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Abstract

Existing proofs for existing Discrete Log (DL) based multi-signature schemes give only weak
guarantees if the schemes are implemented, as they are in practice, in 256-bit groups. This
is because the underlying reductions, which are mostly in the standard model and from DL,
are loose. We show that relaxing either the model or the assumption suffices to obtain tight
reductions. Namely we give (1) tight proofs from DL in the Algebraic Group Model, and (2)
tight, standard-model proofs from well-founded assumptions other than DL. We first do this
for the classical 3-round schemes, namely BN and MuSig. Then we give a new 2-round multi-
signature scheme, HBMS, as efficient as prior ones, for which we do the same. These multiple
paths to security for a single scheme are made possible by a framework of chain reductions,
in which a reduction is broken into a chain of sub-reductions involving intermediate problems.
Overall our results improve the security guarantees for DL-based multi-signature schemes in the
groups in which they are implemented in practice.
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1 Introduction

Usage in cryptocurrencies has lead to interest in practical, Discrete-Log-based multi-signature
schemes. Proposals exist, are efficient, and are supported by proofs, BUT, the bound on ad-
versary advantage in the proofs is so loose that the proofs fail to support use of the schemes in the
256-bit groups in which they are implemented in practice. This leaves the security of in-practice
schemes unclear.

We ask, is it possible to bridge this gap to give some valuable support, in the form of tight
reductions, for in-practice schemes? As long as we stay in the current paradigm, namely standard-
model proofs from DL, the answer is likely NO. To make progress, we need to be willing to change
either the model or the assumption. We show that in fact changing either suffices. Our approach is
to give, for any scheme, many different paths to security. In particular we give (1) tight reductions
from DL in the Algebraic Group Model (AGM) [16], and (2) tight, standard-model reductions
from well-founded assumptions other than DL. We obtain these results via a framework in which
a reduction is “factored” into a chain of sub-reductions involving intermediate problems.

We implement this approach first with classical 3-round schemes, giving chain reductions yield-
ing (1) and (2) above for the BN [6] and MuSig [24] schemes. Then, in the space of 2-round schemes,
we give a new, efficient scheme, called HBMS, for which we do the same. We now look at all this
in more detail.

BACKGROUND. A multi-signature ¢ on a message m can be thought of as affirming that “We,
the members of this group, all, jointly, endorse m.” The group is indicated by the vector vk =
(vk[1],...,vk[n]) of individual public verification keys of its members, and can be dynamic, chang-
ing from one signature to another. Signing is done via an interactive protocol between group
members; each member ¢ begins with its own public verification key vk[i], its matching private
signing key skli], and the message m, and, at the end of the interaction, they output the multi-
signature o. The latter should be compact (of size independent of the size of the group), precluding
the trivial solution in which o is a list of the individual signatures of the group members on m.

Following its suggestion in the 1980s [19], the primitive has seen much evolution 18, 21, 28], [25]
6]. Early schemes assumed all signers in the signing protocol picked their verification keys honestly.
“Rogue-key attacks,” in which a malicious signer picked its verification key as function of that of
an honest signer, lead to an upgraded target, schemes that retain security even in the presence
of adversarially-chosen verification keys. Towards this challenging end we first saw schemes either
using interactive key-generation [25] or making the “knowledge of secret key” assumption [9, 22].
Finally, BN [6] gave an efficient, Schnorr-based scheme in the “plain public-key” model, where
security was provided even in the face of maliciously-chosen verification keys, yet no more was
assumed about these keys than their having certificates as per a standard PKI.

The BN model and definition have become the preferred target; it is the one used in the schemes
we discuss next, and in our scheme as well. We denote the security goal as MS-UF'. In Section {4| we
define it via a game, and define the ms-uf advantage of an adversary as its probability of winning
this game.

A NEW WAVE. Applications in blockchains and cryptocurrencies —see [10] for details— have fu-
eled a resurgence of interest in multi-signatures. The desire here is MS-UF-secure, DL-based
schemes that work over standard elliptic curves such as Secp256k1 or Curve25519. (Pairing-based
schemes [10] are thus precluded.) The natural candidate is BN. But the new application arena
has lead to a desire for the following further features, not possessed by BN: (1) Key aggregation.
There should be a way to aggregate a set of verification keys into a single, short aggregate key,
relative to which signatures are verified. (2) Two rounds. A signing protocol using only 2 rounds of
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Figure 1: Bounds on ms-uf advantage for the 3-round schemes BN and MuSig. First we
show prior bounds, then ours. In each case we first show the upper bound UBI,\T,}%'“f(t, q,qs,D) as a
formula, where t, q, ¢s are, respectively the adversary running time, the number of its RO queries
and the number of executions of the signing protocol, while prime p is the size of the underlying
group G. We then show the evaluation with t = ¢ = 280, ¢, = 230 and p ~ 220, to capture security

over 256-bit curves Secp256kl or Curve25519.

interaction, as opposed to the 3 used by BN.

MuSig [24, 10] broke ground by adapting BN to add key aggregation. Now the effort moved to
reducing the number of rounds. This proved challenging. Early proposals of two-round schemes
—|2, 23, 134] as well as an early, two-round version of MuSig [24]— were broken by DEFKLNS [14].
To fill the gap, DEFKLNS gave a new two-round scheme, mBCJ. Other proposals followed:
MuSig2 [26], MuSig-DN [27] and DWMS [1]. All these support key aggregation.

All the schemes discussed here come with proofs of MS-UF security based on the hardness of
the DL (Discrete Log) problem in the underlying group G, up to variations in the model (standard
or AGM [16]) or the type of DL problem (plain or OMDL [5]).

CURRENT BOUNDS. On being informed that a scheme has a proof of security based on the hardness
of the DL problem in an underlying elliptic-curve group G, the expectation of a practitioner is that
the probability that a time ¢ attacker can violate MS-UF security is no more than the probability
of successfully computing a discrete logarithm in G, which, as per [33], is t?/p, where p, a prime,
is the size of G. Concretely, with the 256-bit curves Secp256kl or Curve25519 —p ~ 226 they
would expect that a time ¢ ~ 289 attacker has ms-uf advantage at most 2160—256 — -9

But this expectation is only correct if the reduction in the proof is tight. Current proofs for
DL-based multi-signature schemes are loose. With the 256-bit curves Secp256kl or Curve25519,
and for a 2%0-time attacker, the proof of [6] for BN can preclude only a 2~® ms-uf advantage, while
the proof of [24} |10] for MuSig cannot even preclude a ms-uf advantage of 1, meaning there may
be, per the proof, no security at all (cf. Figure . For 2-round schemes, the advantage precluded
by current proofs is 2710 in one case, and again just 1 for the others (cf. Figure . Overall, the
proofs fail, by big margins, to support the parameter choices and expectations of practice.

Before continuing, let us expand on the above estimates. A proof of MS-UF security for a multi-
signature scheme MS gives a formula UBI,\I,}%'Uf(t, q, qs, p) that upper bounds the ms-uf advantage of
an adversary as a function of its running time ¢, the number ¢ of its queries to the random oracle,
and the number g5 of executions of the signing protocol in the chosen-message attack in the ms-uf
game. They are shown in Figures [I| and We assume that t > ¢ > qs. To get these formulas,
we first assume that the best attack against the DL problem is generic, so that a time ¢ attacker
has success probability at most t2/p [33]. Next, we use the concrete-security results, in theorems
in the papers, that give reductions from the DL problem to the MS-UF security of their scheme.
The square-roots in the formulas arise from uses of forking lemmas [30, 6, 2]; the fourth-roots from
nested use. The bounds in our Figures are approximate, dropping negligible additive terms. The
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Figure 2: Bounds on ms-uf advantage for 2-round schemes. First we show bounds for
prior schemes, then the bounds for our new scheme HBMS. As before, we first show the upper
bound formula UBI,\’}}SS'“f(t, q,4s,Dp), where t, q,qs are, respectively the adversary running time, the
number of its RO queries and the number of executions of the signing protocol, while prime p is
the size of the underlying group G. We then show the evaluation with ¢t = ¢ = 280, ¢, = 230 and
p ~ 226 to capture security over 256-bit curves Secp256kl or Curve25519. For MuSig2, results
differ depending on a parameter v of the scheme. We also show estimates of signing time (per
signer) and verification time. Here 7)™ is the time to compute one n-multi-exponentiation in G.
The “NIZK” for MuSig-DN indicates that signing requires computation and verification of a NIZKs,
which is (much) more expensive then other operations shown.

proofs on which the bounds of Figures || and [2| are based, are, for BN [6], MuSig [10, |24], mBCJ
[14], MuSig-DN [27] and MuSig2 (v > 4) [26], in the standard model; and for MuSig2 (v = 2) [26],
DWMS [1] and HBMS, in the AGM. See Appendix |A| for details.

TOWARDS BETTER BOUNDS. Our thesis is that proofs should provide, not merely a qualitative
guarantee, but one whose bounds quantitatively support parameter choices made in practice and
the indications of cryptanalysis. Accordingly we want multi-signature schemes for which we can
prove tight bounds on ms-uf advantage. How are we to reach this end? Impossibility results for
Schnorr signatures [29, |20], on which the multi-signature schemes under consideration are based,
indicate that a search for tight reductions that are both (1) in the standard model, and (2) from
DL, is unlikely to succeed. We need to be flexible, and relax either (1) or (2). In fact we show
that relaxing either suffices: We give (1) tight reductions from DL in the Algebraic Group Model
(AGM) [16], and (2) tight, standard-model reductions from assumptions other than DL. Together,
these provide valuable theoretical support for the use of practical multi-signature schemes in 256-bit
groups.

AGM. The AGM considers a limited, but still large class of adversaries, called algebraic. When
such an adversary queries a group element to an oracle, it provides also its representation in terms of
prior group elements that the adversary has seen. Intuitively, the assumption is that the adversary
“knows” how group elements it creates are represented. For elliptic curve groups, this appears to be
a realistic assumption, and here the AGM captures natural and currently-known attack strategies.

When considering the merits of the AGM, an important one to keep in mind is that a proof in
the AGM immediately implies a proof in the well-accepted Generic Group Model (GGM) of [33].
(So the AGM is only “better” than the GGM.) In more detail, a tight AGM reduction from DL to
some problem X immediately yields a GGM bound on adversary advantage, for X, that matches the
GGM bound for DL [16]. Thus, overall, tight AGM reductions provide a valuable guarantee. This




is recognized by Fuchsbauer, Plouviez and Seurin [17] who use the AGM to give a tight reduction
from DL to the UF security of the Schnorr signature scheme. Their result gives hope, realized here,
that such reductions are possible for multi-signatures as well.

CHAIN REDUCTIONS. We achieve the above ends, and more, as follows. For each multi-signature
scheme MS we consider, we give a chain of reductions, starting from DL, that we depict as

DL=Py—>P1—>---—Pp_1—>P,=MS,

where Py, ..., P,,_1 are intermediate computational problems. We refer to m > 1 as the length of
the chain. For each step P;_; — P; we provide one of the following.
1. A tight, standard-model reduction. This is the ideal and done for as many steps as possible.
2. When 1. is not possible, we give BOTH of the following:

2.1 A tight AGM reduction, AND ALSO

2.2 A non-tight standard-model reduction.
Since a tight standard-model reduction implies a tight AGM one, this yields a tight AGM reduction
from DL to MS, the first of our goals stated above. (A bit better, since some sub-reductions are
standard-model.) For ¢ such that the chain P; — --- — MS consists only of tight standard-model
reductions, we have a tight, standard model proof of MS from assumption P;, realizing our second
goal, stated above, of tight standard-model reductions from assumptions other than DL. (Of course
how interesting or valuable this is depends on the choice of P;, but as discussed below, we are able
to make well-founded choices.)

Finally, something not yet mentioned, that follows from 1 and 2.2 of the chain reductions, is
that we always have a standard model (even if non-tight) reduction DL — MS. This means that,
while adding tight AGM reductions that are valuable in practice, we are not lowering the theoretical
or qualitative guarantees, these remaining as one would expect or desire.

Chain reductions can be seen as a way to implement a modular proof framework in the style
of [20], in which steps are reused across proofs for different schemes.

NEW BOUNDS FOR CLASSICAL SCHEMES. We start by revisiting the classical 3-round schemes, namely
BN and MuSig. Figure [3|illustrates our chains, that we now discuss.

IDL, formulated in [20] —they call it IDLOG, which we have abbreviated— is a purely group-
based problem that is equivalent to the security against parallel impersonation under key-only
attack (PIMP-KOA) of the Schnorr ID scheme. A tight GGM bound for IDL was shown by [20],
but an AGM reduction DL — IDL does not seem to be in the literature; we fill this gap by providing
it in Theorem A (non-tight) standard model DL — IDL reduction is in [20], but we slightly
improve it in Theorem

Now our chain for BN is DL — IDL — BN. This chain has length 2. Our main result for
BN is Theorem which shows IDL — BN with a tight, standard model reduction. Putting this
together with our above-mentioned tight DL — IDL. AGM-reduction of Theorem we get a tight
DL — BN AGM-reduction. Also our tight, standard-model IDL. — BN reduction says that BN is
as secure as the Schnorr identification scheme, which is valuable in its own right since the latter
has withstood cryptanalysis for many years.

We introduce an intermediate, purely group-based problem we call XIDL. We show IDL —
XIDL with a tight AGM reduction (Theorem [3.3) and a (non-tight) standard-model reduction
(Theorem (3.4)).

Our chain for MuSig is DL — IDL — XIDL — MuSig. This chain has length 3. Our main result
for MuSig is Theorem which shows XIDL — MuSig with a tight, standard model reduction.
Putting this together with the rest of the chain, we get a tight DL. — MuSig AGM-reduction. If
we are willing to view XIDL as an assumption extending IDL, we can also view MuSig as based
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1 Reduction SM AGM
DL BN I DL—IDL  Th.[3.9 Th.[3.1
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4 3  IDL — XIDL Th.[3.4 Th. 3.3

XIDL MuSig 4 XIDL — MuSig Th.|6.1] -
5 XIDL — HBMS Th.g Th. 7.1
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Figure 3: Chain reductions for multi-signatures. SM stands for “Standard Model” and AGM
for “Algebraic Group Model.” An arrow P — Q means a reduction from P to Q; i.e. a proof that
P implies Q. A boldface Theorem Number indicates the reduction is tight. A blank appears in
the AGM column when a (tight) SM reduction to its left makes the AGM reduction unnecessary.
Writing a MS scheme like BN, MuSig, HBMS as a point in a chain refers to MS-UF security of the
scheme in question.

tightly on that.

This means we show that UBﬁss'“f(t, q,qs,p) < t?/p for both schemes, matching the DL bound.
This is tight and optimal, since the multi-signature schemes can be broken by taking discrete-logs.
Figure [1] compares our results with the prior ones.

NEW 2-ROUND SCHEME. Turning to 2-round schemes, we give a new scheme, called HBMS. HBMS
supports key aggregation, in line with other 2-round schemes. Our chain for our new 2-round HBMS
scheme is DL — IDL — XIDL — HBMS. This chain has length 3. We show XIDL — HBMS with
a tight AGM reduction (Theorem and a (non-tight) standard-model reduction (Theorem [7.2).
Putting this together with the rest of the chain, we get a tight DL, — HBMS AGM-reduction, in
particular showing UBI,\ﬁSS_uf(t, q,qs,p) < t?/p, matching the DL bound. We also get a (non-tight)
DL — HBMS standard-model-reduction.

Figure 2| compares HBMS with prior 2-round schemes. It shows that our improvement in security
is not at the cost of efficiency. (Signing in HBMS is as efficient, or more so, than in prior schemes.
For verification, MuSig-DN [27] is slightly faster, but signing in the latter is prohibitive due to the
use of NIZKs.)

As the above shows, we reuse steps across different chains. Thus XIDL is an intermediate point
for both MuSig and HBMS, and IDL for both BN and XIDL. This simplifies proofs and reduces
effort. It also shows common elements and relations across schemes.

EQUIVALENCES. As discussed above, Theorem shows IDL — BN with a tight, standard model
reduction. We also give, in Theorem [5.2] a converse, namely a tight, standard-model reduction
showing BN — IDL. This shows that IDL and BN are, security-wise, equivalent. Similarly, as
discussed above, Theorem shows MuSig — XIDL with a tight, standard model reduction,
and we also give, in Theorem a converse, namely a tight, standard-model reduction showing
XIDL — MuSig. This shows that XIDL and MuSig are equivalent. Overall, this shows that IDL
and XIDL are not arbitrary choices, but characterizations of the schemes whose consideration is




necessary.

DEFINITIONAL CONTRIBUTIONS. DEFKLNS [14] found subtle gaps in some prior proofs of security
for some two-round multi-signature schemes [2, 23| [34]. This indicates a need for greater care in the
domain of multi-signatures. We suggest that this needs to begin with definitions. The ones in prior
work, stemming mostly from [6], suffer from some lack of detail and precision. In particular, the
very syntaz of a multi-signature scheme is not specified in detail. This results in scheme descriptions
that lack in precision, and proofs that stay at a high level in part due to lack of technical language
in which to give details. This in turn can lead to bugs.

To address these issues, we revisit the definitions. We start by giving a detailed syntax that
formalizes the signing protocol as a stateful algorithm, run separately by each player. Details
addressed include that a player knows its position in the signer list, that player identities are
separate from public keys, and integration of the ROM through a parameter describing the type
of ideal hash functions needed. Then we give a security definition written via a code-based game.
See Section [4]

RELATED WORK. The interest for blockchains and cryptocurrencies, and thus our focus, is DL-
based schemes over elliptic curves. There are many other multi-signature schemes, based on other
hard problems. Aggregate signatures [11 4] yield multi-signatures, but these use pairings (bilinear
maps). A pairing-based multi-signature scheme is also given in [10]. Lattice-based multi-signature
schemes include |15} [13].

