
An Efficient and Generic Construction
for Signal’s Handshake (X3DH):

Post-Quantum, State Leakage Secure, and Deniable∗

Keitaro Hashimoto1,2, Shuichi Katsumata2, Kris Kwiatkowski3, Thomas Prest4

1Tokyo Institute of Technology, Japan
hashimoto.k.au@m.titech.ac.jp

2AIST, Japan
shuichi.katsumata@aist.go.jp

3PQShield Ltd, U.K.
kris.kwiatkowski@pqshield.com

4PQShield SAS, France
thomas.prest@pqshield.com

May 6, 2022

Abstract

The Signal protocol is a secure instant messaging protocol that underlies the security of numerous
applications such as WhatsApp, Skype, Facebook Messenger among many others. The Signal protocol
consists of two sub-protocols known as the X3DH protocol and the double ratchet protocol, where the
latter has recently gained much attention. For instance, Alwen, Coretti, and Dodis (Eurocrypt’19)
provided a concrete security model along with a generic construction based on simple building blocks
that are instantiable from versatile assumptions, including post-quantum ones. In contrast, as far as we
are aware, works focusing on the X3DH protocol seem limited.

In this work, we cast the X3DH protocol as a specific type of authenticated key exchange (AKE)
protocol, which we call a Signal-conforming AKE protocol, and formally define its security model based
on the vast prior works on AKE protocols. We then provide the first efficient generic construction of a
Signal-conforming AKE protocol based on standard cryptographic primitives such as key encapsulation
mechanisms (KEM) and signature schemes. Specifically, this results in the first post-quantum secure
replacement of the X3DH protocol based on well-established assumptions. Similar to the X3DH protocol,
our Signal-conforming AKE protocol offers a strong (or stronger) flavor of security, where the exchanged
key remains secure even when all the non-trivial combinations of the long-term secrets and session-specific
secrets are compromised. Moreover, our protocol has a weak flavor of deniability and we further show
how to progressively strengthen it using ring signatures and/or non-interactive zero-knowledge proof
systems. Finally, we provide a full-fledged, generic C implementation of our (weakly deniable) protocol.
We instantiate it with several Round 3 candidates (finalists and alternates) to the NIST post-quantum
standardization process and compare the resulting bandwidth and computation performances. Our
implementation is publicly available.

∗This is the full version of a preliminary work that appeared in PKC 2021 [49].
©IACR 2022. This article is the final version submitted by the author(s) to the IACR and to Springer-Verlag on 1 April 2022.
The version published by Springer-Verlag is available at https://doi.org/10.1007/s00145-022-09427-1.

1

https://doi.org/10.1007/s00145-022-09427-1

Contents
1 Introduction 3

1.1 Our Contribution . 4
1.2 Technical Overview . 5
1.3 Related and Subsequent Work . 7

2 Preliminaries 10
2.1 Notation . 10
2.2 Key Encapsulation Mechanisms . 10
2.3 Digital Signatures . 12
2.4 Pseudo-Random Functions . 12
2.5 Strong Randomness Extractors . 13
2.6 Ring Signatures . 13
2.7 Non-Interactive Zero-Knowledge . 14

3 Security Model for Signal-Conforming AKE Protocols 15
3.1 Execution Environment . 15
3.2 Security Game . 16
3.3 Security Properties . 17
3.4 Property for Signal-Conforming AKE: Receiver Obliviousness 18
3.5 Relation to Other Security Models . 18

4 Generic Construction of Signal-Conforming AKE ΠSC-AKE 20

5 Post-Quantum Signal Handshake 23
5.1 Signal Handshake From Signal-conforming AKE protocol . 23
5.2 Details of Our Post-Quantum Signal Handshake . 24

