Security Analysis of SFrame

Takanori Isobe?3, Ryoma Ito?, Kazuhiko Minematsu?

! University of Hyogo, Japan.
takanori.isobe@ai.u-hyogo.ac.jp
2 National Institute of Information and Communications Technology, Japan.
itorym@nict.go.jp
3 PRESTO, Japan Science and Technology Agency, Japan.
4 NEC Corporation, Japan.
k-minematsu@nec.com

Abstract. As people become more and more privacy conscious, the
need for end-to-end encryption (E2EE) has become widely recognized.
We study herein the security of SFrame, an E2EE mechanism recently
proposed to the Internet Engineering Task Force for video/audio group
communications over the Internet. Despite being a quite recent project,
SFrame is going to be adopted by a number of real-world applications. We
inspect the original specification of SFrame and find critical issues that
will lead to impersonation (forgery) attacks with a practical complexity
by a malicious group member. We also investigate the several publicly
available SFrame implementations and confirm that this issue is present
in these implementations.

Keywords: End-to-End Encryption - SFrame - Authenticated Encryption -
Signature - Impersonation

1 Introduction

End-to-end encryption (E2EE) is a technology that ensures the secrecy and the
authenticity of communications from the intermediaries between the communi-
cating parties. When E2EE is deployed in a communication application over the
Internet, even the servers that facilitate communications cannot read or tamper
the messages between the users of this application.

Due to the numerous pieces of evidence of massive surveillance, most notably
by the case of Edward Snowden, E2EE has received significant attention and has
been deemed as a key feature for protecting users’ privacy and integrity for a wide
range of communication applications. This also holds for the video calling/meeting
applications, such as Zoonﬂ or Webexﬂ The end-to-end security of video group
meeting applications has been actively studied, and various approaches to E2EE
have been proposed. Studying the security of E2EE systems in practice is also a
hot topic, as shown by [9}16}18}/19}43].

! https://zoom.us/
2 https://www.webex . com

https://zoom.us/
https://www.webex.com

In this study, we investigate SFrame, which is one such approach aiming
to provide E2EE over the Internet. Technically, SFrame is a mechanism for
encrypting real-time communication (RTC) traffic in an end-to-end manner. RT'C
(or WebRTC, an RTC protocol between web browsers) is a popular protocol
used by video/audio communication, and SFrame has been carefully designed
to suppress communication overheads that would be introduced when E2EE is
deployed. In 2020, it was proposed to the the Internet Engineering Task Force
(IETF) by a team of Google and CoSMo Software engineers (i.e., Omara, Uberti,
Gouaillard, and Murillo) as a form of Internet draft [36]. Despite being a quite
recent proposal, it has quickly gained much attention. One can find a large variety
of ongoing plans to adopt SFrame as a crucial component for E2EE, including
major proprietary software to open-source applications, such as Google Duo [35],
Cisco Webex [7,8], and Jitsi Meet [22]/44].

1.1 Owur Contributions

We looked into the original specification of SFrame [36] and made several ob-
servations. Most notably, we found an issue regarding the use of authenticated
encryption with associated data (AEAD) and signature algorithm. The spec-
ification [36] defines two AEAD algorithms, namely a generic composition of
AES-CTR and HMAC-SHA256, which is dubbed as AES-CM-HMAC, and AES-
GCM for encrypting video/audio packets. We will show an impersonation (forgery)
attack by a malicious group member who owns a shared group key for the speci-
fied AEAD algorithm. The attack complexity depends on the AEAD algorithm.
More specifically, for AES-CM-HMAC, the complexity depends on the tag length,
while for AES-GCM, the complexity is negligible for any tag length. We observe
that AES-CM-HMAC is specified with particularly short tags, such as 4 or 8
bytes, making the attack complexity practical.

Our results are solely based on the Internet draft [36] and publicly available
source codes [7},/22,/45], and we have not implemented the proposed attacks to
verify their feasibility. It is difficult to implement the proposed attacks because the
SFrame specification is still a draft version, and no product that implements the
current version of SFrame [36] has actually been deployed. Accordingly, instead
of implementing the proposed attacks, we discussed with the designers to confirm
the feasibility of the proposed attacks.

The specification remains abstract at some points and may be subject to
change. Moreover, the real-world implementation often does not strictly follow
what was specified in [36]. Hence, this issue does not immediately refer to the
practical attacks against the existing E2EE video communication applications
that adopt SFrame. Nevertheless, considering the practicality of our attacks, we
think there is a need to improve the current SFrame specification. An overview
of our security analysis is presented below.

AEAD security. In Section we study the classical AEAD security (i.e.,
confidentiality and integrity) of the SFrame encryption scheme. While SFrame

adopts existing, well-analyzed AEAD schemes, they are used in a way different
from what standard security analysis assumes; hence, the existing AEAD security
proofs do not necessarily carry over to the entire protocol. Despite this discrepancy,
we show that the encryption schemes defined by SFrame are provably secure in
the context of a standard AEAD.

Impersonation against AES-CM-HMAC with Short Tags. In Section [4.2]
we show an impersonation attack on AES-CM-HMAC with short tags by a
malicious group member. This attack exploits a vulnerability of a very short tag
length. The malicious group member owns a shared group key; thus, she can
precompute multiple ciphertext/tag pairs from any input set and store them
into a precomputation table. Subsequently, she can forge by intercepting a target
message frame and replacing the ciphertext in that frame with a properly selected
ciphertext from the precomputation table. For example, when the tag length
is 4 bytes, she can practically perform an impersonation attack with a success
probability of almost one by preparing 232 precomputation tables in advance.

Security of AES-CM-HMAC with Long Tags. In Section[4.3] we discuss the
security of AES-CM-HMAC with long tags. We show that AES-CM-HMAC with
long tags is secure against the impersonation attack proposed in Section In
more detail, we prove that AES-CM-HMAC is a second-ciphertext unforgeability
(SCU) security, defined by Dodis et al. [10], and this SCU security covers the
class of impersonation attacks described above (i.e., forging a ciphertext using
the knowledge of the secret key, such that the forged ciphertext has the same tag
value as a previously observed ciphertext). Concretely, we show that the SCU
security of AES-CM-HMAC depends on the security of SHA256, which is the
underlying hash function of SFrame. SHA256 has an everywhere second-preimage
resistance, defined by Rogaway and Shrimpton [32}/42]; hence, AES-CM-HMAC
with long tags can be considered as the SCU-secure AEAD.

Impersonation against AES-GCM with Any Long Tags. In Section [£.4]
we present an impersonation attack on AES-GCM with any long tags by a
malicious group member. This attack exploits the vulnerability of the GHASH
function linearity in the known key setting. The malicious group member who
owns the GCM key and observes a legitimate GCM input/output set, including
a tag, can create another distinct set with the same tag. The remaining value
in this set, excluding the tag, can be chosen almost freely from the GHASH
function linearity and the knowledge of the GCM key; thus, this attack works
with negligible complexity, irrespective of the tag length, unlike the case of
AES-CM-HMAC.

Authentication Key Recovery against AES-GCM with Short Tags.
In Section we consider an authentication key recovery attack on AES-
GCM with short tags. This attack exploits the fact that no restriction has

been provided regarding the NIST requirements on GCM usage with short tags.
The available implementations of the original [45], Cisco Webex [7], and Jitsi
Meet [22] have no restrictions regarding such requirements. When these available
implementations employ the 4-byte tag, the authentication key is recovered with
the data complexity of 232, which is practically available in the adversary.

Further Analysis for Recommended Crountermeasures. In Section[4.6] we
recommend three countermeasures against all the proposed attacks: (1) for AES-
CM-HMAC, long tags (e.g., 16-byte tags), instead of short tags, especially 4-byte
tags, should be used; (2) for AES-GCM, a signature should be computed over a
whole frame; and (3) other ciphersuites that work as a secure encryptment scheme,
such as hash function chaining (HFC) [10], should be deployed. Then, we further
analyze from a performance and security perspective towards implementation of
these countermeasures in Section |5, and clarify the following: (1) computing a
signature over a whole frame has a disadvantage in terms of efficiency; (2) the
use of HFC with long tags in SFrame is not a problem in terms of performance
and security; and (3) AEADs with a simple function in the known key setting
should not be candidates for the ciphersuites in the E2EE applications unless a
signature is computed over a whole frame.