As noted above, IDL [20] captures the security against parallel impersonation under key-only
attack (PIMP-KOA) of the Schnorr ID scheme and thus, given the ZK property of the scheme,
also its security against parallel impersonation under passive attack (PIMP-PA). “Parallel” means
multiple impersonation attempts are allowed. IMP-PA, traditional security against impersonation
under passive attack, is the case where just one impersonation attempt is allowed. The Reset
Lemma [7] gives a standard model DL — IMP-PA reduction. This uses rewinding and is non-tight,
with a square-root loss. BD [3] introduce the Multi-Base Discrete Logarithm (MBDL) problem,
give a tight standard-model MBDL — IMP-PA reduction, and show that, in the GGM, the security
of MBDL is the same as that of DL. An interesting open question is whether MBDL can be used
as a starting point for tight reductions for multi-signature schemes. Rotem and Segev [31] give a
standard model DL — IMP-PA reduction that improves the square-root-loss reduction but is still
not tight.

2 Preliminaries

NOTATION. If n is a positive integer, then Z,, denotes the set {0,...,n —1} and [n] or [1..n] denote
the set {1,...,n}. If @ is a vector then |x| is its length (the number of its coordinates), x[i] is its
i-th coordinate and [x] = {@[i] : 1 <1 < |x|} is the set of all its coordinates. A string is identified
with a vector over {0, 1}, so that if x is a string then z[i] is its i-th bit and |z| is its length. By ¢
we denote the empty vector or string. The size of a set S is denoted |S].

Let S be a finite set. We let x <—s .S denote sampling an element uniformly at random from S
and assigning it to z. We let y < A91(z1,...;p) denote executing algorithm A on inputs z, ...
and coins p with access to oracles O, ..., and letting y be the result. We let p <—s rand(A) denote
sampling random coins for algorithm A and assigning it to variable p. We let gy <—s A% (1, ...)
be the result of p <—srand(A) followed by y < A%V (x1,...;p). We let [A91(z1,...)] denote the
set of all possible outputs of A when invoked with inputs z1,... and oracles Oy, .... Algorithms
are randomized unless otherwise indicated. Running time is worst case.

GAMES. We use the code-based game playing framework of [§]. (See Fig. 4| for an example.) Games



have procedures, also called oracles. Amongst these are INIT and a FIN. In executing an adversary A
with a game Gm, procedure INIT is executed first, and what it returns is the input to A. The latter
may now call all game procedures except INIT, FIN. When the adversary terminates, its output is
viewed as the input to FIN, and what the latter returns is the game output. By Gm(A) = y we
denote the event that the execution of game Gm with adversary A results in output y. We write
Pr[Gm(A)] as shorthand for Pr[Gm(.A) = true|, the probability that the game returns true. In
writing game or adversary pseudocode, it is assumed that boolean variables are initialized to false,
integer variables are initialized to 0 and set-valued variables are initialized to the empty set ().

A procedure (oracle) with a certain name O may appear in several games. (For example, CH
appears in two games in Figure ) To disambiguate, we may write Gm.O for the one in game Gm.

When adversary A is executed with game Gm, we consider the running time of A as the running
time of the execution of Gm(.A), which includes the time taken by game procedures. By Qg we
denote the number of queries made by A to oracle O in the execution. These counts are both worst
case.

GRroups. Throughout, G is a group whose order, assumed prime, we denote by p. We will use
multiplicative notation for the group operation, and we let 1g denote the identity element of G.
We let G* = G\ {1g} denote the set of non-identity elements, which is the set of generators of G
since the latter has prime order. If g € G* is a generator and X € G, then DLg 4(X) € Z,, denotes
the discrete logarithm of X in base g.

ALGEBRAIC ALGORITHMS. We recall the definition of algebraic algorithms [16]. As above, fix a
group G of prime order p, and let g be a generator. In all of our security games involving G and
g, we assume that any inputs and outputs of game oracles that are group elements (meaning,
in G) are distinguished. In particular, it will be clear from the game pseudocode definition which
components of inputs and outputs are such group elements. We say that an adversary, against game
Gm, is algebraic, if, whenever it submits a group element Y € G as an oracle query, it also provides,
alongside, a representation of Y in terms of group elements previously returned by the game oracles
(the latter including INIT). Specifically, suppose during an execution of adversary A with game Gm,
the adversary submits a group element Y € G to game oracle O. Then, alongside, it must provide
a vector (vg,v1,...,Um) € Z}', called a representation of Y, such that Y = g% - hi*---hYm, where
h1,...,h, are the group elements that have been returned to the adversary by game oracles of
Gm, so far. When considering an execution of game Gm with an adversary A that is not algebraic,
we omit the writing of representations in the oracle calls.

HEDCING. Not all attacks are algebraic. The thesis of [16] is that natural ones are, and thus proving
security relative to algebraic adversaries gives meaningful guarantees in practice. We adopt this
here but add hedging. Recall this means that, for the same scheme, we seek both (1) A tight AGM
reduction from DL, and (2) a standard-model (even if non-tight) reduction from DL. The former is
used to guide and support parameter choices. The latter is viewed as at least qualitatively ruling
out non-algebraic attacks.

REDUCTIONS. All our standard-model reductions are black-box and preserve algebraic-ness of ad-
versaries, meaning, if the starting adversary is algebraic, so is the constructed one. This means
that we can chain standard-model reductions with AGM-reductions to get overall AGM reductions.

3 Hardness of problems in groups

Our chain reductions exploit three computational problems related to groups: standard discrete
log (DL); IDL [20]; and a new problem XIDL that we introduce. Here we give the definitions. We
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Figure 4: Let G be a group of prime order p = |G|, and let ¢ € G* be a generator of G. Let
q,q1,q2 be positive integers. Top: Game defining discrete logarithm (DL) problem. Bottom left:
Game defining identification logarithm (IDL) problem. Bottom right: Game defining random-target
identification logarithm (XIDL) problem.

then show the length-2 chain DL — IDL — XIDL. We give reductions that are tight in the AGM
and also give (non-tight) standard-model reductions, a total of four results. Referring to Figure
we are establishing the four theorems, shown in the table, that correspond to arrows 1 and 3. For
the rest of the section, we fix a group G of prime order p, and a generator g € G.

DL. We recall the standard discrete logarithm (DL) problem via game Gdel’g in Figure [4. INIT
provides the adversary, as input, a random challenge group element X, and to win it must out-
put ' = DLg 4(X) to FIN. We let Advglyg(A) = Pr[Gm%{g(A)] be the discrete-log advantage of
adversary A.

IDL. The identification discrete logarithm (IDL) problem, introduced by KMP [20], characterizes
the hardness of parallel impersonation under key-only attack (PIMP-KOA) security [20] of the
Schnorr identification scheme [32]. Formally, consider the game Gmié{lg,q given in Fig. 4| where
parameter ¢ is a positive integer. The IDL-adversary receives a random target point X from INIT.
It is additionally given access to a challenge oracle CH that can be called at most ¢ times. The
oracle takes as query a group element R (representing the commitment sent by the prover in Schnorr
identification), stores it as R;, and responds with a random challenge ¢; <—s Z,, (representing the
one sent by the verifier). The adversary wins if it can produce the discrete log z (representing
the final prover response) of the group element R; - X for a choice of i, denoted I, made by the

adversary. We define the IDL-advantage of A to be Advi&{q’q(A) = Pr[Gmic_‘;i}gﬂ(A)].
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KMP [20] study IDL in the Generic Group Model (GGM) [33] and prove a bound matching
that for DL. Here, we strengthen this to give a tight AGM reduction DL — IDL. This could be
seen as implicit in part of the AGM proof of security for the Schnorr signature scheme given in
[17], although they make no connection to IDL.

Theorem 3.1 [DL — IDL, AGM] Let G be a group of prime order p with generator g. Let q be a
positive integer. Let Afﬁ% be an algebraic adversary against Gmg}g’q. Then, adversary Aq can be

constructed so that

~ q
Advgly (A < Advg (Aa) + .

Furthermore, the running time of Aq is about that of A;ﬂ%.

The full proof is given in Appendix [C, The idea of the proof is as follows. Since Afﬁ% is algebraic,
its query R to CH is accompanied by (r1,72) such that R = ¢" X". Our adversary Aq, who
is running .Afgig, records these as R;,r;1,7;2, and responds with a random ¢;. Eventually, .A?Cll%
outputs /I, z. Assuming it succeeds, we have g* = Ry - X9 = g1 X"1.2 X or g°7"1 = XV
where w = (r72 + ¢7) mod p. Now DLg 4(X) can be obtained as long as w has an inverse modulo
p, meaning is non-zero. But ¢; was chosen at random after the adversary supplied r;2, so the
probability that w is 0 is at most 1/p. The factor of ¢ accounts for the adversary’s having a choice
of I made after receiving challenges.

By ¢-IDL, we refer to IDL with parameter q. 1-IDL corresponds to IMP-KOA security of the
Schnorr identification scheme, and a reduction DL — 1-IDL is obtained via the Reset Lemma
of [7]. KMP show that 1-IDL — ¢-IDL. Overall this gives a standard model (very non-tight)
DL — ¢-IDL reduction. However, a somewhat tighter (but still non-tight) result can be obtained
when the forking lemma of [6] (which we recall as as Lemma ) is applied directly instead.
Concretely, we give the following theorem, improving the prior reduction by a /g factor. The proof
is in Appendix

Theorem 3.2 [DL — IDL, Standard Model] Let G be a group of prime order p = |G|, and let
g € G* be a generator of G. Let q be a positive integer. Let Aiq1 be an adversary against the game

Gmglgg. The proof constructs an adversary Aq (explicitly given in Fig. such that

AdVi((si,lg,q(Aidl) < \/q . Advdel’g(Aidl) + }% , 1)

Additionally, the running time of Aq is approzimately T 4, = 2T 4,,,.
Theorem appears to yield a 1-IDL, — ¢-IDL reduction with a bound that contradicts the lower
bound claimed in |20, Corollary 4.4]. Our best guess as to an explanation is that our reduction
does not meet the key and randomness preserving restrictions of [20, Corollary 4.4] or that their
lower bound does not cover rewinding strategies.

XIDL. We define a new problem, random target identification discrete logarithm, abbreviated
XIDL. It abstracts out the algebraic core of MuSig, and we will show that its security is equivalent
to the MS-UF security of MuSig. It will also be an intermediate point in our reduction chain
reaching our new HBMS scheme, thereby serving multiple purposes.

With G, p, g fixed as usual, XIDL is parameterized by positive integers ¢1, g2. Formally, consider
the game Gm)éi(;l’qth given in Fig. |4l The adversary receives a randomly chosen group element X
from INIT. The game maintains a list 77, ..., Tj, of “targets.” The adversary can create a target by
querying the New Target oracle NWTAR with a group element S of its choosing, whence T; = S- X%
is added to the list of targets, for e; chosen randomly from Z, by the game and returned to the
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adversary. The adversary can query the challenge oracle CH(jse1, R) by supplying an index jge and
a group element R. The oracle records T}, as Y;, and R as R;, based on the counter 7 it maintains.
Intuitively, CH is similar to the challenge oracle CH in IDL game, besides that our adversary here
needs to specify the target Tj_, it is trying to impersonate against. The adversary wins the game if
it can produce the discrete log z of Ry - Y/, for an index I of its choice. The oracles NWTAR and
CH are allowed to be called at most gq; and ¢ times, respectively. We define the XIDL advantage
of Aas Advg?, . (A) =Pr[GmgT, . (A).

We show hardness of XIDL in both the AGM and the standard model, starting with the former.

The theorem actually establishes the stronger DL — XIDL, tightly in the AGM.

Theorem 3.3 [DL — XIDL, AGM] Let G be a group of order p with generator g. Let qi1,q2 be
positive integers. Let .Aiﬁl be an algebraic adversary against Gm’é‘g{qlm. Then, adversary Aq can
be constructed so that

- 1 Q1+ q2
Advyd L (ALE) < AdvE (Aq) + .

Furthermore, the running time of Aaq s about that of .Aiﬁl.

The full proof is given in Appendix [E| Here we sketch the intuition. Since Aiﬁl is algebraic, the
Jj-th query to NWTAR is of the form S}, s;1,5s;2 such that S; = ¢g%1X%2, and the i-th query to
CH is of the form jeel, %, 7i1,75,2 such that R; = ¢g"»1 X"2. Let e;,c; denote, respectively, the
responses to the j-th query to NWTAR and the i-th query to CH. Eventually, Ayq outputs I, z.
Assuming it succeeds, the equation g* = Ry - T} = Ry - (Sy- X ) must hold, where J was
the selected index jge in the I-th query to CH. This means that g% = g™t X"1.2(g%/1 X572 X €)1 |
whence ¢* 711781 = XY where w = 112 + (s72 + ej)cr. Aslong as w is non-zero modulo p, one
can solve for the value of DLg 4(X). But e; and ¢; were independently chosen after the adversary
supplied s and 772, respectively. The probability that there exists j such that (sj2 +e;) =0
mod p is at most ¢q;/p over ¢ queries to NWTAR. Assuming there is no such j, the probability
that w = 0 is at most ga2/p, due to the ga queries to CH that Ailiil can make.

In the standard model, techniques in the security proof of MuSig [10, 24] could be used to show
DL — XIDL, which involves two applications of the Forking Lemma, leading to a fourth-root in
the bound. We now show IDL — XIDL, using a single application of the forking lemma and thus
with only a square-root in the bound. Combining this with Theorem recovers the DL, — XIDL
reduction with its fourth-root.

Theorem 3.4 [IDL — XIDL, Standard Model] Let G be a group of prime order p with generator
g. Let q1,q2 be positive integers. Let Ayqr be an adversary against Gm’é‘f;qhqz). Then, an adversary
Aiq1 can be constructed so that

Advgd o (Axa) < \/ @2 - Advg, , (Aiar) + %2 :

G,9,91,92

Furthermore, the running time of Aiq is about twice of that of Axidi-

The full proof is given in Appendix [F] We now sketch the intuition. Adversary A;q receives X from

game G‘drni&IM1 and runs adversary Ayiq, forwarding it X as the target point. It answers queries to
Axia’s NWTAR oracle using its own Gmglgm.CH oracle. Specifically, the j-th query S to NWTAR

is responded to with e; <—s Gmiéi’lgm.CH(S), and Ajq additionally records the group element T;
+— S - X¢%. Tt simulates adversary Ayiqi’s CH oracle locally, meaning the i-th query CH(jge1, R) is
responded to with a fresh challenge ¢; <—s Z,,. Eventually, adversary Ayiq1 gives a response I, z. Our

Aiq1 adversary wins game Gmé‘%m if it can produce the discrete log of T); for any j of its choice.
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To do so, Ajq; uses rewinding, the analysis of which uses the Forking Lemma [6] that we recall as
Lemma Rewinding is used to produce another response, (I’,z'), from a forked execution of
Axiai- The Forking Lemma applies to an execution of an algorithm making queries to one oracle,
but adversary Aiq has two oracles NWTAR and CH. We only “fork” A,;q on its queries to CH.
Specifically, we program oracle NWTAR to behave identically compared to the first run (meaning we
use previously recorded values of ey, ... as long as they are defined). In the second run, oracle CH
is replied with ¢1,...,¢c7-1,¢), ..., where ¢}, ... are randomly chosen from Z,. Let us assume that
Aiq1 has derived two valid responses from A,;q using the Forking Lemma. Then it is guaranteed
that I = I’ and ¢; # ¢;. Moreover, we know the two executions of Ayq only differ after the
response of the I-th query to CH, so the I-th query to CH in both runs is some J, R;. This allows

our adversary to solve the equations g* = Ry - T} and ¢° =R;- Tj’ (which are guaranteed to be
true if both runs succeed) to compute DLg 4(7'7) and thus win the IDL game.

4 Definitions for multi-signatures

As discussed in Section |1}, current definitions for multi-signatures, stemming mostly from [6], suffer
from some lack of detail and precision, including lack of a precise syntax. This results in scheme
descriptions that also lack somewhat in precision, and to proofs that stay at a high level in part
due to lack of technical language in which to give details. This could be one of the contributors to
bugs in these proofs [14].

To address this, we revisit the definitions. We give a detailed syntax that formalizes the signing
protocol as a stateful algorithm, run separately by each player. (The state will be maintained by the
overlying game.) Details addressed include that a player knows its position in the signer list, that
player identities are separate from public keys, and integration of the ROM through a parameter
describing the type of ideal hash functions needed. Then we give a security definition written via
a code-based game.

SYNTAX. A multi-signature scheme MS specifies algorithms MS.Kg, MS.Vf, MS.Sign, as well as a
set MS.HF of functions, and an integer MS.nr, whose intent and operation is as follows:

— Key generation. Via (pk, sk) «+—s MS.Kg, the key generation algorithm generates public signature-
verification key pk and secret signing key sk for a user. (Each user is expected to run this
independently to get its keys.)

— Hash functions. MS.HF is a set of functions, from which, via h <—s MS.HF, one is drawn and
provided to scheme algorithms (except key generation) and the adversary as the random oracle.
Specifying this as part of the scheme allows the domain and range of the random oracle to be
scheme-dependent.

— Verification. Via d + MS.Vfi(pk,m, o), the verification algorithm deterministically outputs a
decision d € {true, false} indicating whether or not o is a valid signature on message m under a
vector pk of verification keys.

