Security Analysis of
End-to-End Encryption for Zoom Meetings*

Takanori Isobel»23

and Ryoma Ito?
! University of Hyogo, Japan.
takanori.isobe@ai.u-hyogo.ac. jp
2 National Institute of Information and Communications Technology, Japan.
itorym@nict.go. jp
3 PRESTO, Japan Science and Technology Agency, Japan.

Abstract. In the wake of the global COVID-19 pandemic, video confer-
ence systems have become essential for not only business purposes, but
also private, academic, and educational uses. Among the various systems,
Zoom is the most widely deployed video conference system. In October
2020, Zoom Video Communications rolled out their end-to-end encryp-
tion (E2EE) to protect conversations in a meeting from even insiders,
namely, the service provider Zoom. In this study, we conduct thorough
security evaluations of the E2EE of Zoom (version 2.3.1) by analyzing
their cryptographic protocols. We discover several attacks more powerful
than those expected by Zoom according to their whitepaper. Specifically,
if insiders collude with meeting participants, they can impersonate any
Zoom user in target meetings, whereas Zoom indicates that they can im-
personate only the current meeting participants. Besides, even without
relying on malicious participants, insiders can impersonate any Zoom
user in target meetings though they cannot decrypt meeting streams. In
addition, we demonstrate several impersonation attacks by meeting par-
ticipants or insiders colluding with meeting participants. Although these
attacks may be beyond the scope of the security claims made by Zoom
or may be already mentioned in the whitepaper, we reveal the details of
the attack procedures and their feasibility in the real-world setting and
propose effective countermeasures in this paper. Our findings are not an
immediate threat to the E2EE of Zoom; however, we believe that these
security evaluations are of value for deeply understanding the security of
E2EE of Zoom.

Keywords: Zoom, End-to-End Encryption, Impersonation attacks

1 Introduction

Video conference systems are being increasingly used for a variety of purposes
— for business meetings and functioning, private communications, educational

* The part of this paper was presented at the 26th Australasian Conference on Infor-
mation Security and Privacy (ACISP 2021).

purposes, and so on — since the Covid-19 pandemic has severely limited the
practicality of physical meetings. Hence, security measures such as end-to-end
encryption (E2EE) have become essential. In this study, the E2EE of Zoom,
which is one of the most used software for video communication worldwide today,
is thoroughly examined for potential security gaps.

1.1 Background

E2EE. E2EE is a secure communication scheme for messaging applications
and video conference systems in which only the people who are communicating
can send and read the messages. That is, nobody except each participant, not
even the service provider, has access to the encryption keys that are used to
encrypt the contents. After Edward Snowden’s revelations regarding surveillance
programs, the E2EE receives much attentions as a technology to protect a user
privacy from the mass interception and surveillance of communications carried
out by governmental organizations such as the NSA (National Security Agency)
of the US government.

Signal Protocol is the widely used E2EE protocol. The core of Signal Protocol
has been adopted by WhatsApp, Facebook Messenger, and Google Duo. A novel
technology called the “ratcheting” key update structure enables advanced secu-
rity properties such as perfect forward secrecy and so-called the post-compromise
security [B]. Since Signal Protocol is an open-source application and its source
code for Android and iOS are available on Github [Z1], its security has been
thoroughly studied by the cryptographic community.

iMessage, which is a widely deployed messaging application of Apple, sup-
ports an original E2EE protocol in which a message that is compressed by gzip
is encrypted by a sender’s secret key and distributed with a digital signature for
guaranteeing the integrity to the recipient. Unfortunately, the initial iMessage
had several security flaws as pointed out in November 2015 [d]. These vulnera-
bilities originated from the misuse of cryptographic primitives. Apple fixed these
problems and released the new version in March 2016. LINE, which is a widely
used message application in East Asia, is also based on an original E2EE proto-
col for efficient software performance. The previous version of the E2EE schemes
of LINE was called Letter Sealing; its message integrity was broken by exploiting
the vulnerabilities of cryptographic primitives and protocols [I3]. In response to
this, in October 2019, LINE released the new version of Letter Sealing to address
these security issues.

Thus, analysis of the E2EE protocol is crucial for enhancing the security of
E2EE as E2EE technologies are not mature enough and their security is not well
understood yet despite of their wide use in the real world.

Zoom. Zoom is, at present, the most widely deployed video conference system
in the world. The number of daily active users in the world was about 300 million
in April 2020. It is currently a key platform for business and online education
worldwide.

Zoom Video Communications first announced their plan to support E2EE in
May 2020 to protect conversations in the meeting; they published the technical
details of encryption schemes published as a whitepaper [I4]. In October 2020,
Zoom rolled out phase 1 out of 4 of their E2EE project, and made E2EE available
globally for paid and free Zoom users for 30 days as a technical preview.

E2EE of Zoom is based on AES-GCM [2], HKDF algorithm [I6], Diffie-Hellman
over Curve25519 [B], and EdDSA over Ed25519 [d] as an authenticated en-
cryption, key derivation, key exchange, and signature schemes, respectively. To
launch an E2EE session for a Zoom meeting, a meeting leader generates a meet-
ing key and securely distributes it to other participants via a bulletin board by
key exchange, key derivation function, and signature schemes. Thereafter, each
meeting stream is encrypted by AES-GCM with the shared meeting key.

In the whitepaper [Id], Zoom claims the security goals of confidentiality,
integrity, and abused prevention against insiders, outsiders, and meeting partici-
pants, where insiders are the service providers, namely, Zoom, and outsiders are
the legitimate users of Zoom but not participants in the target meeting.

1.2 Owur Contribution

In this study, we conduct thorough security evaluations of the E2EE of Zoom
(version 2.3.1), and consider several attacks. For comparison, we consider an
unavoidable attack in which the meeting participants colluding with malicious
insiders send a meeting key to insiders. In this case, insiders can break the
confidentiality of contents in the meeting. We will explore attacks beyond this
unavoidable attack by exploiting the vulnerabilities of the E2EE protocol and
underlying primitives. Specifically, we propose the following impersonation at-
tacks and their countermeasures.

Impersonation Based on No Entity Authentication. First, we discuss
impersonation attacks by malicious meeting participants without colluding with
insiders. This attack exploits the fact that there is no entity authentication of
a meeting stream in a group meeting. Specifically, the stream data sent from
any meeting participant are encrypted by AES-GCM with the same meeting
key. Although this vulnerability is pointed out in the whitepaper [I[4], we reveal
the details of the attack procedures, their feasibility, and the impacts on real-
world applications. Besides, we discuss a simple countermeasure, which is also
mentioned in the whitepaper [I4].

Impersonation of any Zoom User. We show that insiders without colluding
with participants can impersonate any legitimate Zoom user, even an uninvited
user, for the target meeting. This attack exploits the fact that insiders have free
access to bulletin boards and they can issue a meeting ID and UUID, which
functions as the nonce of binding information to identify users. Using these
facts, insiders can reuse the binding information of Zoom users, which is posted
on bulletin boards in previous meetings, for target meetings. Note that in this

attack, insiders cannot decrypt the meeting stream as the meeting key of the
target meeting is unknown. However, it can have adverse effects; for example,
in the case of a negotiation, the fact that an influential person is attending can
impose a silent pressure on others. Thus, this attack makes sense in the practical
case.