1.2 Responsible Disclosure

In March 2021, we reported our results in this article to the SFrame designers
via email and video conference. They acknowledged that our attacks are feasible
under the existence of a malicious group member, quickly decided to remove the
signature mechanism [13] and to extend tag calculation to cover nonces [12], and
updated the specification in the Internet draft on March 29, 2021 [37]. They have
a plan to review the SFrame specification and support the signature mechanism
again in the future.

1.3 Organization of the Paper

The paper is organized as follows. Section [2| provides the specification of SFrame,
including the underlying AEAD, and a brief survey on its publicly available imple-
mentations; Section [3] describes the security goals of the recently proposed E2EE;
Section [4] presents our analysis showing the impersonation attacks against SFrame;
Section [p| presents several other observations, followed by our recommendations;
and Section [6] concludes this study.

2 SFrame

2.1 Specification

Overview. SFrame is a group communication protocol for end-to-end encryption
(E2EE) used by video/audio meeting systems. It involves multiple users and a

(media) server that mediates communication between users. They are connected
via the server, and the communication between a user and the server is protected
by a standard Internet client—server encryption protocol, specifically the Datagram
Transport Layer Security-Secure Real-time Transport Protocol (DTLS-SRTP).

SFrame is specified in the Internet draft |36], but does not specify the key
exchange protocol between the parties, and the choice is left to the implementors.
In practice, Signal protocol [38], Olm protocol [29], or Message Layer Security
(MLS) protocol [3] could be used. With SFrame, users encrypt/decrypt video
and audio frames prior to RTP packetization. A generic RTP packetizer splits
the encrypted frame into one or more RTP packets and adds an original SFrame
header to the beginning of the first packet and an authentication tag to the end of
the last packet. The SFrame header contains a signature flag S, a key ID number
KID, and a counter value CTR for a nonce used for encryption/decryption.

Cryptographic Protocol. Suppose there is a group of users, G. All users in G
first perform a predetermined key exchange protocol, as suggested above, and
share multiple group keys K, Ea's[‘)a associated with the key ID number KID, which is
called base key in the original specification [36]. In addition, each user establishes
a digital signature key pair, (Ksig, Kvers)-

An E2EE session for SFrame uses a single ciphersuite that consists of the
following primitives:

— a hash function used for key derivation, tag generation, and hashing signature
inputs (e.g., SHA256 and SHA512);

— an authenticated encryption with associated data (AEAD) [31,139] used
for frame encryption (e.g., AES-GCM [1,/17] and AES-CM-HMAC); the
authentication tag may be truncated; and

— an optional signature algorithm (e.g., EADSA over Ed25519 [5,/6] and ECDSA
over P-521 [15}23]).

The original specification [36] specifically defines the following symmetric-key
primitives for the ciphersuite:

— AES-GCM with a 128- or 256-bit key and no specified tag length; and
— AES-CM-HMAC, which is a combination of AES-CTR with a 128-bit key
and HMAC-SHA256 with a 4- or 8-byte truncated authentication tag.

Figure [I] and Algorithm [I] show the media frame encryption flow in an E2EE
session for SFrame using the abovementioned ciphersuites. When AES-GCM
is adopted as the ciphersuite, AEAD.ENCRYPTION in Algorithm [I]is executed
according to NIST SP 800-38D [11]. Before performing the AEAD encryption
procedure by AES-GCM, HKDF [27] is used to generate the encryption key KXIP
and the salt saltX!P for encrypting/decrypting media frames as follows:

SFrameSecret = HKDF (K2 'SFrame10’),
KX'P = HKDF(SFrameSecret, 'key’, KeyLen),
salt"'® = HKDF(SFrameSecret, 'salt’, NonceLen),

frame_metadata

Frame M
SFrame header Additional associated data
S
Encryption key KXIP
KID ’
I Authentication key KXIP
salt¥IP j\
CTR D Nonce N
AEAD.Encryption
Encrypted frame C
+
Tag T;
|
Sig = Sign(Kig, T; Il Ty—q Il -+ | T;_y) if S=1.
I
RTP packetization
3t 'L"““““““““““““n
! i
i SFrame header Payload Cy i
i Payload C, (N/N) E
! Payload C. i
! yioee (2/N) Togs T, Tix |
i (1/N) i
: Sie :
! i
1

Fig. 1: Media frame encryption flow.

where KeyLen and NonceLen are the length (byte) of an encryption key and
a nonce for the encryption algorithm, respectively. Each user then stores KXP
and salt"'® such as KeyStore[KID] = (KKIP saltK'P). When AES-CM-HMAC
is adopted as the ciphersuite, AEAD.ENCRYPTION in Algorithm [I]is executed
according to Algorithm [2| Before performing AES-CM-HMAC, HKDF [27] is
used as well as in the case of AES-GCM, albeit in a slightly different manner:
AEADSecret = HKDF(KK!2 'SFrame10 AES CM AEAD’),

(base>
KX'P = HKDF(AEADSecret, 'key’, KeyLen),
KD — HKDF(AEADSecret, 'auth’, HashLen),
salt"'® = HKDF(AEADSecret, 'salt’, NonceLen),

Algorithm 1 Media frame encryption scheme

Input: S: signature flag, KID: key ID, CTR: counter value, frame_metadata: frame
metadata, M: frame
Output: C: encrypted frame, T authentication tag

1: procedure ENCRYPTION(S, KID, CTR, frame_metadata, M)

2 if An AEAD encryption algorithm is AES-GCM then

3 KXP_ salt"!° = KeyStore[KID]

4: else

5: KXP KXP salt*'® = KeyStore[KID]

6: end if

7 ctr = encode(CTR, NonceLen) > encode CTR as a big-endian of NonceLen.
8: N = salt“'® @ ctr > N is a Nonce.
9: header = encode(S, KID, CTR)
10: aad = header + frame__metadata > aad is an additional associated data.
11: if an AEAD encryption algorithm is AES-GCM then
12: C,T = AEAD.ENCRYPTION(KX'P | N, aad, M)
13: else
14: C,T = AEAD.ENcrYPTION(KKP, KK'P N, aad, M)
15: end if

16: end procedure

where HashLen is the output length (byte) of the hash function. Each user also
stores the encryption key KXP| the authentication key KKP, and salt saltX'P,
such as KeyStore[KID] = (KXIP KKID 5q1¢KID).

While an AEAD enables the detection of forgeries by an entity who does not
own KKIP it does not prevent the impersonation by a malicious group member
who owns a shared group key. To detect such an impersonation, a common
countermeasure is to attach a signature for each encrypted packet. This can incur
a significant overhead both in time and bandwidth. SFrame addresses this problem
by reducing the frequency and the input length of signature computations. That
is, a signature Sig is computed over a list of authentication tags with a fixed size,
(T;, Ti—1,...,Ti—), as follows:

Sig = Sign(Kgig, T; || Tiz1s || -+ || Ti—z)s

where Sign denotes the signature function. This signature is appended to the
end of the data comprising the SFrame header, the current encrypted payload,
its corresponding authentication tag T;, and the list of authentication tags
(Ti—1,...,T;—,) that correspond to the previously encrypted payload, such that
any group user can verify the authenticity of the entire payload.

2.2 Available Implementations

We list some implementations of SFrame that are publicly available. Some of them
do not strictly follow the original specification [36] and exhibit some varieties. In
this study, we particularly focus on the specified AEAD schemes and the allowed

Algorithm 2 AEAD encryption by AES-CM-HMAC

Input: KKP: authentication key, aad: additional associated data, C: encrypted frame
Output: T truncated authentication tag

1: procedure Tac.GENERATION(KKP aad, C)

2 aadLen = encode(len(aad),8) > encode aad length as a big-endian of 8 bytes
3 D = aadLen +aad + C
4: tag = HMAC(KX'®, D)
5
6:

T = trancate(tag, TagLen)
end procedure

Input: KKP KXP N: Nonce, aad, M: frame

Output: C, T

1: procedure AEAD.ENCRYPTION(KK®, KXP N aad, M)
2 C = AES-CTR.ENcryPTION(KX'P N, M)

3: T = Tac.GENERATION(KK'P aad, C)

4: end procedure

tag length in each of the implementation because this determines the complexity
of our attack.

The original. There is a Javascript implementation by one of the designers of
SFrame, Sergio Garcia Murillo [45]. It is based on webcrypt. In his implementation,
it supports

— AES-CM-HMAC with a 4- or 10-byte tag, where the 4 (10)-byte tag is used
for audio (video) packets.