— Signing. The signing protocol is specified by signing algorithm MS.Sign. In each round, each
party, applies this algorithm to its current state st and the vector in of received messages from
the other parties, to compute an outgoing message o (viewed as broadcast to the other parties)
and an updated state st’, written (o, st’) <~ MS.Sign®(in, st). In the last round, o is the signature
that this party outputs. (See Figure [p])

— Rounds. The interaction consists of a fixed number MS.nr of rounds. (We number the rounds
0,...,MS.nr. The final broadcast of the signature is not counted as in practice it is a local
output.)
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We say that a multi-signature scheme MS supports key aggregation if MS has two additional al-
gorithms, MS.Ag and MS.VfAg, such that the following hold: (1) Via apk «sMS.Ag(pk,, ...,
pk,), the key aggregation algorithm MS.Ag generates an aggregate public key, (2) Via d <
MS.VfAgt (apk,m, o), the aggregate verification algorithm deterministically outputs a decision
d € {true,false}, and (3) the verification algorithm MS.Vf is defined exactly as MS.Vf!(pk,m,
o) = MS.VfAgH (MS.Ag! (pk), m, o).

Some conventions will aid further definitions and scheme descriptions. A party’s state st has
several parts: st.n is the number of parties in the current execution of the protocol; st.me € [1..st.n]
is the party’s own identity; st.rnd € [0..MS.nr] is the current round number; st.sk is the party’s
own signing key; st.pk is the st.n-vector of all verification keys; st.msg is the message being signed;
st.rej € {true, false} is the decision to reject (not produce a signature) or accept. It is assumed and
required that each invocation of MS.Sign leaves all of these unchanged except for st.rnd, which it
increments by 1, and st.rej, which is assumed initialized to false and may at some point be set to
true. The state can, beyond these, have other components that vary from protocol to protocol.
(For example, Figure [6] describing the BN scheme has st.R[j], st.t[j],st.z[j],st.R,....) We write
st < Stlnit(j, sk, pk, m) to initialize st by setting st.n < |pk| ; st.me < j ; st.rnd < 0 ; st.sk < sk ;
st.pk < pk ; st.msg < m ; st.rej < false. If an execution (o, st’) < MS.Sign" (in, st) returns o = L
then it is assumed and required that further executions starting from st all return L as the output
message.

CORRECTNESS. Algorithm Execys, shown in the left column of Fig. |5 executes the signing protocol
of MS on input a vector sk of signing keys, a vector pk of matching verification keys with |sk| =
|pk|, and a message m to be signed, and with access to random oracle h € MS.HF. The number of
parties n at line 1 is the number of coordinates (length) of pk. The state st; of party j at line 3 is
initialized using the function Stlnit defined above. The loop at line 5 executes MS.nr rounds. Here
b denotes the n-vector of currently-broadcast messages, meaning b[i] was broadcast by party i in
the prior round, and the entire vector is the input to party j for the current round. At line 8, b
now holds the next round of broadcasts.

The correctness game Gy shown in the right column of Fig. [5| has only one procedure,
namely FIN. We say that MS satisfies (perfect) correctness if for all positive integers n we have
PrGRES] = 1.

UNFORGEABILITY. Game G,r\’,llss"‘f in Fig. [5| captures a notion of unforgeability for multi-signatures
that slightly extends [6]. There is one honest player whose keys are picked at line 1, the adversary
controlling all the other players. A new instance of the signing protocol is initialized by calling
NS with an index k and a vector pk of verification keys that the adversary can choose, possibly
dishonestly, subject only to pk[k| being the verification key pk of the honest player, as enforced
by line 2. The first message of the honest player is sent out, and at this point st,.rnd = 1. Now
the adversary can run multiple concurrent instances of the signing protocol with the honest signer.
Oracle H is the random oracle, simply calling h. Eventually the adversary calls FIN with a forgery
index k, a vector of verification keys (subjected to pk[k] being the public key of the honest signer),
a message and a claimed signature. It wins if verification succeeds and the forgery was non-trivial.
The ms-uf-advantage of adversary A is Adviig U (A) = Pr[GRE(A)].

It is convenient for (later) proofs to have a separate signing oracle SIGN; for each round j €
[1..MS.nr]. It is required that any SIGN;(s,-) satisfy s € [1..u], and that the prior round queries
SIGNg(s, ) for k < j have already been made. It is required that for each j, s, at most one SIGN; (s, -)
query is ever made.

REMARKS. Our syntax and security notions for multi-signatures view a group of signers as captured
by the vector (rather than the set) of their public keys. So for example, a forgery ((pk;, pky), m, o) is
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Algorithm Execlys(sk, pk, m): Game GE "

1 n <« |pk| FIN:

2 Forj=1,...,ndo 1 h<s MS.HF

3 st; «+ Stlnit(j, sk[j], pk, m) 2 Fori=1,...,ndo

4 b+« (g,...,e) J n-vector 3 (pk[i], sk[i]) <s MS.Kg
5 Forz:hl,...,MS.nr do 4 o +s Execlys (sk, pk,m)

6 Forj=1,..,ndo i 5 d + MS.Vf'(pk,m, o)

7 (0j,stj) s MS.Sign"(b, st;) 6 Return d

8 b+ (01,...,0n)

9 Return o

ms-uf
Game Gyg

INIT:
1 h+<+sMS.HF ; (pk, sk) +s MS.Kg ; Return pk

NS(k, pk,m):
2 pklk] < pk ; u <+ u+1; pk, <+ pk ; m, < m ; st, < Stlnit(k, sk, pk,m)
3 b (g,...,€); (o,sty) <3 MS.Sign™(b,st,) ; Return o

S1eN;(s,b): /1 <35 < MS.nr
4 (o,sts) +s MS.Sign'(b, sts) ; Return o

H(z):
5 Return h(z)

FiN(k, pk,m,0):

6 If (pk[k] # pk) then Return false

7 If (pk,m) € {(pk;, m;) : 1 <4 < u} then Return false
8 Return MS.Vf™(pk,m, o)

Figure 5: Top left: Procedure specifying an honest execution of the signing protocol associated
with multi-signature scheme MS. Top right: Correctness game. Bottom: Unforgeability game.

considered to be non-trivial even if there was a previous signing session under public keys (pk,y, pk;)
and message m. This differs from previous formalizations that work instead with sets of public
keys. However, previous definition can be recovered if a canonical encoding of sets of public keys
into vectors of public keys is fixed in the usage of a scheme.

5 Analysis of the BN scheme

BN ScHEME. Let G be a group of prime order p. Let g be a generator of G and let ¢ > 1 be an
integer. The associated BN [6] multi-signature scheme MS = BNIG, ¢, ¢] is shown in detail, in our
syntax, in Fig. @ The set MS.HF consists of all functions h such that h(0,-) : {0,1}* — {0,1}¢ and
h(1,-):{0,1}* — Z,,. For b € {0,1} we write H(-) for H(b,-), so that scheme algorithms, and an
ms-uf adversary, will have access to oracles Hy, Hy rather than just H.

The signing protocol has 3 rounds. In round 0, player j picks r <—sZ,, stores ¢g" in its state
as st.R[j], computes, and stores in its state, a value st.t[j] «+ Ho((j,st.R[j])) that we call the
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BN-commitment, and broadcasts the BN-commitment. (Per our syntax, what is returned is the
message to be broadcast and the updated state to be retained.) Since each player does this, in
round 1, player j receives the BN-commitments of the other players, storing them in vector st.t,
and now broadcasting st.R[j]. In round 2, these broadcasts are received, so player j can form the
vector st.R. At line 20, it returns L if one of the received values fails to match its commitment. As
per our conventions, when this happens, this player will always broadcast L in the future, so for
round 3 we assume lines 21 and 22 are executed. These lines create the second component st.z[j] of
a Schnorr signature relative to the Schnorr-commitment st. R[j] defined at line 13, and the player’s
own secret key, the computations being modulo p. This st.z[j] is broadcast, so that, in round 3, our
player receives the corresponding values from the other players. At line 27 it forms their modulo-p
sum z and then forms the final signature (st.R, z).

Our description of the signing protocol differs, from that in [6], in some details that are brought

out by our syntax, for example in using explicit party identities rather than seeing these as implicit
in public keys.
PRIOR BOUNDS. We recall the prior result of [6]. Let MS = BN[G, ¢, ¢] and let Ap,¢ be an adversary
for game Gr,\ﬁss'“f. Assume the execution of game r,\ﬂllsé'“f with A5 has at most ¢ distinct queries
across Ho, H; and at most g5 queries to NS. Suppose the number of parties (length of verification-
key vector) in queries to NS and FIN is at most n. Let a = 8¢s + 1 and b = 2¢q + 16n2gs. Let
p = |G|. Then BN [6] give a DL-adversary Ag such that

- a b
AdVEE" (Ams) < \/ (a+a)- (Adv%{gudo o+ 2E) - (2)
The running time of Ayq; is twice that of the execution of game Gﬁ,}ss'“f with Ans. BN obtain this
result via their general forking lemma, which uses rewinding and accounts for the square-root in
the bound.

SECURITY OF BN FROM IDL. We give a IDL — BN reduction that is tight and in the standard
model. Combining this with our tight AGM reduction DL, — IDL of Theorem we conclude a
tight AGM reduction DL — BN. However, the standard model tight IDL. — BN reduction is also
interesting in its own right. It says that BN is just as secure as the Schnorr identification scheme.
Since the latter has been around and resisted cryptanalysis for quite some time, this is good support
for the security of BN.

Theorem 5.1 [IDL — BN, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and let £ > 1 be an integer. Let MS = BN[G, g, ] be the associated BN multi-
signature scheme. Let Ans be an adversary for game Gﬁ,}ss'“f of Figure E‘?] Assume the execution
of game Gr,\r,llss'“f with Ams has at most qo, q1, gs distinct queries to Ho, Hi, NS, respectively, and the
number of parties (length of verification-key vector) in queries to NS and FIN is at most n. Let
a = qs(4q0 + 2q1 + gs) and = qo(qo +n). Then we construct an adversary Aiq for game Gmg}g’ql
(shown explicitly in Figure@ such that

AT (Ans) < Advi& (A + . b

G,9,q1 2p ? : (3)
ms-uf

The running time of Aiq1 is about that of the execution of game GyS™ with Ams. Furthermore,
adversary Aiq1 s algebraic if adversary Ams 1s.

Above, qg is the number of distinct queries to Hy made, not directly by the adversary, but across
the execution of the adversary in game r,\r,}Sé'Uf, and similarly for ¢;. A lower bound on ¢; is the

length of pk in Aps’s FIN query, so we can assume it is positive. With the above theorem, we can
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Kg: Vil (pk,m,0):
1 sk s Z, ; pk « ¢

2 Return (pk, sk)

3 (R, z) < o ; (pky,...,pk,) < pk

4 BN :

5 Fori=1,...,ndoc; + Hi((i, R, pk,m))
6  Return (¢ = R-J[, pki")

7 MuSig :

& apk <« [[ pk?z((i’pk))

9 ¢« Hi((R,apk,m))

10 Return (g* = R- apk®)

Sign™ (b, st):

11 j < st.me ; n < st.n ; m < st.msg ; sk < st.sk ; pk < st.pk
12 If (st.rnd = 0) then

13 str<sZp;st.R[j] < ¢" ; st.t[j] + Ho((j,st-R[j])) ; st.rnd < st.rnd + 1
14 Return (st.t[j],st)

15 If (st.rnd = 1) then

16 For all ¢ # j do st.t[i] + bli]

17 st.rnd ¢ st.rnd 4 1 ; Return (st.R[j], st)

18 If (st.rnd = 2) then

19 For all ¢ # j do st.R[i] < b]i]

20 If (3¢ : Ho((¢,st.R[i])) # st.t[¢] ) then Return (L,st)

21 st.R« [[" | st.RJ[i]

22 BN:¢; + Hi((4, R,pk,m)) ; st.z[j] « sk - ¢; + st.r

23 MuSig :
24 apk <+ H?zl pk[i]HQ((i‘pk» ; ¢ < Hi((R, apk, m))
25 st.z[j] < sk - Ha((st.me, pk)) - ¢ + st.r

26 st.rnd < st.rnd + 1 ; Return (st.z[j], st)
27 If (st.rnd = 3) then

28 For all ¢ # j do st.z[i] < b]i]

29z . stz[i]; Return ((st.R, 2),st)

Figure 6: Algorithms of the multi-signature scheme BNI[G, g, /] and MuSig[G, g, ], where G is a
group of prime order p with generator g. Code that differs between the two schemes is marked
explicitly. Oracle H;(+) is defined to be H(7,-) for i = 0,1 (BN) and i = 0,1,2 (MuSig).

now derive an upperbound UB,r\rA‘%‘“f(t, q, s, p) of the advantage of any MS adversary with running

time ¢, making ¢ queries to H, and ¢s signing interactions. We take ¢ ~ logy(p) and assume that
gs < q <t < p. Additionally, we assume that the advantage of any IDL adversary with running
time ¢ is at most ¢?/p (as justified by Theorem . We obtain UBBEY (¢, ¢, g5, p) < t2/p as shown
in Fig. I

The full proof of Theorem is given in Appendix [G] Here we give a sketch. The reduction
adversary A;q) receives a group element X from Grrni(gl}g’q1 and forwards it to adversary A as the
target public key. In order to run adversary A, our adversary needs to be able to simulate the
signing oracles NS, SIGN1, SIGN; as well as random oracles Hyg and H; without knowing DLg 4(X).

We first describe how the reduction proceeds if A makes no queries to NS, SIGN; or SIGNo,
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as this steps constitutes the main difference between our proof and the original proof of security
for BN [6]. Adversary A;q uses the challenge oracle Gmg’lqul.CH to program the random oracle
H; (hence CH needs to be able to be queried upto the number of times H; is evaluated). In
particular, for each query H;((k, R, pk, m)) where pk[k] = X, our adversary first computes T' <+
R -1l Pk [j]H (G Rpkm)) - then obtains ¢ <—s CH(T') before returning ¢ as the return value for the
query Hy((k, R, pk,m)). By construction, a valid forgery for pk, m is some signature o = (R, z)
such that

7 =R- ﬁpk[i]Hl((i,Rvpk,m)) =T -X°,
i=1
where the first equality is by the verification equation of BN and the second equality is by the way
H; is programmed. This means that adversary A;jq; can simply forward the value of z from a valid
forgery, along with the index of the CH query corresponding to the H; query of the forgery, to
break game Gmi&lg,ql. Moreover, adversary Ajq; succeeds as long as the forgery given by Apy is
valid.

It remains to show that oracles NS, SIGNy, SIGNy can be simulated without knowledge of the

secret key, DLg 4(X). Roughly, this is done using the zero-knowledge property of the underlying
Schnorr identification scheme as well as by programming the random oracles Hy and H;. The
original proof by [6] constructs an adversary and argues that it simulates these oracles faithfully
if certain bad events do not happen. We take a more careful approach and do this formally via a
sequence of seven games and use the code-base game playing framework of [8]. This game sequence
incurs the additive loss as indicated in Equation ({3]).
CONVERSE. IDL is not merely some group problem that can be used to justify security of BN
tightly; the hardness of IDL is, in fact, tightly equivalent to the MS-UF security of BN. Formally,
we give below a reduction turning any adversary against IDL into a forger A against BN. This
means that any security justification for BN must also justify the hardness of IDL.

Theorem 5.2 [BN — IDL, Standard Model] Let G be a group of prime order p. Let g be a generator
of G and let £ > 1 be an integer. Let MS = BNIG, g, ] be the associated BN multi-signature scheme.
Let q be a positive integer and Aiq be an adversary against GmlgL Then, we can construct an

G,9,q°
adversary Ams for game GI,\TA‘%‘“f, making no queries to NS, and at most 2q queries to Hy, such that
Advige™ (Ams) > AdvE,  (Aia) - (4)

The running time of Ams is about that of Ajqr.

Proof of Theorem Consider the adversary given in Fig. The adversary receives the
target public key pk from the MS-UF game and samples a key pair (pk’,sk’) <—s MS.Kg. The
adversary will attempt to forge a signature against the vector of public keys (pk, pk’). Adversary
Aps forwards X = pk as the target point and runs IDL adversary A;q. For each query CH(R) of
Aial, adversary Ap,s simulates the response as per line 4 to 6. If A;jq; succeeds, it must be that

9~ =Ry - pk™' .

The value of z can be used to construct a forgery signature (line 3). I

6 Analysis of the MuSig scheme

The current three-round version of MuSig has been proposed and analyzed by both [24] and [10].
Roughly, it is the BN scheme with added key aggregation.
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At (pk):

1 X « pk; (pk/,sk’) +s MS.Kg()

2 (I,2) « Ada(pk) // g° = Rr - pk©it

3 0« (Rr,z+ sk’ -cr2 mod p) ; Return ((pk, pk’), mr,0)

4 44 1i4+1; R+ R;m;< (i)

5 ci1 < Hi((1, Ry, (pk, pk'),m;)) ; ci2 s H1((2, R, (pk, pk’), m;))

6 Return c;

Figure 7: Adversary Ay for Theorem For an integer 4, (i) denote the binary representation
of 1.

Let G be a group of prime order p. And let g be a generator of g and £ > 1 be an integer. The
formal specification of MS = MuSig[G, g, ¢] in our syntax is shown in Fig. @ There are minimal
differences between MuSig and BN and we only highlight the differences. The set MS.HF consists
of all functions h such that h(0,-) : {0,1}* — {0,1}¢ and h(i,-) : {0,1}* — Z, for i = 1,2.
Verification is done as follows. First, an aggregate key apk for the list of keys pk = (pky,..., pk,,)
is computed as apk < pkllh((l’p kD pk%((”’pk)) (line 8). Next, a single challenge is derived from
the commitment R and aggregate key apk (line 9). The signature (R, z) is valid if g* = R - apk®.
The second round of signing also changes accordingly to generate a valid signature (line 24 and 25).