Furthermore, if colluding with participants, insiders can get the meeting key.
Then, they fully impersonate any legitimate user, i.e., they can actively attend
the target meeting as a target user. This is obviously beyond the unavoidable
attack in which insiders can only passively eavesdrop the meeting streams. In
addition, we show that it can be easily fixed by adding time information to
binding information.

Impersonation of Another User on a Shared Device. Finally, we show
impersonation attacks in the case where multiple users share a device for Zoom
meetings by colluding with insiders. In this attack, a malicious user can obtain
the device key of another user who utilizes the same device for Zoom meetings.
This attack exploits the fact that the key for encrypting the device key is stored
in the Zoom server. In the E2EE setting, insiders cannot be trusted; nevertheless,
insiders hold these keys.

Further Security Evaluations. We discuss some security issues of E2EE in
Zoom. The first one is the use of the authenticated encryption mode, GCM. It
is well known that if the same nonce is used, it is easy to recover an authenti-
cation key from only ciphertexts [8, I35, IX]. The whitepaper [[4] describes that
nonces are generated by counters. However, the client application is made by
Zoom. Under the E2EE assumption, Zoom can inject a trapdoor such that the
same nonce is used in some points to the software. To avoid such suspicions, we
recommend using a more secure authenticated encryption scheme that has the
nonce-misuse resistance in E2EE, or the client application should be public as
an open source software so that third parties can audit it. Besides the security
issues, we discuss the denial of service to target users by insiders.

1.3 Uncovered Results and Limitation

Table M summarizes our results. Zoom deems some attacks, including in-meeting
impersonation attacks in which a malicious but otherwise authorized meeting
participant colluding with a malicious server can masquerade as another autho-
rized meeting participant, as out of scope.

Since some of our impersonation attacks involve colluding with insiders, these
may be beyond the security claims of Zoom. However, we uncover several attacks
more powerful than that expected by Zoom.

— If insiders collude with meeting participants, they can impersonate any Zoom
user in target meetings, while the whitepaper [T4] claims that they can im-
personate only current meeting participants.

Table 1. Summary of our results: impersonation, tampering, and denial of service
attacks. Each type of attack is classified into two types: active and passive attacks.
In an active-type attack, an adversary can not only join the target meeting, but also
properly send and receive the meeting streams. In a passive-type attack, an adversary
can perform the attack, but cannot properly send and receive the meeting streams.
The adversary and victim models consist of an insider, outsider, meeting leader, and
meeting participant, which are denoted as I, O, L, and P, respectively. We use “c.w.”
as an abbreviation of “colluding with”.

Attack \ Type \ Adversary \ Victim \ Reference
Impersonation Active L/P L/P Sec. Bl
Impersonation | Passive I L/P/O Sec. b1
Impersonation Active lcw. L L/P/O Sec. b1
Impersonation Active |Ocw.l,L| L/P/O Sec. B2
Impersonation Active Ocw. L L/P/O Sec. b2
Impersonation Active Ocw. | O Sec. B

Tampering Passive I L/P Sec. [T
Denial of service | Passive I P Sec. Bl

— Even without relying on malicious participants, insiders can impersonate
any Zoom user for target meetings though they cannot decrypt the meeting
stream.

Our results are based on the whitepaper [[4] and we have analyzed only
the cryptographic protocol of E2EE (version 2.3.1). In order to demonstrate the
feasibility of the proposed attacks, we should have implemented and tested the
proposed attacks, however, this paper only presents the theoretical evaluations
of E2EE for Zoom because the source code of E2EE for Zoom is not available.
Therefore, we discussed with Zoom to confirm the feasibility of the proposed
attacks (refer to Section I for detail).

Our findings are not an immediate threat to E2EE for Zoom. However, our
results show that there is room of improvement in the E2EE for Zoom as a
cryptographic scheme. We believe that these security evaluations are of value
for understanding well and enhancing the security of E2EE for Zoom.

1.4 Responsible Disclosure

In November 2020, we informed Zoom of our findings in this paper via the
vulnerability disclosure platform of Hacker One [(7]. They acknowledged our
impersonation attacks and other attacks while they already recognized some
attacks as discussed before. They told us that they have a plan to address these
issues in the future version or clearly state these as limitations of the current
version of their E2EE in the whitepaper. In each section, we describe the details
of their responses and results of the discussion with Zoom.

1.5 Related Works

We summarize the part of previously discovered vulnerabilities in the Zoom
application, which were published by the Zoom security team on their website®.
CVE-2018-15715 (publication date: November 30, 2018). Zoom clients
on Windows (before version 4.1.34460.1105), Mac OS (before version 4.1.34475.1105),
and Linux (before version 2.5.146186.1130) are vulnerable to unauthorized mes-
sage processing. A remote unauthenticated attacker can spoof UDP messages
from a meeting attendee or Zoom server to invoke functionality in the target
client. This allows the attacker to remove attendees from meetings, spoof mes-
sages from users, or hijack shared screens.

CVE-2019-13450 (publication date: July 9, 2019). In the Zoom MacOS
Client prior to version 4.4.5 and RingCentral MacOS client prior to version 4.4.5,
remote attackers can force a user to join a video call with the video camera
active. This occurs because any website can interact with the Zoom web server
on localhost port 19421.

CVE-2019-13567 (publication date: July 12, 2019). The Zoom Client
before 4.4.52595.0425 on macOS allows remote code execution, a different vul-
nerability than CVE-2019-13450. If the ZoomOpener daemon (aka the hidden
webserver) is running, but the Zoom Client is not installed or can’t be opened,
an attacker can remotely execute code with a maliciously crafted launch URL.

On the other hand, our study has focused on the E2EE mechanism described
in the whitepaper version 2.3.1 [[d], which was published on November 3, 2020.
That is, it is clear that all the above vulnerabilities are unrelated to our discov-
ered vulnerabilities, because they are related to the vulnerabilities in the Zoom
application that does not implement the targeted E2EE mechanism.

According to vulnerability reports published by the Zoom security team, the
following is the only vulnerability reported since November 3, 2020.
CVE-2021-28133 (publication date: March 26, 2021). In all Windows
Zoom Client versions, Linux Zoom Client versions prior to 5.5.4 on Ubuntu, and
All Linux Client versions on other supported distributions, an attacker can af-
fect these clients’ share screen functionality when sharing individual application
windows, in which screen contents of applications which are not explicitly shared
by the screen-sharing users may be seen by other meeting participants for a brief
moment if the “sharer” is minimizing, maximizing, or closing another window.

This vulnerability is also unrelated to our discovered vulnerabilities; thus, this
is the first time we have reported the vulnerabilities in the E2EE mechanism for
Zoom.