Google Duo. Dudﬂ is a video calling application developed by Google. For
group calling, it adopts the Signal protocol as a key exchange mechanism and
SFrame as the E2EE mechanism. One technical paper [35] was written by one of
the coauthors, Emad Omera, of the original specification [36]. The source code is
not available, but according to the technical paper, it supports

— AES-CM-HMAC.

The technical paper does not describe the tag length. Note that we confirmed
that Google Duo does not currently use the signature feature.

Cisco Webex. Webex is a major video meeting application developed by Cisco.
A recent whitepaper entitled “Zero-Trust Security for Webex White Paper” [§]
describes the path to their goal referred to as the Zero-Trust Security and suggests
the usage of the MLS protocol as a key exchange mechanism and SFrame as a
media encryption to enhance the end-to-end security of Webex. The corresponding
SFrame implementation is available at Github [7]. The repository maintainer
warns that the specification is in progress. As of March 2021, it supports

— AES-GCM with a 128- or 256-bit key with a 16-byte tag; and

3 https://duo.google.com/about/

https://duo.google.com/about/

— AES-CM-HMAC with a 4- or 8-byte tag.

Jitsi Meet. An open-source video communication application, called Jitsi Meeﬂ
was presented at FOSDEM 2021, a major conference for open-source project

Despite being a quite recent project, it is getting popularity as an open-source
alternative to other major systems. It adopts SFrame with Olm protocol as the
underlying key exchange protocol. The source code is available [22]. It supports

— AES-CM-HMAC with a 4- or 10-byte tag, where the 4 (10)-byte tag is used
for audio (video) packets.

3 Adversary Models and Security Goals

3.1 Adversary Models

The designers did not define adversary models in the original specification [36].
We define the adversary models for our security analysis with reference to those
defined by Isobe and Minematsu [19].

Definition 1. (Malicious User) A malicious user, who is a legitimate user
that does not possess a shared group key, tries to break one of the subsequently
defined security goals of the other E2EE session by maliciously manipulating the
protocol.

Definition 2. (Malicious Group Member) A malicious group member, who
is a legitimate group member and possesses a shared group key, tries to break the
subsequently defined security goals by deviating from the protocol.

In addition, the E2F adversary is defined in [19], but we do not explain this
definition because this adversary is out of the scope for our security analysis.

3.2 Security Goals of E2EE

In February 2021, the Internet draft entitled “Definition of End-to-end Encryption”
was released [25). This draft states that the fundamental features for E2EE require
authenticity, confidentiality, and integrity, which are defined as follows:

Definition 3. (Authenticity) A system provides message authenticity if the
recipient is certain who sent the message, and the sender is certain who received
it.

Definition 4. (Confidentiality) A system provides message confidentiality if
only the sender and intended recipient(s) can read the message plaintext (i.e.,
messages are encrypted by the sender such that only the intended recipient(s) can
decrypt them).

4 https://meet.jit.si/
® https://fosdem.org/2021/schedule/

https://meet.jit.si/
https://fosdem.org/2021/schedule/

Definition 5. (Integrity) A system provides message integrity when it guaran-
tees that messages has not been modified in transit (i.e., a recipient is assured
that the message they have received is exactly what the sender intented to sent)

In addition, availability, deniability, forward secrecy, and post-compromise security
are defined in this draft as the optional/desirable features for enhancing the
E2EE systems. We do not explain these definitions because these features are
out of the scope for our security analysis.

3.3 Security Goals of AEAD for E2EE

Dodis et al. [10] proposed a new primitive, called encryptment, for the message
franking scheme, which enables a cryptographically verifiable reporting of the
malicious content in end-to-end encrypted messaging. In addition, they defined
confidentiality and second-ciphertext unforgeability (SCU) as security goals to
ensure the security level of the encryptment scheme.

Definition 6. (Second-ciphertext Unforgeability) An adversary A is given
K & IC, which means a randomly chosen key K from the key space K and is
allowed to perform AEAD encryption/decryption in the local environment. Then,
we define the second-ciphertext unforgeability (SCU) advantage of A against
AFEAD for E2EFE as

AdvaEap(A) = Pr[K & K : AK) — (N, A,C,N*, A*,C*, T),
Dec(K,N,A,C,T) = M,
Dec(K,N*, A*,C*,T) = M*
for some M, M* # J_],

where Dec denotes the decryption algorithm of AEAD; N and N* denote nonces;
A and A* denote associated data; C and C* denote ciphertexts; M and M* denote
plaintexts; T denotes a tag; and 1 denotes a symbol representing a decryption
failure.

The adversary in the SCU game is given with key; hence, this is not captured
by the standard AEAD security notions of confidentiality and integrity [4}39].
When there is a malicious group member in an E2EE application, she can actually
work as a SCU adversary A by intercepting the target frame (N, A, C,T') because
she knows the shared group key K.

3.4 Security Goals of Hash Functions

A secure hash function H typically has three fundamental properties: preimage
resistance, second-preimage resistance, and collision resistance. We focus herein on
two types of second-preimage resistance and define them with reference to [10,32]
as follows:

10

Definition 7. (Second-preimage Resistance) Let A be an adversary attempt-
ing to find any second input with the same output as any specified input (i.e., for

any given message M EM, a randomly chosen message M from the message
space M to find a second-preimage M* # M such that H(M) = H(M*)). Then,
we define the second-preimage (Sec) resistance advantage of A against H as

Adv3(A) = Pr[M & M; MY« A
(M # M*) A (H(M) = H(M"))].

Definition 8. (Everywhere Second-preimage Resistance) For a positive
integer n, let {0,1}=<" be a set of bit strings not longer than n. Let M = {0,1}*
and Y = {0,1}"™. Suppose H : K x M — Y is a keyed hash function. Let A be an
adversary against H to find a second preimage for the target input M € M that
is fized with |M| < £. Then, we define the everywhere second-preimage (eSec)
resistance advantage of A against H as

AdveSec[SZ] (A) = max Pr[K (i ’C; M* «— A(K) :
H Me{0,1}<¢

(01 04°) A (M) = Hi (417)] .

The everywhere second-preimage or eSec resistance introduced by Rogaway and
Shrimpton [42] is called a slight extension of a strong form of second-preimage
resistance. In this study, we assumed the standard hash function (SHA2) as an
instantiation of the keyed function by using IV as a key because standard security
reduction is not possible, otherwise. (see [42]). For simplicity, we assume that
this key is implicit and do not describe it in the proofs.

4 Security Analysis

4.1 Security of AEAD under SFrame

We first discuss the security of AEAD used by SFrame. Here, we view Algo-
rithm [I] as an encryption of AEAD because viewing Algorithm [2] as a full-
fledged AEAD does not make sense (see below). The keys are effectively con-
tained by KeyStore[KID], and the nonce is CTR. The associated data are a tuple
(S, KID, frame_metadata), and the plaintext is M.

In Algorithm (1} variable N is a sum of salt'® and ctr (Line 8), where the
former is essentially a part of key (via HKDF), and the latter is an encoded form
of CTR. This N serves as nonce for the internal AEAD algorithm at Line 12/14.
The data aad serves as AD for the internal AEAD and consists of header and
frame_metadata, where the former contains an encoded form of (S, KID,CTR). aad
contains CTR equivalent to N; thus, if the internal AEAD is AES-CM-HMAC of
Algorithm [2) HMAC takes the nonce (CTR) in addition to AD (frame_metadata)
and the ciphertext C. In other words, the lack of N = salt“'® & ctr is not a

11

problem. Moreover, adding a pseudorandom value to the nonce of AES-CTR
does not degrade security as long as that value is computationally independent
of the AES-CTR key.

A slightly more formal analysis is given below. Algorithm [I] combined with
AES-CM-HMAC can be interpreted as an encryption routine of the encryption-
then-MAC AEAD construction. More specifically, it takes nonce N = CTR,
associated data A = (S, KID, frame_metadata), and plaintext M to produce the
ciphertext C' and the tag T":

C = Enck (N, M),
T = MACx/ (N, 4,C),

where K and K "are derived via a master key with a key derivation function
(HKDF); Enck denotes the plain counter mode encryption with a pseudorandom
offset to nonce (i.e., salt'? derived via HKDF); and MAC - denotes the HMAC
with a certain bijective input encoding. This means that Algorithm [I]is exactly
reduced to the encryption-then-MAC generic composition (assuming HKDF as
a PRF), whose security is proven when Enc is IND-CPA secure, and MAC is a
PRF [26}33]. Proving the latter claim is trivial. Algorithm [1|is secure under the
standard assumptions that AES is a pseudorandom permutation, and HMAC
is a PRF. Algorithm [2] itself is not a generically secure (i.e., when nonce N
and AD aad are independently chosen) AEAD because it ignores N in the tag
computation. This issue was raised at the discussion in CFRGEL and our analysis
provides an answer for this.