The following gives a tight, standard-model reduction XIDL — MuSig. Combining this with our
tight AGM chain DL — IDL — XIDL from Theorems and we get a tight AGM reduction
DL — MuSig.

Theorem 6.1 [XIDL — MuSig, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and ¢ > 1 be an integer. Let MS = MuSig|G, g, /] be the associated MuSig multi-

signature scheme. Let Apng be an adversary for game G‘,\T,Ilsé’“f of Figure @ Assume the execution of

game Gﬁ,}%’uf with Ams has at most qo, q1, @2, gs distinct queries to Ho, Hy, Ho, NS, respectively, and
the number of parties (length of verification-key vector) in queries to NS and FIN is at most n. Let
a = qs(4q0 + 2q1 + ¢s) + 2q1q2 and B = qo(qo +n). Then we can construct an adversary Axiq for

game Gm¥d! (shown explicitly in Figure such that

G,9,92,q1
Ad ms—uf(A )<Ad xidl (.A ) g ﬁ (5)
Vms - (Ams) S ACVG g, idl) + 5 0+ o7 -
ms-uf

The running time of Axiq1 is about that of the execution of game GyS™ with Awys. Furthermore,
adversary Ayiaq1 s algebraic if adversary Ams 1s.

We remark that the values of ¢; and ¢y above arise from the number of queries to H; and Hso
made in the execution of Gﬁsé'Uf(Ams). As a result, the appearance of ¢; and ¢ has their orders
“switched” compared to in Section [3] With the above theorem, we can now derive an upperbound
UBﬁ%’uf(t, q, qs, p) of the advantage of any MS adversary with running time ¢, making ¢ queries to
H, and ¢5 signing interactions. We take ¢ ~ logy(p) and assume that ¢s < ¢ < t < p. Additionally,
we assume that the advantage of any XIDL adversary with running time ¢ is at most t?/p (as
justified by Theorem . We obtain UBI,\T,}%"‘f(t, q,qs,p) < t?/p as shown in Fig. .

We again describe the reduction at a high level and defer the full proof to Appendix[H] First, the
reduction adversary Ayiq receives group element X from game Gmgdl and runs A with the

Gg,q2,q1
target public key set to X. Similar to the proof of Theorem [5.1] our adversary needs to simulate the
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AL (pk):

1 X« pk; (I,2) « AN (pk) 5 J « TI[I)

2 o < (Rr,z) ; Return ((pk,Ss),mr,0)

NwTAR(S):

3 j+j+1;85+S

4 ej1 s Ha((1, (pk, S9))) ; €j2 < Ha((2, (Pk, 5))) 5 €j < ej,2/ej1 mod p
5 apk; < pk®15%:2 ; T; < pk - S% ; Return e;

CH(Jse1, R):

6 14+ i4+1; R+ R;m;+ (i); TI[] + Jsel

7 ¢ < Hi((apk,; ,R,m;))-ej..1 ; Return ¢;

Jsel’

Figure 8: Adversary A for Theorem For an integer 4, (i) denote the binary representation
of 7.

signing oracles N'S, Signy, Sign, as well as Ho, Hy, Ho without knowing DLg 4(X) in order to run Aps.
This again relies on the zero-knowledge property of the underlying Schnorr identification scheme
and the programming of Hg, Hy, Hy. This step is done formally in a game sequence in the full proof
and incurs the additive loss in Equation (f). To turn a forgery into a break against XIDL, our
adversary programs H; and Hs as follows. For the j-th query of Hy((k, pk)) where pk[k] = X, the
adversary first computes S < []; ., pk [i]H2((PK)  then obtains e; +—s NWTAR(S) before returning
ej as the response for the query. We remark that this particular query of Hy have created an
aggregate public key apk = ]_[Lz;kl‘ pk[i]f2(@Pk) = G . x€ which is also the value of T} that is
recorded in the game Gm’éi’ggml. For each i-th query of Hy((R, apk,m)), the adversary first finds
the index jg of the Ha-query that corresponds to the input apk, then obtains ¢; <—s CH(jge1, R)
before returning ¢; as the response for the query. If the eventual forgery is given for these two
particular queries to Hy and Hg, meaning forgery is pk, m, (R, z) for some z, then the verification
equation of the signature scheme says that ¢* = R - apkHl((R’apk’m)). But this matches exactly the
winning condition of Gm’éizl,qwl, since apk =T}, and ¢; = H;((R, apk, m)). Hence, our adversary
Aiql can simply return (i, z) to break XIDL, as long as the forgery provided by A is valid.

Similar to the relation between IDL and BN, XIDL is also tightly equivalent to the MS-UF
security of MuSig. In particular, we turn any adversary breaking XIDL into a forger against MuSig.
This means that any security justification for MuSig must also justify the hardness of XIDL.

Theorem 6.2 [MuSig — XIDL, Standard Model] Let G be a group of prime order p. Let g be a
generator of G and let ¢ > 1 be an integer. Let MS = MuSig|G, g, ¢] be the associated MuSig multi-
signature scheme. Let q1,qo be a positive integers and Agq be an adversary against Gmé‘f;{q%ql.
Then, we can construct an adversary Ams for game Gr,\ﬁsé'Uf, making no queries to NS, and at most

2q1 and 2qo queries to Hy and Ho respectively, such that

AdviE ™ (Ams) > AdvED o (Asar) - (6)

The running time of Ams s about that of Aqr.

Proof of Theorem Consider the adversary given in Fig. [§f The adversary receives the
target publick key pk from the MS-UF game. Adversary A, forwards X = pk as the target point
and runs XIDL adversary A;q. For each query NWTAR(S) of Ayq), adversary Aps uses S as a
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MS.Kg: MS. vl Hut (pk )

1 sk sZ, ; pk + ¢g* 3 (pky,...,pk,) < pk ; apk « H:l pk?Z((i*pk))
2 Return (pk, sk) 4 (T,s,2) « o ; ¢+ Hi((T, apk,m))

5 h < Ho((pk,m)) ; Return (¢°h° =T - apk®)

MS.Signto-f1-t2 ( ot):

6 j < st.me; n < st.n; m < st.msg ; sk < st.sk ; pk < st.pk

7 (pky,...,pk,) < pk ; apk < [ pk?Q((i’pk))

8 If (st.rnd = 0) then

9 strj] s Z, ; sts[f] s Zp

10 h+ Ho((pk,m)) ; st.R[j] < g*="U ; st. T[j] « st.R[j] - h*+*)
11 st.rnd «st.rnd 4+ 1 ; Return (st.T'[4], st)

12 If (st.rnd = 1) then

13 For all ¢ # j do st. T[] + b]i]

14 stT [ st.T[i] ; st.c « Hi((st.T, apk,m)) ; e; < Ha((j, pk))
15 st.z[j] - sk-c-e; +strlj] ; stt[j] < (st.s[j],st.z[j])

16 st.rnd < st.rnd 4+ 1 ; Return (st.¢[j], st)
17 If (st.rnd = 2) then
18 For all ¢ # j do st.t[i] + bli]
19 (s,z) « y_."t[i] ; Return ((st.T) s, 2),st)

Figure 9: Two-round multi-signature scheme MS = HBMSIG, g] parameterized by a group G of
prime order p with generator g.

public key to generate the aggregate key apk for the list (pk,S). By construction, the j-th target
T} for the XIDL game is related to apk; by apk; = Tjej’l. For each CH(jse1, R) query of Ayaqi,
adversary Aps programs in the Hy outputs corresponding to a forgery agaisnt the aggregate key
apk; | (line 6 and 7). By construction, if Ay;q succeeds, it must be that

¢ =Rr-TY =R;- Tfl((aka’R’mi))'ej’l =Ry- apkgll((aka’R’mi)) .

Hence, adversary Ap,s produces a valid forgery at line 2. 1

7 HBMS: Our new two-round multi-signature scheme

Recall that BN and MuSig are three-round schemes, and two-round schemes are desired due to
blockchain applications. In this section, we introduce our new, efficient two-round multi-signature
scheme supporting key-aggregation, HBMS. We first demonstrate its tight security against algebraic
adversaries (Theorem , before justifying its security in the standard model (Theorem [7.2)).
Referring to Fig. [3] these results establish arrow 5. We refer to Fig. [2] for comparisons of HBMS
against other two-round schemes.

TwO-ROUND MS scHEME HBMS. The formal definition of our scheme is given in Fig. [0 HBMS
has the same key generation algorithm Kg and key aggregation Ag algorithm as MuSig. We describe
informally the process involved to sign a message m under a vector of public keys pk. In the first
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round, each signer 7 samples s; and r; uniformly from Z, and computes a commitment
T; + Ho((pk,m))* - g™ ,

which is sent to every other signer. In the second round, each signer receives the list of commitments
T1,...,T, from each signer, and computes the aggregate value T' < [[;7;. Each signer then
computes the challenge value as ¢ < H1((T, apk,m)). To compute the reply, each signer i computes
zi < r; + sk - ¢ - Ho((4, pk)) and sends (s;, z;) to every other signer. Finally, any signer can now
compute the final signature as (7', s, z) where s = Y _; s; and z = >, z;. To verify a signature (7, s, z)
on (pk,m), the equation

g - Ho((pk,m))* = T - apk™ (Tapksm)

must hold, where apk = ]_[Likﬂ pk[i]12((bPK))  Compared to MuSig, the verification equation of
HBMS involves an additional power of H((pk, m)) (hence the name HBMS, or “Hash-Base Multi-
Signature”).

TIGHT SECURITY AGAINST ALGEBRAIC ADVERSARIES. We first show that HBMS is tightly MS-UF-
secure against algebraic adversaries.

Theorem 7.1 [DL — HBMS, AGM] Let G be a group of prime order p with generator g. Let MS
be the HBMSIG, g] scheme. Let A28 be an algebraic adversary for game GI,\]}I‘%'“f of Figure @ Assume
the execution of game GI,\I,}SS'uf with Ams has at most q1,qo distinct queries to Hy, Ho, respectively.

Then we can construct an adversary Aq for game DLg 4 (shown explicitly in Figure @ such that
i ¢+ 1D
Advipe ™ (A%E) < AdvE (Aa) + (p) : (7)
The running time of Aq1 is about that of the execution of game Gﬁss'uf with A&,

Above, a reduction is given directly from DL, and there is no multiplicative loss. As before,
assuming ¢s < ¢ < t < p and the generic hardness of DL (advantage of ¢-time adversary to be at
most t2/p), we derive that UBI,\I}SS_“f(t, q,qs,p) < t2/p, as shown in Fig.

We give the highlevel proof sketch here and defer the full proof to Appendix [l Let Ays be
the algebraic adversary against HBMS. Our reduction adversary Aqg sets its own target point X
(which it needs to obtain the discrete log of) as the target public key for Ays. In order to run Ay,
our adversary A4 needs to be able to simulate oracles NS, SIGN7, SIGNg (oracles representing the
honest signer) as well as random oracles Hy, Hi, Ho. We first tackle the problem of simulating the
honest signer without knowledge of the corresponding secret key. This is done by programming of
random oracle Hy. Suppose for pk,m, we set Ho((pk,m)) to be h = g®pk” for some o, 3 # 0 € Z,
(whose exact distribution will be specified later). When the adversary interacts with the honest
signer, the honest signer must first provide some commitment 7" € G (in the output of NS), then
later produce z, s € Z, (in the output of SIGN;) such that

g°h® =T - pk®, (8)

where ¢ € Z,, is some challenge value (that is derived using the random oracle and the responses
of the adversary). To do this, our adversary set commitment T' = ¢g®h® for a,b s Z,. It shall be
convenient to express pk in terms of g and h as well. Note that as long as 8 # 0, pk = A8~ g=a(871),
Since both T" and pk are known to be of the form g*h* (where * denotes some element of Z,,), so is
the group element 7" - pk® (for any known value of ¢). Hence, the right-hand side of Equation ({g]) is
of the form ¢g*h® for some values z and s that our adversary can compute, and our adversary can
return them as response in the second round. Above, we noted that this works as long as 5 # 0.
To guarantee this, we sample o <sZ, and «sZ; in Hop. It remains to check that such way of
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simulating the honest signer is indistinguishable from the behavior of an honest signer holding the
secrete key and executing the protocol. Roughly, this is because in both cases, the triple (T}, z, s)
is uniformly distributed over G x ZIZ), subjected to the condition that Equation holds.

Now, our adversary Ag can move onto turning a forgery from A, into a discrete logarithm for
target point X. Suppose adversary Ay returns forgery (pk,m, (T, s, z)). Then,

g°h* =T - apk®, 9)

where apk = ]_[Likl‘ pk[i]12((bPk)) and ¢ = H,((T, apk,m)). Since Apg is algebraic, our adversary
Aai can rewrite Equation @D to the form g% = XX which allows us to compute the discrete
log of X as aga, I mod p, as long as ay is not zero. The full proof upperbounds the probability
that ax = 0 to be at most g1g2/p. Outside of this bad event, our adversary Aqg will successfully
compute the value of DLg 4(X) from a valid forgery.

STANDARD MODEL SECURITY OF HBMS. We reduce the security of HBMS to the hardness of
XIDL, with factor ¢s loss. For applications, the number of signing queries g5 is much less than
adversarial hash function evaluations. As a result, even though our reduction here is non-tight, the
reduction loss is smaller compared to previous results for BN, MuSig or other two round schemes
(cf. Figure |1} and , at the expense of assuming the hardness of XIDL. Interestingly, due to
Theorem our results also state that HBMS is secure as long as MuSig is (via the reduction chain
MuSig — XIDL — HBMS), and this reduction again only losses a factor of g5 in the advantage.

Theorem 7.2 [XIDL — HBMS, Standard Model] Let G be a group of prime order p with generator
g. Let MS be the HBMS|G, g| scheme given in Fig. @ Let Ans be an adversary for game Gr,f,"ss'uf of
Figure @ Assume the execution of game Gﬁss'uf with Ams has at most qo, q1, g2, gs distinct queries
to Ho, Hy, Ho, NS, respectively. Then we can construct an adversary Ayar for game Gméigl’qml
(shown explicitly in Fz’gure@) such that

Advﬁss—uf(Ams) <e(gs+1)- Adv)éi"dq{q2’q1 (Axia1) + % ) (10)

where e is the base of the natural logarithm. Adversary Axiqr makes qo queries to NWTAR and ¢
queries to CH. The running time of Axia1 is about that of the execution of game GI,\I,}SS“‘f with Aps.

Concretely, if we assume that XIDL is quantitatively as hard as DL, then against any adversary
with running time ¢, making ¢ evaluations of the random oracle and making at most ¢s signing
queries, HBMS has security (gst? + ¢2)/p = qst*/p.

We sketch the highlevel proof here and give the full proof in Appendix[Jl Our adversary receives
the target point X from the XIDL game and sets it as the target public key for adversary Aps.
As before, in order to run Ays, we need to simulate oracles NWTAR, SIGNy, SIGNs as well as
Hy, Hy, Ho. Recall that in the AGM proof, we can simulate the honest signer for pk, m if we set
Ho((pk,m)) = g®hP. However, this way of programming Hy does not facilitate in turning a forgery
into a break for XIDL. Instead, we would like to program Hg((pk, m)) = g“ for the forgery pk,m.
To do this, we use a technique of Coron [12], which programs H((pk,m)) randomly in one of
these two ways depending on a biased coin flip (with probability p of giving 1). The reduction only
succeeds if correct “guesses” are made. Specifically, we need that for every pk, m that is queried
to the honest signer (in NS) then Ho((pk,m)) must have been programmed to be g®pk? (for some
a and f3), and for the forgery pk, m, it must be that Ho((pk, m)) = g (for some «). We can then
optimize for the value of p, resulting in a multiplicative loss of e(1 + g¢5).

Suppose adversary Ay,s returns a forgery (pk, m, (T, s, z)) where we have previously programmed
Ho((pk,m)) = g®. The verification equation say that g°h® = T - apk®. Since h is just a power of g,
the left-hand side of the verification equation is also a known power of g (specifically ¢g>*®%). This
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means that our adversary Ay;q1 can proceed exactly as the reduction for MuSig. In particular, for the
Jj-th query of Ha((k, pk)) where pk[k] = X, the adversary first computes S < []; 4, pk[i]H2((Pk))
then obtains e; <—s NWTAR(S) before returning e; as the response for the query. We remark that
this particular query of Hy have created an aggregate public key apk = Hy;kl' pk[i]H2(GPk)) — . x5
which is also the value of T} that is recorded in the game Gm’éif;{qml. For each i-th query of
H,((T, apk, m)), the adversary first finds the index jge; of the Ha-query that corresponds to the input
apk, then obtains ¢; «—s CH(jse1, T') before returning ¢; as the response for the query. If the eventual
forgery is given for these two particular queries to H; and Ho, meaning forgery is pk, m, (T, s, z),
then the verification equation of the signature scheme says that g+ =T - apk1((T:apk,m)) (if we
programmed Ho((pk, m)) to be g*). Hence, our adversary Ayiq can simply return (i,z + o - s) to
break XIDL, as long as the forgery provided by Ay is valid and we have made the right guesses
in programming Hg.
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A Security bounds of multi-signature schemes

We survey previous results on discrete-log-based multi-signature schemes, with a focus on their re-
duction loss. We restate these results in the same notation and framework to facilitate comparisons.
We have used this to obtain the estimates in Figures [I] and [2

For the rest of the section, fix a group G of prime order p that shall be used by each of the
schemes of interest. Additionally, we assume that we fix adversaries A attacking each multi-
signature scheme of interest, with running time ¢ (this is the total execution time of GE (Aps)
and includes the running time of all oracles), making ¢ queries to the random oracle, gs queries to
NS involving maximum of N-signers while achieving success advantage of €. For convenience, we
let gr =14 q+ gs.
BN. Bellare and Neven [6] gave a 3-round MS scheme that is based on the DL problem. In
particular, they showed that given an MS-UF adversary A, there exists DL-adversary with running
time t' achieving success advantage €':

2 2 + 16 N2 SN
6/ Z € _ q + e QS _ qS , (11)
q+gs 2 D
t' ~2t, (12)

where /¢ is a parameter, describing the output lengths of the random oracle used for commitments.

