A i-th query to inverse primitive) <
2
on—max{t,u+A} _ (/.t +q+ p) :

(35)

Conclusion. The adversary makes ¢ construction queries, each of which succeeds
with probability at most (33), and p primitive queries, each of which succeeds
with probability the maximum of (34) and (35). For simplicity, we do not max-
imize, but rather take the sum. We thus obtain from (32) that

Ir-ve[p] 2((] + p) 2p
AdVOTPVP (A) < omin{t—e—X\u} _ (M +q +p) + on—max{t,u+A} _ (’u +gq +p) :

The reasoning holds for any adversary making ¢ construction queries and p
primitive queries, and this completes the proof.

36

	Leakage Resilient Value Comparison With Application to Message Authentication
	Introduction
	Formal View on Leakage Resilient Value Comparison
	Two Practical Solutions
	Application to Message Authentication
	Comparison of Proposed Solutions

	Preliminaries
	Multicollision Limit Function
	Block Ciphers and Tweakable Block Ciphers

	Security Model for Value Comparison
	Value Comparison in Black-Box Model
	Value Comparison in Leaky Model
	Security Model for Leakage Resilient Value Comparison

	Value Comparison Based on Permutation
	Leakage Resilience of Value Comparison With PVP
	PVP with Secret Permutation
	PVP with Public Permutation

	Value Comparison Based on Tweakable Permutation
	Leakage Resilience of Value Comparison With TPVP
	TPVP with Secret Tweakable Permutation
	TPVP with Public Tweakable Permutation

	Freedom of Salts
	Random Salts
	Omission of Salt
	Note on Disclosing Salts

	Application to Message Authentication
	Security Model for Leakage Resilient MAC Plus Value Comparison
	StP: SuKS-then-PVP
	HaFuFu: MAC Plus Value Comparison With Same Primitive

	Conclusion
	Usage of Public Vs. Secret (Tweakable) Permutation
	Proof of Theorem 2