4.2 Impersonation against AES-CM-HMAC with Short Tags

While the AEAD security of Algorithm [1]is sound, it does not necessarily mean
the full E2EE security. In this section, we point out the risk of impersonation by
a malicious group member who owns the group key. The impersonation attack
implies that the scheme does not achieve the security goal of integrity in E2EE.

We simplify the model and stick to the standard AEAD notation, that is, the
input is (N, A, M) for nonce N, associated data A, and plaintext M, and the
output is (C,T) for ciphertext C' and tag T. We also consider the case in which
the signature is computed for each tag for simplicity. The notational discrepancies
from Algorithms [I] and [2| do not change the essential procedure of our attacks.
With this simplified model, each group member sends an encrypted frame to
all other members, and this frame consists of an AEAD output (N, A,C,T)
and a signature Sig = Sign(Kie, T') signed by the user’s signing key K. The
encryption input is (N, A, M), and the frame encryption by AES-CM-HMAC is
abstracted as follows:

C + AES-CTR(KX'° N, M),
T < truncate(HMAC-SHA256(KX'° (N, A, 0)), 1), (1)

S https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame

12

https://mailarchive.ietf.org/arch/browse/cfrg/?q=SFrame

(NI Al g/ T’l Slg) (NI AI g*l 7—*1 SIg) [

Target Member I 1 Other Member
Ur
Table tb
c|T

Malicious Memberl
Un a2{|{c|T|=T

Fig. 2: Impersonation against AES-CM-HMAC with short tags. In the offline
phase, a malicious group member Uy stores a set of (M, C, T) into the table
tb. In the online phase, Uy, intercepts a target frame (N', A’,C', T’, Sig) sent by
the target user Ur, searches a tuple (M*, C*,T*) in tb, such that 7% = T" and
C* # C', replaces C’ with C* in the target frame, and sends (N', A’, C*, T", Sig)
to the other group members.

where 7 denotes the tag length in bits. Note that NV is included as a part of
HMAC’s input for the reason described at Section

Suppose there is a communication group G containing a malicious group
member Ujy; and another member Up we call a target user. This U, can mount a
forgery attack (impersonation) by manipulating a frame sent by Ur. The forgery
attack by Up; consists of offline and online phases.

In the offline phase, Uy; determines (N, A, M), precomputes a set of (cipher-
text,tag) tuples (C,T) by using KK'P and KXIP| which are known to all group
members, and stores these into a table tb. Here, N and A are determined such
that it is likely to be used by Ur (these information are public, and N is a
counter; thus, this is practical).

In the online phase, the malicious group member observes the frames sent by
Ur. If she finds the frame (N, A, C’, T, Sig), such that (C*,T*) is included in tb
and T* =T', C* # C’, she replaces C’ in that frame with C*. The signature Sig
is computed over the tag 7" that is not changed after the replacement; therefore,
this manipulated frame will pass the verification. Figure [2] shows the overview of
the attack. The details of attack procedures are given as follows:

Offline Phase.

1. Ups chooses the encryption input tuple (N, A, M).

2. Uy computes a ciphertext C' and a 7-bit tag T for (N, A, M) following
Eq. , where KID is set to point the target user.

3. Uy stores a set of (M, C, T) into the table tb.

4. Uy repeats step 1-3 2¢ times with different messages.

Online Phase.

13

1. Uy intercepts a target frame (N', A’,C’',T',Sig) sent by the target user,
where N = N and A’ = A.
2. Uy searches a tuple (M*,C*,T*) in tb such that T7* =T’ and C* # C".

3. If Uyps finds such a tuple, C’ is replaced with C* in the target frame, and
(N', A", C*,T’,Sig) is sent to the other group members.

The manipulated frame, including (C*,T"), successfully passes the signature
verification by other group members due to a tag collision, that is, no one can
detect that the frame is manipulated by Uy, and the group members will accept
M* as a valid message from Up. This is for the case where z = 1 (i.e., each
tag is independently signed by the signature key). It is naturally extend to the
case where x is more than one, namely the case where a list of tags is signed
altogether for efficiency.

To mount the attack described above, the adversary must intercept a legitimate
message. In other words, the adversary may collude with an intermediate server
or the E2E adversary, which is the central operating server. The practicality of
this is beyond the scope of this article, but we remark that preventing a colluding
attack with E2EE adversary is one of the fundamental goals of E2EE.

We note that the attack without intercept is also possible by creating a
forged tuple (N', A’,C’",T",Sig), such that 7" = T and (N’, A’,C") # (N, A, C)
by observing some legitimate tuples (N, A, C, T, Sig) previously sent without
corruption. Here, (N’, A’) is chosen; thus, it is likely to be used by Ur in the
next frame, which is yet sent. This is essentially a reply of signature, and our
guess as regards whether or not it is detected as replay depends on the actual
system; hence, we keep it open. The cost of detecting a reply of a randomized
algorithm is generally high because the receiver must keep the all random I'Vs
used.

Complexity Evaluation. The computational cost to make the precomputation
table tb in the offline phase is estimated as 2%, and the success probability of
Step 2 in the online phase is estimated as 27717,

Practical Effects on SFrame. In the case of 7 = 32 (i.e., 4-byte tags), if Uy,
prepares 232 precomutation tables in the offline phase, the success probability is
almost one. Thus, this forgery attack is practically feasible with a high success
probability for the 4-byte tag. Moreover, in this attack, the adversary fully
controls the decryption result (M*) of the manipulated frame, except for 32 bits
used for generating 232 different tags in the offline phase.

To perform an actual attack on SFrame, the adversary must decide the target
frame and set the target frame counter to the SFrame header file in M when
generating tags in the offline phase because each SFrame header includes the
frame counter to avoid replay attacks.

Even in the case of 8- and 10-byte tags, if Uy prepares 2°6 tables, which is
feasible by the nation-level adversary, the success probability is non-negligible at
278 and 2724, respectively.

14

4.3 Security of AES-CM-HMAC with Long Tags

We first discuss the security of AES-CM-HMAC with long tags (e.g., 16-byte tags)
against the impersonation attack described in Section [£.2] Even if a malicious
group member prepares 2°6 precomputation tables, it is infeasible because the
success probability of the attack is 2772; therefore, AES-CM-HMAC with long
tags can be secure against the impersonation attack proposed in Section

We justify the abovementioned observation by showing the SCU security
of AES-CM-HMAC with long tags. According to Algorithm [2] let D and D*
be (N, A,C) and (N*, A*,C*) (see Line 3 in TAG.GENERATION procedure).
Note that N is included in A (aad) as partial information (see Lines 7-10 in
Algorithm . For simplicity, the tag generation by HMAC is abstracted as
follows:

HMAC(KX'®, D) = H((K @ opad) || H((K @ ipad) || D)),

where H denotes a hash function (e.g., SHA256 used in SFrame); ipad and opad
denote fixed padding values; and K is generated from KKIP according to the
padding rule in the HMAC algorithm (see [46] for details). The following theorem
is simple to prove:

Theorem 1. Let A be a SCU adversary against AES-CM-HMAC with the target
encryption output being at most { bits. Then, SCU advantage of A against
AES-CM-HMAC is bounded as

AdVSAElsJ-CM-H mac(A) < 2Adve§ec[§([)] (A")

for some eSec adversary A’ against H, which denotes the underlying SHA256
hash function, where ¢! = £+ 512 (i.e., one block larger).

Proof. Let K be the key of HMAC. Thanks to the generic composition, we can
assume that the adversary is given the key for the counter mode. The resulting
game is that, given a transcript of encryption query (N, A, M, C,T) derived on
K, the adversary is required to find a successful forgery (N*, A*,C*,T) on K,
such that D* # D (i.e., (N*, A*,C*) # (N, A, C)). Note that tag T is the output
of HMAC taking K and D = (N, A, C); thus, the plaintext M is not needed in
the attack. Figure [3|illustrates this scenario, where IV denotes the initial hash
value, D = Dy|| ... || Di—1, D* =D || ... || D}y, S = H((K @ ipad) || D), and
S* = H((K @ipad) || D*). D; and D} denote an input block to HMAC. The last
block may need padding, but we simply ignore this (the analysis is pretty much
the same). In this scenario, we consider the following two cases: A finds S* = S
(Case 1), which implies T'=T"* or §* # S and T = T* (Case 2).

