
Key-Oblivious Encryption from isogenies and its
application to Accountable Tracing Signatures.

Surbhi Shaw and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur
Kharagpur-721302, India

surbhi_shaw@iitkgp.ac.in,ratna@maths.iitkgp.ac.in

Abstract. Key-oblivious encryption (KOE) is a newly developed cryp-
tographic primitive that randomizes the public keys of an encryption
scheme in an oblivious manner. It has applications in designing account-
able tracing signature (ATS) that facilitates the group manager to revoke
the anonymity of traceable users in a group signature while preserving the
anonymity of non-traceable users. Despite of its importance and strong
application, KOE has not received much attention in the literature.

In this work, we introduce the first isogeny-based KOE scheme. Isogeny
is a fairly young post-quantum cryptographic field with sophisticated
algebraic structures and unique security properties. Our KOE scheme
is resistant to quantum attacks and derives its security from Commu-
tative Supersingular Decisional Diffie-Hellman (CSSDDH), which is an
isogeny based hard problem. More concretely, we have shown that our
construction exhibits key randomizability, plaintext indistinguishability
under key randomization and key privacy under key randomization in
the standard model adapting the security framework of [KM15]. Fur-
thermore, we have manifested instantiation of our scheme from cryp-
tosystem based on Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH-512) [BKV19]. Additionally, we demonstrate the utility of our
KOE scheme by leveraging it to construct an isogeny-based ATS scheme
preserving anonymity under tracing, traceability, non-frameability, anony-
mity with accountability and trace obliviousness in the random oracle
model following the security framework of [LNWX19].

Keywords. Post-quantum cryptography; Isogenies; Key-oblivious en-
cryption; Accountable tracing signatures.

1 Introduction

Key-oblivious encryption (KOE), introduced by [KM15], is a promising crypto-
graphic primitive which is being extensively studied recently [LNWX19]. The
core concept in KOE is to enable randomization of a large set of public keys
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related to the same secret key. This randomization generates related keys and
the relation remains oblivious as long as the knowledge of the secret key and the
randomness used are hidden.
Recent interest in designing a KOE is because of its application in developing a
framework for accountable tracing signature (ATS). ATS is an enhanced variant
of group signature. In the traditional group signature scheme, the group man-
ager (GM) is allowed to randomly revoke the anonymity of any signer in order
to avoid the misuse of anonymity of the signer. The GM is trusted blindly and
there is no means to check his accountability. On the other hand, the GM is kept
accountable for his actions in an ATS scheme. Once a user enrolls in the group,
the GM determines the category of the user. The traceable users are the sus-
pected users and their anonymity can be revoked by the GM. For non-traceable
users, anonymity remains preserved and even the GM cannot trace the signatures
generated by them. The GM then issues a certificate corresponding to his choice
(traceable/non-traceable) to the user. Later the group GM reveals his choice of
category in order to enforce his accountability.
How is KOE different from PKE? KOE is nontrivial and useful particularly
when key privacy is at prime concern apart from data privacy. The traditional
security prerequisite of any public key encryption (PKE) scheme is to provide
privacy of the encrypted data only. KOE captures this data privacy requirement
by the security attribute plaintext indistinguishability under key randomization.
Besides data privacy, KOE seeks to provide two different security requirements
of an encryption scheme, which is a variant of standard key privacy and is for-
malized by key randomizability and key privacy under key randomization. Key
randomizability requires that an adversary cannot distinguish between the orig-
inal public key and a randomized public key without having the secret key. In
contrast, key privacy under key randomization requires anonymity from the ad-
versary’s point of view. An adversary in possession of a ciphertext is unable to
tell which particular key from a set of adversarially randomized public keys is
used to create the ciphertext. There exist encryption schemes that are able to
meet indistinguishability under chosen-ciphertext attack (IND-CCA), which is
the most potent form of data privacy, but do not provide key privacy. Designing
KOE with the above stated three security requirements is a challenging task.
Our Contributions. The only two existing KOE constructions so far are [KM15]
and [LNWX19]. Considering the limited development in the area of KOE, we con-
centrate on designing KOE from isogenies that withstands quantum attacks. The
closest related work to ours is that of [KM15]. The KOE scheme presented in
[KM15] relies on the Decisional Diffie-Hellman (DDH) assumption and does not
provide security in the quantum world due to Shor’s algorithm [Sho99]. San Ling
et al. [LNWX19] introduced KOE in the lattice settings which is secure under the
hardness of Ring Learning With Errors (RLWE) assumption. Our contribution
in this paper is threefold and can be summed up as follows:

− Firstly, we initiate the study of KOE in the isogeny world. We have devel-
oped the first isogeny-based KOE and named it as Commutative Supersin-
gular Isogeny Key-Oblivious Encryption (CSIKOE). We provide a concrete
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security analysis and have shown that our scheme satisfies key randomizabil-
ity, plaintext indistinguishability under key randomization and key privacy
under key randomization in the standard model. (Section 3)

− Secondly, we have manifested instantiation of our CSIKOE scheme from
cryptosystem based on Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH-512) parameter set. We refer to it as CSIKOE-512. (Section 4)

− Finally, we exploit our CSIKOE-512 scheme to develop an isogeny-based ATS
scheme to make the group manager accountable in a group signature scheme.
(Section 5)

In 2019, Castryck et al. gave the non-interactive key exchange based on isogeny,
named as CSIDH [CLM+18]. The ElGamal-like PKE based on CSIDH without us-
ing hash functions is not indistinguishability under chosen-plaintext attack (IND-
CPA) secure [MOT20]. Thus, we construct our CSIKOE scheme leveraging the
Hashed-PKE (Section 2.2) based on CSIDH which is IND-CPA secure. We believe
our CSIKOE scheme is efficient in terms of storage and communication cost. For
a security parameter λ, our CSIKOE scheme features user public key, user se-
cret key and ciphertext size of O(λ) each. Our CSIKOE can be instantiated with
any of the three sets of CSIDH parameters that have been introduced till now
(CSIDH-512, CSIDH-1024, and CSIDH-1792). However, the class group structure
of the quadratic imaginary field corresponding to the CSIDH-512 parameter set
is only known [BKV19]. We emphasize that our CSIKOE scheme derived from the
CSIDH-512 parameter set turns out to be more efficient. We provide a detailed
security analysis and arrived at the following result:

Theorem 1. Under the CSSDDH assumption, our isogeny-based CSIKOE scheme
satisfies key randomizability, plaintext indistinguishability under key randomiza-
tion and key privacy under key randomization in the standard security model
following the security framework of [KM15].

We then exhibit an application of our KOE scheme by developing the first ATS
scheme from isogenies. We integrate the Commutative Supersingular Isogeny
based Fiat-Shamir (CSI-FiSh) signature scheme [BKV19] (Section 2.4) and a
zero-knowledge argument system (Section 2.3) in our CSIKOE-512 in a suitable
manner to yield an ATS scheme. We have arrived at the following theorem:

Theorem 2. Under the assumption that CSI-FiSh signature scheme is strongly
unforgeable, CSIKOE-512 scheme satisfies key randomizability, plaintext indis-
tinguishability under key randomization and key privacy under key random-
ization and Π is zero-knowledge simulation-extractable argument system, our
isogeny based ATS scheme satisfies anonymity under tracing, traceability, non-
frameability, anonymity with accountability and trace obliviousness in the ran-
dom oracle model following the security framework of [LNWX19].
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2 Preliminaries

Notation. Throughout this paper, we use the following notations: Let λ ∈ N
denote the security parameter. We use #S to denote the cardinality of the set
S. The residue class ring is denoted by Z/qZ. The symbol ‘ ∼= ’ is used to denote
isomorphism. A function µ(·) is negligible if for every integer c, there exists an
integer k such that for all λ > k, |µ(λ)| < 1/λc. The sign function sgn is defined
as sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(x) = 0 for x = 0. By
bin(x), we mean the binary representation of the argument x. For two strings
s1, s2, s1||s2 represents the concatenation of strings s1 and s2.

Elliptic curves and isogenies. Let K be a finite field and K be its algebraic
closure. An elliptic curve E over K is a non-singular, projective, cubic curve
having genus one with a special point O, called the point at infinity. The set of
K-rational points of the elliptic curve E forms an addition abelian group with
O as the identity element.

Definition 1. (Montgomery curve). An elliptic curve E defined over a finite
field K is called a Montgomery curve if it satisfies E : By2 = x3 + Ax2 + x
where B(A2 − 4) 6= 0 for some A,B ∈ K.

Definition 2. (Isogeny). Let E1 and E2 be two elliptic curves over a finite field
K. An isogeny from E1 to E2 is a non-constant morphism φ : E1 −→ E2 over K,
preserving the point at infinity O. Two elliptic curves E1 and E2 are isogenous
if there exists an isogeny from E1 to E2.

Example 1. The most common and well-known examples of isogeny includes:
(i) For every elliptic curve E and for each m ∈ Z, the multiplication-by-m map,
[m]: E −→ E is an isogeny defined by: [m](P ) = P + P + · · · + P (m times) if
m > 0 ; [m](P ) = [−m](−P ) if m < 0 ; and [0](P ) = O.
(ii) Let E be an elliptic curve over Fp. Then the Frobenius endomorphism,
denoted by π, which maps (x, y) to (xp, yp) is an isogeny.

Theorem 3. ([Sil09]). Let φ : E1 −→ E2 be an isogeny. Then φ(P + Q) =
φ(P ) + φ(Q) for all P, Q ∈ E1. In other words, φ preserves the group structure
of E1 and is a group homomorphism.

Definition 3. ([Sil09]) Let E1 and E2 be two curves over K and φ : E1 −→ E2
be an isogeny.

(Degree of an isogeny). The degree of the isogeny φ, denoted by deg(φ) is defined
to be the degree of the field extension K(E1)/φ∗K(E2) where φ∗ is induced
by the isogeny φ and is the injection of the function fields fixing the field K:

φ∗ : K(E2) ↪→ K(E1)
φ∗ : f −→ f ◦ φ
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(Kernel of an isogeny). The kernel of the isogeny φ, denoted by ker(φ) is defined
as: ker(φ) = {P ∈ E1(K) : φ(P ) = O}.

(Separable isogeny). The isogeny φ is called a separable isogeny if and only if
#ker(φ) = deg(φ).

Definition 4. (Endomorphism ring). The set of all isogenies from the elliptic
curve E to itself defined over K forms a ring under pointwise addition and
composition. This ring is called an endomorphism ring of the elliptic curve E
and is denoted by End(E). By EndK(E), we mean the set of all isogenies from
E to itself defined over K.

If the endomorphism ring End(E) of an elliptic curve E is isomorphic to an order
in a quaternion algebra, the elliptic curve E is said to be supersingular. On the
other hand, if End(E) is isomorphic to an order in an imaginary quadratic field,
we say the elliptic curve E is ordinary.

Theorem 4. [Wat69] Let E1 be an elliptic curve and G be a finite subgroup of
E1. Then there is a unique elliptic curve E2 and a separable isogeny φ : E1 −→
E2 with ker(φ) = G such that E2 ∼= E1/G.

Given a subgroup G of E1, one can explicitly acquire an isogeny φ : E1 → E2
with ker(φ) = G satisfying E2 ∼= E1/G leveraging Vélu’s formulae [Vél71].

Definition 5. Given a group G with identity element e and a set S, a group
action ∗ of G on S is a function ∗ : G × S → S, satisfying the following two
axioms:
(Identity): e ∗ s = s for all s ∈ S
(Compatibility): g ∗ (g′ ∗ s) = (gg′) ∗ s for all g and g′ in G and all s ∈ S.

Hard homogeneous spaces. Hard homogeneous spaces [Cou06] demand the
following problems to be computationally easy:

(Group Operation): Given two strings g and g′ decide whether they represent
elements of G, check whether g = g′, compute g−1 and gg′.
(Random element): Sample a uniformly random element from the group G.
(Membership): Decide whether a string s represents an element in the set S.
(Equality): Given two elements of the set S, check their equality.
(Action): Compute g ∗ s, i.e., the action of a group element g ∈ G on some
element s ∈ S.
Besides, there should not be any polynomial-time solver for the following prob-
lems:
(Vectorization): Given s, s′ ∈ S, find g ∈ G such that g ∗ s = s′.
(Parallelization): Given s0, s

′
0, s1 ∈ S such that g ∗ s0 = s′0 for some g ∈ G, find

s′1 = g ∗ s1.