6 Instantiating Post-Quantum Signal Handshake 26
6.1 Instantiation details . 26
6.2 Efficiency Analysis . 27

7 Adding Deniability to Our Basic Signal-Conforming AKE ΠSC-AKE 31
7.1 Definition of Deniability and Tool Preparation . 32
7.2 Deniable Signal-Conforming AKE ΠSC-DAKE against Semi-Honest Adversaries 34
7.3 Deniable Signal-Conforming AKE Π′

SC-DAKE against Malicious Adversaries 39

A Full Proofs for Signal-Conforming AKE ΠSC-AKE 46

B Full Proofs for Deniable Signal-Conforming AKE ΠSC-DAKE 55
B.1 Correctness of Deniable Signal-Conforming AKE ΠSC-DAKE . 55
B.2 Security of Deniable Signal-Conforming AKE ΠSC-DAKE . 55

C Equivalence Between DVS and Ring Signature 60

2

1 Introduction
Secure instant messaging (SIM) ensures privacy and security by making sure that only the person you are
sending the message to can read the message, a.k.a. end-to-end encryption. With the ever-growing awareness
of mass-surveillance of communications, people have become more privacy-aware and the demand for SIM
has been steadily increasing. While there has been a range of SIM protocols, the Signal protocol [2] is widely
regarded as the gold standard. Not only is it used by the Signal app1, the Signal protocol is also used by
WhatsApp, Skype, Facebook Messenger among many others, where the number of active users is well over 2
billion. One of the reasons for such popularity is due to the simplicity and the strong security properties it
provides, such as forward secrecy and post-compromise secrecy, while simultaneously allowing for the same
user experience as any (non-cryptographically secure) instant messaging app.

The Signal protocol consists of two sub-protocols: the X3DH protocol [64] and the double ratchet
protocol [63]. The former protocol can be viewed as a type of key exchange protocol allowing two parties to
exchange a secure initial session key. The latter protocol is executed after the X3DH protocol and it allows
two parties to perform a secure back-and-forth message delivery. Below, we briefly recall the current state of
these two protocols.
The Double Ratchet Protocol. The first attempt at a full security analysis of the Signal protocol was
made by Cohn-Gordon et al. [26, 27]. They considered the Signal protocol as one large protocol and analyzed
the security guarantees in its entirety. Since the double ratchet protocol was understood to be the root of the
complexity, many subsequent works aimed at further abstracting and formalizing (and in some cases enhancing)
the security of the double ratchet protocol by viewing it as a stand-alone protocol [13, 70, 5, 38, 52, 53].
Under these works, our understanding of the double ratchet protocol has much matured. Notably, Alwen et
al. [5] fully abstracted the complex Diffie-Hellman based double ratchet protocol used by Signal and provided
a concrete security model along with a generic construction based on simple building blocks. Since these
blocks are instantiable from versatile assumptions, including post-quantum ones, their work resulted in the
first post-quantum secure double ratchet protocol. Here, we elucidate that all the aforementioned works
analyze the double ratchet protocol as a stand-alone primitive, and hence, it is assumed that any two parties
can securely share an initial session key, for instance, by executing a “secure” X3DH protocol.
The X3DH Protocol. In contrast, other than the white paper offered by Signal [64] and those indirectly
considered by Cohn-Gordon et al. [26, 27], works focusing on the X3DH protocol seem to be limited. As far as
we are aware, there is one recent work that studies the formalization [22] and a few papers that study one of
the appealing security properties, known as (off-line) deniability, claimed by the X3DH protocol [75, 73, 74].