For Case 1, observe that S = S* means H (K @ipad| D) = H(K @ ipad| D*);
hence, a second preimage against the target input K & ipad | D is obtained. For
Case 2, when S # S* and T = T, the adversary finds a second preimage against
the target (2-block, thus 1024-bit) input K @ opad|| S. Both cases are covered by

15

K%—?ﬁﬁpmi

KW—?ﬁ¢Lm5

Fig. 3: SCU scenario against AES-CM-HMAC with long tags for the E2EE
setting. In this scenario, given a transcript of encryption query (N, A, M,C,T)
derived on K, the adversary A must find a successful forgery (N*, A*,C*,T*)
on K, such that T* =T and D* # D (i.e., (N*, A*,C*) # (N, A, C)).

the eSec security of H; thus, we have

AdviICElSJ-CM-HMAC (A < Adveﬁéec[gw)] (A/)+Adve1§ec[ng4] (A")
S o
< 2AdvS =N,

which concludes the proof. a

Theorem [1] states that the SCU security of AES-CM-HMAC with long tags
depends on the security of the underlying hash function. According to the Internet
draft [36], SFrame adopts SHA256 as the hash function used in AES-CM-HMAC.

Second-preimage Security of SHA256. Ideally, an n-bit hash function
provides an n-bit security level against second-preimage attacks. That is, we can
find a second-preimage on SHA256 with a time complexity of 22°¢. Khovratovich
et al. [24] proposed a new concept of biclique as a technique for preimage attacks
and applied it to the reduced-round SHA2 family. Their second-preimage attack
on the reduced-round SHA256 performed up to 45 rounds (out of 64) with a time
complexity of 22555 and a memory complexity of 26 words. Andreeva et al. [2]
presented new generic second-preimage attacks on the basic Merkle-Damgéard
hash functions. Their best attack allowed us to find a second-preimage on the full
SHA256 with a time complexity of 2'7 and a memory complexity of 233; however,
this attack required very long message blocks (e.g., a 2'8-block message).

16

To the best of our knowledge, no study has yet been reported on a second-
preimage attack that is more efficient than the above-described attacks; therefore,
AES-CM-HMAC with long tags can be considered as the SCU-secure AEAD.

4.4 Impersonation against AES-GCM with Any Long Tags

The abovementioned impersonation attack is a generic attack, and the offline
attack complexity depends on the tag length. If we use AES-GCM, a similar
attack can easily be mounted without the offline phase because the adversary
who owns the GCM key and observes a legitimate GCM output of (N, A,C,T)
can create another distinct tuple of (N', A’,C’,T") with 7" = T. The remaining
(N, A’,C") # (N, A, C) can be chosen almost freely from the linearity of GHASH
and the knowledge of the key. In particular, the attack works with a negligible
complexity, irrespective of the tag length unlike the case of AES-CM-HMAC.

Once the adversary intercepts the legitimate tuple (N, A,C,T) created by
GCM, it is trivial to compute (N/, A, C',T"), such that T’ = T and (N’, A, C") #
(N, A, C), for almost any choice of (N’; A, C").

For example, suppose GCM with 96-bit nonce and 128-bit tag, which is one of
the most typical settings. Given any GCM encryption output tuple (N, A, C,T)
with 2-block C' = (C1,C5) and 1-block A = A;, we have

T = GHASH(L, A || C || len(A, C)) & Ex (N || 132)
=AL'aC - LPeCy-L*®len(A,C) - L & Ex(N || 132),
C1 = Ex(N || 232) & My,
Co = Ex (N || 332) © Mo,

where M = (M, M>) is the plaintext. Here, len(A4, C) is a 128-bit encoding of
the lengths of A and C, and multiplications are over GF(2'2®). Ex () denotes
the encryption by AES with key K and L = Ex(0'2®), and i35 for a non-negative
integer ¢ denotes the 32-bit encoding of . It is straightforward to create a valid
tuple (N, A’,C",T"), such that T =T and (N', A’,C") # (N, A, C) because we
know K. Say, we first arbitrarily choose N’ and A’ and the fake plaintext block
M to compute C] and finally set C} such that

Cy-L*=T'aoA - L*oC-L>@len(A',C") - L ® Ex(N'| 132)

holds. This will make the last decrypted plaintext block M/ random. It works even
if the tag is truncated. That is, the malicious group member can impersonate
other members, and the forged plaintext is almost arbitrary, except for the
last block. We note that the plaintext is video or audio; hence, a tiny random
block will not be recognized. This attack severely harms the integrity of group
communication.

This difference from the case of AES-CM-HMAC is rooted in the authenti-
cation mechanism. While HMAC maintains a collision resistance once the key
is known, GHASH with a known key is a simple function without any sort of
known-key security.

17

Table 1: NIST requirements on the usage of GCM with short tags.
t 32 64

L 21 22 23 24 25 26 211 213 215 217 219 221

q 222 220 218 215 213 211 232 229 226 223 220 217

c 262 262 261 265 266 267 275 274 273 272 271 270

4.5 Considerations on Authentication Key Recovery

The specification [36] appears to implicitly allow 4- and 8-byte tags with AES-
GCM. In addition to the attacks described above, the use of short tags in GCM
will lead to a complete recovery of the authentication key (i.e., the key of GHASH)
by a class of attacks, called reforging. This leads to a universal forgery.

Ferguson [14] first pointed out this attack, and Mattsson and Westerlund [30]
further refined the attack and provided a concrete complexity estimation. Ac-
cording to [30], the security levels are only 62—67 bits and 70-75 bits for the
32-bit and 64-bit tags, respectively, even if we follow the NIST requirements on
the usage of GCM with short tags (Table . In Table (1}, L is the maximum
combined length of A and C, and ¢ is the maximum number of invocations of
the authenticated decryption function. Table [I] also shows the required data
complexity ¢ for the authentication key recovery under each restriction of L and
g. For example, for L = 22 and ¢ = 2'8, the required data to recover the key of
GHASH is 26

If no restriction is provided regarding L and ¢, the authenticated key is
recovered with the data complexity of 2t because the complexity of the first
forgery is dominated. Thus, for the 4-byte (= 32-bit) tag length, the authenticated
key recovery is feasible with 232 data complexity. The specification [36] seems to
not explicitly mention the restrictions of ¢ and L.

Practical Effects on SFrame. Upon checking the available implementations
of the original |45], Cisco Webex [7], and Jitsi Meet [22], no restriction is found
regarding L and ¢. In this case, for the 4-byte tag, the authenticated key is
recovered with the data complexity of 232, which is practically made available by
a malicious user.

4.6 Recommendations

We recommend the following from the vulnerabilities shown in Sections [4.2] to

1. For AES-CM-HMAC, long tags (e.g., 16-byte tags) instead of short tags,
especially 4-byte tags, should be used.

2. For AES-GCM, a signature should be computed over not only a tag, but also
a whole frame. In addition, the specification should clearly forbid short tags
or refer to the NIST requirements on the usage of GCM with short tags.

18

Algorithm 3 EdDSA signature generation [5}/6]

Input: m: message, G: generator, d: secret key, v: public key
Output: (R, s): signature
1: hohi - --hop—1 = H(d) > H: hash function
a=2""" 430 s 2'h
T = H(hbhb+1 e hbfl,m)
R=rG
s=r+ H(R,v,m)a mod ¢

Algorithm 4 ECDSA signature generation [23]

Input: m: message, G: generator, n: large prime number, d: secret key
Output: (r,s): signature
1: k=[1,n—1]
(z,y) = kG
r=zmodn
if r =0 then
go to Step 1.
end if
s = (H(m) +dr)/k mod n > H: hash function
if s =0 then
go to Step 1.
: end if

—_

3. As discussed in Section [switch to other ciphersuites that work as a secure
encryptment scheme, such as HFC [10], with a sufficiently long tag is another
option.

5 Discussions

This section discusses the advantages of the countermeasures recommended in
Section [£.6] We have already described the advantage of the first countermeasure
in Section[f:2} We will now discuss the advantages of the second and third counter-
measures. We will also confirm the validity of switching to other AEADs, such as
AES-CCM |[1}17}{47], which combines CBC-MAC for message authentication with
AES-CTR for frame encryption, and ChaCha20-Poly1305 [34], which combines
Poly1305 for message authentication with ChaCha20 for frame encryption.