The discrete logarithm problem and the traditional Diffie-Hellman problem on
general groups are particular instances of HHS. The discrete logarithm problem
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in S is the same as the vectorization problem and the computational Diffie–Hellman
problem is similar to the parallelization problem.

Definition 6. (Ideal class groups [MOT20]). Let O be an order in the imaginary
quadratic field Q(√−p).

(Fractional ideal). A fractional ideal of O is an O-sub module of a field K of the
form αa where α ∈ K∗ = K \ {0} and a is an O-ideal.
(Invertible fractional ideal). An invertible fractional ideal a of O is defined as a
fractional ideal of O that satisfies ab = O for some fractional ideal b of O. The
ideal b can be represented as a−1.
(Ideal class group). Let I(O) be a set of invertible fractional ideals of O. Then
I(O) is an abelian group derived from the multiplication of ideals with the iden-
tity O. Let P(O) be a subgroup of I(O) defined by P(O) = { a | a = αO for
some α ∈ K∗ }. The abelian group Cl(O) defined by I(O)/P(O) is said to be the
ideal class group of O. An element of Cl(O) is an equivalence class of a, denoted
by [a].

Let Ellp(O) denote the set of Fp-isomorphic classes of supersingular elliptic curves
E, whose Fp-endomorphism ring EndFp(E) ∼= O = Z[√−p]. The action of the
ideal class group G = Cl(O) on the set S = Ellp(O) is computed as in Algorithm
1.

Algorithm 1: Computing class group action
Input : [a] ∈ Cl(O), E ∈ Ellp(O).
Output: [a] ∗ E.

1 Let a be the integral representative of the ideal class [a].
2 Computes the subgroup E[a] =

⋂
α∈a

ker(α).
3 Computes an elliptic curve E/E[a] and an isogeny φa : E −→ E/E[a]

using Velu’s formula. // See theorem 4
4 return E/E[a].

Henceforth, we shall use the notation [a]E instead of [a] ∗E to denote the curve
E/E[a] obtained by the action of class group element [a] ∈ Cl(O) on the elliptic
curve E ∈ Ellp(O) where O = Z[√−p].

Theorem 5. ([Wat69]) Let O be an order of an imaginary quadratic field and
E be an elliptic curve defined over Fp. If Ellp(O) contains the Fp-isomorphism
class of supersingular elliptic curves, then the action of the ideal class group
Cl(O) on Ellp(O), defined by

Cl(O)× Ellp(O) −→ Ellp(O)
([a], E) −→ E/E[a]
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is free and transitive where a is an integral ideal of O and E[a] is the intersection
of the kernels of elements in a.

Theorem 6. [CLM+18] Let p ≥ 5 be a prime such that p ≡ 3 (mod 8) and E
be a supersingular elliptic curve over Fp. Then EndFp(E) = Z[√−p] if and only
if there exists Amg ∈ Fp such that E is Fp-isomorphic to the Montgomery elliptic
curve EAmg : y2 = x3 + Amgx

2 + x. Moreover, if such an Amg exists then it is
unique.

2.1 CSIDH: a non-interactive key exchange based on isogeny

The non-interactive key exchange scheme CSIDH = (Setup, KeyGen, Key Ex-
change) [CLM+18] consists of three polynomial-time algorithms satisfying the
following requirements:
Setup(1λ)→ pp : A trusted authority runs this probabilistic polynomial-time
(PPT) algorithm on input a security parameter λ and performs the following
steps:

− Chooses a large prime p of the form p = 4 l1l2 . . . ln − 1, where the li are
small distinct odd primes.

− Picks an integerm and selects a base elliptic curve E0 : y2 = x3+x ∈ Ellp(O)
over Fp with endomorphism ring O = Z[√−p].

− Sets the public parameter pp = (p, l1, l2, . . . , ln, m, E0).

KeyGen(pp)→ (pk, sk): A user, say U on input the public parameter pp runs this
randomized algorithm by executing the following steps and generate its public
key pk and secret key sk.

− Samples a vector u = (u1, u2, . . . , un) of integers randomly where ui ∈ [-m,
m], i = 1, 2, . . . , n and defines [u] ∈ Cl(O) as [u] = [lu1

1 lu2
2 . . . lunn ], where li

= < li, π − 1 >. Here the notation < ,> denotes the ideal generated by
multiplication by li map and π− 1 where π is the Frobenius endomorphism.

− Computes the action of [u] ∈ Cl(O) on E0 ∈ Ellp(O) to get the curve [u]E0.
Computes the unique Montgomery coefficient Umg ∈ Fp of the elliptic curve
[u]E0 : y2 = x3 +Umgx

2 + x formed by the action of [u] on E0. (See Remark
1)

− Sets its public key pk = Umg and secret key sk = u.

Key Exchange: Suppose users A and B want to agree upon a common secret.
Let user A is having her public-secret key pair (pkA, skA)← KeyGen(pp) and
user B is having his public-secret key pair (pkB , skB)← KeyGen(pp). User A
has the secret key skA = a and public key pkA = Amg, where Amg ∈ Fp is the
Montgomery coefficient of the elliptic curve [a]E0 : y2 = x3 + Amgx

2 + x. User
B has the secret key skB = b and public key pkB = Bmg, where Bmg ∈ Fp is the
Montgomery coefficient of the curve [b]E0 : y2 = x3 +Bmgx

2 + x.
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− User A uses pkB = Bmg to form the elliptic curve [b]E0 : y2 = x3+Bmgx
2+x,

applies the action of [a] to [b]E0 and computes the elliptic curve [a][b]E0.

− Similarly, user B proceeds with his own secret skB = b, uses pkA = Amg and
computes the curve [b][a]E0.

− The Montgomery coefficient that uniquely identifies the common secret curve
[a][b]E0 = [b][a]E0 serves as the shared key between user A and user B.

Remark 1. We dwell upon few important aspects of CSIDH.

1. Here the prime p = 4 l1l2 . . . ln − 1 where li are small distinct odd primes is
designed such that p ≡ 3 (mod 4) and p ≥ 5 in order to use Montgomery
coefficient of curves using Theorem 6. As the elliptic curve [u]E0 is a member
of Ellp(O), we have EndFp([u]E0) ∼= O = Z[√−p]. Theorem 6 guarantees
that there exists a unique Umg ∈ Fp such that [u]E0 is Fp-isomorphic to the
Montgomery elliptic curve EUmg : y2 = x3 + Umgx

2 + x.

2. As the cardinality of the class group is asymptotically #Cl(O) ∼
√
∆, thus

it is computationally infeasible to compute the structure of the class group
Cl(O), where ∆ stands for discriminant of class group. Thus [CLM+18] opts
for heuristics arguments assuming that li do not have very small order and
are uniformly distributed in the class group, two ideals la1

1 la2
2 · · · lann for small

ai will occasionally lie in the same class group. The exponents ai’s are pre-
ferred to be sampled from a short range {−m, · · · ,m} for some integer m
such that 2m+ 1 ≥ n

√
#Cl(O).

3. Choosing prime p of the form 4 l1l2 . . . ln − 1, establishes an association of
the fractional ideal li =< li, π − 1 > to each li. The action of these li can
be computed efficiently by finding an Fp-rational point and hence a unique
subgroup of E0(Fp) of order li and applying Velu’s formulas [Vél71].

Correctness. Correctness of CSIDH follows immediately from the commutativ-
ity of the class group Cl(O) and Theorem 6.

Theorem 7. The non-interactive key exchange protocol CSIDH is secure under
the Commutative Supersingular Decisional Diffie-Hellman (CSSDDH) assump-
tion as defined in Definition 7.

Definition 7. Let p be a large prime of the form p = 4 l1l2 . . . ln − 1, where the
li are small distinct odd primes and E0 be the base elliptic curve given by y2 =
x3 +x over Fp. Let [a], [b], [c] be random element of Cl(O), where O = Z[√−p].
Let λ be the bit length of p. The Commutative Supersingular Decisional Diffie-
Hellman (CSSDDH) advantage of any PPT adversary denoted by AdvCSSDDH

A (λ)
is defined as:

AdvCSSDDH
A (λ) = |Pr[a, b← Cl(O) | A(E0, [a]E0, [b]E0, [a][b]E0 ) = 1]

−Pr[a, b, c← Cl(O) | A(E0, [a]E0, [b]E0, [c]E0 ) = 1] |.



9

We say that the CSSDDH assumption holds if the advantage AdvCSSDDH
A (λ) of

any PPT adversary is negligible.

2.2 Hashed-PKE: a hash-based public key encryption from CSIDH

We explain below Hashed-PKE = (Setup, KeyGen, Enc, Dec), an Elgamal-like
PKE based on CSIDH using hash functions.
Setup(1λ)→ pp : A trusted authority runs this algorithm on input a security
parameter λ and performs the following steps:

− Chooses a large prime p of the form p = 4 l1l2 . . . ln − 1, where the li are
small distinct odd primes.

− Picks an interger m such that 2m+1 ≥ n
√

#Cl(O) and selects a base elliptic
curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with endomorphism ring O =
Z[√−p].

− Defines MC : Ellp(O) → Fp, a function that maps isomorphism classes of
elliptic curve to its Montgomery coefficient.

− Samples a family of keyed “hash” function H : = {Hk}k∈K where Hk : Fp →
{0, 1}λ for each k ∈ K, where K is the key space and let the message space
beM = {0, 1}λ.

− Sets the public parameter pp = (p, l1, l2, . . . , ln,m, E0,MC ,H : = {Hk}k∈K).

KeyGen(pp)→ (pk, sk): Any user U can run this randomized algorithm on input
the public parameter pp and generate its public key pk and secret sey sk as
follows:

− Samples a vector u = (u1, u2, . . . , un) of integers randomly where ui ∈ [-m,
m], i = 1, 2, . . . , n.

− Defines [u] ∈ Cl(O) as [u] = [lu1
1 lu2

2 . . . lunn ], where li = < li, π− 1 >. Here the
notation < ,> denotes the ideal generated by multiplication by li map and
π − 1 where π is the Frobenius endomorphism.

− Computes the curve EU = [u]E0 and sets her public key pk = EU and secret
key sk = u.

Enc(pp, m, pk) → ct: An encryptor B runs this algorithm to encrypt plaintext
m ∈M using public parameter pp and recipient A′s public key pk = pkA = EA
in the following manner.

− Samples a random integer vector b = (b1, b2, . . . , , bn) where bi ∈ [-m, m] for
i = 1, 2, . . . n. This defines an element [b] = [lb11 lb22 . . . lbnn ] ∈ Cl(O) where li =
< li, π − 1 >.

− Computes [b]E0, [b]EA and returns ciphertext ct = (ct1, ct2) where ct1 =
[b]E0 and ct2 = m⊕Hk(MC([b]EA)).
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Dec(pp, ct, sk) → m: The decryptor A runs this deterministic algorithm taking
input the public parameter pp, the ciphertext ct = (ct1, ct2) and her own secret
key sk = skA = a. She retrieves the message m by computing the action of [a]
on ct1 = [b]E0 to produce the elliptic curve [a]ct1 and then computing ct2 ⊕
Hk(MC([a]ct1)).

Correctness: We say that Hashed-PKE is correct if for all security parameter
λ, all pp ← Setup(1λ), all (pk, sk) ← KeyGen(pp), all m, it must hold that
Dec(Enc(pp, m, pk), pp, sk) = m.

Note that the ciphertext in the protocol Hashed-PKE is given by: ct = (ct1 =
EB , ct2 = m ⊕Hk(MC([b]EA))) and consequently we have,

ct2 ⊕Hk(MC([a]ct1)) = m ⊕Hk(MC([b]EA)))⊕Hk(MC([a]ct1))
= m⊕Hk(MC([b][a]E0)))⊕Hk(MC([a][b]E0))
= m

Theorem 8. The Hashed-PKE scheme is indistinguishable under chosen plain-
text attack (IND-CPA) under the CSSDDH assumption given in Definition 7.