MuSig. BDN [10] and MPSW [24] gave a 3-round MS scheme that adds key aggregation on-top
of BN. For security, BDN showed [10][Theorem 4] that given an MS-UF adversary A, there exists

DL-adversary with running time ¢’ achieving success advantage ¢ where
, €—90

= 1
=0 (13)
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t' =512t -gh(e —0) ' In"2(64/(e — 0)) , (14)
_ ANqT

o panlt (15)

as long as p > 8q/e. MPSW gave a tighter result by two direct applications of the forking lemma.
In particular, they showed that [24][Theorem 1] given an MS-UF adversary Ay, there exists DL-
adversary with running time ¢’ achieving success advantage ¢ where
¢ — é . 1GQS(Q+N‘QS) . 16(Q+NQS)2+3
a1 p 2¢ ’
t' ~ 4t . (17)

(16)

MBCJ. DEFKLNS [14] gave a 2-round MS scheme mBCJ. For security, they showed that given an
MS-UF adversary A, there exists DL-adversary with running time ¢’ achieving success advantage
¢ where

6/ = m 5 (18)
t' =t-64(N + 1)%¢r(gs + 1)e 1 In 7 (8e(N +1)(gs + 1) /e) , (19)

as long as p > 64e(N + 1)gr(gs + 1) /e.

MuSic-DN. NRSW [27] gave a 2-round MS scheme that has deterministic signing. For security,
their result [27][Theorem 1] roughly translates to: given an an adversary attack MuSig-DN, there
exists OMDL adversary attacking DL with success advantage approximately

G 2\
/ T -3
€ Z <€ - QS(S - 2)\_2 - 2/\/4) qT ) (20)

t' ~ 4t (21)
where A is a parameter of the scheme and 9§ is a small constant associated with the group.
MuSic2. NRS [26] gave a 2-round MS scheme, parameterized by v. For v > 4, they showed that

if there exists A attacking their scheme, they [26][Theorem 1] can build vg;-OMDL adversary with
running time ¢’ achieving success advantage ¢ where

, e 11 43m*

T o >
t' ~ 4t (23)
m=w-1)(qg+g)+1. (24)

For v = 2, they give a tighter proof against algebraic adversaries. In particular, given an algebraic
adversary A attacking their scheme for v = 2, they build adversary B against gs-OMDL that runs
in time ' to achieve success advantage € with

3
6'26—14(1—,
p

t'~t+0(g) .
DWMS. Alper and Burdges [1] gave a 2-round MS scheme DWMS similar MuSig2 that is proved

secure from OMDL in AGM using an intermediate problem called the 2-entwined sum problem.
Combining Theorem 1, 2 and 3 of [1], we the following reduction for DWMS: given an algebraic
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Game Gmg Game Gm;

Fin: Fin:

1 241G 1 z+31G

2 €1y 0q¢8C 2 p<+srand(A) ; c1,...,cq 8C

3 (I,0) «sA(z,c1,...,¢q) 3 (I,0) «s Az, c1,...,¢q)

4 Return (I > 0) 4 If (I =0) then return (0,¢,¢)
5 ¢py...,cq+sC
6 (I'yo') +s Az, c1,...,cr-1,¢, ..., cq)
7 Return ((I =I') and (¢ # ¢}))

Figure 10: Games referred to in Lemma[B.I] Both games have just one procedure, FIN, which does
not take any input. These games run an algorithm A internally.

MS-UF adversary A28, an ¢,-OMDL adversary can be constructed with advantage ¢
qsq q

r>

€ >¢€ » /b .
Unfortunately, their theorems do not formally state the running time overhead of their reductions.
Upon closer inspection however, their reductions do not rewind adversaries and only incur simu-
lation overhead of games. Hence, we have ¢ = O(t), meaning there is no multiplicative factors
involving either ¢, q, or gs.

B Forking lemma

We recall the general forking lemma of [6]. We restate it using the games of Figure Each game
has just one procedure, FIN, which takes no inputs. The games are parameterized by an algorithm
A that is executed inside the game, and also by an algorithm IG called an input generator.

Lemma B.1 [6] Let ¢ > 1 be an integer. Let C be a set of size |C| > 2. Let A be a randomized
algorithm that on inputs x,c1,...,cq returns a pair, the first element of which is an integer in the
range 0, ..., q, and the second element of which we refer to as a side output. Let |G be a randomized

algorithm that, as above, we call the input generator. Consider Gmq (called the single run) and
Gm; (called the forked run) given in Fig.[10, Then:

Pr[Gmy] < % +1/q - Pr[Gmy] . (25)
C Proof of Theorem [3.1]

Proof of Theorem Consider game Gmg given in the left panel of Fig. By construction,
it is the game Gmi(‘;{lgﬂ( ﬂ%) Next, consider game Gm;, where the winning condition has been
changed to checking that (z = 2’), where 2’ is either computed on line 8 or 9 depending on whether
w = 0. We claim that regardless of whether w = 0, game Gm; returns true as long as Gmg does.
Assume Gmyg returns true, then b is set to true. If w = 0, then the game Gm; sets 2’ to = at line
8, so Gm; alsot returns true. If w # 0, then the game Gm; computes z’ as per line 12 and 13.

Observe that if b is true, then
g° =Ry - X

28



Game Gmg, Gmy, Gmsy Adversary Aa1(X):

INIT: 1 (I, z) s Al TON(X)

1 xsZy,; X« g° 2 w4 (rrz+cr)

2 (I, 2) +s A (X) 3 If (w = 0) then 2’ <5 Z,
3 b+ (¢9°=R;-X°T) 4 Else

4 Gmg: Return b 5 v+ (2—-r1)

5 w4 (rr2+cr) 6 v -w?t mod p
6 If (w = 0) then bad < true 7 Return z'

7 Gmi CH(R, (r1,72)):

8 If b then 2’ + x c it itl:iRieR

9 Else z’ «+ L

G ) 5 9 Tl T T2 T2
10 mo: *r <3
e P 10 ¢ <8 Zp ; Return ¢;
11 Else

12 v+ (z2—711)

1

13 2+ v-w ' modp

14 Gmi, Gma: Return (z = z')

CH(R, (T1,7"2))Z
15 49+1+1; R+ R
16 11 <115 T2 < T2

17 ¢; <3 Zp ; Return ¢

Figure 11: Games Gmg, Gm;, Gmy and adversary Aq; the proof of Theorem

Expanding this equation using the fact that R; = ¢t X1, we get
gF =g X"12 . X
which means that
gx - X :g(zfrl,l)w_l _ g:):’ )
So game Gm; must return true in this case as well. Hence
Pr[Gmg| = Pr[Gmy,] . (26)
Next, consider game Gms, which sets z’ differently if w = 0. We have
Pr[Gm;] < Pr[Gms] + Pr[Gmj; sets bad]
27
< PI‘[GH]Q] + ki . ( )
p

Above, the calculation of Pr[Gms sets bad] is justified as follows. For each CH query, there is 1/p
chance that r; 2 + ¢; = 0, since ¢; is uniform and independent of r; 2. Hence, the probability that
there is a choice of i to make w = ;2 + ¢; zero is at most ¢/p using the union bound. Finally, we
construct adversary Aq, given in Fig. [[1] such that

Pr[Gmy] = Adv{  (Aa) - (28)

This is straight-forward, as Aq; simulates CH and computes 2’ exactly as Gms. |1
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Game Gmg, Gmy, Gmsy Adversary Aai(X):

INIT: 1 Cly...,cq82Zp; p<+srand(Aial)
1 x+s8Zy; X < g° 2 (1,2) <5 Ay (X;p)
2 p<«srand(Aial) ; c1,...,cq <5 Zp 3 b+ (9°=Ri-Y[")
3 (I,2) « A%}{l (X;p) 4 If not b’ then Return L
4 b (g° =Ry - Y{T) 5 Fori=1,...,] —1doc; <+ ¢
/ / /
5 If not b then I + 0 6 Cr;Cryns- -5 Coy $52p
- ’ C
6 Gmg: Return (I > 0) 705 (I 2) s A (X p)
/ 2! _ C;t
7 Fori=1,...,] —1doc,+ ¢ 8 b (9" =R Y,")
/
3 0970}4.1»---762 27, 9 If not b t/hen Return /J_
9 i 03 (I',2) s A%2(X; p) 10 If (L #1I') or (cr = cf)) then
10V — (gz/ =Ry 'YICII') 11 Return L
11 If not b’ then I’ < 0 12 w4 (er —¢) 7' (2~ 2') mod p
12 Gmy: 13 Return w
13 Return (I =I' > 0) and (c; # ¢})) Ci (R):
14 Gmo: 14 i+1i1+1;Ri < R
’ o
15 I ((I#T) or (cr =cf)) then 15 Return ¢
16 Return L

CH2(R):

17 w4 (c; —cf) Nz —=2") modp L /

18 Return (g% = X) 16 i+ i+1; R <R
17 Return ¢}

11 i< it+1;R «R
12 Return ¢;

13 4+ i+1;R; <R

14 Return ¢

Figure 12: Games Gmg, Gmi, Gms and adversary Ag; for proof of Theorem p <s rand(A;q))
denotes sampling the random coins of A;q; and assigning it to p.

D Proof of Theorem [3.2

Proof of Theorem Consider games Gmyg given in Fig. Game Gmg pre-samples all the
c1,-..,¢q values at line 2, but the game behaves otherwise exactly as Gmglqu(Aidl). We define
Pr[Gmg] to be the probablity that the first component of the return value of Gmg is non-zero.

Hence,

Pr[Gmg| = AdVlg}g’q(Aidl) . (29)
Next, consider Gmy, which executes line 6 to 13 in addition to those executed by game Gmg. Similar
to Gmyg, we define Pr[Gm;] to be the probablity that the first component of the return value of Gm;
is non-zero. We have constructed Gm; so that it is a forked run of Gmg (with ¢q,..., ¢, viewed
as inputs) as defined by the forking lemma [6]. Specifically, line 8 to 10 freshly samples challenges
A ,cfn after the selected forgery index I before invoking A;q with these values programmed
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into CHy. By the forking lemma, we have

Pr[Gmyg| < % +1/q2 - Pr[Gmy] . (30)

We now move onto game Gmg, which rewrites the winning condition of Gm; into line 15 to 18. We
claim that game Gmgy returns true as long as game Gmj returns true. This is because if both flags
b and b are ture, then

¢ = R; X¢
gZ/ — Ri/XCi/ ,

where ¢ = i’ > 0. Notice that we also have R; = R;, this is because the two runs of A;q has not
diverged when R; and R; are supplied (since the first different value of ¢y is only supplied afte R;
is given). Hence, putting the two equation together, we have

/ !
ci—c, __ 22—z
X I =g ,

which implies the the computed value of w = (¢ — ¢;)~1(z — 2) (line 17) is the correct discrete log
of X base g. As a result, Gmy must return true as well, and

Pr[Gmgs] > Pr[Gmy,] . (31)
Finally, we construct adversary Aqj, given in Fig. such that
Pr[Gmy] = Adv{  (Aa) - (32)

Adversary Aq forwards its target point X to A;jq and simulates Gms, starting from line 2 of Gms
and ending at line 17 of Gmsy, before outputting the computed value of w as the discrete log of
target point X. Putting the above equations together, we obtain the claim in the theorem. I

E Proof of Theorem (3.3

Proof of Theorem We recall the convention that representation of each of the group
elements S and R are additionally supplied when oracles NWTAR and CH are called. Specifically,
each of its NWTAR queries must be of the form

NWTAR(S, (s1,52)) ,
such that S = ¢°1 X*2. And each CH query must be of the form

CH(jsel, R, (11,72))
such that R = g"t X".

Consider game Gmg given in the left panel of Fig. By construction, it is the game Gm’é{%{qlm (Axiar)-
Next, consider game Gmy, where the winning condition has been changed to checking that (z = 2'),
where 2’ is either computed on line 9 or 10 depending on whether w = 0. We claim that regardless
of the value of w, game Gm; returns true as long as Gmg does (Gmg returns the boolean value b).
We check this by cases. First, if w = 0, then the games sets x’ to z if b is true, so Gm; also returns

true. If w # 0, then observe that if b is true, then
gz ZR['(SJ-XeJ)CI .
Expanding this equation using the fact that R; = ¢"»' X"! and S; = g% X %2, we get
gz — grl,lX"'I,Q . (gSJ,lXSJ,Q ,XeJ)CI ,
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Game Gmg, Gmy, Gmsy Adversary Aa1(X):

INTIT: 1 (I, 2) s AN O(X)

1 x¢$2Zy,; X+ g° 2 J + TJ[I]

2 €1, €0 <852y ;5 Cly...,Cqp <52y 3 w4 (r2+s2-e5-cr)

3 (I,2) ¢s AR (X)) 4 If (w = 0) then z’ < Z,,
4 b+ (¢°=R;-Y[T) 5 Else

5 Gmg: Return b 6 v (z—rr1—S11-¢)
6 w< (rrz2+(s1,2+es)-cr) 7 2+ v-w! modp

7 If (w = 0) then bad « true 8 Return z’

o Gmu NWTAR(S, (51, 52)):

9 If b then 2’ + z

9 j+—j+1;85«S
10 Else 2’ + L
G , 7 10 85,1 <= 81 5 Sj2 < S2
11 mo: &' <3
= » 11 ej«sZy; Ty« Sj- X
12 Else
12 Return e;

CH(jsel:R7 (T17T2)):
13 Requires 1 < jse1 < j
14 i+ i+1;R + R

13 v (z—7rr1—811°¢)

14 ' —v-w?!

mod p

15 Gmy, Gma: Return (z = x')

NwWTAR(S, (s1, $2)):
16 j«j+1;8; S

15 71 <= 715 ri2 <12

16 Y; + Ty, 5 TI[i] ¢ jsel

17 85,1 <= 815 8524 S
J:1 15 85,2 2 17 ¢ <$Zp ; Return ¢;

18 ej 452y ; Ty S;- X

19 Return e;

CH(Jse1, R, (11,72)):

20 Requires 1 < jse1 < j
21 i+ i+1; R+ R
22 Ty1 4 T1 5 T2 < T2
23 Y; Ty, ; TI[i] < Jsel

sel 7

24 ¢; +s$Z, ; Return ¢;

Figure 13: Games Gmg, Gm1, Gmy and adversary Aqg the proof of Theorem

which means that
1 /

g = X = glemramspenw™ _
Hence
Pr[Gmg] = Pr[Gmy] .
Next, consider game Gms, which sets z’ differently if w = 0. We have
Pr[Gm;] < Pr[Gmg| 4+ Pr[Gms sets bad]

< Pr[Gmy) + 212

(33)

(34)

Above, the calculation of Pr[Gmg sets bad] is justified as follows. First, the probability that s;2 +
e;j = 0 for any j is at most ¢i/p, since e; is uniform and independnet of s;2. Second, assuming
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Game Gmg, Gmy, Gmsy Adversary AZ(X):

INIT: 1 Cly...yCqy <82y ;5 p+srand(Axial)
NwTAR1,ChSim .
1 x43$2Zp; X < g ; p<srand(Axial) 2 (Iz) s Agar ! H(X5p)
2 €1,y €qy 82y 5 Clyn.yCqp <82y 3 b (9°=Rr-Y/")
/TaR,C
3 (I,2) « A)lji‘i\“TAR (X p) 4 If not b then Return L
4 b (g° =Ry Y{T) 5 Fori=1,...,] —1doc; <+ ¢
5 If not b then I < 0 6 4,§ < 05, Cry1s---,Cq 452y
NwTAR2,ChSim .
6 Gmg: Return (I > 0) 7 (2 s A *(X5p)
/ 2 cr/
7 Fori=1,...,] —1doc,+ ¢ 8 b (9" =Rp-Y,")
/
8 0,5 03¢}, Crats. .,y sZ, 9 If not b’ then Return L
9 (I/ Z/) s AN»\X;FAR’ChSim(X'p) 10 If ((I 76 I/) or (C[ = C/[)) then
, / ¢, 11 Return L
10 V'« (¢° =Ry -Y,") . y y
, . 12 j« TI[] ; 5" + TI[I']
11 If not b’ then i’ < 0 A ,
13 w< (er —cf) " (z—2") modp

12§« TI[I] ; j' < TI[I'] 14 Return (j, w)

13 Gmy:

4 Return (I = I' > 0) and (c1 £ ¢})) NWTAR (S):

15 Gmy: 15 jj+1;e;+sCH(S); S;« S
16 If ((I#1") or (cr = cf)) then 16 Tj <+ S;j - X% ; Return ¢;
17 Return L NWTAR2(S):

18 w4 (c1 —cf) Hz—2") modp m

19 Return (g% =1T3) 18 If not e; then e; « CH(S)
NWTAR(S): 19 Return e;

20 jj+158 8T 55 X% ChSim; (jser, R) // i € {1,2}:
21 Return e; 20 i4+i+1; R+ R
ChSim; (jeer, R): /i € {1,2} 21 Yi < Ty 5 TI[i] <= Jser
22 i+i+1; R+ R 22 ChSim; : Return ¢;