5.1 Performance Analysis of Signature Generation

This subsection examines the performance when a signature is computed over not
only a tag, but also a whole frame. To this end, we first consider the signature
algorithms used by SFrame, which are EdDSA over Ed25519 [51/6] and ECDSA
over P-521 [15/23]. These signature generation algorithms are briefly described
as Algorithms [3|and |4l These algorithms show that a message m (i.e., a tag or a

19

whole frame) is always (a part of) the input to the hash function H. Specifically,
in EADSA over Ed25519 and ECDSA over P-521, the hash function H containing
the message m as (a part of) the input is executed twice (Lines 3 and 5 in
Algorithm [3) and once (Line 7 in Algorithm , respectively. SFrame adopts
SHA256 and SHA512 as the underlying hash functions. These hash functions
have the following feature: the longer the message length, the more times the
compression function is executed, that is, the longer the computational time. We
consider herein the maximum length of a whole frame. The maximum length of
an RTP packet is 1500 bytes. The RTP packet contains at least a 12-byte RTP
header, an 8-byte UDP header, a 20-byte IP header, and a 14-byte Ethernet
header. By excluding these headers, the maximum length of a whole frame is
1446 bytes. Therefore, given that the lengths of a tag and a whole frame (i.e., a
4 or 16-byte tag and a 1446-byte frame) are significantly different, we consider
that the difference in message lengths greatly influences the computational time
for the signature generation.

Based on this consideration, we conducted experiments to compare the com-
putational times for the underlying hash functions, SHA256 and SHA512, using
different message block lengths, such as 4-byte tags, 16-byte tags, and 1446-byte
frames. The following is our experimental environment: a macOS version 11.6
machine with 2.8 GHz CPU and 16.0 GB of main memory. In our experiments,
we used the openssl command with the speed and -bytes options as shown in the
following example:

openss| speed -bytes 4 sha256

We measured the computational time for SHA256 using 4-byte message blocks as
the input. The publicly available source code [7] shows that the ciphersuites in
SFrame are implemented using openssl; hence, we consider that the performance
analysis using the openssl command is meaningful. After running the above
command, we obtain its experimental result as follows:

Doing for 3s on 4 size blocks: 8875740 sha256’s in 3.00s

This means that SHA256 using 4-byte message blocks has executed 8,875,740
times in 3 seconds. From the result, we can calculate the computational time for
SHA256 using 4-byte message blocks per once as

3.0/8875740 = 0.0000003379... (s) ~ 0.338 (us).

Similarly, we calculate the computational times for SHA256 and SHA512 using
several different message block lengths. Given that a signature is computed
over a list of multiple tags, the number of tags or frames in the list should be
considered. Let x denote the number of tags or frames in the list and decide to
use z € {1,2,4,8,16,32} to compare the computational times for SHA256 and
SHA512 using different message block lengths. Tables [2] and [3] show a comparison
of the computational times for SHA256 and SHA512, using lists of 4-byte tags,
lists of 16-byte tags, and lists of 1446-byte frames as the input message blocks,
respectively. From these tables, we clarify the correctness of our assumption that

20

Table 2: Comparison of the computational times for SHA256 using lists of 4-byte
tags, lists of 16-byte tags, and lists of 1446-byte frames as the input message

blocks. x denotes the number of tags or frames in the lists.

4-byte tags 16-byte tags 1446-byte frames

T Length Time Length Time Length Time
(bytes) () (bytes) (us) (bytes) (us)

1 4 0.338 16 0.342 1446 2.762
2 8 0.338 32 0.346 2892 5.287
4 16 0.342 64 0.469 5784 10.130
8 32 0.346 128 0.554 11568 20.189
16 64 0.469 256 0.810 23136 39.881
32 128 0.554 512 1.234 46272 80.874

Table 3: Comparison of the computational times for SHA512 using lists of 4-byte
tags, lists of 16-byte tags, and lists of 1446-byte frames as the input message
blocks. x denotes the number of tags or frames in the lists.

4-byte tags 16-byte tags 1446-byte frames

T Length Time Length Time Length Time
(bytes) (ps) (bytes) (ps) (bytes) (ps)

1 4 0.406 16 0.407 1446 2.074
2 8 0.405 32 0.406 2892 3.705
4 16 0.407 64 0.412 5784 7.133
8 32 0.406 128 0.603 11568 13.792
16 64 0.412 256 0.726 23136 27.403
32 128 0.603 512 1.018 46272 53.687

the difference in message lengths greatly influences the computational time for
the signature generation. Note that we express the case of SHA512 in parentheses.

— When x = 1, the computational times for the EADSA and ECDSA signature
generations with SHA256 (SHA512) as the underlying hash function are
approximately 4.840 (3.334) and 2.420 (1.667) microseconds slower when
using a 1446-byte frame than when using a 16-byte tag as the input. x is the
minimum value; hence, these are the minimum differences in terms of the
influence on the computational time for the signature generation.

— When z = 32, the computational times for the EADSA and ECDSA signature
generations with SHA256 (SHA512) as the underlying hash function are
approximately 159.280 (105.338) and 79.640 (52.669) microseconds slower
when using a list of 1446-byte frames than when using a list of 16-byte tags

21

Fig. 4: Overall structure of the HFC scheme for a 1-block header My = (N, A)
and an m-block plaintext M = (My,..., M,,), where f denotes the SHA256
or SHA512 compression function; K denotes a secret key; IV denotes a fixed
constant value called an initialization vector; N denotes a nonce; A denotes
an additional associated data; Sp,...,S;, denotes intermediate values; C' =
(C1,...,Cp) denotes an m-block ciphertext; and T denotes a tag.

as the input, respectively. The differences in the computational time for
the signature generation further increase as the number of 16-byte tags or
1446-byte frames in the list is increased.

As described in Section [£:4] we have clarified that AES-GCM with any long
tags is vulnerable against an impersonation attack by a malicious group member.
Therefore, if AES-GCM is used for frame encryption, we recommended that a
signature is computed over a whole frame and not only a tag in terms of its
security. In contrast, as discussed above, the SFrame implementors should be
aware that this countermeasure has disadvantage in terms of efficiency.

5.2 Security Analysis of HFC under SFrame

This subsection discusses the security of HFC with long tags in the E2EE setting.
HFC was proposed by Dodis et al. at CRYPTO 2018 [10] as a secure encryptment
scheme for message franking. The overall structure of the HFC is shown in
Figure [4 where f denotes the SHA256 or SHA512 compression function; K
denotes a secret key; IV denotes a fixed constant value; My denotes a 1-block
header; M = (M, ..., M,,) denotes an m-block plaintext; Si,...,S,, denotes
intermediate values; C' = (C1,...,C,,) denotes an m-block ciphertext; and T
denotes a tag (refer to Section 6 in [10] for more details). For simplicity, we assume
that the 1-block header M, contains a nonce N and an additional associated
data A.

According to the existing study [10], Dodis et al. have already proven the
SCU security of HFC in the message franking setting. However, due to some
differences between message franking and E2EE settings, we consider that their
proof cannot directly be applied to the proof of the SCU security of HFC in the

22

K
K —
IV — f So
M;
K
K—b
IV — f S3

Fig.5: SCU scenario against HFC with long tags for the E2EE setting. In this
scenario, given a transcript of the encryption query (N, A, M,C,T) derived on
K, the adversary A must find a successful forgery (N*, A*, M* T*) on K, such
that T* =T and (N*, A*, M*) # (N, A, M).

E2EE setting. Thus, we prove the SCU security of HFC with long tags in the
E2EE setting through the following theorem.

Theorem 2. Let A be the SCU adversary against HF'C, with the target encryp-
tion output being at most £ bits. Then, SCU advantage of A against HFC is
bounded as .
eSec[< (¢
AdviEL(A) = Advi =)

for some eSec adversary A’ against H, which denotes the underlying SHA256
hash function, where ¢’ = ¢+ 512 (i.e., one block larger).

Proof. The proof itself is similar to Theorem [I} We can assume that the adversary
is given the key K of HFC in the E2EE setting. The resulting game is that, given
a transcript of encryption query (N, A, M,C,T) derived on K, the adversary
must find a successful forgery (N*, A*, M*,T) on K, such that (N*, A* M*) #
(N, A, M). Note that the tag T is the output of HFC taking K and (N, A, M);
thus, the ciphertext C' is not needed in the attack. Figure[f]illustrates this scenario.
The last block may need padding, but we simply ignore this (the analysis is
pretty much the same).