Definition 8. Let H : = {Hk}k∈K be a family of keyed hash functions where
each Hk is a function that maps from group G to {0, 1}l, where l denotes the
length of the string. Let A be an algorithm that takes as input an element of
key space K and an element of {0, 1}l, and outputs a bit. We define the entropy
smoothing advantage AdvES

A (λ) of A to be:

AdvES
A (λ) = |Pr[ k ← K, g ← G | A(k, Hk(g)) = 1 ]

− Pr[ k ← K,h← {0, 1}l | A(k, h) = 1 ] |.

We say that the family of keyed hash functions H : = {Hk}k∈K is entropy smooth-
ing if the entropy smoothing advantage AdvES

A (λ) of any PPT algorithm A is
negligible.

2.3 Non-Interactive Zero-Knowledge

Definition 9. A Non-Interactive Zero-Knowledge (NIZK) argument system Π =
(Setup,Prove,Verify, S = (S1,S2)) for a language L ∈ NP with witness relation
R specifies the following PPT algorithms:

Setup(1λ) → crs: A trusted party runs this randomized algorithm taking input
the security parameter λ and generates a common reference string crs which
is accessible to everyone.

Prove(crs, x, w) → π: To prove the statement x ∈ L with witness w, the prover
runs this randomized algorithm taking the crs and generates a proof π.

Verify(crs, x, π) → {0, 1}: This is a deterministic algorithm run by a verifier
that takes input the crs, a statement x and a proof π and returns 1 if the
proof π is valid, else returns 0.
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A non-interactive zero-knowledge argument system has the following three re-
quirements: Completeness, Soundness and Zero-Knowledge.

Definition 10. (Completeness). A non-interactive zero-knowledge argument sys-
tem Π for a language L ∈ NP with witness relation R is complete if for all x, w
such that R(x, w) = 1 and for all strings crs ← Setup(1λ), it must hold that
Verify(crs, x, Prove(crs, x, w)) = 1.

Definition 11. (Soundness). A non-interactive zero-knowledge argument sys-
tem Π for a language L ∈ NP with witness relation R is sound if the sound-
ness advantage AdvSnD

Π,R,A(λ) of any PPT adversary A given by AdvSnD
Π,R,A(λ) =

Pr[ExpSnD
Π,R,A(λ) = 1] is negligible where the experiment ExpSnD

Π,R,A(λ) is specified
in Fig. 1.

Definition 12. (Zero-knowledge). A non-interactive zero-knowledge argument
system Π for a language L ∈ NP with witness relation R is zero-knowledge if
the zero-knowledge advantage AdvZoK

Π,R,A(λ) of any PPT adversary A given by
AdvZoK

Π,R,A(λ) = Pr[ExpZoK
Π,R,A(λ) = 1] is negligible where S1,S2 in the experiment

ExpZoK
Π,R,A(λ) as specified in Fig. 1 stands for the simulator and trap refers to the

trapdoor.

Definition 13. (NIZK argument of knowledge). A non-interactive zero-knowledge
argument system Π for a language L ∈ NP with witness relation R is an argu-
ment of knowledge if there exists a PPT extractor E = (E1, E2) such that the ex-
tracting advantage AdvExT

Π,R,A(λ) of any PPT adversary A given by AdvExT
Π,R,A(λ)

= Pr[ExpExT
Π,R,A(λ) = 1] is negligible, where trap refers to a trapdoor in the ex-

periment ExpExT
Π,R,A(λ) as specified in Fig. 1.

ExpSnD
Π,R,A(λ)

crs ← Setup(1λ)
(x, π) ← A(crs)
if (x /∈ L ∧ Verify(crs, x, π))

return 1
else return 0.

ExpExT
Π,R,A(λ)

crs ← Setup(1λ)
(crs, trap) ← E1(1λ)
(x, π) ← A(crs)
w ← E2(crs, trap, x, π)
if (R(x, w) = 0 ∧ Verify(crs, x, π))

return 1
else return 0.

ExpZoK
Π,R,A(λ)

crs1 ← Setup(1λ)
(crs0, trap) ← S1(1λ)
b′ ← AProve(crsb)
if (b = b′)

return 1
else return 0.

OracleProve(x, w)

if R(x, w) = 0, return ⊥
if b = 1 then π ← Prove(crs1, x, w)
else π ← S2(crs0, x, trap)
return π.

Fig. 1. Experiment defining soundness, zero-knowledge, NIZK argument of knowledge
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2.4 CSI-FiSh : a signature scheme based on isogeny

The Commutative Supersingular Isogeny based Fiat-Shamir signature [BKV19]
CSI-FiSh = (Setup, KeyGen, Sign, Verify) consists of four polynomial-time algo-
rithms with the following requirements:

Setup(1λ) −→ pp : Setup algorithm is same as that of setup algorithm of
CSIKOE-512 except the hash function. Here the trusted party samples a crypto-
graphic hash function H ′ : {0, 1}∗ → [−S, S]t where t = λ/ logS and sets the
public parameter pp = (p, g, N , E0, H

′).

KeyGen(pp) → (sk, pk): This is a randomized algorithm run by a user that takes
input the public parameter pp and generates a signing key sk and verification
key vk in the following manner:

− Samples S−1 elements [ai] = [gai ] ∈ G for some ai ∈ ZN for i = 1, . . . , S−1.

− Computes the elliptic curve Ei = [ai]E0 for i = 1, 2, . . . , S − 1.

− Sets the signing key sk = (a1, a2, . . . , aS−1) and verification key
vk = {E1, E2, . . . , ES−1}.

− Publishes verification key vk and keeps sk secret to himself.

Sign(sk, msg)→ σ: This randomized algorithm is run by a signer that generates
a signature σ on the message msg using his signing key sk in the following
manner:

− Sets a0 ← 0 and samples [a′i] = [ga′
i ] ∈ G for some a′i ∈ ZN for i = 1, 2, . . . , t.

− Computes tmany commitment elliptic curves E(i) = [a′i]E0 for i = 1, 2, . . . , t.

− Computes the challenge bits (ch1, ch2, . . . , cht) = H ′(E(1)|| . . . ||E(t)||msg).

− Computes the response zi = a′i - sign(chi) a| chi | (mod N) for i = 1, 2, . . . , t.

− Sets the signature σ = (ch1, ch2, . . . , cht, z1, z2, . . . , zt).

Verify(vk, msg, σ) → {0, 1}: This is a deterministic algorithm run by a verifier
that checks the validation of the signature σ on the message msg using his
verification key vk.

− Parse σ = (ch1, ch2, . . . , cht, z1, z2, . . . , zt).

− Define E−i = Eti for i = 1, 2, . . . , S − 1 where Eti is the twist of the elliptic
curve Ei.

− Computes t many elliptic curves E(i) = [zi]Echi for i = 1, 2, . . . , t.

− Computes (ch′1, ch′2, . . . , ch′t) = H ′(E(1)|| . . . ||E(t)||msg)

− if (ch1, ch2, . . . , cht) = (ch′1, ch′2, . . . , ch′t) returns 1, else returns 0.

Correctness. For all pp← Setup(1λ), all (sk, pk)← KeyGen(pp) and all honestly
generated signature σ ← Sign(sk, msg) it holds that Verify(vk,msg, σ) = 1 as
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E(i) = [a′i]E0 is recovered by computing [zi]Echi for i = 1, 2, . . . , t which follows
from:

[zi]Echi = [ a′i − sign(chi) a| chi | ]Echi
= [ a′i − sign(chi) a| chi | ][ sign(chi) a| chi | ]E0

= [a′i]E0

Theorem 9. Assume the hash functions H ′ used are modeled as quantum ran-
dom oracles. Then the signature scheme CSI-FiSh is Strong Existential Unforge-
ability under Chosen Message Attack (sEUF-CMA) secure.

3 Key-Oblivious Encryption

3.1 Syntax

Definition 14. (Key-oblivious encryption). A key-oblivious encryption (KOE)
scheme is a tuple KOE = (Setup, KeyGen, KeyRand, Enc, Dec) of five polynomial-
time algorithms with the following requirements:

Setup(1λ) → pp : This is a randomized algorithm run by a trusted authority
that takes as input the security parameter λ and outputs the public parameter
pp.

KeyGen(pp) → (pk, sk): A user runs this randomized algorithm on input the
public parameter pp and generates a key pair (pk, sk). The public key pk is
published while the secret key sk is kept secret to the user.

KeyRand(pp, pk; r) → pk′ : Any entity can randomize pk using the public pa-
rameter pp and some randomness r to produce a new public key pk′ for the
same secret key sk.

Enc(pp, pk, m) → ct: This randomized algorithm is executed by an encryptor
who uses the public parameter pp, the public key pk of the recipient to encrypt
a message m and outputs a ciphertext ct.

Dec(pp, ct, sk) → m′: This is a deterministic algorithm run by the decryptor
taking the secret key sk, the ciphertext ct, the public parameter pp and outputs
the decrypted message m′.

Correctness. A KOE scheme is said to be correct if for all security parameter
λ, all pp ← Setup(1λ), all (pk, sk) ← KeyGen(pp), all pk′ ← KeyRand(pp, pk; r),
all m, it must hold that Dec(pp, Enc(pp, pk′, m), sk) = m.
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3.2 Security model

We describe below the three security requirements for KOE: (i) key randomiz-
ability (KR) (ii) plaintext indistinguishability under key randomization (INDr)
and (iii) key privacy under key randomization (KPr).
(i) Key randomizability (KR): This property demands that no adversary should
be able to figure out how the public keys are related to each other without the
secret key and randomness used. This is formally characterized by means of the
experiment ExpKR

KOE,A(λ) between an adversary A and a challenger C described
in Fig. 2

ExpKR
KOE,A

1. The challenger C performs the following steps to generate (pp, pk, pkb) and sends it to the
adversary A
– pp ← KOE.Setup(1λ)
– (pk, sk) ← KOE.KeyGen(pp)
– pk0 ← KOE.KeyRand(pp, pk; r)
– (pk1, sk1) ← KOE.KeyGen(pp)
– b← {0, 1}

2. The adversary A eventually outputs a guess bit b′ ← A(pk, pkb) where b′ ∈ {0, 1}.
3. The challenger C returns 1 if b = b′ and 0 otherwise.

Fig. 2. The key randomizability experiment ExpKR
KOE,A

Definition 15. (Key randomizability). A KOE scheme is key randomizable if
the key randomizability advantage AdvKR

KOE,A(λ) = |Pr[ExpKR
KOE,A(λ) = 1]− 1

2 | of
any PPT adversary A is negligible.

(ii) Plaintext indistinguishability under key randomization (INDr): This secu-
rity attribute necessitates that no adversary can differentiate the ciphertexts
corresponding to messages of their choice even though the adversary is permit-
ted to randomize the public key. This is formally modelled via the experiment
ExpINDr

KOE,A(λ) given in Fig. 3 between an adversary A and a challenger C.

Definition 16. (Plaintext indistinguishability under key randomization). A KOE
scheme is plaintext indistinguishable under key randomization if the plaintext in-
distinguishing advantage AdvINDr

KOE,A(λ) = |Pr[ExpINDr
KOE,A(λ) = 1]− 1

2 | of any PPT
adversary A is negligible.

(iii) Key privacy under key randomization (KPr): This feature requires that no
adversary can distinguish between ciphertexts of a particular message under ad-
versarially randomized public keys. This is formally modelled by the experiment
ExpKPr

KOE,A(λ) in Fig 4.
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ExpINDr
KOE,A(λ)

1. The challenger C generates (pp, pk) by performing the following steps and sends it to the
adversary A.
– pp ← KOE.Setup(1λ)
– (pk, sk) ← KOE.KeyGen(pp)

2. The adversary A randomizes pk using randomness r to produce a randomized public key pk′

← KOE.KeyRand(pp, pk; r). He chooses two equal-length messages m0, m1 and sends (pk′, r,
m0, m1, st) ← A(pp, pk) to the challenger C, where st is the state variable that stores the
state information.