1.6 Organization of this Paper

The rest of the paper is organized as follows. In Section B, we define adversary
models and security goals of E2EE for Zoom. In Section B, we briefly describe
the E2EE specifications for Zoom meetings. In Section B, we introduce imper-
sonating attacks based on no entity authentication. In Section B, we explain how

! https://zoom.us/trust /security /security-bulletin

a malicious insider or a malicious outsider can impersonate any Zoom user, in-
cluding users who are not invited to the target meeting. In Section B, we describe
how a malicious outsider can impersonate another user on a shared device. In
Sections @ and B, we evaluate the security against tampering and denial of ser-
vice attacks. Sections B-B also present the feasibilities and countermeasures for
these attacks. Finally, Section B concludes the paper.

2 Adversary Models and Security Goals

This section explains the adversary models and security goals of the E2EE for
Zoom meetings. Although our definitions are primarily based on the whitepaper
(4], we also consider the security models described in some other papers [[3, [9].

2.1 Adversary Models

In the whitepaper [[4], the designers defined insiders, outsiders, and meeting
participants as the adversary models. With reference to the adversary models
reported by Isobe and Minematsu [I3], we redefine these models for our security
analysis:

Definition 1. (Insiders) Insiders develop and maintain Zoom’s server infras-
tructure and its cloud providers. A malicious insider can intercept, read, and
modify any meeting streams sent over the network, and has full access to Zoom’s
server infrastructure.

Definition 2. (Outsiders) Outsiders are legitimate users of Zoom meetings
but not part of Zoom’s trusted infrastructure and do not have access to mon-
public meeting access control information. A malicious outsider may monitor,
intercept, and modify network traffic and may attempt to break one of the security
goals in other E2EFE sessions by maliciously manipulating the protocol.

Definition 3. (Meeting Participants) Meeting participants can access a meet-
ing, because they know the ID and password of the meeting or exercise other
qualifying credentials. A malicious meeting participant attempts to break one of
the security goals by deviating from the protocol.

According to the whitepaper [[4], there exists a meeting leader among the meet-
ing participants, and he/she has higher authority than other meeting participants
as follows:

Definition 4. (Meeting Leader) A meeting leader has the responsibility of
generating the shared meeting key, authorizing new meeting participants, remov-
ing unwanted participants from the meeting, and distributing keys. A malicious
meeting leader attempts to break one of the security goals by deviating from the
protocol.

As described in the paper reported by Isobe and Minematsu [[3], a malicious
outsider, a malicious meeting participant, and a malicious meeting leader can
collude with a malicious insider, or a malicious insider himself/herself can be a
malicious meeting participant or a malicious meeting leader.

2.2 Security Goals

In the whitepaper [[4], the designers defined confidentiality, integrity, and abuse
prevention as the security goals. With reference to the security goals of E2EE
reported by Isobe and Minematsu [[3], we redefine these goals, excluding abuse
prevention, for our security analysis:

Definition 5. (Confidentiality) If only legitimate meeting participants can
view the decrypted meeting streams, then it ensures the confidentiality that the
meeting stream is kept secret from all but those who are authorized to view it.

Definition 6. (Integrity) If a meeting stream is received and successfully veri-
fied as message authentication, then it ensures the data integrity that the meeting
stream has not been altered by unauthorized or unknown means.

In our security analysis, we focus on authenticity rather than abuse prevention,
and this term is defined with reference to the handbook written by Manezes et
al. [M9] as follows:

Definition 7. (Authenticity) If a meeting stream is received and successfully
verified as entity authentication, then it ensures the authenticity that the meeting
stream was indeed sent by a particular meeting participants.

3 E2EE Specifications for Zoom Meetings

The E2EE specifications for Zoom meetings is written in the whitepaper pub-
lished by Zoom [Id]. This section describes the system components, crypto-
graphic algorithms, protocol flow, and local key security, which is the focus of
our security analysis.

3.1 System Components

This subsection describes the signaling channel and bulletin board among the
System components.

The signaling channel is used to distribute encrypted messages between meet-
ing participants. Meeting participants route control messages on TLS tunnels
over TCP, through the multimedia routers, which are a part of the Zoom infras-
tructure. TLS is terminated at the Zoom servers.

Each meeting has its own bulletin board that is accessible to the meeting par-
ticipants. Meeting participants can post cryptographic messages to the bulletin
board, which is implemented over the signaling channel.

The Zoom server controls the signaling channel and the bulletin board, and
therefore, it can tamper with the cryptographic messages posted on the bulletin
board.

3.2 Cryptographic Algorithms

The E2EE for Zoom meetings adopts the following cryptographic algorithms and
uses the signing scheme and authenticated public-key encryption scheme:

— All meeting streams are encrypted with AES-GCM [2].

Key derivation uses the HKDF algorithm [I6].

Diffie-Hellman (DH) over Curve25519 is used for key exchange [8].
— EdDSA over Ed25519 is used for signing [4].

The signing scheme consists of the key generation algorithm Sign.KeyGen, the
signing algorithm Sign.Sign, and the verification algorithm Sign.Verify. Sign.KeyGen
generates a keypair (vk, sk), where vk and sk denote a verification and signing
key, respectively. Sign.Sign takes a context string Context and a message M as
the inputs and outputs a signature Sig over SHA256(Context) || SHA256(M).
Sign.Verify takes a signature Sig a context string Context and a message M as
the inputs, and outputs True upon verification success and False upon failure.

The authenticated public-key encryption scheme consists of the key genera-
tion algorithm Box.KeyGen, the encryption algorithm Box.Enc, and the decryp-
tion algorithm Box.Dec. Box.KeyGen generates a keypair (pkgox, skgox), where
pkeox and skpox denote a public key and a secret key, respectively. Box.Enc
takes the sender’s secret key skgox, receiver’s public key pkEo><7 a context string
Contextkpr and Contextcipher, metadata Meta, and a message M as the inputs,
and outputs a ciphertext C' as follows:

Generate a 192-bit random string RandomNonce.
Compute K’ < DHKE(pkE_ , sk3,,), which is the DH key exchange.
Compute K < HKDF(K’, Contextkp), using an empty HKDF salt.
Compute D < SHA256(Contextcipher) || SHA256(Meta).

Encrypt the plaintext M with XChaCha20/Poly-1305 taken the symmetric
key K, the associated data D, and the nonce RandomNonce as the inputs,
and return the ciphertext C".

6. Output C + (C’,RandomNonce).

U W=

Box.Dec takes the receiver’s secret key sk§,, sender’s public key pk3,,, a context
string Contextkpr and Contextcipher, metadata Meta, and a ciphertext C' as the
inputs, and outputs a message M or error as follows:

Parse C as (C’, RandomNonce).
Compute K’ < DHKE(pkE,, sk3,,), which is the DH key exchange.
Compute K <+ HKDF(K’, Contextkpg), using an empty HKDF salt.
Compute D < SHA256(Contextcipher) || SHA256(Meta).