Figure [] depicts that the tag generation by HFC has the same Merkle—
Damgard construction as SHA256; thus, if f is the SHA256 compression function,
the tag generation by HFC can be regarded as equivalent to the SHA256 hash

23

function, that is, H(K || My ® K, ..., M,, ® K), where H denotes the SHA256
hash function. Therefore, in this scenario, the adversary must find a second
preimage against the target input My @ K, ..., M,, ® K (m + 1-block, thus
£+ 512 for SHA256) for T'= T*. This case is covered by the eSec security of H;
thus, we have

AdVEE(A) = Advi =),
which concludes the proof. a

Theorem [2 states that the SCU security of HFC with long tags depends on
the security of the underlying hash function, such as SHA256. As discussed in
Section SHA256 has an eSec resistance; therefore, the HFC with long tags
can be considered as the SCU-secure AEAD.

5.3 Performance Analysis of HFC

This subsection explores the HFC performance. To this end, by using the same
experimental environment and tool (i.e., the openssl command) described in
Section [5.1] we conducted experiments to compare the computational times for
HFC, AES-GCM, AES-CM-HMAC, and other AEADs, such as AES-CCM (14|17}
47] and ChaCha20-Poly1305 [34] that can be used with openssl. As described in
Section the publicly available source code [7] shows that the ciphersuites in
SFrame are implemented using openssl. Therefore, if AES-CCM and ChaCha20-
Poly1305 are superior in terms of performance and security in the E2EE setting,
they may be hopeful ciphersuite candidates in SFrame.

We now have an issue to measure the computational times for the target
AEADs. We can easily measure the computational times for AES-GCM, AES-
CCM, and ChaCha20-Poly1305 with the openssl command, but cannot accurately
measure the computational times for HCF and AES-CM-HMAC because they
are not supported with openssl. To resolve this issue, we use SHA256 and HMAC-
SHA256 instead of HFC and AES-CM-HMAC, respectively. As discussed in
the proof of Theorem [2] we consider that the computational time for HFC can
be regarded as equivalent to that of SHA256 because the tag generation by
HFC can be regarded as equivalent to the SHA256 hash function. Moreover, we
consider that the computational time for AES-CM-HMAC can be regarded as
almost equivalent to that of HMAC-SHA256 because the computational time
for AES-CM-HMAC significantly depends on that of HMAC-SHA256. In fact,
when the input length is 1024 bytes, the computational times for AES-CTR and
HMAC-SHA256 are 0.160 and 2.281 microseconds, respectively.

Table 4| presents a comparison of the computational times for HFC (actually,
SHA256), AES-CM-HMAC (actually, HMAC-SHA256), AES-GCM, AES-CCM,
and ChaCha20-Poly1305 using several different input message blocks. The table
shows only a slight difference in the computational times between HFC and AES-
CM-HMAC. HFC can be regarded as almost equivalent to AES-CM-HMAC in
terms of performance and security; thus, the use of HFC with long tags in SFrame

24

Table 4: Comparison of the computational times for the target AEADs using
several different input message blocks.

Input Computational time (us)

length | HFC AES-CM- |AES-GCM[AES-CCM| ChaCha20-

(bytes) HMAC Poly1305
128 0.663 0.669 0.067 0.163 0.130
256 0.891 0.906 0.100 0.273 0.188
512 1.352 1.365 0.162 0.491 0.221
1024 2.284 2.281 0.260 0.936 0.408
2048 4.128 4.185 0.473 1.806 0.790
4096 7.834 8.022 0.890 3.587 1.554

is not a problem. Focusing on AES-GCM, its computational time is the fastest
among the target AEADs. It should be noted, however, that it has a disadvantage
in the computational time for signature generation when a signature is computed
over a whole frame, as discussed in Section [5.1] In addition, the computational
times for AES-CCM and ChaCha20-Poly1305 are more superior than those
for HFC and AES-CM-HMAC; thus, they may be hopeful candidates for the
ciphersuites in SFrame because the use of AES-CCM and ChaCha20-Poly1305
in SFrame is not a problem in terms of performance. The next subsection will
discuss the security of AES-CCM and ChaCha20-Poly1305 in the E2EE setting.

5.4 Considerations on switching to other AEADs

This subsection discusses the security of AES-CCM ([1},/17,/47] and ChaCha20-
Poly1305 [34] in the E2EE setting. To conclude first, it is easy to perform the
similar attack described in Section [£.4) against these AEADs with any long tags.
An impersonation attack against ChaCha20-Poly1305 with any long tags can be
performed in almost the same procedure as the case of AES-GCM in Section [£.4]
Therefore, this subsection shows an impersonation attack against AES-CCM
with any long tags.

The CCM encryption first executes the formatting function described in NIST
SP 800-38C |1, Appendix A] to the input tuple (N, A, M) to produce the encoded
blocks B = (By, ..., B;). Note that this formatting function is reversible, that
is, the adversary obtains the legitimate input tuple (N, A, M) from the encoded
blocks B = (By, ..., B;). In addition, N, A, and M are individually encoded
(refer to [1] for more details).

As with the case of GCM described in Section [£.4] once the adversary who
owns the key K intercepts a legitimate tuple (N, A, C,T) created by CCM, it is
trivial to compute (N’, A’, C',T"), such that T/ = T and (N’, A’,C") # (N, A, C),
for almost any choice of (N/, A, C").

25

For example, let B = (By, By, B2, B3) be the encoded data corresponding to
the legitimate input tuple (N, A, M) with 1-block nonce N, 1-block additional
associated data A, and 2-block plaintext M = (M7, Ms). In this case, given any
CCM encryption output tuple (N, A,C,T'), we have

T= EK(EK(EK(EK(B()) &) Bl) &) BQ) &) Bg) &3] EK(CtTo),
Cy = EK(ctrl) b My,
Cy = Ex(ctra) © Ma,

where ctrg, ctry, and ctry are the counter values. Here, Ex(*) denotes the
encryption by AES with key K. It is straightforward to create a valid tuple
(N, A, C",T"), such that T/ = T and (N',A’,C") # (N, A,C) (i.e., B # B)
because we know K. Say, we first arbitrary choose a part of the encoded input
tuple (B, B, B}) corresponding to a part of the fake input tuple (N, A, M),
and then set B} corresponding to M} such that

B, = EN(T' @ Ex(ctry)) @ Ex(Ex(Ex(B}) ® By) ® B)

holds. Here, Elzl(*) denotes the decryption by AES with key K. This will make
the last decrypted plaintext block M} randomly. It works even if the tag is
truncated. Finally, we obtain the input tuple (N’, A’, M’) from the encoded
blocks B’ = (BY{, By, By, B}) and compute

Ci = EK(CtTl) D M{,
Cé = EK(CtTQ)) Mé

That is, as with the case of GCM, the malicious group member can impersonate
other members and the forged plaintext is almost arbitrary, except for the last
block.

In summary, as with the case of GHASH, CBC-MAC and Poly1305 with a
known key are also simple functions without any sort of known-key security;
therefore, we conclude that AEADs with a simple function in the known key
setting (e.g., AES-GCM [11[17], AES-CCM |[1,/17,47], ChaCha20-Poly1305 [34],
OCRB [28/40l/41], Deoxys [20,21], etc.) should not be candidates for the ciphersuites
in the E2EE applications unless a signature is computed over a whole frame.

6 Conclusions

We showed herein our security analysis on SFrame, a recently proposed end-
to-end encryption mechanism built on RTC, developed by Google and CoSMo
Software and proposed to the IETF. SFrame is a young project, which will be
adopted by a number of real-world products. Our results showed a practical
risk of impersonation by a malicious group member. This problem is caused by
the digital signature computed only on (a list of) AEAD tags, and the attack
becomes practical when tags are short or when the used AEAD algorithm allows
the creation of a collision on tags with the knowledge of the key. The former

26

applies to the case of AES-CM-HMAC, while the latter applies to the case of
AES-GCM. We also showed that AES-CM-HMAC with a long tag avoids this
problem as it fulfills a “committing” property introduced by Dodis et al. [10].
Moreover, if correctly used by the upper layer, AES-CM-HMAC is a provably
secure AEAD because it can be interpreted as a standard encryption-then-
MAC generic composition. We notified our findings to the designers, and they
acknowledged them and revised the specification, including the removal of the
signature feature and a patch for the AEAD algorithm. Considering its quick
deployment, we think SFrame should be more actively studied. We also hope
that our work could help in its improvement.