3. Challenger C performs the following steps:
– if pk′ 6= KOE.KeyRand(pp, pk; r) then return ⊥
– b← {0, 1}
– ct← KOE.Enc(pp, pk′,mb)
– Sends ct to A.

4. The adversary A eventually outputs a guess bit b′ ← A(ct, st), where b′ ∈ {0, 1}.
5. The challenger C returns 1 if b = b′ and 0 otherwise.

Fig. 3. The plaintext indistinguishability experiment ExpINDr
KOE,A(λ)

Definition 17. (Key privacy under key randomization) A KOE scheme is key
private under key randomization if the key privacy advantage AdvKPr

KOE,A(λ) =
|Pr[ExpKPr

KOE,A(λ) = 1]− 1
2 | of any PPT adversary A is negligible.

3.3 Key-Oblivious Encryption from Isogenies

In this section, we explain our proposed isogeny-based KOE scheme which we call
it as Commutative Supersingular Isogeny Key-Oblivious Encryption (CSIKOE)
scheme.
We will require the following notation adapted from [DFM20] where Cl(O) is the
ideal class group with O = Z[√−p] and E ∈ Ellp(O), which denotes the set of
Fp-isomorphic classes of supersingular elliptic curves E, whose Fp-endomorphism
ring EndFp(E) ∼= O = Z[√−p].

• [a]E will be replaced by [a]E, where [a] = [la1
1 . . . lann ] ∈ Cl(O) is determined

by its exponent vector a = (a1, . . . , an).

• [a][b]E will be replaced by [a+b]E where [a], [b] ∈ Cl(O) and a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ Zn represents exponent vectors of [a] and [b] respectively.
This follows immediately from : [a][b]E = [la1

1 la2
2 . . . lann ][lb11 lb22 . . . lbnn ]E =

[la1+b1
1 la2+b2

2 . . . lan+bn
n ]E.

Setup(1λ) → pp : A trusted authority runs this algorithm on input a security
parameter λ and performs the following steps:

− Chooses a large prime p of the form p = 4 l1l2 . . . ln − 1, where the li are
small distinct odd primes, picks an integer m such that 2m+ 1 ≥ n

√
#Cl(O)

and selects a base elliptic curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with
endomorphism ring O = Z[√−p].

− As pointed out in Theorem 6, each isomorphism class of a curve with given
endomorphism ring O = Z[√−p] is represented by a unique Montgomery
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ExpKPr
KOE,A(λ)

1. The challenger C generates (pp, pk0, pk1) performing the following steps and sends it to the
adversary A.
– pp ← KOE.Setup(1λ)
– (pk0, sk0) ← KOE.KeyGen(pp)
– (pk1, sk1) ← KOE.KeyGen(pp)

2. The adversary A randomizes pk0 and pk1 using randomness r0 and r1 respectively, to gener-
ate randomized public keys pk′

0 ← KeyRand(pp, pk0; r0) and pk′
1 ← KeyRand(pp, pk1; r1). He

chooses a message m and sends (pk′
0, r0, pk′

1, r1, m, st) ← A(pp, pk0, pk1) to C, where st is
the variable that stores the state information.

3. Challenger C performs the following steps:
– if pk′

i 6= KOE.KeyRand(pp, pki; ri) for some i ∈ {0, 1} then return ⊥
– b← {0, 1}
– ct← KOE.Enc(pp, pk′

b, m)
– C sends ciphertext ct to A.

4. The adversary A eventually outputs a guess bit b′ ← A(ct, st), where b′ ∈ {0, 1}.
5. The challenger C returns 1 if b = b′ and 0 otherwise.

Fig. 4. The key privacy under key randomization experiment ExpKPr
KOE,A(λ)

coefficient Amg ∈ Fp defining the curve EAmg : y2 = x3 + Amgx
2 + x. Thus,

the trusted authority defines MC : Ellp(O) → Fp, a function that maps
isomorphism classes of elliptic curve to its Montgomery coefficient.

− Samples a family of keyed hash function H : = {Hk}k∈K where Hk : Fp →
{0, 1}λ for each k ∈ K, where K is the key space and let the message space
beM = {0, 1}λ.

− Sets the public parameter pp = (p, l1, l2, . . . , ln,m, E0,MC ,H : = {Hk}k∈K).

KeyGen(pp) → (pk, sk) : This is a randomized algorithm run by a user on input
the public parameter pp = (p, l1, l2, . . . , ln, m, E0, MC , H : = {Hk}k∈K) to
generate his public key pk and secret key sk. The user executes the following
steps:

− Samples randomly two n-tuple integer vectors a = (a1, a2, . . . , an), r =
(r1, r2 . . . , rn) where ai, ri ∈ [−m, m] for i = 1, 2, . . . , n. These integer
vectors define the ideal classes [a] = [la1

1 la2
2 . . . lann ] and [r] = [lr11 lr22 . . . lrnn ]

∈ Cl(O) respectively, where li = < li, π − 1 >. Here the notation < ,> de-
notes the ideal generated by multiplication by li map and π − 1 where π is
the Frobenius endomorphism.

− Computes the elliptic curves E1 = [a]E0, E2 = [r]E1 = [r + a]E0 and returns
the public key pk = (E1, E2) and keeps sk = r secret.

KeyRand(pp, pk; r′) → pk′ : This randomized algorithm takes input the public
parameter pp, public key pk = (E1, E2) and randomize it to obtain pk′. The
steps involved are as follows:
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− Samples randomly an n-tuple integer vector r′ = (r′1, r′2, . . . , r′n) where r′i ∈
[−m, m] for i = 1, 2, . . . , n. This integer vector r′ defines the ideal class [r′]
= [lr

′
1

1 l
r′
2

2 . . . l
r′
n
n ] ∈ Cl(O).

− Computes the curves E′1 = [r′]E1, E′2 = [r′]E2 and outputs the randomized
public key pk′ = (E′1, E′2).

Enc(pp, pk, m) → ct : An encryptor takes input the public parameter pp, the
public key pk = (E1, E2), a message m and performs the following steps:

− Samples randomly an n-tuple vector c = (c1, c2 . . . , cn) of integers, where ci ∈
[−m,m] for i = 1, 2, . . . , n, which defines the ideal class [c] = [lc11 lc22 . . . lcnn ]
∈ Cl(O).

− Computes ct1 = [c]E1, ct2 = Hk(MC([c]E2))⊕m and returns the ciphertext
ct = (ct1, ct2).

Dec(pp, ct, sk) → m : This a deterministic algorithm run by a decryptor that
takes input the public parameter pp, the secret key sk = r and the ciphertext
ct = (ct1, ct2) where ct1 = [c]E1, ct2 = Hk(MC([c]E2)) ⊕ m. The decryptor
retrieves the plaintext m by computing ct2 ⊕Hk(MC([r]ct1)).

Correctness. The ciphertext of the CSIKOE protocol under randomized public
key pk′ = (E′1, E′2) is given by : ct = (ct1, ct2) = ([c]E′

1, Hk(MC([c]E′

2))⊕m).
Consequently we have,

ct2 ⊕Hk(MC([r]ct1)) = Hk(MC([c]E
′

2))⊕m⊕Hk(MC([r]ct1))
= Hk(MC([c][r

′
][r + a]E0))⊕m⊕Hk(MC([r][c][r

′
]E1))

= m.

Remark 2. Castryck et al. [CSV20] points out that the CSSDDH problem is easy
if we work with supersingular elliptic over Fp with p ≡ 1 (mod 4). Thus such a
choice of curve is not recommended for our construction. It is noteworthy that
CSIDH is secure as it relies on supersingular elliptic curves over Fp with p ≡ 3
(mod 4). Consequently, our CSIKOE construction is secure as for our setting the
CSSDDH assumption is conjectured to be hard. (See Remark 1)

Parameter setting for security. The system parameters must be set in such
a way that no polynomial-time adversary can guess the private key with non-
negligible probability. Note that the private key is an n-tuple vector of integers
with each co-ordinates chosen randomly from [−m, m]. Therefore the private key
space is (2m+1)n and (2m+1)n ≥ 23λ ⇒ n log(2m+1) ≥ 3λ needs to be satisfied
to provide a secure key space, with the goal that no polynomial-time attacker can
guess the private key [DFG19]. Considering the best-known threats, three sets
of parameters were recommended for CSIDH under three NIST security levels -
CSIDH-512, CSIDH-1024 and CSIDH-1792. The parameters of CSIDH-512 were
fully specified in practice (n = 74, m = 5, l73 = 373, l74 = 587) corresponding



18

to the NIST level 1 and it could achieve 127-bit classical and 64-bit quantum
security.

Efficiency. We now analyse the efficiency of our CSIKOE scheme in terms of
security parameter λ. The size of public key pk is of order O(log p) = O(λ).
The secret key sk has n log(2m + 1) bits. Since n log(2m + 1) ≥ 3λ, thus the
size of the secret key sk is of order O(λ). The storage, communication cost and
computation cost have been summed up in the table below.

Storage Communication cost Computation cost
|pk| |sk| |ct| Encryption Decryption

O(λ) O(λ) O(λ) 2 group actions
1 XOR operation

1 group action
1 XOR operation

3.4 Security Analysis

Theorem 10. Under the CSSDDH assumption as defined in Definition 7 of
section 2, the isogeny based CSIKOE scheme presented in section 3.3 satisfies
key randomizability (KR) as per Definition 15.

Proof. Let us assume that there exists a PPT adversary A and a non-negligible
function µ(·) such that Pr[ExpKR

KOE,A(λ) = 1 ] > 1
2 + µ(λ), where ExpKR

KOE,A(λ)
is defined in Fig. 2 of section 3. We will prove that we can design a PPT
distinguisher D which can solve any CSSDDH instance, i.e., distinguishes be-
tween (E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) and (E0, X = [x]E0, Y =
[y]E0, Z0 = [z]E0 ) with non-negligible probability where E0 ∈ Ellp(O) and
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) are integer vectors
such that xi, yi, zi ∈ [−m, m] for i = 1, 2, . . . , n. Given a CSSDDH challenge
(E0, X = [x]E0, Y = [y]E0, Zb ) where b ∈ {0, 1}, the reduction is straight
forward and proceeds as described in Fig. 5.

1. The Distinguisher D uses the CSSDDH instance (E0, X, Y, Zb) where b ∈ {0, 1}, from the
CSSDDH challenger, generates (pk, pkb) and sends it to A.
– Sets pp = (p, E0, l1, l2, . . . , ln, m, MC , H : = {Hk}k∈K) where p, E0 are extracted

from the CSSDDH instance, l′is are odd prime, MC is a function from Ellp(O) to Fp and
H is a family of keyed hash function.

– Samples an integer vector r = (r1, r2, . . . , rn) such that ri ∈ [−m,m] for i = 1, 2, . . . , n.
– Sets pk = ([r]E0, [r]X), pkb = ([r]Y, [r]Zb)).

2. The adversary A eventually outputs a bit b← A(pk, pkb), where b ∈ {0, 1}.
3. The distinguisher returns the bit b to the CSSDDH challenger.

Fig. 5. Distinguisher D for the KR security of CSIKOE

For the instance when b = 1, i.e., (X = [x]E0, Y = [y]E0, Z1 = [x+y]E0)
is a CSSDDH triple, the view of the adversary A is identical to experiment
ExpKR

KOE,A(λ). As adversary receives original public key pk = ([r]E0, [r]X) =
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([r]E0, [x+r]E0) and the subsequent public key pk1 = ([r]Y, [r]Z1)) = ([y][r]E0,
[y][x+r]E0), a re-randomization of the original key pk using y. On the other
hand, when b = 0, i.e., (X = [x]E0, Y = [y]E0, Z0 = [z]E0), the second key
pk0 = ([r]Y, [r]Z0)) = ([y][r]E0, [z+r]E0) is a complete randomized key. Thus, if
A correctly distinguishes between a real or random key with a non-negligible
advantage, the distinguisher D breaks CSSDDH with the same non-negligible
advantage as that of A. More formally, the probability of D winning in the
distinguishability game = Pr[ExpKR

KOE,A(λ) = 1 ] > 1
2 +µ(λ). This completes the

proof. ut

Theorem 11. The isogeny-based CSIKOE scheme presented in Section 3.3 satis-
fies plaintext indistinguishable under key randomization (INDr) as per Definition
16 under CSSDDH assumption as defined in Definition 7 and the assumption that
the family of hash functions H : = {Hk}k∈K is “entropy smoothing” as defined
in Definition 8.