23 Vi < Ty, s TI[i] = jear 23 ChSims : Return ¢}

24 ChSim; : Return ¢;

25 ChSims : Return ]

Figure 14: Games Gmg, Gmj, Gmy and adversary A;q) for proof of Theorem [3.4]

sj2 +e; # 0 for all j, then the probability that r;2 + (s7j,2 + erypip) - ¢ = 0 for some i is at most
q2/p, since ¢; is uniform and independent of r; 2. Finally, we construct adversary Aqj, given in the
right panel of Fig. [I3] such that

Pr[Gms] = Advg, (Aa) - (35)
This is straight-forward, as Aq simulates NWTAR, CH and computes x’ exactly as Gms. |

F Proof of Theorem (3.4

Proof of Theorem Consider games Gmg given in Fig. [I4 Game Gmg pre-samples all the

ej and ¢; values at line 2 and 3, but the game behaves otherwise exactly as Gm’é{%{qh% (Axia1). We
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define Pr[Gmy)] to be the probablity that the first component of the return value of Gmy is non-zero.
Hence,

Pr[Gmg| = Adv%f;ﬁ%{tlh[]2 (Axiar) - (36)
Next, consider Gmp, which executes line 6 to 14 addition to those executed by game Gmg. Similar
to Gmyg, we define Pr[Gm;] to be the probablity that the first component of the return value of Gm;
is non-zero. We have constructed Gm; so that it is a forked run of Gmg (with ¢i,..., ¢4, viewed
as inputs) as defined by the forking lemma [6]. Specifically, line 8 to 10 freshly samples challenges
Chyo, cfn after the selected forgery index i before invoking Ayiq with these values reprogrammed
into CH. We remark that the values of e1, ..., e, , which are outputs of NWTAR are not resampled
across the two runs of Ay;q1. By the forking lemma, we have

Pr[Gmyg| < % +1/q2 - Pr[Gmy] . (37)

We now move onto game Gmg, which rewrites the winning condition of Gm; into line 16 to 19. We
claim that game Gmgy returns true as long as game Gmj returns true. This is because if both flags
b and b are ture, then

gZ — RI}/ICI

gZ = RI!YIC/I, 9
where I = I’ > 0. Notice that we also have R; = Ry, this is because the two runs of Ay;q has not
diverged when R; and Ry are supplied (since the first different value of Cliforger 18 only supplied
afte R; is given). Via simila reasoning, Y7 = Y = T);. Hence, putting the two equation toether,
we have

Yvicifci/ _ gz_z ’
which implies the the computed value of w (line 18) is the correct discrete log of Ty base g. As a
result, Gmo must return true as well, and

Pr[Gms] > Pr[Gm] . (38)
Finally, we construct adversary A;qi, given in Fig. such that
Pr[Gmgy| = Adv%g,lg,q1 (Aiar) - (39)

Crucially, in the construction of A;q;, NWTAR oracle need to be simulated differently for the two
runs of Ayq. In the first run, the oracle NWTAR; forwards the queries to CH (that is given to
our reduction adversary from the game GmiGd}%ql), while recording the responses eq,...,e;. Then,
in the second run, the oracle NWTARy will return previously recorded values of e, ..., e; as long
as they are available, and only starts to forward queries when it runs out of previously recorded
ones. This is to simulate the behavior of Gms, where there is one single fixed sequence of values
€1,...,€q, used by the oracle NWTAR. Putting the above equations together, we obtain the claim

in the theorem. |

G Proof of Theorem [5.1]

Proof of Theorem The proof uses a game sequence. Our games will implement Hy, H; with
lazy sampling, maintaining tables HF g, HF'; for this purpose. They will provide oracles SIGN1, SIGN»
for the first two rounds, but omit SIGN3, since this round returns to the adversary only a quantity
it could itself compute already. In FIN (for example Figure we assume the query is non-trivial,
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IniT: J Games Gmy—Gmry
1 (pk, sk) +s MS.Kg ; Return pk

NS(k, pk,m): J Games [Gmg|, Gm;
2 u+u+1; k< k;pk[l] < pk; pk, < pk ; my < m ; n, < |pk|
3 CommitStage, « true ; rux <5 Zp ; Rug < g"F ; tur «s{0,1}*
4 If (3u' < : Rug, = Rur,, ) then bad < true ; [t k, < tu i,
5 If (HFo[(k, Ru,1)] # L) then bad < true ; [tu.x < HFo[(k, Ru.1)]

6 Return ¢, 5

SIGNo(s,t): J Games Gmg, Gm,
7 k< ks ; t[k] < to ; ts <t ; CommitStage, < false
8 HFo[(k, Rs,i)] < ts,x ; Return Ry

SiaNy (s, R): J Games Gmg, Gmy, Gms

9 k< ks ; R[k] < Rs

10 For i =1,...,ns do y; + Ho((3, R[7]))

11 If (34 : y; # ts[i] ) then Return L

12 Ry « I R[i] ; cox < Hi((k, Rs, pky,ms)) 5 zok = sk - Cog + Tok

13 Return zsx

Ho(z): / Games [Gmg), Gmy

14 If (HFo[z] # L) then Return HF([z]
15 HFo[z] +s {0,1}*
16 If (3u’ : & = (kw, Ry ) and CommitStage,,,) then

17 bad « true ; [HFo[z] « tu .,

18 Return HFo[z]

Hi(z): J Games Gmo—Gmy
19 If (HF1[z] # L) then Return HF[z]
20 HF;[z] < Z, ; Return HF [z]

FIN(pk,m, (R, z)): / Games Gmg-Gmy
21 n 4 |pk‘

22 Fori=1,...,ndo ¢; + Hi((¢, R, pk,m))
238 X H:Zl pk[i]® ; Return (¢° = RX)

Figure 15: Games Gmg, Gm; for proof of Theorem [5.1] Some procedures will be included in later
games, as indicated. A box around the name of a game following an oracle means the boxed code
in that oracle is included in the game.
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meaning lines 6,7 of Figure [5] return true, and these lines are thus omitted. We start with games
Gmgp, Gm; in Figure Game Gmyg includes the boxed code, and we claim that

AV (A) = Pr[Gmg(A)] . (40)

Let us explain. We wish to move to a game where signing queries are answered without using the
secret key sk. Naturally, we expect, for this, to use the zero-knowledge property of the Schnorr
scheme. But certain obstacles must be removed before we can do this, and this will take a few
steps. The first obstacle we address is that the BN-commitment ¢, = Ho((k, R, %)) may leak
information about R, ;. Rather than define ¢, ; in this way, games Gmg, Gm; accordingly pick it
at random at line 3. The reason for the boxed code at line 4 is that, under the “true” assignment
tuk = Ho((k, Ryk)), having Ry, = Ry, would imply t,x, = tu k. At line 8, now that the
BN-commitments ¢ of all players are known, the games ensure that ¢, indeed equals Ho((k, Ry, k))-
This is consistent with the real game only if the hash function was not already defined at this point,
captured by setting bad at line 17. The boolean CommitStage ensures that bad is only set prior
to the release of R, }, since the adversary can set it with probability one if it knows R, ;. This

justifies Eq. .

Games Gmg, Gm; are identical-until-bad, so by the Fundamental Lemma of Game Playing (8]
Pr[Gmg(A)] < Pr[Gm;(A)] + Pr[Gm; (A) sets bad] .

The probability of setting bad at line 4 is at most (0+ 1+ ---+ gs — 1)/p, and the probabilities of
setting bad at line 5 and line 17 are at most gsqo/p, so

gs — 1) + 2¢sqo . QS(4QO +qs — 1)

2p D 2p

Pr{Gm; (A) sets bad] < s

Game Gms changes the NS, S1GNg, Hg oracles as shown in Figure maintaining the other oracles
of Gm; from Figure . It drops redundant code, which allows it to move the choice of R, to
line 28. At line 40, it also introduces a table HI to maintain an inverse of the hash function, but
does not use this. We have

Pr[Gm1 (.A)] = PI‘[GHIQ(A)] .

Game Gmgs (oracles shown across Figures [16| and aims to figure out the R, j-values of parties
J # k before having to supply R; j, because we will later need these to program H; values. It does
this by “inverting” the BN-commitments, meaning at line 30 it seeks inputs to Hy that result in the
BN-commitments in . If these cannot be found, then random values are chosen instead at line 31.
(Not finding the inverses is not yet a bad event. It can happen with high probability. It becomes
a bad event only at line 36 when the BN-commitments are verified.) The computation of ¢ at that
line is only to ensure that Hg has been called; this variable will not be used. These steps do not
change what the oracles return compared to Gmg, so we have

Pr[Gms(A)] = Pr[Gms(A)] .

Moving to game Gmy, the change is only at line 36, which now includes the boxed code. The hope
here is that the R} obtained at lines 30,31 is correct with high probability. The boxed code ensures
that in Gmy, it is always correct. Since Gmgs, Gmy are identical-until-bad we have

Pr[Gms(A)] < Pr[Gmy(A)] + Pr[Gms(A) sets bad] .

Line 36 can only set bad if y; = t4[i] for all ¢, due to line 35. So it is set only if there is a collision
in Hp-values, or no query hashing to ¢,[i| was made prior to the latter being provided, but is made
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NS(k,pk,m): J Games Gms—Gmy
24 u<—u+1; ky < k; pkl[l] < pk ; pk, < pk ; my < m ; n, + |pk|
25 tu1 <5 {0,1} ; Return t,:

SIGNo (s, t): / Game Gms
26 t[1] <= ts1 s ts <t 151482y 5 Rop < g™ 5 HFo[(1, Re1)] < ts,1
27 Return R

S1aNo(s,t): / Games Gmg, Gmy

28 k< ks ; t[k] ¢« tsp ;ts <t ;1K +32Zp ;5 Rep < g™ ; HFo[(k, Rs k)] < ts,k
29 Fori=1,...,ns do

30 If (HIo[i, ts[i]] # L) then R[] + HIo[é, ts[i]]

31 Else R:[i] +sG ; t + Ho((i, R:[i]))

32 Return Rk

S1aN1 (s, R): J Games Gmg, |Gmy

33 k< ks ; R[k] < Rsk

34 Fori=1,...,ns do y; + Ho((¢, R[i]))

35 If (34 :y; # ts[i] ) then Return L

36 If (R # R}) then bad < true ;

37 Rs < [[1, Rli] ; cs.r < Hi((k, Rs,pk,,m5)) 5 Zs = sk - Csp + sk

38 Return z; i
Ho(z): J Games Gmo—Gmy

39 If (HFg[z] # L) then Return HFg[z]
40 HFo[x] <= {0,1}* ; (i, R) + x ; Hlo[i, HFo[z]] <~ R ; Return HF[z]

Figure 16: Games for proof of Theorem [5.1}

later. Thus

aé +ngo

Pr[Gms(A) sets bad] < 5

(41)

In game Gmy, the R queried to SIGN; is the same as the R* determined in S1GNg, allowing game
Gms (Figure to move line 37 into SIGNg as line 45 and to simplify SIGN;. We have

Pr[Gm4(.A)] = Pr[Gm5(A)] .

Now that R, is determined prior to the release of Ry ., it becomes possible to successfully program
H; via the zero-knowledge simulation. Game Gmg of Figure [17| does this, setting bad at line 56 if
the programming was precluded by the hash value already being defined, and including the boxed
code to correct. We have

Pr[Gmj;(A)] = Pr[Gmg(A)] -
Games Gmg, Gmy (Figure are identical-until-bad, so
Pr[{Gmg(A)] < Pr[Gm7(A)] + Pr[Gmy(A) sets bad] . (42)
When line 56 is executed, the adversary has as yet no information about R, which means

Pr[Gmz7(A) sets bad] < &4

(43)
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S1GNo(s,t): / Game Gmg

41 k4 ks tlk] <= tsp s ts <t Te w52y 5 Roi < g% ; HFo[(k, Rs k)] < tsk
42 Fori=1,...,ns do

4 If (HIo[s, ts[d]] # L) then R[] < HIo[é, ts[i]]

44 Else R;[i] s G ; t + Ho((¢, R:[i]))

45 Rs < [, R3] 5 con < Hi((k, Rs, Pk ,ms)) ; 2ok < sk Cop + Tk

46 Return Rk

w

SieNy (s, R): J Game Gmg, Gmg, Gmy

47 k + ks ; R[k] + Rsk

48 Fori=1,...,n, do y; < Ho((z, R[3]))

49 If (34 :y; # ts[i] ) then Return L else Return zs g

SiaNo(s, t): / Game [Gmg|, Gmy

50 k< ko ; t[k] < tsp ; ts <+t

51 Co e $32Zp ; 2s,k <S5Zp ; Rep <— g°>Fpk™ %% s HFo[(k, Rs k)] ¢ ts.k

52 Fori=1,...,ns do

53 If (Hlo[i, ts[i] # L) then R[i] < Hlo[i, s[i]]

54 Else R:[i] +sG ; t « Ho((, R:[i]))

55 Re « [[}Z, R[]

56 If (HF1((k, Rs, pk,,ms)) # L) then bad < true ; [cs s + HF1[(k, Rs, pk,, ms)]|
57 HF1[(k, Rs, pky,ms)] < csk ; Return R i

w

Figure 17: Games for proof of Theorem

We now build an adversary A;q so that

Advg (Aia) > Pr[Gmr(Amng)] - (44)

We specify Ajq) in Figure It forwards the public key pk to Aps. Simulating signatures without
knowing the secret key, as A;jq needs to do, is now easy because the oracles of games Gmy already
did this, and A;jq; can just use the same code. Line 17 to 19 programs the challenge ¢, of the target
public key by first deriving commitment Ry, which is then submitted to CH to derive ¢g. Since
Gmi!  game also samples the challenge uniformly at random, this does not change the behavior

G,9,q
of Hy. However, if a forgery (pk, m, (R, z)), then it must be that

Ipk|
F=R- Hpk[i]Hl(%Rakam) = R; ) - pk* .
i=1
So A;jq wins game Gmi&lg’q. Eq. is obtained by putting the above all together. 1

H Proof of Theorem [6.1]

Let G be a group of prime order p with generator g. Let MS = MuSig|G, g, ¢] be the associated
MuSig multi-signature scheme. Let Ay be an adversary for game Gﬁ%’“f of Figure We shall
fix these quantities for the rest of the proof. The first lemma relates the advantage of A5 against
GRgv to a simplied game Gmgimp (given in Fig. .

38



Adversary A (pk):

1 (pk,m, (R, z)) s ANS:SeN0.SINL oL (h10y - Return (TJ[R], 2)

2 usu+1;ky < k;pk[l] < pk ; pk, < pk ; my < m ; n, < |pk|
3 tun +5{0,1}° ; Return t,

SIGNg (s, t):

4 k< ke tlk] < ton;ts 1t

5 Cok ¢5Zp 5 2s,k <3Zp 5 Rep < g*okpk™ sk : HFo[(k, Rs,k)] < ts,k
6 Fori=1,...,ns do

7 If (HIp[4, ts[i]] # L) then R%[i] + Hlo[i, ts][i]]

8  Else R;[i] +sG ; t + Ho((z, R3[Z]))

9 Rs < [[, R:[i] ; HF1[(k, Rs, pk,,ms)] < csk 5 Return Ry

S1GN1 (s, R):

10 k <+ ks ; R[k] < Rs

11 For i =1,...,ns do y; + Ho((¢, R[7]))

12 If (34 : y; # ts[i] ) then Return L else Return zs

Ho(l’):

13 If (HFo[z] # L) then Return HF¢[z]
14 HFo[z] <5 {0,1}* ; (i, R) < = ; Hlo[i, HFy[z]] < R ; Return HF[z]

Hy(z):

15 If (HF1[z] # 1) then Return HF[z]

16 (k,R,pk,m) < x ; HF[z] <5 Z,

17 If (pk[k] = pk) then

18 j+j+1;Fori=2,...,|pk| do¢; « Hi((i, R, pk, m))

19 Rjr<+ R- H#k pkli]® ; HF1[z] - ¢ < CH(R;k) ; TI[R] < j
20 Return HF[z]

Figure 18: Adversary A;q for Theorem

Lemma H.1 Assume the execution of game Gf{,}ss'uf with Aws has at most qo, q1,q2,qs distinct
queries to Ho, Hy, Ho, NS, respectively, and the number of parties (length of verification-key vector)
in queries to NS and FIN is at most n. Let o = qs(4qo0 + 2q1 + ¢s) + 2q1q2 and B = qo(qo + n).
Then,

a  p

AV (Ans) < Pr{Ginginp(Aus)] + 5 4 57 - (45)
xidl

The second lemma constructs the reduction adversary against Gmgy o, 4, -

Lemma H.2 Assume the execution of game Gﬁ%’“f with Ams has at most qo, q1, G2, gs distinct
queries to Hg, Hy, Ho, NS, respectively. We construct an adversary Ayia for game Gmé‘gl’q%ql

(shown explicitly in Figure such that

PI’[Gmsjmp (Ams)] S Advéi§17q27q1 (Axidl) . (46)
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INTT:
1 (pk, sk) s MS.Kg ; Return pk

NS(k, pk,m):
2 uu+1; ky < k; pk[l] < pk ; pk, < pk ; my < m ; n, < |pk|
3 tu1 <s{0,1}; Return t,,

SIGN: (s, R):