Acknowledgments

We are grateful to the SFrame designers (Emad Omara, Justin Uberti, Alex
Gouaillard, and Sergio Garcia Murillo) for the fruitful discussion and feedback
about our findings. We would like to thank Shiguredo Inc. for helpful discussion
about real-world applications of the end-to-end encryption. Takanori Isobe is
supported by JST, PRESTO Grant Number JPMJPR2031, Grant-in-Aid for Sci-
entific Research (B)(KAKENHI 19H02141) and SECOM science and technology
foundation.

References

1. NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: the
CCM Mode for Authentication and Confidentiality (2007), U.S.Department of
Commerce/National Institute of Standards and Technology

2. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P., Hoch, J.J., Kelsey,
J., Shamir, A., Zimmer, S.: New Second-Preimage Attacks on Hash Functions. J.
Cryptol. 29(4), 657-696 (2016)

3. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.:
The Messaging Layer Security (MLS) Protocol. https://tools.ietf.org/html/
draft-ietf-mls-protocol-10 (October 2020)

4. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) Advances
in Cryptology - ASTACRYPT 2000, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto, Japan, December
3-7, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1976, pp. 531-545.
Springer (2000). https://doi.org/10.1007/3-540-44448-3__41, https://doi.org/10.
1007/3-540-44448-3_41

5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-Speed High-
Security Signatures. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6917, pp. 124-142. Springer (2011). https://doi.org/10.1007/978-3-642-23951
9_9, https://doi.org/10.1007/978-3-642-23951-9_9

27

https://tools.ietf.org/html/draft-ietf-mls-protocol-10
https://tools.ietf.org/html/draft-ietf-mls-protocol-10
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-security
signatures. J. Cryptogr. Eng. 2(2), 77-89 (2012). |https://doi.org/10.1007/s13389-
012-0027-1, https://doi.org/10.1007/s13389-012-0027-1

Cisco Systems: SFrame (2020), https://github.com/cisco/sframe

Cisco Systems: Zero-Trust Security for Webex White Paper (2021),
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/
white-paper-c11-744553.pdf

Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal
Security Analysis of the Signal Messaging Protocol. J. Cryptol. 33(4), 1914-1983
(2020)

Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast Message Franking: From
Invisible Salamanders to Encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155-186. Springer (2018)

Dworkin, M.:

Emad Omara: Extend Tag Calculation to Cover Nonce #59 (2021), https://
github.com/eomara/sframe/pull/59

Emad Omara: Remove Signature #58 (2021), https://github.com/eomara/
sframe/pull/58

Ferguson, N.: Authentication Weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process (2005), http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/comments/CWC-GCM/Ferguson2.pdf

Gallagher, P.: Digital signature standard (DSS). Federal Information Processing
Standards Publications, volume FIPS 186 (2013)

Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the
Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage. In: Holz, T.,
Savage, S. (eds.) USENIX Security 2016. pp. 655-672. USENIX Association (2016)
Housley, R.: Using AES-CCM and AES-GCM Authenticated Encryption
in the Cryptographic Message Syntax (CMS). RFC 5084, 1-11 (2007).
https://doi.org/10.17487 /RFC5084, https://doi.org/10.17487/RFC5084

Isobe, T., Ito, R.: Security Analysis of End-to-End Encryption for Zoom Meetings.
IEEE Access 9, 90677-90689 (2021)

Isobe, T., Minematsu, K.: Breaking message integrity of an end-to-end encryption
scheme of LINE. In: Lépez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS,
vol. 11099, pp. 249-268. Springer (2018)

Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The TWEAKEY
Framework. In: ASTACRYPT (2). Lecture Notes in Computer Science, vol. 8874,
pp. 274-288. Springer (2014)

Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The Deoxys AEAD Family. J. Cryptol.
34(3), 31 (2021). [https://doi.org/10.1007/s00145-021-09397-w, https://doi .org/
10.1007/s00145-021-09397-w

Jitsi: Jitsi Meet API library (2020), https://github.com/jitsi/lib-jitsi-meet/
Johnson, D., Menezes, A., Vanstone, S.A.: The Elliptic Curve Dig-
ital ~Signature Algorithm (ECDSA). Int. J. Inf. Sec. 1(1), 36-63
(2001). https://doi.org/10.1007/s102070100002, https://doi.org/10.1007/
5102070100002

Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 244-263. Springer (2012)

Knodel, M., Baker, F., Kolkman, O., Celi, S., Grover, G.: Defini-
tion of End-to-end Encryption. https://datatracker.ietf.org/doc/
draft-knodel-e2ee-definition/| (February 2021)

28

https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://github.com/cisco/sframe
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.pdf
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.pdf
https://github.com/eomara/sframe/pull/59
https://github.com/eomara/sframe/pull/59
https://github.com/eomara/sframe/pull/58
https://github.com/eomara/sframe/pull/58
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://doi.org/10.17487/RFC5084
https://doi.org/10.17487/RFC5084
https://doi.org/10.1007/s00145-021-09397-w
https://doi.org/10.1007/s00145-021-09397-w
https://doi.org/10.1007/s00145-021-09397-w
https://github.com/jitsi/lib-jitsi-meet/
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/
https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310-331. Springer (2001)

Krawczyk, H., Eronen, P.. HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). Internet Engineering Task Force - IETF, Request for Comments
5869 (May 2010)

Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: FSE. Lecture Notes in Computer Science, vol. 6733, pp. 306-327. Springer
(2011)

Matrix.org Foundation.: Olm: A Cryptographic Ratchet (2016), https://gitlab.
matrix.org/matrix-org/olm/-/blob/master/docs/olm.md

Mattsson, J., Westerlund, M.: Authentication Key Recovery on Galois/Counter
Mode (GCM). In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2016. LNCS, vol. 9646, pp. 127-143. Springer (2016)

McGrew, D.A.: An Interface and Algorithms for Authenticated Encryption. Internet
Engineering Task Force - IETF, Request for Comments 5116 (January 2008)
Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptogra-
phy. CRC press (1996)

Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257-274. Springer (2014)

Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, 1-46
(2018). https://doi.org/10.17487/RFC8439, https://doi.org/10.17487/RFC8439
Omara, E.: Google Duo End-to-End Encryption Overview - Technical Paper (2020),
https://www.gstatic.com/duo/papers/duo_e2ee.pdf

Omara, E., Uberti, J., Gouaillard, A., Murillo, S.G.: Secure Frame (SFrame).
https://tools.ietf.org/html/draft-omara-sframe-01 (November 2020)
Omara, E., Uberti, J., Gouaillard, A., Murillo, S.G.: Secure Frame (SFrame).
https://tools.ietf.org/html/draft-omara-sframe-02 (March 2021)

Open Whisper Systems.: Signal Github Repository (2017), https://github. com/
WhisperSystems/

Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Se-
curity, CCS 2002, Washington, DC, USA, November 18-22, 2002. pp. 98-107.
ACM (2002). https://doi.org/10.1145/586110.586125| https://doi.org/10.1145/
586110.586125

Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: ASTACRYPT. pp. 16-31 (2004)

Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security. pp. 196-205. ACM (2001)

Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371-388. Springer (2004)

Rosler, P., Mainka, C., Schwenk, J.: More is Less: On the End-to-End Security
of Group Chats in Signal, WhatsApp, and Threema. In: 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). pp. 415-429. IEEE (2018)

Sal Ibarra Corretgé: The road to End-to-End Encryption in Jitsi Meet
(2021), https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/
4435/export/events/attachments/e2ee/slides/4435/E2EE. pdf

29

https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC8439
https://www.gstatic.com/duo/papers/duo_e2ee.pdf
https://tools.ietf.org/html/draft-omara-sframe-01
https://tools.ietf.org/html/draft-omara-sframe-02
https://github.com/WhisperSystems/
https://github.com/WhisperSystems/
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/attachments/e2ee/slides/4435/E2EE.pdf
https://fosdem.org/2021/schedule/event/e2ee/attachments/slides/4435/export/events/attachments/e2ee/slides/4435/E2EE.pdf

45. Sergio Garcia Murillo: SFrame.js (2020), https://github.com/medooze/sframe

46. Turner, J.M.: The Keyed-Hash Message Authentication Code (HMAC). Federal
Information Processing Standards Publication 198, 1 (2008)

47. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC 3610,
1-26 (2003). https://doi.org/10.17487/RFC3610, https://doi.org/10.17487/
RFC3610

30

https://github.com/medooze/sframe
https://doi.org/10.17487/RFC3610
https://doi.org/10.17487/RFC3610
https://doi.org/10.17487/RFC3610

	 Security Analysis of SFrame