Proof. We prove the plaintext indistinguishability under key randomization (INDr)
of our CSIKOE scheme using the following sequence of games G0, G1, G2, under
CSSDDH assumption and the presumption that H is entropy smoothing.
Game G0.We start with game G0 which is the true INDr experiment ExpINDr

KOE,A(λ)
and is explicitly described in Fig. 6.

1. The challenger C begins the experiment by computing (pp, pk) and sends it to the adversary
A.
– pp← KOE.Setup(1λ) where pp = (p, E0, l1, l2, . . . , ln, m, MC , H : = {Hk}k∈K) where p

is a prime of the form 4l1l2 . . . ln where l′is are odd prime, E0 is the basic elliptic curve,
MC is function from Ellp(O) to Fp and H is a family of keyed hash function.

– Samples two integer vector r = (r1, r2, . . . , rn), a = (a1, a2, . . . , an) such that ri, ai ∈
[−m,m] for i = 1, 2, . . . , n.

– (pk = (E1 = [a]E0, E2 = [r+a]E0), sk = r) ← KOE.KeyGen(pp)
2. The adversary A randomizes pk = (E1, E2) using randomness r′ to produce a randomized

public key pk′ ← KOE.KeyRand(pp, pk; r′). He chooses two equal-length messages m0, m1 and
sends (pk′, r′, m0, m1, st) ← A(pp, pk) to the challenger C, where pk′ = (E′

1 = [r′]E1, E
′
2 =

[r′]E2] ) and st is the state variable that stores the state information.
3. Challenger C performs the following steps:

– if pk′ 6= KOE.KeyRand(pp, pk; r′) then return ⊥
– b← {0, 1}
– Samples an integer vector c = (c1, c2, . . . , cn) such that ci ∈ [−m,m] for i = 1, 2, . . . , n.
− For game G0, ct ← KOE.Enc(pp, pk′,mb), where ct = (ct1 = [c]E′

1, ct2 =
Hk(MC( [c]E′

2 ) )⊕mb)
− For game G1, ct = (ct1 = [c]E′

1, ct2 = Hk(MC( [z]E′
2 ) ) ⊕ mb) where z =

(z1, z2, . . . , zn) is an integer vector such that zi ∈ [−m,m] for i = 1, 2, . . . , n.
− For game G2, ct = (ct1 = [c]E′

1, ct2 = h⊕mb) where h← {0, 1}λ.
– Challenger C sends ciphertext ct to the adversary A.

4. The adversary A eventually outputs a guess bit b′ ← A(ct, st), where b′ ∈ {0, 1}.
5. The challenger C returns 1 if b = b′ and 0 otherwise.

Fig. 6. Game Gi for i = 0, 1, 2 in the proof of Theorem 11

Game G1. It is the same as game G0, but with a small tweak. In this game, the
challenger sets the targeted ciphertext ct = (ct1 = [c]E′1, ct2 = Hk(MC( [z]E′2 ) )⊕
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mb) where z = (z1, z2, . . . , zn) is an integer vector sampled randomly such that
zi ∈ [−m,m] for i = 1, 2, . . . , n.

For Game Gi for i = 0, 1, 2, let Ti be the event associated with b = b′. We
assume that A submits two messages m0 and m1 of equal-length in each game.
We first prove the following claim.
Claim: For the event T0 in game G0 and event T1 in game G1, we have |Pr[T0]−
Pr[T1] | = εcssddh where εcssddh is the CSSDDH-advantage of any PPT adversary,
which is negligible.
Proof of claim. To prove that |Pr[T0] − Pr[T1] | is negligible, one argues that
there exists a distinguishing algorithm D that interpolates between game G0
and game G1, so that when given (E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) as
input, D outputs 1 with probability Pr[T0] and when given (E0, X = [x]E0, Y =
[y]E0, Z0 = [z]E0 ) as input, D outputs 1 with probability Pr[T1]. The CSSDDH
indistinguishability assumption then implies that |Pr[T0]− Pr[T1] | is negligible.
Our distinguisher D is precisely described in Fig. 7.

1. The Distinguisher D uses the CSSDDH instance (E0, X = [x]E0, Y = [y]E0, Zδ ) where
δ ∈ {0, 1} from the CSSDDH challenger, generates (pp, pk) and sends it to the adversary
A
– Sets pp = (p, E0, l1, l2, . . . , ln, m, MC , H : = {Hk}k∈K) where p, E0 are extracted

from the CSSDDH instance, MC is function from Ellp(O) to Fp and H is a family of keyed
hash function.

– Samples an integer vector a = (a1, a2, . . . , an) such that ai ∈ [−m,m] for i = 1, 2, . . . , n.
– pk← ([a]E0, [a]X).

2. The adversary A randomizes pk using randomness r′ to produce a randomized public key pk′

← KOE.KeyRand(pp, pk; r′). He chooses two equal-length messages m0, m1 and sends (pk′, r′,
m0, m1, st) ← A(pp, pk) to the distinguisher D, where pk′ = ( [r′][a]E0, [r′][a+x]E0] ) and st
is the state variable that stores the state information.

3. The distinguisher D performs the following steps:
– if pk′ 6= ( [r′][a]E0, [r′][a]X) then return ⊥
– b← {0, 1}
– ct← ([ a + r′]Y , Hk(MC([a + r′]Zδ))⊕mb) ; sends ciphertext ct to the adversary A.

4. AdversaryA taking the ciphertext ct eventually outputs a bit b′ ← A(ct, st), where b′ ∈ {0, 1}.
5. The distinguisher D outputs 1 if b = b′ or else outputs 0.

Fig. 7. Distinguisher D for the INDr security of CSIKOE

If the input to D is of the form (E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ),
then computation proceeds just as in game G0, and therefore
Pr[ x, y ← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) = 1] =
Pr[T0].
On the other hand, if the input to D is of the form (E0, X = [x]E0, Y =
[y]E0, Z0 = [z]E0 ), then computation proceeds just as in game G1, and therefore
Pr[ x, y ← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z0 = [z]E0 ) = 1] = Pr[T1].
Thus we have,
AdvCSSDDH

D (λ)
= |Pr[ x, y← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) = 1]

− Pr[ x, y← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z0 = [z]E0 ) = 1] |
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= |Pr[T0]− Pr[T1] |
From this, it follows that the CSSDDH-advantage of D is equal to |Pr[T0] −
Pr[T1] |, which completes the proof of the Claim.
Game G2. Game G2 is identical to game G1, except that the challenger sets ct
= (ct1 = [c]E′1, ct2 = h⊕mb) by choosing h ∈ {0, 1}λ uniformly at random.
Then from the entropy smoothing assumption of the family of hash functions H
as defined in Definition 8, we have |Pr[T1]−Pr[T2] | = εes, where εes is the entropy
smoothing advantage of any PPT algorithm, which is negligible. Also, note that
as h behaves like a one-time pad in game G2. Thus, Pr[T2 ] = 1

2 . Hence, we get

AdvINDr
KOE,A(λ) = |Pr[ExpINDr

KOE,A(λ) = 1]− 1
2 |

= |Pr[T0 ]− Pr[T2 ]|
≤ |Pr[T0 ]− Pr[T1 ]|+ |Pr[T1 ]− Pr[T2 ]|
= εcssddh + εes

which is negligible since both εcssddh and εes are negligible. This completes the
proof. ut

Theorem 12. Under the CSSDDH assumption as defined in Definition 7 of
section 2, the isogeny based CSIKOE scheme presented in section 3.3 satisfies
key private under key randomization (KPr) as per Definition 17.

Proof. On the contrary, let us assume that there exists a PPT adversary A and
a non-negligible function µ(·) such that Pr[ExpKPr

KOE,A(λ) = 1 ] > 1
2 + µ(λ). Now

we shall prove that we can design a PPT distinguisher D which distinguishes
between (E0, X = [x]E0, Y = [y]E0, Z1 = ( [x+y]E0) and (E0, X = [x]E0, Y =
[y]E0, Z0 = ( [z]E0) with non negligible probability where E0 ∈ Ellp(O) and
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) are integer vectors
such that xi, yi, zi ∈ [−m, m] for i = 1, 2, . . . , n. Given a CSSDDH challenge
(E0, X, Y, Zδ ), where δ ∈ {0, 1} the reduction is given in the Fig. 8.

Observe that if X0, Y0, S0 is a CSSDDH triple, then so is X1, Y1, S1. Moreover,
the two triples are identically distributed and generates proper distributions of
keys in CSIKOE. For the instance when δ = 1, (Xb = [xb]E0, Yb = [yb]E0, Sb =
[xb + yb]E0 ) is a CSSDDH triple, the view of the adversary A is identical to
experiment ExpKPr

KOE,A(λ), where x0 = x, x1 = x + α, y0 = y, y1 = y + β. In-
deed, [rb + vb]Sb = [rb + vb][xb + yb]E0 = [yb]([rb + vb]Xb) = [yb]ct1. On the
other hand, when δ = 0, Sb is a random element, then the challenge cipher-
text provided to A contains no information. Hence A’s advantage at guessing
the bit is negligible. Thus, if A has a non-negligible advantage in experiment
ExpKPr

KOE,A(λ), D breaks CSSDDH with the same non-negligible advantage as
that of A. Thus, the probability of D winning in the distinguishability game
= Pr[ExpKPr

KOE,A(λ) = 1 ] > 1
2 + µ(λ). ut
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1. The Distinguisher D uses the CSSDDH instance (E0, X = [x]E0, Y = [y]E0, Zδ ), where δ ∈
{0, 1} from the CSSDDH challenger and performs the following steps to generate (pp, pk0, pk1)
and sends it to the adversary A.
– Sets pp = (p, E0, l1, l2, . . . , ln, m, MC , H : = {Hk}k∈K) where p, E0 are extracted

from the CSSDDH instance, l′is are odd prime, MC is function from Ellp(O) to Fp and H
is a family of keyed hash function.

– Samples integer vectors α, β, r0, r1 such that co-ordinate of each of these vectors belong
to [−m, m].

– X0 = X; Y0 = Y ; S0 = Zδ
– X1 = [α]X; Y1 = [β]Y ; S1 = [α + β]Zδ
– pk0 = ( [r0]E0, [r0]Y0 )
– pk1 = ( [r1]E0, [r1]Y1, )

2. The adversary A randomizes the public key pk0, pk1 using randomness v0, v1 respectively
and generates pk′

0 = ([v0 + r0]E0, [v0 + r0]Y0), pk′
1 = ([v1 + r1]E0, [v1 + r1]Y1) and sends

(pk′
0, pk′

1, v0, v1, m, st) ← A(pp, pk0, pk1) to the distinguisher D, where m is the message
and st is the state variable that stores state information.

3. The distinguisher D performs the following steps:
– if pk′

0 6= ([v0][r0]E0, [v0][r0]Y0) ∨ pk′
1 6= ([v1][r1]E0, [v1][r1]Y1) return ⊥

– b← {0, 1}
– Computes ciphertext ct = (ct1, ct2) where ct1 = [rb+vb]Xb, ct2 = Hk(MC([rb+vb]Sb ) )⊕
m and sends it to the adversary A.

4. Adversary A taking the ciphertext ct outputs a bit b′ ← A(ct, st), where b′ ∈ {0, 1}
5. The distinguisher D outputs 1 if b = b′ or else outputs 0.