Encrypt the ciphertext C’ with XChaCha20/Poly-1305 taken the symmetric
key K, the associated data D, and the nonce RandomNonce as the inputs,
and return the plaintext M.

6. If decryption fails, then output error. Otherwise, output M.

U W

When Zoom user ¢ upgrades their Zoom application to the first version that
supports E2EE, they generate a long-term signature key pair (IVK,, ISK ;) with
Sign.KeyGen, where IVK; and ISK; denote a verification key and a signing key
for user 4, respectively. Subsequently, they post IVK; to the Zoom server, and
store ISK; on their device. They continue to use the long-term signing key pair
unless they reinstall the OS or applications and destroy the disk.

3.3 Join/Leave Protocol Flow

The protocol to establish an E2EE session for Zoom meetings consists of four
phases: participant key generation, leader join, participant join (leader), and par-
ticipant join (non-leader) phases. After the E2EE session is established, the meet-
ing leader/participants encrypt all meeting streams with AES-GCM using the
meeting key MK shared during the participant join (leader/non-leader) phase as
an input. We call this phase the encryption phase.

Participant Key Generation Phase. When any participant ¢ joins the meet-
ing meeting|D on their device devicelD, they perform the following procedures:

1. Generate a new keypair (pk;, sk;) < Box.KeyGen() for the DH key exchange.
2. Query the insider for the server-generated meetingUUID for the meeting. No
participant has any control over the meetingUUID.

Compute Binding; < (meetinglD || meetingUUID || || devicelD || IVK; || pk;).
Define Context < " Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement” .
Compute Sig; < Sign.Sign(ISK ;, Context, Binding,).

Store sk; for the duration of the meeting.

Post Sig, to the bulletin board, so that all participants can see it.

oot w

Leader Join Phase. When any leader joins the meeting meetinglD, they per-
form the following procedures:

1. Fetch meetingUUID from the insider.

2. Generate a 32-byte seed MK using a secure random number generator

3. Get the full list of meeting participants I from the insider.

4. Perform the ”Participant Join (Leader)” phase for each participant i € I.

Participant Join (Leader) Phase. When a leader ¢ and a participant 4 join
the meeting meetinglD on devicelD, the leader performs the following procedures:

Fetches IVK; from the insider.

Fetches Sig; and pk; from the bulletin board in the meeting.

Computes Binding; < (meetingID || meetingUUID || i || devicelD || IVK || pk;).
Defines Contextsign < " Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement” .
Verifies the signature: Sign.Verify(IVK;, Sig;, Contextsign, Binding;).

If verification fails, it is aborted.

Al e

10

7. Computes Meta < (meetinglD || meetingUUID || £]| 7).

8. Defines Contextkpr < " Zoombase-1-ClientOnly-KDF-KeyMeetingSeed" .

9. Defines Contextcipher < " Zoombase-1-ClientOnly-Sig-EncryptionKeyMeetingSeed" .
10. Computes C; < Box.Enc(sky, pk;, Contextkpr, Contextcipher, Meta, MK).
11. Posts (i, C;) to the bulletin board.

Participant Join (Non-Leader) Phase. When any participant ¢ joins the
meeting meetinglD on devicelD, they perform the following procedures:

Fetch IVK, for the leader ¢ and the meetingUUID from the insider.

Fetch Sigy, pke, and (i, C;) from the bulletin board in the meeting.

Compute Binding, < (meetinglD || meetingUUID || £|| devicelD || IVK ¢ || pke).
Define Contextsign < " Zoombase-1-ClientOnly-Sig-EncryptionKeyAnnouncement”.
Verify the signature: Sign.Verify(IVK, Sig,, Contextsign, Binding,).

If verification fails, it is aborted.

Compute Meta + (meetinglD || meetingUUID || || ¢).

Define Contextkpg < " Zoombase-1-ClientOnly-KDF-KeyMeetingSeed" .

Define Contextcipher +— " Zoombase-1-ClientOnly-Sig-EncryptionKeyMeetingSeed" .
Compute MK <— Box.Dec(sk;, pk¢, Contextkpr, Contextcipher, Meta, C;).

COXND R W

—_

3.4 Local Key Security

To protect a long-term signing key stored on the device, each Zoom user en-
crypts the long-term signing key with the committing AEAD scheme CtE1 [IT]
as follows:

1. Generates a 32-byte random string KWK, which is called the key-wrapping
key, and requests the server to store it persistently associated with the user.

2. Defines Context < "Zoombase-1-ClientOnly-KDF-SecretStore”.

3. Computes C «+ CtE1l-Enc(K=KWK, H=Context, M=ISK;), where H is the
associated data parameter for the underlying AEAD, and stores it in the
system keychain.

If two Zoom users share a device, the local key security can prevent a malicious
user from exploiting another user’s long-term signing key.

4 Impersonation Based on No Entity Authentication

This section describes how a malicious meeting leader/participant who possesses
the shared meeting key can impersonate other legitimate meeting participants.
This exploits the following vulnerability during the encryption phase.

Vulnerability 1 (No Entity Authentication) Even if a meeting stream is
received from a particular meeting participant, the authenticity of the meeting
stream is not ensured because there is no entity authentication.

11

Bulletin
Board

. 1. Shared MK
Participants

2. Broadcast C with
victim’s metadata

1. Shared MK

Victim
Participant

Fig. 1. Impersonation based on Vulnerability M.

Malicious
Leader/
Participant

2. Broadcast C with
victim’s metadata

In the encryption phase, all meeting participants broadcast the meeting streams
encrypted with AES-GCM. Although AES-GCM ensures the confidentiality and
integrity of the meeting streams, it does not ensure the authenticity because
of the lack of the entity authentication. In fact, Section 3.12 of the whitepaper
[Id] states that properly signing all meeting streams is a challenge from the
perspective of performance and repudiation, i.e., it is clear that there is no entity
authentication in the encryption phase. In this section, we show a practical attack
scenario and provide its feasibilities and countermeasure.

4.1 Impersonation Based on Vulnerability O

By exploiting Vulnerability @, a malicious meeting leader/participant imperson-
ates any legitimate meeting participant (victim) in the following scenario (see
also Figure [):

1. A malicious meeting leader/participant joins the meeting as a legitimate
meeting leader/participant and derives the shared meeting key MK during
the participant join (leader/non-leader) phase.

2. They encrypt meeting streams M with MK and broadcasts the encrypted
meeting streams C with the victim’s metadata, e.g., sender ID, to all meeting
participants via Zoom infrastructure.

Since the meeting stream M is encrypted with meeting key MK shared among
all meeting participants, they can decrypt it and successfully verify it as message
authentication. In addition, the attached metadata makes non-victim meeting
participants unaware that the encrypted meeting stream C was broadcast by the
malicious meeting leader/participant. The victim should be aware of this fact
but cannot formally refute it because of the lack of the entity authentication.
Therefore, this reveals that the E2EE for Zoom meetings does not ensure the au-
thenticity of the meeting streams against a malicious meeting leader/participant.