4 k< ks; RIk] + Rs

5 Fori=1,...,ns do y; + Ho((4, R[{]))

6 If (34 :y; # ts[i] ) then Return L else Return z,

SIGNg (s, t):

7T k< ks tlk] < top;ts—t

8 Cok <5Zp ; 25k <5 Zp 5 Rs i + g*s*pk~ %k s HFo[(k, Rs,k)] + ts.k
9 Fori=1,...,ns do

10 If (Hlp[4, ts[i]] # L) then RZ[i] < Hlo[i, ts[d]]

11 Else R:[i] <G ; t < Ho((3, R[i]))

12 Ry [T, Rl

13 HF1[(k, Rs, pk,,ms)] + ¢s,i ; Return Ry

Ho(l’):
14 If (HFo[z] # L) then Return HF([z]
15 HFo[z] ¢ {0,1}" ; (i, R) + x ; Hlo[i, HF[x]] < R ; Return HF[z]

Hi(z):

16 If (HF1[z] # L) then Return HF[z]

17 (R, apk,m) « x ; TV]apk] < TV]apk] U {z}
18 HF1[z] < Z;, ; Return HF[z]

Ha(z):

19 If (HF2[z] # L) then Return HF>[z]

20 (k,pk) <z ; For i =1,...,|pk| do HF2[(%, pk)] + e; s Z,
21 apk + [[I** pk[i]* ; For y € TV]apk] do HF:[y] « L

22 Return HF;[z]

Fix(pk,m, (R, 2)):

23 Fori=1,...,|pk| do ¢; < Hi((i, R, pk,m)) ; e; < Ha((%, pk))
24 X « Hllikll pk[i]*“ ; Return (¢° = RX)

Figure 19: Game Gmgimy, for proof of Theorem @

Proof of Lemma [H.1k

The proof uses a game sequence. Our games will implement Hg, Hy, Hy with lazy sampling, main-
taining tables HF o, HF, HF9 for this purpose. They will provide oracles SIGNg, SIGN; while omit-
ting SIGN», since this round returns to the adversary only a quantity it could itself compute already.
In FIN (for example Figure we assume the query is non-trivial, meaning lines 6,7 of Figure
return true, and these lines are thus omitted. We start with games Gmg, Gm; in Figure Game
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IntT: / Games Gmy—Gmyg
1 (pk,sk) +s MS.Kg ; Return pk

NS(k, pk,m): J Games [Gmgl, Gm;

2 u<+u+1;ky <+ k;pklk] < pk ; pk, < pk

3 My < m ; ny + |pk| ; CommitStage, + true

4tk 32y Rup + g" 5 by g <5 {0,1}¢

5 If (3’ <w : Ry, = Ru i, ) then bad < true ; [tuk, < tu/
6 If (HFo[(k, Ru,x)] # L) then bad < true ; [tur + HFo[(k, Rux)]
7 Return ¢,

SIGNg(s,t): J Games Gmg, Gm,
8 t[k] < tok ; ts <t ; CommitStage, < false
9 HFo[(k, Rs,k)] « ts,k ; Return R i

SiGN1(s, R): J Games Gmg, Gm;, Gmo

10 R[k] + Rk

11 Fori=1,...,ns do y; + Ho((3, R[7]))

12 If (3¢ : ys # ts[d] ) then Return L

13 Ry < [ Ri] ; cox < Hi((k, Rs, pky,ms)) 5 zok <= sk - Cop +Tsk

14 Return zsx

Ho(z): / Games [Gmgl, Gmy
15 If (HFo[z] # L) then Return HF[z]

16 HFo[z] +s{0,1}* ; If (v’ :x = (ku', Ry i, ) and CommitStage, ) then

17 bad « true ; [HFg[z] + tur ke,

18 Return HF[z]

Hi(z): J Games Gmy—Gmy
19 If (HF1[z] # L) then Return HF[z]
20 HF1[z] <% Z, ; Return HF [z]

Ha(z): J Games Gmo—Gmy
21 If (HF2[x] # L) then Return HF[z]
22 HFi[z] ¢ Z, ; Return HF [z]

FiN(k, pk,m, (R, z)): J Games Gmo—Gmg
23 Fori=1,...,|pk| do ¢; < H1((i, R, pk,m)) ; e; + Ha((4, pk))
24 X H‘f;kll pk[i]°"¢ ; Return (¢* = RX)

Figure 20: Games Gmgy, Gm; for proof of Theorem Some procedures will be included in later
games, as indicated. A box around the name of a game following an oracle means the boxed code
in that oracle is included in the game.
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NS(k,pk,m): J Games Gmao—Gmg
25 u<u+1; ky < k; pkl.] < pk ; pk, < pk ; my < m ; ny < |pk|
26ty <5 {0, 1}5 ; Return ¢,

SIGNo(s,t): / Game Gms
27 k< ke ; t[] 4t s ts <t ;T 82y ; R < g% ; HEo[(k, Rsk)] < tsk
28 Return Rk

S1GNo(s,t): / Games Gmg, Gmy

29 k< ks tlk] tsp ;ts <tk +82Zy; R+ g™ ; HFo[(k, Rs,k)] + tsk
30 Fori=1,...,ns do

31 If (HIo[é, ts[i]] # L) then R;[i] < HIo[Z, ts[d]]

32 Else R:[i] +sG ; t + Ho((i, R[i]))

33 Return Rk

SiaN1 (s, R): J Games Gmg, |Gmy

34 R[k] < Rs

35 Fori=1,...,ns do y; + Ho((¢, R[i]))

36 If (34 :y; # ts[i] ) then Return L

37 If (R # R}) then bad « true ;

38 Rs < [[1°, Rli] ; cs.p + Hi((k, Rs,pk,,m5)) 5 Zsk = sk - Cop + sk

39 Return z; i
Ho(z): J Games Gma—Gimg

40 If (HFo[z] # L) then Return HF¢[z]
41 HFo[x] <= {0,1}* ; (i, R) + x ; Hlo[i, HFg[z]] <~ R ; Return HF[z]

Figure 21: Games for proof of Theorem [6.1]

Gmyg includes the boxed code, and we claim that
AdVEEY(A) = Pr[Gmg(A)] . (47)
Games Gmg, Gm; are identical-until-bad, so by the Fundamental Lemma of Game Playing 8]
Pr[Gmy(A)] < Pr[Gm;(A)] + Pr[Gm;(A) sets bad] .

The probability of setting bad at line 4 is at most (0 4+ 1+ --- 4 ¢s — 1)/p, while the probabilities
of setting it at line 5 and 15 are at most gsqo/p so

Pr[Gm; (A) sets bad] < 4:(g: 1) +o2. B0 _ 4s(4q0 £ 45— 1) :

2p D 2p

Game Gms changes the NS, S1IGNg, Hg oracles as shown in Figure maintaining the other oracles
of Gm; from Figure @ It drops redundant code, which allows it to move the choice of R 1 to
line 29. At line 31, it also introduces a table HI to maintain an inverse of the hash function, but
does not yet use this. We have

Pr[Gm (A)] = Pr[Gma(A)] .

Game Gmg (oracles shown across Figures 21| and aims to figure out the R, j-values of parties
J # k before having to supply Rj 1, because we will later need these to program H; values. It does
this by “inverting” the BN-commitments, meaning at line 27 it seeks inputs to Hg that result in the
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S1GNo(s,t): / Game Gmg

42 k4 ks tlk] <= tsp s ts <t Te w52y 5 Rok < g% ; HFo[(k, Rs k)] < tsk
43 Fori=1,...,ns do

a4 If (HIp[i, ts[d]] # L) then R:[i] < Hlo[Z, ts[7]]

45  Else R;[i] s G ; t + Ho((i, R:[i]))

46 Rs < [, R3] 5 con < Hi((k, Rs, Pk ,ms)) ; 2ok < sk Cop + Tk

47 Return Rk

SiaN1(s, R): J Game Gms—Gmg

48 k + ks ; R[k] + Rsk

49 Fori=1,...,n, do y; < Ho((z, R[3]))

50 If (34 : y; # ts[i] ) then Return L else Return zs g

SiGNo(s,t): / Game [Gmg, Gm7—Gmg

51 k< ko ; t[k] < tsp ; ts < t

52 Co 8 2Zp ; 2s,k <SZp ; Re <— g°>Fpk™ %% s HFo[(k, Rs k)] ¢ ts.k

53 Fori=1,...,ns do

54 If (HIo[é, ts[é]] # L) then R[i] < Hlo[s, ts[d]]

55  Else R}[i] +sG ; t + Ho((¢, R%[4]))

56 R, « [, Rili

57 If (HF1((k, Rs, pk,,ms)) # L) then bad < true ; [csx + HF1[(k, Rs, pk,, ms)]|
58 HF1[(k, Rs, pk,,ms)] < csk ; Return R i

Figure 22: Games for proof of Theorem [6.1]

BN-commitments in £. If these cannot be found, then random values are chosen instead at line 37.
(Not finding the inverses is not yet a bad event. It can happen with high probability. It becomes
a bad event only at line 37 when the BN-commitments are verified.) The computation of ¢ at that
line is only to ensure that Hg has been called; this variable will not be used. These steps do not
change what the oracles return compared to Gms, so we have

Pr[Gmg(A)] = PI‘[Gmg(A)] .

Moving to game Gmy, the change is only at line 33, which now includes the boxed code. The hope
here is that the R} obtained at lines 32,33 is correct with high probability. The boxed code ensures
that in Gmy, it is always correct. Since Gmgs, Gmy are identical-until-bad we have

Pr[Gmgz(A)] < Pr[Gm4(A)] + Pr[Gms(A) sets bad] .

Line 38 can only set bad if y; = t[i] for all ¢, due to line 37. So it is set only if there is a collision
in Ho-values, or no query hashing to ¢,[i] was made prior to the latter being provided, but is made
later. Thus

g5 +nqo

Pr[Gms(A) sets bad] < o

(48)

In game Gmy, the R queried to SIGN; is the same as the R* determined in SI1GNg, allowing game
Gm; (Figure to move line 38 into SIGN( as line 46 and to simplify SIGN;. We have

Pr[Gmy(A)] = Pr[Gms(A)] .

Now that R, is determined prior to the release of R, j,, it becomes possible to successfully program
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Hi(z): J Game Gmg, Gmg

59 If (HFi[z] # L) then Return HF[z]

60 (R,apk,m) < x ; TV[apk] «+ TV]apk] U {z}
61 HFi[z] s Z, ; Return HF[z]

Ho(z): J Game Gmg, |Gmg

62 If (HF2[z] # L) then Return HF;[z]

63 (-,pk) <z ; Fori=1,...,|pk| do HF2[(, pk)] + e; s Z,
64 apk < H‘f;kl‘ pkli]®

65 If TV[apk] # L then

66  bad « true ; ‘For y € TV]apk] do HF[y] + J_‘

67 Return HF;[z]

Figure 23: Games for proof of Theorem [6.1]

H; via the zero-knowledge simulation. Game Gmg of Figure [22| does this, setting bad at line 57 if
the programming was precluded by the hash value already being defined, and including the boxed
code to correct. We have

Pr[Gms(A)] = Pr[Gmg(A)] .
Games Gmg, Gmy (Figure are identical-until-bad, so
Pr[Gmg(A)] < Pr[Gmy(A)] + Pr[Gmy7(A) sets bad] . (49)
When line 57 is executed, the adversary has as yet no information about Rs, which means

Pr[Gm7(A) sets bad] < L

(50)

Moving on, let us consider games Gmg and Gmg in Fig. which differ from Gmy in modifications
to oracles H; and Hs. Oracle H; now keeps track of a table TV, that stores for each aggregate
key apk the set of Hy queries that contain it. It otherwise behave identically to Gmy7.H;. Oracle
Gmg.Hy does not contain the boxed code, which makes the oracle behave identically to Gmy.Hs.
So, we have

Pr[Gmy7(A)] = Pr[Gmg(.A)] . (51)

By construction, Gmy and Gmg are identical-until-bad, hence
Pr{Gmg(A)] < Pr[Gmg(A)] + Pr[Gmg sets bad] (52)
< Pr[Gmg(A)] + q% , (53)

where the last inequality is by the fact that each Hy query has probability at most ¢;/p of setting
bad. Lastly, we note that Gmg and Gmgimp are identical. This completes the proof of Lemma |

Proof of Lemma Consider Ayiq in Figure It forwards the public key pk to Aps.

programs the response e; for the target public key by first deriving commitment S = []; ., pk [i]¢,
which is then submitted to NWTAR to derive e; that is returned as the response. By construction,
the corresponding aggregate public key apk = S-pk°®* is exactly the target Tj recorded by Gmélg{qml
for this NWTAR query. For each H; query, our adversary first uses the aggregate public key apk
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Adversary ASH (pk):

1 (pk:,m, (R, Z)) s ANS,SIGNO,SIGNl,Hg,Hl,Hg (pk)

2 apk + H‘f;kl‘ pk[i]12((-PR) . Return (TI[(apk, R, m)], 2)
Hy(z):

If (HF,[z] # L) then Return HF [z]

(R, apk, m) « z ; TV]apk] + TV U {z}

If (TJ[apk] = L) then Return HF[z] +s Z,
t—t+1; TIz] ¢

HF[z] < ¢, < CH(TJ[apk], R) ; Return HF[x]

N o o W

s If (HF2[z] # L) then Return HF3[z]

9 (-,pk) < z ; If (pk & pk) then Return HF;[z] s Z,

10 j < j+1; k< minind(pk, pk) ; If (z # (k,pk)) then Return HFs[x] < Z,,
1§ e [, Pl

12 HF3[z] < e; < NWTAR(S) ; apk < S - pk® ; TJ[apk] < j

13 For y € TV]apk] do HF[y] «+ L

14 Return HF3[z]

Figure 24: Adversary Ayqr for Theorem Oracles NS, S1GNg, SIGN1, Hy are copied from game

Gmgimp (Fig. .

find the corresponding Hy query via table TJ. If possible, then the adversary proceeds to program
in a challenge using the challenge oracle CH of XIDL. If this is not possible, the advesary simply
simulates H; honestly. If a forgery (pk,m, (R, z)) is valid, then it must be that
Pkl
gZ — R . H apkHl((Rva’pkvm)) ,

=1

where apk = Hlikl' pk [i]HZ((i’pk)). Observe that call involving a fresh vector pk to oracle Ho erases
the table HF; at every entry associated with the derived apk. Hence, our adversary can use the
above relation to directly break XIDL. In other words, the value of z included in the forgery
makes the following equation true in game Gm’é{%{qml, g = R- Tfi, where j = TJ[apk] and

i = TI[(R, apk,m)]. This justifies Equation . |

I Proof of Theorem [7.1]

The first step in the proof is to move from the security game Gr,\r,llsé'“f to a game where the signing
oracles can be simulated without the target secret key. We encapsulate this in the lemma below,
which works strictly in the standard model, meaning it does not require adversaries involved to be
algebraic. This allows our latter standard model proof of security for HBMS to also rely on this
lemma.

Lemma I.1 Let G be a group of prime order p with generator g. Let MS = HBMS|G, g] be the
scheme specified in Fig. @ Let Aps be an adversary for game Gr,\r,llss'“f of Fig. @ Assume the

execution of game GR,}%’“f with Ams has at most qg, g1, q2 distinct queries to Hq, Hy, Hy respectively.
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Game Gmg, Gm; ,, Gmgy,, Ho(z): J Gmg
22 If HFg[z] = L then HF[z] <3G
23 Return HF[z]

INIT:
1 (pk,sk) +s MS.Kg ; Return pk
H()(:E): // Gmlyp,Gmg_,p

NS(k, pk, m):
(k. pk, m) 24 If HFg[z] # L then Return HFg[x]
2 pklk] < pk;u+u+1 .
3 ku+k;my+m °° ,Ié’fggﬁﬂzp;ﬂpkl%;zp
26 i = t
4 pk, + pk ; h+s Ho((pk,m)) (H;m(p) /3) ;ﬁnk
. 27 +— gPopkPr
| e ] - oop
28 — s Pgs
6 au7bu —s Zp : Tu,k — gauhbu [LU] (p ﬁg ﬁpk)
29 Else
7 Return Ty i
30 HFg[z] < g
SIGN1 (v, in): 31 TH[z] < (g, By, Bpk)
8 (Tv,a,...,Ton) +in; Ty < H:L:1 T 32 Return HF[z]
9 ¢y + H1((Tv, apk,, my)) )
10 ey + Ha((ky, pk)) Hi(z): /1 €{1,2}
33 If (HF;[z] = 1) then HF;[z] s Z,
11 Gmg:

34 Return HF;[z]
12 Zy & Ay + Sk - ey - ¢y, mod p

13 8y by FIN(pk,m, (T, s, z)):

14 Gmy,p, Gma,,: 35 If (pk[k] # pk) then return false

15 (w, By, Bpk) + TH[(pk,, mys)] 36 If (pk,m) € {(pk;,m;) : 1 < i < u} then return
16 If (w # pk) then abort false

17 Sy — by + €4 - Cy ~ﬁ;k1 mod p 37 h < Ho((pk,m))

18 Zy ¢ Ay + Bg - by — Bg - Sy mod p 38 Gmy,p:

39 (w, By, Bpr) = TH[pk, m]
40 If (w # g) then abort

41 (pky,...,pk,) < pk

42 apk « [[7 kaHQ((i’pk))

43 ¢+ Hi((T, apk, m))

44 Return (g°h® =T - apk®)

19 Return (sy, 2v)

SIGN2 (v, in):
20 (b1, tn) —in st
21 (s,2) + t ; Return (Ty, s, 2)

Figure 25: Games Gmg, Gmi ,, and Gmy ,, where p € [0,1] is a real number, used in Lemma
and proof of Theorem Notation Coin(p) denotes flipping of a biased coin with probability p of
giving 1 and 1 — p of giving 0.