Fig. 8. Distinguisher D for the KPr security of CSIKOE

4 Instantiation of CSIKOE from CSIDH-512

We now show an instantiation of our CSIKOE scheme based on the CSIDH-512
parameter set and name it as CSIKOE-512. The structure of the class group
Cl(O) where O = Z[√−p] is computed by Beullens et al. [BKV19]. They have
shown that Cl(O) is a cyclic group and g = < 3, π − 1 > is a generator of this
class group. The class number of this ideal class group is given by N , where

N = #Cl(O) = 37 × 1407181 × 51593604295295867744293584889
× 31599414504681995853008278745587832204909.

Thus for simplicity we can consider class group Cl(O) to be ZN .
We shall use the following notations for the sake of simplicity.

• [a]E will be replaced by [a]E for any element [a] ∈ Cl(O) which can be
written as [ga] for some a ∈ ZN .

• [a][b]E will be replaced by [a+ b]E where [a], [b] ∈ Cl(O) and [a]E = [ga]E,
[b]E = [gb]E for some a, b ∈ ZN . This follows immediately from : [a][b]E =
[ga][gb]E = [ga+b]E.

Setup(1λ) → pp : A trusted authority chooses a large prime p of the form
p = 4 l1l2 . . . ln− 1, where li’s are small distinct odd primes with n = 74, l1 = 3,
l73 = 373, and l74 = 587 and selects the base elliptic curve E0 : y2 = x3 + x ∈
Ellp(O) over Fp with O = Z[√−p]. He sets the generator of the ideal class group
G = Cl(O) to be g = < 3, π − 1 > with class number N and samples a family of
keyed hash function H : = {Hk}k∈K , where Hk : Fp → {0, 1}λ for each k ∈ K.
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Finally he sets the message spaceM = {0, 1}λ and the public parameter pp =
(p, g, N , E0, MC , H).

KeyGen(pp)→ (pk, sk) : This is a randomized algorithm run by a user to generate
his corresponding pair of public and secret keys. The user samples two elements
[a] = [ga] and [r] = [gr] ∈ G(∼= ZN ) for some a, r in ZN . Computes the elliptic
curves E1 = [a]E0, E2 = [r]E1 = [r + a]E0 and returns the public key pk =
(E1, E2) and keeps sk = r secret.

KeyRand(pp, pk; r′) → pk′ : This is a randomized algorithm run by any entity
taking input a public key pk and randomize it to obtain pk′. For this he samples
[r′] = [gr′ ] ∈ G(∼= ZN ) for some r′ in ZN . Computes the elliptic curves E′1 =
[r′]E1, E′2 = [r′]E2 and outputs the randomized public key pk′ = (E′1, E′2).

Enc(pp, pk, m) → ct : The encryptor samples [c] = [gc] ∈ G(∼= ZN ) for some c
in ZN . Computes ct1 = [c]E1 and ct2 = Hk(MC([c]E2)) ⊕ m using the input
public key pk = (E1, E2) and returns the ciphertext ct = (ct1, ct2), which is the
encryption of the message m.

Dec(pp, ct, sk) → m: Given the secret key sk = r and the ciphertext ct =
(ct1, ct2) where ct1 = [c]E1 and ct2 = Hk(MC([c]E2))⊕m, the decryptor returns
the message m = ct2 ⊕Hk(MC([r]ct1)).

Correctness. The correctness of CSIKOE-512 is similar to the correctness of
our CSIKOE scheme.

5 Accountable Tracing Signature

5.1 Syntax

Definition 18. An accountable tracing signature (ATS) scheme is a tuple ATS
= (Setup, GrKeyGen, UsKeyGen, Enroll, Sign, Verify, Open, Judge, Account) of
nine polynomial-time algorithms with the following requirements:

Setup(1λ)→ gp: This is a randomized algorithm run by a trusted authority that
takes as input the security parameter λ and outputs the group parameter gp.

GrKeyGen(gp) → (gpk, gsk): The GM runs this randomized algorithm on input
the group parameter gp and generates the group public key gpk which includes
gp and group secret key gsk = (isk, opk) where isk is the issue key and opk
is the opening key.

UsKeyGen(gp) → (upk, usk): This is a randomized algorithm run by a user that
takes input the group parameter gp and generates its user public key upk and
user secret key usk. The user public key upk is published while the user secret
key usk is kept secret to the user.

Enroll(gp, gpk, isk, upk, tr) → (cert, wescrw): The GM runs this randomized
algorithm taking inputs the group parameter gp, the group public key gpk, a
user public key upk, issue key isk and a trace bit tr ∈ {0, 1}. For tr = 0, the
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anonymity of the user is preserved whereas for tr = 1, the user is traceable.
Based on the choice of bit tr, the GM produces a certificate cert including upk
and witness wescrw. The GM sends the certificate cert to the user and keeps
the witness wescrw secret to himself.

Sign(gp, gpk, cert, usk, msg) → σ: This randomized algorithm is executed by a
user that takes inputs the group parameter gp, the group public key gpk, a
user secret key usk, user certificate cert and generates a signature σ on the
message msg.

Verify(gp, gpk, msg, σ) → {0, 1}: Given the group parameter gp, the group
public key gpk, a message msg and a signature σ, the verifier runs this
deterministic algorithm and outputs 1 if σ is a valid signature on msg, else
outputs 0.

Open(gp, gpk, opk, msg, σ)→ (upk, Prf): This is a deterministic algorithm run
by the GM which takes inputs the group parameter gp, the group public key
gpk, the opening key opk, a message msg and a signature σ. The algorithm
outputs the user public key upk and a proof Prf which ensures that the sig-
nature σ on the message msg is indeed generated by the user with public key
upk. In case of upk =⊥, Prf = ⊥ .

Judge(gp, gpk, msg, σ, (upk, Prf)) → {0, 1}: This is a deterministic algorithm
that takes inputs the group parameter gp, the group public key gpk, a message
msg, a signature σ, a user public key upk and a proof Prf and outputs 1 if
the proof Prf guarantees that the signature σ on the message msg is indeed
generated by the user public key upk, else outputs 0.

Account(gp, gpk, cert, wescrw, tr) → {0, 1}: This is a deterministic algorithm
run by the GM taking inputs the group parameter gp, the group public key
gpk, a certificate cert, witness wescrw, trace bit tr and outputs 1 if the witness
confirms the choice of tr, else outputs 0.

Correctness. For a traceable user (tr = 1), an ATS scheme is said to be correct
if for all security parameter λ, all gp←Setup(1λ), all (gpk, gsk)← GrKeyGen(gp),
all (upk, usk)← UsKeyGen(gp), all (cert, wescrw)← Enroll(gp, gpk, isk, upk, tr =
1), all σ ← Sign(gp, gpk, cert, usk, msg) it must hold that

Verify(gp, gpk, msg, σ) = 1
Judge(gp, gpk, msg, σ, Open(gp, gpk, opk, msg, σ)) = 1

Account(gp, gpk, cert, wescrw, 1) = 1

For a non-traceable user (tr = 0), an ATS scheme is said to be correct if for
all security parameter λ, all gp←Setup(1λ), all (gpk, gsk)← GrKeyGen(gp), all
(upk, usk)← UsKeyGen(gp), all (cert, wescrw)← Enroll(gp, gpk, isk, upk, tr = 0),
all σ ← Sign(gp, gpk, cert, usk, msg) it must hold that

Verify(gp, gpk, msg, σ) = 1
Open(gp, gpk, opk, msg, σ) = ⊥

Account(gp, gpk, cert, wescrw, 0) = 1
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5.2 Security Model

The ATS scheme consists of the following five security requirements:
(i) anonymity under tracing (AuT) (ii) traceability (Trace) (iii) non-frameability
(NF) (iv) anonymity with accountability (AwA) and (v) trace-obliviousness (TO).

(i) Anonymity under tracing (AuT): Anonymity under tracing requires that even
a traceable user is anonymous to the adversary who is not having the opening
key. This guarantees that only the GM is allowed to trace a traceable user. This
is formally characterized by means of the experiment ExpAuT - b

ATS,A(λ) between an
adversary A and a challenger C described in Fig. 9.

ExpAuT - b
ATS,A(λ) OracleOpen1(gp, gpk, msg, σ)

gp ← Setup(λ) if σ ∈ Q, then return ⊥
(gpk, gsk = (isk, opk)) ← GrKeyGen(gp) else return
b′ ← ACh1,Open1 (gp, gpk, isk) (upk, Prf) ← Open(gp, gpk, opk, msg, σ)
return b′

OracleCh1(gp, gpk, cert0, cert1, usk0, usk1, msg, w
escrw
0 , wescrw

1 , 1)
σ0 ← Sign(gp, gpk, cert0, usk0,msg)
σ1 ← Sign(gp, gpk, cert1, usk1,msg)
if (σ0 6=⊥ ∧σ1 6=⊥ ∧

Account(gp, gpk, cert0, wescrw
0 , 1) ∧

Account(gp, gpk, cert1, wescrw
1 , 1) )

Q← Q ∪ {σb}
return σb

else return ⊥

Fig. 9. The anonymity under tracing experiment ExpAuT - b
ATS,A(λ)

Definition 19. (Anonymity under tracing). An ATS scheme satisfies anonymity
under tracing if the advantage of any PPT adversary A defined as AdvAuT

ATS,A(λ)
= |Pr[ExpAuT - 1

ATS,A (λ) = 1]− Pr[ExpAuT - 0
ATS,A (λ) = 1]| is negligible.

(ii) Traceability (Trace): This security attribute requires that every valid sig-
nature will trace to someone as long as the adversary does not hold both the
certificate and user secret key of a non-traceable user. In the standard traceabil-
ity game the GM can open any message and trace any of the user. In the case
of the ATS scheme, when adversary queries certificate of a user of his choice,
challenger will always generate certificate for a traceable user. This is formally
characterized by means of the experiment ExpTrace

ATS,A(λ) between an adversary A
and a challenger C described in Fig. 10.

Definition 20. (Traceability). An ATS scheme satisfies traceability if the advan-
tage AdvTrace

ATS,A(λ) = Pr[ExpTrace
ATS,A(λ) = 1| of any PPT adversary A is negligible.

(iii) Non-frameability (NF): Non-frameability necessitates that even though the
GM and other users gets corrupted by the adversary, still they will not be able
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ExpTrace
ATS,A(λ)

gp ← Setup(λ)
(gpk, gsk = (isk, opk)) ← GrKeyGen(gp)
(msg, σ)← AUsKeyGen, Enroll1, Sign, Open2 (gp, gpk)
return 0 if (msg, σ) ∈ Q or

Verify(gp, gpk, msg, σ) = 0
else (upk, Prf) ← Open(gp, gpk, opk, msg, σ)

return 1 if upk = ⊥ or
Judge(gp, gpk, msg, σ, upk, Prf) = 0

else return 0
OracleUsKeyGen(gp)
(upk, usk) ← UsKeyGen(gp)
S[upk] = usk
return upk

Oracle Enroll1(gp, gpk, upk, tr)
let tr′ = (upk /∈ dom(S)) ∈ {0, 1}
(cert, wescrw) ← Enroll(gp, gpk, isk, upk, tr ∨ tr′)
return cert
Oracle Sign(gp, cert,msg)
usk = S[cert.upk]
if (usk = ⊥), return ⊥
else σ ← Sign(gp, gpk, cert, usk,msg)

Q = Q ∪ {(msg, σ)}
return σ

OracleOpen2(gp, gpk,msg, σ)
(upk, Prf) ← Open(gp, gpk, opk,msg, σ)
return (upk, Prf)

Fig. 10. The traceability experiment ExpTrace
ATS,A(λ)

to sign messages on behalf of some honest user. Thus, traced signatures guaran-
tee non-repudiation. This is formally characterized by means of the experiment
ExpNF

ATS,A(λ) between an adversary A and a challenger C described in Fig. 11,
where st is the state variable that stores the state information.