12

4.2 Discussion

This subsection discusses feasibilities and a countermeasure against the imper-
sonation attack described in the previous subsection.

Feasibility. To impersonate any legitimate meeting participant (victim), a ma-
licious meeting leader/participant must prepare the victim’s meeting streams
in advance. This is feasible by collecting the meeting streams from the meet-
ings the victim previously joined and editing them. The impersonating based on
Vulnerability 0 has the following feasibilities:

— If the victim is not broadcasting a meeting stream, then other meeting par-
ticipants properly receive a meeting stream prepared in advance by the ma-
licious meeting leader/participant. This causes the victim to lose the trust
of other meeting participants, depending on the content of the broadcast
meeting stream.

— If the victim is broadcasting a meeting stream, then his meeting stream
conflicts with a meeting stream prepared in advance by a malicious meeting
leader /participant. This causes interference in the victim’s communication
and prevents other meeting participants from properly receiving the content
of their meeting stream.

Countermeasure. To prevent the impersonation based on Vulnerability O, all
meeting streams should be properly signed as entity authentication. As men-
tioned earlier, the whitepaper [I4] states this countermeasure as a challenge
from the perspective of performance and repudiation, and therefore, it will be
an important task in the future.

Note that other E2EE schemes, such as WhatsApp [23], Facebook Messenger
[5], and Google Duo [20], also have the same limitation in their current-deployed
version. On the other hand, SFrame [7], which is an end-to-end media encryption
mechanism, has an optional feature to sign all media stream by the sender’s
signature key.

4.3 Response from Zoom

Zoom also recognized this type of impersonating attacks as discussed in the
whitepaper [I4]. Due to performance and repudiability concerns, they are cur-
rently not ready to implement the countermeasure. However they told us that
they will be open to re-evaluating it in the future.

5 Impersonation of any Zoom User

This section presents how a malicious insider or a malicious outsider can imper-
sonate even any legitimate Zoom user who is uninvited to the target meeting.
This exploits the following vulnerabilities in addition to Vulnerability 0 described
in Section H.

13

Vulnerability 2 (Free Access to the Bulletin Broad) Insiders and meeting
participants have free access to the bulletin board. Particularly, insiders are free
to collect and tamper with all values, including the signatures and public keys
generated by individual participants, posted on the bulletin board.

This vulnerability is based on the description of the bulletin board in Section Bl
During the participant join (leader/non-leader) phase, the encrypted meeting key
and the public key and signature pairs for all meeting participants are posted on
the bulletin board. Hence, this vulnerability allows the insiders and all meeting
participants to collect them, and further allows the insiders to tamper with them.

Vulnerability 3 (Same Binding as in the Previous Meeting) If the meet-
ing IDs, which are meetinglD and meetingUUID, generated by the insiders and
the public key generated by the meeting participant are reused, then the metadata
Binding of the meeting participant has the same value. Since the signing key pair
of the meeting participant is utilized for a long-term period, the same signature
Sig is always generated from the same metadata Binding.

The metadata Binding; of the meeting participant ¢ is computed as described
in Section B33 (see Step 3 during the participant join (leader) phase). Meeting
participants reuse 4, devicelD, and IVK; as fixed values in all meetings excluding
special cases, e.g., after the Zoom application is reinstalled. Hence, if you get the
tuple (meetinglD, meetingUUID, pk;) used in the previous meeting, then you can
compute Binding, used in the previous meeting. Only the insiders are involved
in generating both meetinglD and meetingUUID, i.e., only malicious insiders can
exploit Vulnerability B.

Vulnerability 4 (Leader-generated Meeting Key) Only the meeting leader
is involved in generating a 256-bit shared meeting key.

This vulnerability implies that a malicious meeting leader may intentionally
reuse the meeting key MK used in the previous meeting.

5.1 Impersonation Based on Vulnerabilities DI-B

By exploiting Vulnerabilities B and B, a malicious insider can impersonate even
any legitimate Zoom user A uninvited to the target meeting in the following
scenario (see also Figure D):

1. A malicious insider stores Siga and pka posted on the bulletin board in the
previous meeting.

2. They reuse meetingID and meetingUUID used in the previous meeting.

3. They post Siga and pka to the bulletin board in the new meeting.

During the participant join (leader) phase, a meeting leader can compute Binding,
used in the previous meeting from the same meetingID, meetingUUID, and pka.
Since Sigp is the value derived from signing Binding, with ISK A, the meeting
leader can successfully verify Sig, with VK a. Therefore, this reveals that a mali-
cious insider can impersonate any legitimate Zoom user A without being noticed

14

Previous meeting < -----| - -+ New meeting

2. Reuses meetingID and meetingUUID

3. Posts Sigs and pky

1. Stores Sig, and pk, Malicious Insider

Bulletin
Board

E Joins the meeting as Bulletin
E User A Board

Posts Sigx and pky

Joins the meeting meetingID and meetingUUID

Successfully verifies Sig,

Fig. 2. Impersonation based on Vulnerabilities B and B.

by him. The malicious insider cannot derived MK in the meeting because they
do not know ska corresponding to pka, i.e., they can join the meeting but cannot
decrypt the meeting streams.

Now, we suppose that the malicious insider colludes with the malicious meet-
ing leader. In this scenario, if the malicious insider obtains the shared meeting
key MK from the malicious meeting leader, then the malicious insider can com-
pletely impersonate legitimate Zoom user A. Hence, the malicious insider will
be able to not only join the meeting as Zoom user A, but also properly broad-
cast and receive the meeting streams by exploiting Vulnerability 0. Given that
non-legitimate meeting participants cannot completely impersonate by simply
obtaining the shared meeting key MK, such a scenario is not trivial.

5.2 Impersonation Based on Vulnerabilities I-@

By exploiting Vulnerabilities [, a malicious outsider can impersonates even any
legitimate Zoom user B uninvited to the target meeting in the following scenario
(see also Figure B):

1. A malicious meeting leader stores Sigg and pkg posted on the bulletin board
in the previous meeting and provides them to a malicious outsider.

2. A malicious insider reuses meetinglD and meetingUUID used in the previous
meeting.

3. If the malicious outsider joined the previous meeting, then the malicious
meeting leader reuses MK used in the previous meeting, i.e., the malicious
outsider knows the reused MK, otherwise provides it to the malicious out-
sider.

4. The malicious outsider posts Sigg and pkg to the bulletin board in the new
meeting.

15

.
Previous meeting € -----j----- -+ New meeting

2. Reuses meetinglD and meetingUUID

Malicious Insider

Bulletin Bulletin
Board Board
Shared MK 3. Shared MK
i Sigs pks
Sigs_Pks Malicious
Leader

1. Stores Sigg and pkg

Posts Sigg and pkg

4. Posts Sigg and pkg
1. Provides Sigg and pkg
3. Provides MK

: Malicious
Zoom User B H 5 :ﬂ Participants
- : OUtSIder -

Joins th . ingID and ingUUID Broadcasts/receives
oins the meeting meetingID and meeting as User B

Fig. 3. Impersonation based on Vulnerabilities 0. Note that the malicious meeting
leader and the malicious outsider join the previous and new meetings.