Let p € [0,1] be a real number. Consider games Gmg and Gmi , give in Fig. . Then,

Advie™ (Ams) = Pr{Gmo(Ams)] (54)
= Pr[Gmy ,(Ams) | Gmy ,(Ams) does not abort | . (55)

Moreover, the probability that game Gmy does not abort is
Pr[Gm; ,(Ams) does not abort ] = p? | (56)

which is 1 if p=1.

Proof of of Lemma Consider games Gmg and Gm; , given in Fig. Game Gmyg is simply
a rewrite of Gr,\ﬁsé'“f, where Hg, Hy, Hy are lazily sampled. We fix the given adversary Ay for the

rest of the proof and omit writing it in expression such as Pr[Gmg(Ays)] for simplicity. Game
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Gmy , is parameterized by a real number p € [0,1], and changes the code of NS, SIGNy and Hy.
The changes are made so that S1GN; does not use the secret key sk, but will however preserve the
output distribution of all oracles when it does not abort, as we will show below. In particular, for
each Hy query, game Gm; makes a guess, by flipping a biased coin Coin(p), which has probability
p of returning 1 and probability 1 — p of returning 0. If the coin flip returns 1, then we set the
output of Hy(z) to be g pkPrx | otherwise we set the output of Ho(z) to be g% . In either case, Byg
and Bk are uniformly chosen at random as per line 25.

Looking ahead, Gm;,, will be able to simulate signatures for pk,m when Hq(pk,m) is set to
P9 pkPrr (when the coin toss returns 1). In fact, p is set to 1 in deriving the AGM result and
the coin toss never returns 0. However, for the standard model result, we will need to make
sure that the Hy query corresponding to the forgery pk, m is programmed differently, namely that

Ho((pk,m)) = g".

Game Gm , could abort at line (it is assumed that the adversary losses the game if Gm; is
aborted). By construction, we have

Pr[Gm; does not abort] = p . (57)

We claim that, for any value of p, if game Gm; does not abort, then it is indistinguishable from
Gmyg to the adversary. In particular, we claim

Pr[Gm; | Gm; does not abort] = Pr[Gmy] . (58)

Showing this amounts to showing that the outputs of SIGN; oracle in either games are distributed
identically. Observe that, in game Gmg, the return value T; of NS and (s,,z2,) of SIGN; are
uniformly distributed subjected to the constraint that

g7 Ho((pk,,m))™ = T, - k™ .

We will show that this is also true in Gm; ,, namely that SIGNg and SIGN; in Gm; , also returns
Ty and (sy, 2y) that are uniformly distributed subjected to the above equation. In game Gm; ,, if
w = pk at line 15, then h = Ho((pk,, m)) = g% pk, by construction of Hy (line 27). Hence, for
a query SIGN{(v, (Ty1,...,Tyn)) of game Gm; ,, it holds that

Tv,kv . pkevcu — gav . hb'u . pkevcv — gav . (gﬁgpkﬁpk)bv . pkeucv

— gav"‘ﬂg'bv . pkﬁpk‘bv"l‘evcv .

We claim that the above is also equal to ¢* - h%. In fact, we set z,, s, on line and exactly
to make this true. To verify this, check that
gZ“ hdv = gav+59'bv_5g'5v (gﬂgpkﬁpk)sv = g“v"'ﬁg'bvpkﬁpk'sv

— gav+ﬂg'bv . pkﬁpk‘bv"!‘eucv .

Additionally, notice that s,, 2, are both marginally uniform over Z, by construction. This means

the outputs of SIGNg, SIGN; oracle from Gm; , has the same output distribution compared to that
of Gmy. This justifies Equation (58). I

Equipped with Lemma we move on to prove Theorem The proof constructs adversary Aqg
that simulates Gm; ; (with p set to 1).

Proof of Theorem Consider the games Gmg and Gmi; (with p = 1) in Fig. We know
that,

Pr[{Gmg] = Pr[Gm;; | Gm;; does not abort] .
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Adversary Aai(X):

1 pk + X ; (k,pk,m, (T, s,z)) +s ANSSIeN1,81682,Ho iy Ha (110

If (pklk] # X) then return L

If (pk,m) € {(pk;,m;) : 1 <i < wu} then return L

If not MS.Vflo-112 (pk m o) then return L

(w, B, Bpi) 4~ TH(pk,m] ; apk + [P pk[i]"2 (P

¢+ Hi((T,apk,m)) ; For i = 1,...,|pk| do e; + Ha((4, pk))
ag 2+ By —Ext(T,g) —c- 3., Ext(pkli],g) e

ax +— = Bpk + Ext(T, X) + ¢ (ex + Z#k Ext(pkli], X) - ;)
If (ax = 0) then bad < true ; 2’ +s Z,

© 00 N o o W N

[ure
o

Else 2’ + agyay' mod p

Return z’

e
[N

Figure 26: Adversary Ag for Theorem oracles NS, SIGN7, SIGNy, Hg, Hy, Hy are implemented
using the exact code as those in Gm; ;. Notation Ext(-, g) and Ext(-, X') are defined in the proof of
Lemma [7.2} Computation of oy and oy are done modulo p.

Moreover,
Pr[Gm; , does not abort] = p* =1,

when p = 1. Hence, game Gm; ; never aborts and Pr[Gmg] = Pr[Gm; ;] . We shall construct an
adversary Aq), using the fact that given adversary A& is algebraic, directly against game Gmde{ g

We first analyze the group elements involved in the inputs and outputs of oracles of Gm;j ;. The
u-th NS query takes in a list of group elements pk,,. The v-th Sign; query takes in a list of group
elements (13,1, ..,Tyn). The i-th Hy query take in a list of group elements pkyy, ;. The i-th Hy
query (7', apk,m) takes in group elements Ty, ; and apky, ;. Above are the exhaustive list of group
elements that are given to Gmy 1, let us denote this list by out, since they are the output of the
adversary. The initial query to INIT outputs a group element pk. The u-th NS query gives out
a group element T}, ;,. The i-th Hy query gives out a group element h;. The last query to FIN
gives group elements 7' (first component of the forged signature) and pk. Above (plus the group
generator g) are the exhaustive list of group elements that are given out to the adversary A%%.
Let us denote this list as in. Hence, the algebraic adversary A8 gives, for each group element in
the list out, a vector that is of dimension |in| which is a valid representation of the corresponding
group element. Note that every group element in the list in is derived using only group operations
on two group elements: g and pk (this is by the construction of game Gmj ;). As a result, every
group element in the list out can be represent using g and pk only. For any Y € out, we use
Ext(Y, g) and Ext(Y, pk) to denote this representation, i.e.

Y = gExt(Y,g) . pkExt(Y,pk) .

We forego writing explicit code deriving these representations, with the understanding that they are
well-defined and can be computed easily from the oracle queries of .42, We will use this notation
freely in simulations of Gmy ;.

We move on to giving adversary Aq;, which simulates Gmy; for Aﬁ{%. Our adversary Agq is given
in Fig. 26l Our adversary Ag simulates oracles NS, SIGNSTAGE;, SIGNSTAGEg, Ho, Hy exactly as
Gmy 1, hence their code are omitted. As stated above, since Aqg) simulates Gmy; 1, the representation
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of any group element Y € out are available via scalars Ext(Y, g) and Ext(g, pk). Our adversary
uses these scalars to compute the discrete log 2.

If A% gives a valid forgery (pk,m, (T, s, 2))" then the verification equation says that
g*Ho((pk,m))* = T - apk™ (Tapkm)

where apk = H‘gﬁ' pk[z’]HQ((”’k)). Since every group element in the above equation can be repre-
sented using g and X, one can solve for DLg 4(X). Our adversary Aq; implements this intuition,
computing value oy and ax (line 7 and 8) such that g% = X*X. The only caveat is that ax could
be 0, in which case DLg 4(X) cannot be solved for. When ax = 0 adversary Aqg sets bad, and
we would like to upperbound the probability of this event. First, note that the view of adversary
A is independent of the value of f,k. This is because the adversary is only given the value
of h = ¢gPopkPrk. So, if the forgery is such that s # 0, then ax = 0 with probability at most
1/p. If s = 0, then we need to make sure that Ext(T, X) + c - (ex + 32, Ext(pkli], X) - €;) is not
zero. We first bound the probability that there exists some query Ha((-, pk’)) (which defines the
values of €], ... 7€\ka/|) such that ), + 32,4, Ext(pk'[i], X) - €; = 0 (call this quantity ;). This
happens with probability at most g2/p. Suppose the above does not happen, then for each query
H1((T", apk’,m’)) (which defines the value of ¢’), where apk’ is the aggregate key of some vector
pk’, the probability that Ext(T", X)+c/ “Ypr' = 0 1s at most g2 /p, accounting for at most go non-zero
values that 7, could take. This results in an overall bad probability of g2 /p+q1q2/p = (q1+1)g2/p-
This justifies Equation . |

J Proof of Theorem [7.2

Proof of of Theorem We will start by considering Gm; , given in Fig. By Lemma
AdVEEY (Ams) = Pr[Gmy ,(Ams) | Gmy ,(Apws) does not abort] .

Towards construction of an adversary against XIDL, consider game Gmy , (Fig. , differ from
Gm; , only at line it aborts if the coin flip corresponding to the forgery target (pk,m) results
in w = g. Marginally, Gmg , does not abort at line 40| with probability (1 — p). We need to lower
bound the probability of Gmsy , not aborting overall, at either line [I6] or line 40} Since there are
overall g5 unique queries to NS in the execution of Gmg with Apg, then the probability that Gm;y
does not abort is exactly

Pr[Gma(Aps) does not abort] = p%(1 — p) .
Setting p = (1 — (1 + ¢5)~1), we have that

1
Pr[Gms(Aps) does not abort] = (1 — (1 e D
r[Gma(Ams) n rt] = (1— (1 +¢)")*(1 +gs) Z it
where we applied the fact that (1 — (1 4+ n)~1)" > e~ ! for positive n. Since game Gmgy can only
abort more often than Gm; and that the aborting at line 0] is an event independent of whether
Ams succeeds, Equation gives us that

Pr{Gmg(Ams)] = Pr{Gma(Ams) | Gma(Ams) does not abort] .

!Note that for the fogery pk,m,(T,s,z) returend, the corresponding random oracles queries Ho((pk,m)),
H.((T, apk,m)), and Ha((¢, pk)) are made in line 4 to 6, even if these points were previously unqueried during
the execution of A8,
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Hi(z): J Game Gmg, Gmy

45 If (HF1[z] # L) then Return HF[z]

46 (T, apk,m) < z ; TV]apk] < TV[apk] U {z}
47 HF[z] - Z; ; Return HF [z]

Ho(z): J Game Gmg, Gmy

48 If (HF2[z] # L) then Return HF>[z]

49 (-,pk) <z ;Fori=1,...,|pk| do HF3[(i, pk)] < €; +s Z,
50 apk < H‘f;kl‘ pkli]®

51 If TV[apk] # L then BadSet < BadSet U T'V]apk]

52 Return HF;[z]

Fin(pk,m,(T,s,z2)): /J Game Gmg, |Gmy

53 If (pk[k] # pk) then return false

54 If (pk,m) € {(pk;,m;) : 1 <4 < u} then return false
55 (w, Bq, Bpk) < TH[pk, m] ; If (w # g) then abort

56 (pky,...,pk,) < pk ; apk < [[” pk?ﬂ(i’pk))

57 If ((T,apk,m) € BadSet ) then bad <« true ; ‘HFl[(T, apk,m)| « J_‘
58 ¢ <« Hi((T,apk,m)) ; h < Ho((pk,m))

59 Return (¢*°h° =T - apk®)

Figure 27: Games Gms and Gmy for proof of Theorem Oracles Init, NS, SIGNy, SIGNg, Hg are
the same as those in Gmg ,. Parameter p is set to (1 — (14 ¢s) ') in oracle Hy.

Hence,
1

Pr[Gmy p(Ams)] > e(1+ ¢
For the rest of the proof, we set p = (1 — (14 ¢s)~!) and omit writing them in the subscript for
games. Next, we need to further modify oracles H; and Hy so that whenever Hsy derives a fresh
aggregate key apk, it must not have been queried to H; (in the form of (T, apk, m) for any T and
m). Formally, consider games Gmg and Gmy given in Fig. These games also keep track of a
set BadSet, which contains those H; queries (T, apk, m) such that the aggregate key apk is later
derived in Hy (line [51)). By construction, if any Hy query (T, apk,m) is not in BadSet (at the
end of the game execution), the aggregate key apk is either previosly derived in Hg, or it has never
been derived in any Hy query. Game Gms.FIN does not contain the boxed code, which makes the
oracle behave identically to Gms.Hs. So, we have

Pr[Gma(A)] = Pr[Gms(A)] . (60)

Oracle Gmy.Ho contains the boxed code, which reset the oracle H; at the chosen forgery point
(T, apk,m) if it is part of BadSet. This ensures the value HF,[(T, apk, m)] to always be defined
after the Hy query that derives aggregate key apk. By construction, Gms and Gmy are identical-
until-bad. So,

- Pr{Gmo(Ams)] - (59)

Pr[Gms(A)] < Pr[Gmy(A)] + Pr[Gmy sets bad] . (61)

We first compute that probability that BadSet is non-empty at line Since each Hy query has
probability at most g /p probability of adding elements to BadSet, we can bound

Pr[BadSet # 0 at line 57| < 22 . (62)
p
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NwWTAR,CH,FIN .
Adversary Ay, (X):

1 pk X ; (k,pk,m, 0’) s A%SS,SIGNl,SIGNQ,H(),H:[,HQ(pk)

2 If (pk[k] # pk) then return L

3 If (pk,m) € {(pk;,mi) : 1 <4 < u} then return L

4 (w, By, Bpk) < THlpk,m] ; If (w # g) then abort

5 (pky,...,pk,) < pk ; apk < [[" pk?Z((i’pk)) i (Tys,2) + 0

6 If ( (T, apk,m) € BadSet ) then HF,[(T, apk, m)] < L

7 ¢+ H1((T,apk,m)) ; h + Ho((pk,m)) ; i « TI[(T, apk, m)]

8 Return (4, (z + s- 8y) mod p)

Hi(z): M

9 If (HF[z] # L) then Return HF[z] 17 If (HF2[z] # L) then Return HF;[x]
10 (T, apk,m) < x 18 (-, pk) < z ; If (pk ¢ pk) then
11 TV]apk] < TV]apk] U {z} 19 Return HF3[z] +s Z,

12 If (TJ[apk] = 1) then 20 j < j+1; k< minind(pk, pk)
13 Return HF[z] +s Z, 21 If (x # (k, pk)) then

14 v+ 1; TIz] ¢ 22 Return HF3[z] s Z,

15 HF[z] < ¢, <= CH(TJ[apk],T) 23 S ¢ [,z pE[i]"2 (P

16 Return HF[x] 24 HF[(k, pk)] < e;j < NWTAR(S)

25 apk < S - pk® ; TJ[apk] < j

26 If TV]apk] # L then

27 BadSet «+ BadSet U TV[apk]
28 Return HF[z]

Figure 28: Adversary Ayq used in Theorem Oracles NS, SIGN1, SIGNg, Hy are simulated
exactly per code from Fig. [25]

Note that flag bad can only be set if Gmy did not abort (in oracle Hy or line , which happens
with probability 1/(e(1 + ¢gs)) by previous analysis. Furthermore, the view of the adversary is
independent of whether game Gmy aborts. Hence,

q1q2
Pr[Gmy(A) sets bad] < Pt
We now move on to the construction of the adversary, given in Fig. The adversary Ayiqr
runs Ans while giving it simulated oracle Hg, Hi, Ho, NS, SIGNSTAGE1, SIGNSTAGE,. Code for
Hgy, NS, S1GN1, SIGNg are copied from game Gmy. The only new code here is in H; and Hs, which
we now explain.

(63)

For each j-th Hy query x = (-, pk), where HF3[z] is not yet defined the adversary will sample
HFs[(i, pk)] for each ¢ = 1,...,|pk| as follows. If the target public key X is not in pk, then these
values are sampled honestly (line 15). Otherwise, let k be the smallest index such that pk[k] = X.
Our adversary will query the NWTAR oracle from Gmé{‘;{%ql game so that the resulting aggregate

public key apk is the target point 7} generated by the game Gm’éif;lqul. This is done by first

computing the partial aggregation value of S (line 17), before submitting it to the NWTAR oracle
to obtain response e; which is set as the output of Hy (line 19).

For each Hy query (T, apk, m), the adversary will submit the commitment to the oracle CH, at the
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index that corresponds to the aggregate public key apk. This is done so that a forgery (7, s, z)
corresponding to this H; query can be turned into a break against Gmé‘g{q%ql. Here, we are also
utilizing the fact that a successful forgery (pk,m, (T,s,z)) is such that Ho((pk,m)) is a known

power of g. Hence, the verification equation
R =T- apkHl((T’apk’m)) ’

xidl
G:gnyv(Il )

, where T; = apk is the j-th target point generated by

of the signature scheme implies that the computed response z + 345, against the game Gm

is valid, ie. ¢*tPss = T . 7H1((T\apk,m))
, i.e. ;

NWwWTAR oracle. Hence,
Pr[Gmy(Ams)] = Pr[GmgS , . (Axial)] - (64)
Putting Equation , , and together, we obtain the result claimed in the theorem. |
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