ExpNF
ATS,A(λ)

gp ← Setup(λ)
(gpk, st) ← A(gp)
if gpk.gp 6= gp, return ⊥
(msg, σ, upk, Prf)← AUsKeyGen, Sign(st)
return 1 if ((msg, σ) /∈ Q∧

Verify(gp, gpk, msg, σ) = 1∧
upk ∈ dom(S) ∧
Judge(gp, gpk, msg, σ upk, Prf) = 1)

OracleUsKeyGen(gp)
(upk, usk) ← UsKeyGen(gp)
S[upk] = usk
return upk
Oracle Sign(gp, cert, msg)
usk = S[cert.upk]
if (usk = ⊥) return ⊥
else σ ← Sign(gp, gpk, cert, usk, msg)
Q = Q ∪ {(msg, σ)}
return σ

Fig. 11. The non-frameability experiment ExpNF
ATS,A(λ)

Definition 21. (Non-frameability). An ATS scheme satisfies non-frameability if
the advantage AdvNF

ATS,A(λ) = Pr[ExpNF
ATS,A(λ) = 1| of any PPT adversary A is

negligible.

(iv) Anonymity with accountability (AwA): This security attribute requires that a
non-traceable user remains anonymous even from a corrupted authority, inspite
of the fact that the authority has full control over the system. Thus, a user is
anonymous as long as the escrow key in the user’s certificate is private. This
is formally characterized by means of the experiment ExpAwA - b

ATS,A (λ) between an
adversary A and a challenger C described in Fig. 12, where st is the state variable
that stores the state information.

Definition 22. (Anonymity with accountability). An ATS scheme satisfies anony-
mity with traceability if the advantage of any PPT adversary A defined as
AdvAwA

ATS,A(λ) = |Pr[ExpAwA - 1
ATS,A (λ) = 1]− Pr[ExpAwA - 0

ATS,A (λ) = 1]| is negligible.
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ExpAwA - b
ATS,A(λ)

gp ← Setup(λ)
(gpk,st) ← A(gp)
if gpk.gp6= gp, return ⊥
b′ ← ACh1 (st)
return b′

OracleCh1(gp, gpk, cert0, cert1, usk0, usk1, msg, w
escrw
0 , wescrw

1 , 0)
σ0 ← Sign(gp, gpk, cert0, usk0,msg)
σ1 ← Sign(gp, gpk, cert1, usk1,msg)
if (σ0 6=⊥ ∧σ1 6=⊥ ∧

Account(gp, gpk, cert0, wescrw
0 , 0) ∧

Account(gp, gpk, cert1, wescrw
1 , 0) )

return σb
else return ⊥

Fig. 12. The anonymity with accountability experiment ExpAwA - b
ATS,A (λ)

(v) Trace-obliviousness (TO): Trace-obliviousness requires that no user will be
able to determine if their anonymity is preserved or they are traceable. This
is formally characterized by means of the experiment ExpTO - b

ATS,A(λ) between an
adversary A and a challenger C described in Fig. 13.

ExpTO - b
ATS,A(λ)

gp ← Setup(λ)
(gpk, gsk = (isk, opk)) ← GrKeyGen(gp)
b′ ← ACh2, Enroll2, Open3 (gp, gpk)
return b′

Oracle Enroll2(gp, gpk, upk, tr)
(cert, wescrw) ← Enroll(gp, gpk, isk, upk, tr)
return cert

OracleCh2(gp, gpk, upk)
(cert, wescrw) ← Enroll(gp, gpk, isk, upk, b)
U = U ∪ {upk}
return cert.
OracleOpen3(gp, gpk,msg, σ)
(upk, Prf) ← Open(gp, gpk, opk,msg, σ)
if upk ∈ U , then return ⊥
else return (upk, Prf)

Fig. 13. The trace-obliviousness experiment ExpTO - b
ATS,A(λ)

Definition 23. (Trace-obliviousness). An ATS scheme satisfies trace-obliviousness
if the advantage AdvTO

ATS,A(λ) = |Pr[ExpTO - 1
ATS,A(λ) = 1]− Pr[ExpTO - 0

ATS,A(λ) = 1]| of
any PPT adversary A is negligible.

5.3 Accountable Tracing Signature from Isogenies

In this section we show the concrete construction of our ATS-scheme from iso-
genies. The main ingredients for our ATS scheme are: the CSI-FiSh signature
scheme [BKV19] recalled in Section 2.4, our CSIKOE-512 scheme described in
Section 4 and a zero-knowledge argument system described in Section 2.3.

Setup(1λ) −→ gp : A trusted authority runs this algorithm on input a security
parameter λ, and performs the following steps to generate the group parameter
gp.

− Chooses a large prime p of the form p = 4 l1l2 . . . ln−1 where the li are small
distinct odd primes with n = 74, l1 = 3, l73 = 373, and l74 = 587.

− Selects the base elliptic curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with
O = Z[√−p].
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− Sets the message space M = {0, 1}λ and the generator of the ideal class
group G = Cl(O) to be g = < 3, π− 1 > with class number N where π is the
Frobenius endomorphism.

− Sample two cryptographic hash functions H ′ : {0, 1}∗ → [−(S−1), (S−1)]t
and Hk : Fp → {0, 1}λ where t = λ/ logS.

− Sets the public parameter pp = (p, g, N , E0, MC , t, S, Hk, H ′) where
MC : Ellp(O) → Fp, a function that maps isomorphism classes of elliptic
curve to its Montgomery coefficient.

− Samples two elements [a] = [ga] and [r] = [gr] ∈ G for some a, r ∈ ZN . Com-
putes the elliptic curves E(0)

1 = [a]E0 and E(0)
2 = [a+r]E0 and sets the public

key pk(0) = (E(0)
1 , E(0)

2 ). Generates crs← Π.Setup(1λ) (See Section 2.3) and
finally sets the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′),
pk(0) = (E(0)

1 , E(0)
2 ), crs).

GrKeyGen(gp)→ (gpk, gsk): The GM runs this randomized algorithm to generate
the group public key gpk and group secret key gsk by performing the following
steps:

− Extracting g, N, E0 from gp.pp, samples S−1 elements [mi] = [gmi ] ∈ G for
somemi ∈ ZN , computes the elliptic curve Ei = [mi]E0 for i = 1, 2, . . . , S−1
and sets vk = {E1, E2, . . . , ES−1}.

− Samples two elements [b] = [gb] and [s] = [gs] ∈ G for some b, s ∈ ZN ,
computes the elliptic curves E(1)

1 = [b]E0 and E(1)
2 = [b+s]E0, sets the public

key pk(1) = (E(1)
1 , E(1)

2 ) and the secret key sk(1) = s. The GM publishes the
group public key gpk = (gp = (pp, pk(0) = (E(0)

1 , E(0)
2 ), crs), vk, pk(1) =

(E(1)
1 , E(1)

2 )) and keeps the group secret key gsk = (isk = (m1,m2, . . . ,mS−1),
opk = s) secret to himself.

UsKeyGen(gp) → (upk, usk): This is a randomized algorithm executed by a user
that takes input the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′),
pk(0) = (E(0)

1 , E(0)
2 ), crs) and generates its user public key upk and user secret

key usk.

− Samples S − 1 elements [ni] = [gni ] ∈ G for some ni ∈ ZN , computes the
elliptic curve E′i = [ni]E0 for i = 1, 2, . . . , S−1 where g, N, E0 are extracted
from gp.pp. Sets the user public key upk = {E′1, E′2, . . . , E′S−1} and the user
secret key usk = (n1, n2, . . . , nS−1).

Enroll(gp, gpk, isk, upk, tr) → (cert, wescrw): The GM runs this algorithm taking
inputs the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′), pk(0) =
(E(0)

1 , E(0)
2 ), crs), the group public key gpk = (gp, vk, pk(1) = (E(1)

1 , E(1)
2 )), a

user public key upk = {E′1, E′2, . . . , E′S−1}, an issue key isk = (m1,m2, . . . ,mS−1)
and a value of trace bit tr ∈ {0, 1}. He produces a certificate - witness pair (cert,
wescrw) to the bit tr by performing the following steps:



29

− Randomizes the public key pk(tr)= (E(tr)
1 , E(tr)

2 )) and generates a new public
key epk by sampling [r′] = [gr′ ] ∈ G for some r′ ∈ ZN , computing the
elliptic curve E′1

(tr) = [r′]E(tr)
1 and E′2

(tr) = [r′]E(tr)
2 and finally setting epk

= (E′1
(tr)
, E′2

(tr)).

− Generates a CSI-FiSh signature σcert on upk||epk = E′1|| . . . ||E′S−1||E′1
(tr)||E′2

(tr)

using the issue key isk= (m1,m2, . . . ,mS−1) by setting m0 ← 0, sampling
[m′i] = [gm′

i ] ∈ G for some m′i ∈ ZN , computing t commitment elliptic curves
Êi = [m′i]E0 for i = 1, 2, . . . , t and generating the challenge string of length
t over [−(S − 1), (S − 1)] as follows:

(ch1, ch2, . . . , cht) = H ′(Ê1||Ê2|| . . . ||Êt||upk||epk).

The GM computes the response zi = m′i - sgn(chi)m| chi | (mod N) using
issue key isk and sets the signature σcert = (ch1, ch2, . . . , cht, z1, z2, . . . , zt),
where sgn(chi) denotes the sign of chi. He finally sends the certificate cert =
(upk = {E′1, E′2, . . . , E′S−1}, epk = (E′1

(tr)
, E′2

(tr)), σcert = (ch1, ch2, . . . , cht,
z1, z2, . . . , zt)) to the user and keeps secret wescrw = r′.

Sign(gp, gpk, cert, usk, msg) → σ: This randomized algorithm is run by a user
to generate a signature σ on a message msg ∈ M using the group parameter
gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′), pk(0) = (E(0)
1 , E(0)

2 ), crs), the group
public key gpk = (gp, vk, pk(1) = (E(1)

1 , E(1)
2 )), a user certificate cert = (upk =

{E′1, E′2, . . . , E′S−1}, epk = (E′1
(tr)
, E′2

(tr)), σcert = (ch1, ch2, . . . , cht, z1, z2, . . . , zt))
and a user secret key usk = (n1, n2, . . . , nS−1) in the following manner:

− Samples S−1 elements [ei] = [gei ] ∈ G for some ei ∈ ZN , computes the ellip-
tic curve E′′i = [ei]E0 for i = 1, 2, . . . , S−1 and sets pk = {E′′1 , E′′2 , . . . , E′′S−1}
and sk = (e1, e2, . . . , eS−1).

− Computes a signature σu on the message pk = {E′′1 , E′′2 , . . . , E′′S−1} using
usk = (n1, n2, . . . , nS−1) as the signing key. For which the user sets n0 ← 0,
samples [n′i] = [gn′

i ] ∈ G for some n′i ∈ ZN , computes t commitment elliptic
curves Ẽi = [n′i]E0, the challenge string of length t over [−(S − 1), (S − 1)]
given by:

(ch′1, ch′2, . . . , ch′t) = H ′(Ẽ1||Ẽ2|| . . . ||Ẽt||pk),

the response z′i = n′i - sign(ch′i)n| ch′
i
| (mod N) for i = 1, 2, . . . , t and sets

the signature σu = (ch′1, ch′2, . . . , ch′t, z′1, z′2, . . . , z′t).