For the above scenario to be reality, the malicious outsider has to collude with the
malicious insider and malicious meeting leader. This scenario is similar to the one
discussed in Section B, but this scenario supposes that the malicious meeting
leader wants the malicious outsider to impersonate Zoom user B. In addition,
by exploiting Vulnerabilities M and B, she can not only join the meeting, but also
properly broadcast and receive meeting streams.

5.3 Impersonation Based on Vulnerabilities M-8 without Colluding
with a Malicious Insider

We explain how a malicious outsider can impersonate even any legitimate Zoom
User B uninvited to the target meeting without colluding with a malicious insider
in the following scenario:

1. A malicious outsider stores Sigg and pkg posted on the bulletin board in the
previous meeting.

2. A malicious meeting leader uses meetinglD as the personal meeting ID.

3. The malicious outsider collects the meetingUUID generated by a malicious
insider with the meetingUUID used in the previous meeting.

4. If the malicious outsider joined the previous meeting, then the malicious
meeting leader reuses MK used in the previous meeting, i.e., the malicious
outsider knows the reused MK, otherwise provides it to the malicious out-
sider.

5. The malicious outsider posts Sigg and pkg to the bulletin board in the new
meeting.

To realize the above scenario, the malicious outsider only needs to collude with
the malicious meeting leader. To generate meetingID, a meeting leader can choose
to automatically generate it with the help of the insiders or use a fixed value as

16

the personal meeting ID. If a malicious meeting leader generates meetinglD as
a personal meeting ID, then the meeting participants use the same meeting|D
as the previous meeting. In addition, if meetingUUID is generated according to
RFC 4122 [I7] (although we do not know if this is actually correct because the
generation process of a MeetingUUID is not disclosed in the whitepaper), the
meetingUUID is identical to the previous meetingUUID in 26! trials by executing
a birthday attack. Based on these procedures, the malicious outsider can proba-
bilistically use the same meetinglD and meetingUUID as in the previous meeting
without colluding with a malicious insider.

5.4 Discussion

This subsection discusses feasibilities and two countermeasures against the im-
personation attacks described in the previous subsections.

Feasibility. It can be effective in some cases to show other meeting partici-
pants that a specific individual is just joining a meeting without broadcasting
anything. For example, suppose you want to make some negotiations proceed
smoothly but the negotiating partner has joined the meeting with a malicious
insider who impersonates an influential person, as described in Section BE. You
may feel that the partner imposes silent pressure, and the negotiation may not
proceed as desired (rather, we think that the negotiations proceed at the part-
ner’s pace). Since a malicious insider can easily perform such impersonation,
we suppose a scenario in which meeting participants request the malicious in-
sider to impersonate a specific individual. Therefore, the impersonation attacks
described in the previous subsections is feasible.

We further discuss a feasibility against the impersonation attack described in
Section bB33. Zoom Video Communications announced on its blog that more than
300 million daily meeting participants join Zoom meetings as of April 2020 [24].
Assuming that all meetings have only two participants, only 23°%7 meetings will
be held worldwide in a year. Therefore, there is not much feasibility of executing
a birthday attack with 2! trials to make meetingUUID coincide with the previous
meetingUUID. Even if the meetingUUID coincides with the previous meetingUUID,
how a malicious outsider posts Sigg and pkg to the bulletin board implemented
on the signaling channel is an open problem. We suggest that a malicious meeting
leader posts Sigg and pkg on behalf of a malicious outsider as one solution, but
we cannot confirm the feasibility of this attack. In summary, although there is
not much feasibility of impersonating even any legitimate Zoom User B uninvited
to the target meeting without colluding with a malicious insider, the protocol
must include countermeasures in the event of such an impersonation.

Countermeasure. To prevent the impersonating described in the previous
subsections, we propose the following countermeasures against Vulnerability B:

17

1. Add time information time, e.g., the date and time when the meeting starts,
to the metadata Binding; as follows:

Binding; < (meetingID || meetingUUID || ¢ || devicelD || IVK; || pk; || time).
2. Add a procedure to verify the time information when verifying the signature.

If an adversary attempts to exploit Vulnerability B, then the time information
must be the same as that in the previous meeting. In addition, even if the ad-
versary uses the same time information as in the previous meeting, by detecting
the time information mismatch when verifying the signature, the adversary can
be prevented from exploiting Vulnerability B.

5.5 Response from Zoom

Zoom acknowledged these limitations for user identification in the current ver-
sion. They told us that they will clearly state it as a limitation of the currently-
deployed end-to-end encryption (Phase 1), and update the protocol to prevent
it before the next phases are deployed (Phases 2 and 3).

To be more specific, in the currently deployed version, there are no cryp-
tographic mechanisms preventing anyone from changing their display name to
whatever they please. They will address this issue before Phase 2 is deployed. For
completeness, note that in some cases an account admin can instruct the Zoom
server to prevent display name changes for its members, but this server-enforced
feature is not meant to protect against Zoom insiders.

6 Impersonation of Another User on a Shared Device

This section presents how a malicious insider or a malicious outsider can imper-
sonate another legitimate Zoom user who shares their device with the malicious
outsider. This exploits the following vulnerability in storing a long-term signing
key.

Vulnerability 5 (Long-term Signing Key) The long-term signing key ISK
of the meeting participant is encrypted using a server-synchronized key-wrapping
key KWK. The ciphertext is stored on the participant’s device, which may be a
computer shared by two users, and KWK is stored on the Zoom server.

This vulnerability is based on the description of the local key security (Section
B3). The description suggests that a malicious outsider can obtain the encrypted
long-term signing key stored on the shared device. In addition, the key-wrapping
key KWK for encryption is stored on the Zoom server. Hence, the long-term
signing key of the victim may be decrypted by colluding with a malicious insider
and a malicious outsider.

18

3. Decrypts the encrypted ISK: with KWK

. X Broadcasts/receives as User C
Malicious Insider %

Stores KWK¢ Participants
2. Leaks the encrypted /SK¢
Malicious
Outsider”

1. Obtains the encrypted ISK¢

[]

Shared Device
(with the user C and the malicious outsider)

*She can access the device sharing
with the user C.

Stores the encrypted ISK

Fig. 4. Impersonation based on Vulnerabilities @ and B.

6.1 Impersonation Based on Vulnerabilities I and

By exploiting Vulnerabilities Il and B, a malicious insider or a malicious outsider
impersonates another legitimate Zoom user C who shares the device with the
malicious outsider in the following scenario (see also Figure H):

1. A malicious outsider obtains the encrypted long-term signing key for user C.

2. The malicious outsider leaks the ciphertext to the malicious insider or obtains
the KWK associated with user C from the malicious insider.

3. One of them decrypts the ciphertext with the KWK.

It is a realistic situation that a malicious outsider leaks the encrypted long-term
signing key for user C to a malicious insider and the malicious insider decrypts
it. Anyway, if the long-term signing key is obtained by a malicious insider or
a malicious outsider, then they can join any meeting and impersonate user C
without being noticed by all meeting participants. Based on Vulnerability [,
they can also properly broadcast and receive meeting streams.

6.2 Discussion

In this subsection, we propose the following countermeasures against the imper-
sonation described in the previous subsection:

1. Store KWK on a trusted third party.
2. Use the secret sharing scheme to store KWK.

Since it is difficult to prevent a malicious outsider from obtaining the encrypted
long-term signing key for user C, we examine how to store KWK securely. Accord-
ing to the whitepaper [I4], Zoom Video Communications outsources the identity
management and system auditing to trusted third parties. Similarly, it is realistic
to outsource storing KWK to a trusted third party. If the adversary colludes with

19

the third party or with all insiders that possess a share, the proposed counter-
measures cannot prevent the impersonation. However, we believe that adopting
the proposed countermeasures can reduce the risk of impersonation.

6.3 Response from Zoom

Zoom explicitly stated that it is incredibly difficult to guarantee protection
against any type of breach when an adversary has gained control of a target’s
device. Therefore, they revealed that the local key security mechanism (Section
B3) is not meant to protect against collusion between a malicious insider and
a malicious outsider with access to the user’s device. They plan to update the
whitepaper [14] to clarify that this fact is correct.

They also provided an example of many other attack vectors that would
allow a malicious outsider to compromise an accessible target’s device without
colluding with a malicious insider. For example, the malicious outsider might
install spyware which waits until the other user logs in and records the key while
it is decrypted in memory. We agreed that such an attack is also feasible.

7 Security against Tampering with Meeting Streams

This section evaluates the security against tampering with meeting streams dur-
ing the encryption phase. Now, the following vulnerability related to AES-GCM
is exploited.

Vulnerability 6 (Misuse of Nonce) All meeting streams are encrypted with
AES-GCM. If nonce is misused during the meeting, the existing attack on AES-
GCM [8, 14, I8] will be executed and the authentication key will be exposed to
third parties.

Section 3.10 of the whitepaper [I4] states that nonces are generated by counters.
However, the possibility that a malicious insider could intentionally embed a
vulnerability that allows meeting participants to reuse the same nonce should
be considered.

7.1 Tampering Based on Vulnerability B

By exploiting Vulnerability B, a malicious insider tampers with the encrypted
meeting streams in the following nonce-misused scenario:

1. A malicious insider embeds a vulnerability that allows meeting participants
to reuse the same nonce.

2. A meeting leader/participant encrypts meeting streams with the reused

nonce and broadcasts them to the meeting participants.

The malicious insider intercepts the streams sent over the network.

4. The malicious insider derives the authentication key from the streams based
on the existing attack on AES-GCM in the nonce-misused setting [8, I3, [J].

©w

20

The malicious insider cannot obtain the shared meeting key, but they can derive
the authentication key in the meeting. Hence, in the above scenario, although
there is no tampering with the meaningful meeting stream, the tampered streams
can be successfully verified as message authentication.

7.2 Discussion

Even if a malicious insider does not intentionally embed a vulnerability, flaws in
the Zoom system may lead to misuse of the nonce. To prevent exploitation of
Vulnerability B, we propose to adopt a misuse-resistant authenticated encryp-
tion (MRAE), which was formalized by Rogaway and Shrimpton [22], instead of
AES-GCM. Numerous MRAESs are available, for example, the authenticated en-
cryptions selected as finalists in the CAESAR project [0] and the AES-GCM-SIV
standardized by the Internet Engineering Task Force [[[1]. Therefore, we strongly
recommend the transition from AES-GCM, which has low misuse resistance, to
a MRAE.

7.3 Response from Zoom

In Section 1.3 of the whitepaper [[4], Zoom acknowledged that any unknown
backdoors and bugs in their client code would compromise the confidentiality of
their E2EE system. However, they argued that they have no such known back-
doors, and they routinely commission audits by external companies to mitigate
this threat - making it a highly unlikely attack vector.

They also provided examples of other attack vectors. For example, the back-
door could target the key generation algorithm or exfiltrate keys through other
covert channels. In terms of such attack vectors, they stated that switching GCM
with a MRAE would be an ineffective countermeasure; however, we emphasize
that a MRAE is useful for enhancing the security of E2EE of Zoom.

8 Security against Denial of Service

This section evaluates the security against denial of service from the partici-
pant key generation phase to the participant join (leader) phase. This exploits
Vulnerability B described in Section B.

8.1 Denial of Service Based on Vulnerability 2

By exploiting Vulnerability B, a malicious insider denies service to any legitimate
meeting participant D in the following scenario (see also Figure B):

1. A meeting participant D posts his signature Sigp and public key pkp to the
bulletin board.

2. A malicious insider replaces pkp with a random value before a meeting leader
verifies Sigp.

21

Malicious Insider

2. Replaces pkp with pk’y

Bulletin
Board

1. Posts Sigy and pko 3. Verification is failed.

Fig. 5. Denial of service based on Vulnerability D.

3. A meeting leader verifies Sigp, but the verification is fails.

As described in Section B, Vulnerability B allows the insider to tamper with any
public key. If pkp is replaced by the malicious insider, the meeting leader always
fails to verify Sigp because he cannot compute the correct metadata Bindingp
corresponding to Sigp. Upon checking the bulletin board, the meeting participant
D may notice that pkp has been replaced by the malicious insider. However, if
the above scenario is repeated by the malicious insider, meeting participant D
will never be able to join the meeting.

8.2 Discussion

This subsection discusses feasibilities and countermeasures against denial of ser-
vice.

Feasibility. If a malicious insider wants to deny all services in Zoom meetings
to any legitimate meeting participant D, the malicious insider only needs to
suspend the participant D’s Zoom account. On the other hand, the denial of
service based on Vulnerability B allows the malicious insider to only deny the
participant D from joining a particular meeting. Now, we assume the following
realistic scenario:

1. A meeting leader invites the participant D to a meeting.

2. Since other meeting participants do not want the participant D to join the
meeting, they request insiders to perform the denial of service based on
Vulnerability B to prevent participant D from joining the meeting.

If the above scenario happened realistically, the malicious insider should find it
more feasible to perform the denial of service based on Vulnerability B than to
suspend the user account because Zoom Video Communications may be criti-
cized by general Zoom users. Therefore, the denial of service based on Vulnera-
bility B is feasible.

22

Countermeasure. From our knowledge based on the whitepaper [[4], the Zoom
server does not need free access to the bulletin board. Therefore, we propose the
following countermeasures against the denial of service:

— A trusted third party should control all the bulletin boards.
— All values in the bulletin board should be encrypted.