− Encrypts the message γ = bin(MC(E′1))|| . . . ||bin(MC(E′S−1))||bin(ch′1)|| . . . ||
bin(ch′t)||bin(z′1)|| . . . ||bin(z′t) using randomized public key epk = (E′1

(tr)
, E′2

(tr))
extracted from cert to generate the ciphertext ct = (ct1, ct2). For which the
user samples [q] = [gq] ∈ G for some q ∈ ZN and sets ct1 = [q]E′1

(tr),
ct2 = Hk(MC([q]E′2

(tr)))⊕γ and the encryption randomness rand = q. Note
that this encryption is of the CSIKOE-512 scheme described in section 4.
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− Generates a proof π ← Π.Prove(crs, stmt, wit) (See Section 2.3 ) using
crs for the following relation R to prove knowledge of (upk, epk, σcert, σu)
where the statement stmt = (ct = (ct1, ct2), pk = {E′′1 , E′′2 , . . . , E′′S−1}, vk =
{E1, E2 . . . , ES−1}) and witness wit = (upk = {E′1, E′2, . . . , E′S−1}, epk =
(E′1

(tr)
, E′2

(tr)), σcert = (ch1, ch2, . . . , cht, z1, z2, . . . , zt), σu = (ch′1, ch′2, . . . , ch′t,
z′1, z

′
2, . . . , z

′
t), rand = q). We say that (stmt, wit)∈ R if and only if the fol-

lowing three relations hold:

1. The ciphertext ct = (ct1, ct2) must be a correct encryption of message γ =
bin(MC(E′1))|| . . . ||bin(MC(E′S−1))||bin(ch′1)|| . . . ||bin(ch′t)||bin(z′1)|| . . . ||bin(z′t)
under the public key epk with encrytion randomness rand = q satisfying:

ct1 = [q]E′1
(tr)
, ct2 = Hk(MC([q]E′2

(tr)))⊕ γ

2. The CSI-FiSh signature σu on the message pk must be a valid signature under
the verification key upk satisfying

(ch′1, ch′2, . . . , ch′t) = H ′(Ẽ1||Ẽ2|| . . . ||Ẽt|| pk)

where Ẽi = [n′i]E0 is recovered by computing [z′i]E′ch′
i
for i = 1, 2, . . . , t.

3. The CSI-FiSh signature σcert on upk||epk must be a valid signature under the
verification key vk satisfying:

(ch1, ch2, . . . , cht) = H ′(Ê1||Ê2|| . . . ||Êt||upk||epk)

where Êi = [m′i]E0 is recovered by computing [zi]Echi for i = 1, 2, . . . , t.

− Generates a CSI-FiSh signature σ0 on the message msg || ct || pk || vk ||π, i.e.,

msg||ct1||ct2||E′′1 || . . . ||E′′S−1||E1|| . . . ||ES−1||π

taking sk = (e1, e2, . . . , eS−1) as the signing key. For which the user sets e0 ←
0, samples [e′i] = [ge′

i ] ∈ G for some e′i ∈ ZN . Computes t commitment elliptic
curves Ei = [e′i]E0, the challenge string of length t over [−(S − 1), (S − 1)]
given by:

(ch′′1 , ch′′2 , . . . , ch′′t ) = H ′(E1|| . . . ||Et||msg||ct||pk||vk||π)

and the response z′′i = e′i - sign(ch′′i ) e| ch′′
i
| (mod N) for i = 1, 2, . . . , t. Sets

the signature σ0 = (ch′′1 , ch′′2 , . . . , ch′′t , z′′1 , z′′2 , . . . , z′′t ).

− Finally, outputs σ = (σ0, pk, ct = (ct1, ct2), π) as the signature on the mes-
sage msg ∈M.

Verify(gp, gpk, msg, σ) → {0, 1}: This is a deterministic algorithm that verifies
the signature σ = (σ0 = (ch′′1 , ch′′2 , . . . , ch′′t , z′′1 , z′′2 , . . . , z′′t ), pk = {E′′1 , . . . , E′′S−1},
ct = (ct1, ct2), π) on the message msg ∈ M by performing the following steps
using the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′), pk(0) =
(E(0)

1 , E(0)
2 ), crs) and the group public key gpk = (gp, vk, pk(1) = (E(1)

1 , E(1)
2 )).
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− Parse σ0 = (ch′′1 , ch′′2 , . . . , ch′′t , z′′1 , z′′2 , . . . , z′′t ). Defines E−i = Eti for i =
1, 2, . . . , S − 1, where Eti is the twist1 of the elliptic curve Ei. Recovers t
elliptic curves Ei = [z′′i ]Ech′′

i
for i = 1, 2, . . . , t. If (ch′′1 , ch′′2 , . . . , ch′′t ) =

H ′(E1|| . . . ||Et||msg||ct||pk||vk||π) returns 1, indicating σ0 is a valid CSI-FiSh
signature on msg||ct||pk||vk||π under sk = (e1, e2, . . . , eS−1), else returns 0.

− Runs Π.Verify(crs, stmt, π) (See Section 2.3) taking input the statement
stmt = (ct, pk, vk) and crs to verify the proof π, where pk, ct are extracted
from σ and vk is obtained from gpk. If all the checks succeed, returns 1, else
returns 0.

Open(gp, gpk, opk, msg, σ) → (upk, Prf): This is a deterministic algorithm run
by the GM which takes inputs the group parameter gp = (pp = (p, g, N,E0,MC , t,

S,Hk, H
′), pk(0) = (E(0)

1 , E(0)
2 ), crs), the group public key gpk= (gp, vk, pk(1)

= (E(1)
1 , E(1)

2 )), the opening key opk = s, a message msg ∈ M and a signature
σ = (σ0, pk, ct = (ct1, ct2), π) and outputs the user public key upk and a proof
Prf in the following manner:

− Runs Verify(gp, gpk, msg, σ) and aborts if it fails.

− Extracts the ciphertext ct = (ct1, ct2) from the signature σ and recovers the
message γ = bin(MC(E′1))|| . . . ||bin(MC(E′S−1))||bin(ch′1)|| . . . ||bin(ch′t)||
bin(z′1)|| . . . ||bin(z′t) using the opening key opk = s by evaluating ct2 ⊕
Hk(MC([s]ct1)) and finally computing upk = {E′1, E′2, . . . , E′S−1} and σu =
(ch′1, ch′2, . . . , ch′t, z′1, z′2, . . . , z′t) from γ.
Note that, ct2 ⊕Hk(MC([s]ct1)) = γ, which follows from the correctness of
CSIKOE-512.

− Outputs upk = {E′1, E′2, . . . , E′S−1} and Prf = σu.

Judge(gp, gpk, upk, Prf, msg, σ) → {0, 1}: This is a deterministic algorithm
that takes inputs the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk, H

′),
pk(0) = (E(0)

1 , E(0)
2 ), crs), the group public key gpk = (gp, vk, pk(1) = (E(1)

1 ,
E

(1)
2 )), a message msg, a signature σ = (σ0, pk, ct = (ct1, ct2), π), a user public

key upk = {E′1, E′2, . . . , E′S−1} and a proof Prf = σu and outputs 0 or 1 by
executing the below steps:

− Runs Verify(gp, gpk, msg, σ) and aborts if it fails.

− Parse σu = (ch′1, ch′2, . . . , ch′t, z′1, z′2, . . . , z′t). Defines E−i = Eti for i =
1, 2, . . . , S − 1, where Eti is the twist of the elliptic curve Ei. Recovers
t elliptic curves Ẽi = [n′i]E0 by computing [z′i]E′ch′

i
for i = 1, 2, . . . , t. If

(ch′1, ch′2, . . . , ch′t) = H ′(Ẽ1|| . . . ||Ẽt|| pk) returns 1, indicating σu is a valid
CSI-FiSh signature on pk under the user secret key usk = (n1, n2, . . . , nS−1)
or else returns 0.

1 The quadratic twist of an elliptic curve E : y2 = f(x) defined over a field K is given
by Et : dy2 = f(x) where d ∈ K has Legendre symbol value −1.
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− If all the checks succeed returns 1, or else returns 0.

Account(gp, gpk, cert, wescrw, tr) → {0, 1}: This is a deterministic algorithm run
by the GM taking inputs the group parameter gp = (pp = (p, g, N,E0,MC , t, S,Hk,

H ′), pk(0) = (E(0)
1 , E(0)

2 ), crs), the group public key gpk = (gp, vk, pk(1) = (E(1)
1 ,

E
(1)
2 )), a certificate cert = (upk = {E′1, E′2, . . . , E′S−1}, epk = (E′1

(tr)
, E′2

(tr)),
σcert = (ch1, ch2, . . . , cht, z1, z2, . . . , zt)), witness wescrw = r′, trace bit tr and
checks if the equality ([r′]E(tr)

1 , [r′]E(tr)
2 ) = (E′1

(tr)
, E′2

(tr)) holds. If the verifica-
tion succeeds return 1, else return 0.

Correctness. The correctness of our ATS scheme is described as follows:

1. For any honestly generated signature σ by a user on a message msg ∈ M
the ATS.Verify algorithm will output 1 with probability 1. This follows from
the correctness of the CSI-FiSh signature scheme and completeness of the
zero-knowledge argument system.

2. For an honest traceable user, ATS.Account(gp, gpk, cert, wescrw, 1) algorithm
will output 1 with probability 1. This is because the check ([r′]E(1)

1 , [r′]E(1)
2 )

= (E′1
(1)
, E′2

(1)) succeeds for an honest GM. ATS.Open algorithm recovers the
true signer and outputs a valid proof which follows from the correctness of
the CSI-FiSh signature scheme and the correctness of our CSIKOE-512 scheme
described in section 4. The ATS.Judge algorithm accepts the proof given by
the ATS.Open algorithm with probability 1 due to the completeness of zero-
knowledge argument system and the correctness of the CSI-FiSh signature
scheme.

3. For an honest non-traceable user, ATS.Account(gp, gpk, cert, wescrw, 0) algo-
rithm will output 1 as the check ([r′]E(0)

1 , [r′]E(0)
2 ) = (E′1

(0)
, E′2

(0)) succeeds
for an honest group manager. ATS.Open algorithm outputs ⊥ as opening key
opk 6= r with overwhelming probability. Thus the decryption algorithm with
not be able to retrieve the plaintext; consequently the real signer remains
anonymous.

Efficiency. Since our ATS scheme is the first isogeny based accountable tracing
signature scheme, we do not compare the efficiency of our scheme with other
works. The key and signature size of our scheme grows as S grows and thus it is
not very reasonable. But that can be reduced somewhat using the Merkle tree
technique and other optimizations stated in [BKV19]. From the efficiency point
of view, our ATS scheme is not up to the mark and needs a lot more optimization.
However, we firmly believe that it will open avenues for more research in this
direction.

The following theorem follows from Theorem 12 of [KM15].

Theorem 13. Under the assumption that CSI-FiSh signature scheme described
in Section 2.4 is strongly unforgeable, CSIKOE-512 scheme described in Sec-
tion 4 satisfies key randomizability, plaintext indistinguishability under key ran-
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domization and key privacy under key randomization and Π is zero-knowledge
simulation-extractable argument system as defined in Section 2.3, the isogeny
based ATS scheme presented in Section 5.3 satisfies anonymity under tracing,
traceability, non-frameability, anonymity with accountability and trace-oblivious-
ness as per definitions in Section 5.2.

References
BKV19. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. Csi-fish:

efficient isogeny based signatures through class group computations. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 227–247. Springer, 2019.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. Csidh: an efficient post-quantum commutative group action. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 395–427. Springer, 2018.

Cou06. Jean Marc Couveignes. Hard homogeneous spaces. IACR Cryptol. ePrint
Arch., 2006:291, 2006.

CSV20. Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. Breaking the
decisional diffie-hellman problem for class group actions using genus theory.
In Annual International Cryptology Conference, pages 92–120. Springer,
2020.

DFG19. Luca De Feo and Steven D Galbraith. Seasign: Compact isogeny signatures
from class group actions. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 759–789. Springer,
2019.

DFM20. Luca De Feo and Michael Meyer. Threshold schemes from isogeny as-
sumptions. In IACR International Conference on Public-Key Cryptography,
pages 187–212. Springer, 2020.

KM15. Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow: A
group signature case study. Proceedings on Privacy Enhancing Technologies,
2015(2):206–221, 2015.

LNWX19. San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Accountable
tracing signatures from lattices. In Cryptographers’ Track at the RSA Con-
ference, pages 556–576. Springer, 2019.

MOT20. Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. Sigamal: A super-
singular isogeny-based pke and its application to a prf. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 551–580. Springer, 2020.

Sho99. Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–332,
1999.

Sil09. Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer
Science & Business Media, 2009.

Vél71. Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris,
Séries A, 273:305–347, 1971.

Wat69. William C Waterhouse. Abelian varieties over finite fields. In Annales
scientifiques de l’École Normale Supérieure, volume 2, pages 521–560, 1969.