The first countermeasure can reduce the risk of the denial of service because
there is no advantage for the third party to deny service to a particular user and
the malicious insider must collude with the third party. Although the second
countermeasure does not need outsourcing the control of the bulletin board to
a third party, there is room for consideration of schemes such as encryption and
key exchange, which remains as an open problem in the future.

8.3 Response from Zoom

Zoom acknowledged that the possibility of denial of service attacks is unavoidable
and common to any centralized system, as they noted in Section 3.7 of the
whitepaper [[4]. Also, they provided an example of other attack vectors when
communication between the parties is mediated by a server, regardless of the
cryptographic protocol. For example, a malicious insider can always prevent a
specific user from joining a meeting by simply refusing to forward their messages.
We agreed that such an attack is also feasible.

9 Conclusion

In this study, we evaluated the security of E2EE for Zoom (version 2.3.1) and
revealed several attacks more powerful than that expected by Zoom according to
their whitepaper. Specifically, if insiders collude with meeting participants, they
can impersonate any Zoom user in target meetings, whereas Zoom indicates that
they can impersonate only current meeting participants. Besides, even without
relying on malicious participants, insiders can impersonate any Zoom user for
target meetings though they cannot decrypt the meeting stream. In addition,
we discussed several impersonation attacks conducted by meeting participants
or insiders colluding with meeting participants and discussed their feasibility in
real-world scenarios. We also discussed effective countermeasures. We hope that
our results are useful for enhancing the security of E2EE for Zoom.

Our study has focused on the E2EE mechanism for Zoom; thus, our proposed
attacks cannot be applied directly to the E2EE mechanism for other video confer-
encing systems or messaging applications. This is because the E2EE mechanism
for Zoom employs the original cryptographic protocol. From another point of
view, we have proposed some countermeasures to mitigate our discovered vul-
nerabilities in the E2EE mechanism for Zoom. Therefore, we believe that the
proposed countermeasures could contribute to the design of new E2EE mecha-
nisms for video conferencing systems or messaging applications.

23

As described in Section O, we have provided only theoretical evaluations of
E2EE for Zoom, and we have confirmed that the proposed attacks are feasible
in practice by discussing with the Zoom security team. However, we consider
that we must demonstrate the feasibility of the proposed attacks and show its
results. This is left as a future work.

Acknowledgments

The authors are grateful to security team of Zoom Video Communications, Inc.
for the fruitful discussion and feedback about our findings. Takanori Isobe is
supported by JST, PRESTO Grant Number JPMJPR2031 and SECOM science
and technology foundation.

References

[1] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html.

[2] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, 2007. U.S.Department of Com-
merce/National Institute of Standards and Technology.

[3] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryp-
tography - PKC 2006, 9th International Conference on Theory and Practice of
Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings,
volume 3958 of Lecture Notes in Computer Science, pages 207—228. Springer, 2006.

[4] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of cryptographic engineer-
ing, 2(2):77-89, 2012.

[5] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A formal security analysis of the signal messaging protocol. In
2017 IEEE European Symposium on Security and Privacy, FuroS€P 2017, Paris,
France, April 26-28, 2017, pages 451-466. IEEE, 2017.

[6] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise
security. In IEEE 29th Computer Security Foundations Symposium, CSF 2016,
Lisbon, Portugal, June 27 - July 1, 2016, pages 164—178. IEEE Computer Society,
2016.

[7] Alexandre Gouaillard Sergio Murillo Emad Omara, Justin Uberti. Secure Frame
(SFrame), 2020. https://tools.ietf.org/html/draft-omara-sframe-00/.

[8] Niels Ferguson. Authentication weaknesses in GCM. Comments on the Choice
Between CWC or GCM to NIST, 2005.

[9] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael
Rushanan. Dancing on the lip of the volcano: Chosen ciphertext attacks on apple
imessage. In 25th USENIX Security Symposium (USENIX Security 16), pages
655-672, Austin, TX, 2016. USENIX Association.

[10] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message Franking via Com-
mitting Authenticated Encryption. Cryptology ePrint Archive, Report 2017/664,
2017. http://eprint.iacr.org/2017/664.

24

http://competitions.cr.yp.to/caesar.html
https://tools.ietf.org/html/draft-omara-sframe-00/
http://eprint.iacr.org/2017/664

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
21]

[22]

23]

[24]

Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Nonce Misuse-
Resistant Authenticated Encryption. Internet Engineering Task Force - IETF,
Request for Comments, 8452, April 2019.

HackerOne, 2020. https://hackerone.com/zoom?type=tean.

Takanori Isobe and Kazuhiko Minematsu. Breaking message integrity of an end-
to-end encryption scheme of LINE. In Javier Lépez, Jianying Zhou, and Miguel
Soriano, editors, Computer Security - 23rd Furopean Symposium on Research in
Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Pro-
ceedings, Part II, volume 11099 of Lecture Notes in Computer Science, pages
249-268. Springer, 2018.

Josh Blum and Simon Booth and Oded Gal and Maxwell Krohn and Julia Len
and Karan Lyons and Antonio Marcedone and Mike Maxim and Merry Ember
Mou and Jack O’ Connor and Miles Steele and Matthew Green and Lea Kissner
and Alex Stamos. E2E Encryption for Zoom Meetings — Version 2.3.1, 2020.
https://github.com/zoom/zoom-e2e-whitepaper.

Antoine Joux. Authentication Failures in NIST Version of GCM. Comments on
The Draft GCM Specification to NIST, 2006.

Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). Internet Engineering Task Force - IETF, Request for
Comments, 5869, May 2010.

Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique IDentifier
(UUID) URN Namespace. Internet Engineering Task Force - IETF, Request for
Comments, 4122, July 2005.

David A. McGrew and John Viega. The security and performance of the ga-
lois/counter mode of operation (full version). Cryptology ePrint Archive, Report
2004/193, 2004. http://eprint.iacr.org/2004/193.

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC press, 1996.

Emad Omara. Google Duo End-to-End Encryption Overview - Technical Paper,
2020. https://www.gstatic.com/duo/papers/duo_e2Zee.pdf.

Open Whisper Systems. Signal Github Repository, 2017. https://github.com/
WhisperSystems/.

Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 373-390, St. Petersburg, Russia, May 28 — June 1, 2006. Springer,
Heidelberg, Germany.

WhatsApp. WhatsApp Encryption Overview, 2020. https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf.

Zoom Blog. 90-Day Security Plan Progress Report: April 22, 2020. https://
blog.zoom.us/90-day-security-plan-progress-report-april-22/.

25

https://hackerone.com/zoom?type=team
https://github.com/zoom/zoom-e2e-whitepaper
http://eprint.iacr.org/2004/193
https://www.gstatic.com/duo/papers/duo_e2ee.pdf
https://github.com/WhisperSystems/
https://github.com/WhisperSystems/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://blog.zoom.us/90-day-security-plan-progress-report-april-22/
https://blog.zoom.us/90-day-security-plan-progress-report-april-22/

	 Security Analysis of End-to-End Encryption for Zoom Meetings