Brendel et al. [22] abstract the X3DH protocol and provide the first generic construction based on a
new primitive they call a split key encapsulation mechanism (split KEM). However, so far, instantiations of
split KEMs with strong security guarantees required for the X3DH protocol are limited to Diffie-Hellman
style assumptions. In fact, the recent result of Guo et al. [48] implies that it would be difficult to construct
them from one of the promising post-quantum candidates: lattice-based assumptions (and presumably
coded-based assumptions). On the other hand, Vatandas et al. [75] study one of the security guarantees
widely assumed for the X3DH protocol called (off-line) deniability [64, Section 4.4] and showed that a strong
knowledge-type assumption would be necessary to formally prove it. Unger and Goldberg [73, 74] construct
several protocols that can be used as drop-in replacements of the X3DH protocol that achieve a strong flavor
of (on-line) deniability from standard assumptions, albeit by making a noticeable sacrifice in the security
against key-compromise attacks: a type of attack that exploits leaked secret information of a party. For
instance, while the X3DH protocol is secure against key-compromise impersonation (KCI) attacks [17],2 the
protocols of Unger and Goldberg are no longer secure against such attacks.3

Motivation. In summary, although we have a rough understanding of what the X3DH protocol offers [64,
1The name Signal is used to point to the app and the protocol.
2Although [64, Section 4.6] states that the X3DH protocol is susceptible to KCI attacks, this is only because they consider the

scenario where the session-specific secret is compromised. If we consider the standard KCI attack scenario where the long-term
secret is the only information being compromised [17], then the X3DH protocol is secure.

3Being vulnerable against KCI attacks seems to be intrinsic to on-line deniability [73, 74, 64].

3

26, 27], the current state of affairs is unsatisfactory for the following reasons, and making progress on these
issues will be the focus of this work:

- It is difficult to formally understand the security guarantees offered by the X3DH protocol or to make
a meaningful comparison among different protocols achieving the same functionality as the X3DH
protocol without a clearly defined security model.

- The X3DH protocol is so far only instantiable from Diffie-Hellman style assumptions [22] and it is
unclear whether such assumptions are inherent to the Signal protocol.

- Ideally, similarly to what Alwen et al. [5] did for the double ratchet protocol, we would like to abstract
the X3DH protocol and have a generic construction based on simple building blocks that can be
instantiated from versatile assumptions, including but not limited to post-quantum ones.

- No matter how secure the double ratchet protocol is, we cannot completely secure the Signal protocol if
the initial X3DH protocol is the weakest link in the chain (e.g., insecure against state-leakage and only
offering security against classical adversaries).

1.1 Our Contribution
In this work, we cast the X3DH protocol (see Figure 1) as a specific type of authenticated key exchange
(AKE) protocol, which we call a Signal-conforming AKE protocol, and define its security model based on
the vast prior work on AKE protocols (see Section 3). We then provide an efficient generic construction
of a Signal-conforming AKE protocol based on standard cryptographic primitives: an (IND-CCA secure)
KEM, a signature scheme, and a pseudorandom function (PRF) (see Section 4). Similar to the X3DH
protocol, our Signal-conforming AKE protocol offers a strong flavor of key-compromise security. Borrowing
terminologies from AKE-related literature, our protocol is proven secure in the strong Canetti-Krawczyk
(CK) type security models [23, 55, 45, 59], where the exchanged session key remains secure even if all the
non-trivial combinations of the long-term secrets and session-specific secrets of the parties are compromised.
In fact, our protocol is more secure than the X3DH protocol since it is even secure against KCI-attacks where
the parties’ session-specific secrets are compromised (see Footnote 2).4 We believe the level of security offered
by our Signal-conforming AKE protocol aligns with the level of security guaranteed by the double ratchet
protocol where (a specific notion of) security still holds even when such secrets are compromised.

We then provide details on how to recast our Signal-conforming AKE protocol into a key agreement
protocol similar to what is used in the Signal protocol. We call this the Signal handshake protocol (see
Section 5). Unlike standard AKE protocols, the Signal handshake protocol makes several different design
choices for efficiency reasons. The most prominent difference is that informally, the Signal handshake
protocol reuses the same first message of the AKE protocol for a certain period of time. While this reduces
communication and computation complexity and the storage size required by the server, this negatively
affects the level of forward secrecy of the underlying Signal-conforming AKE protocol. We discuss in detail
the trade-off between security and efficiency incurred when transforming our Signal-conforming AKE protocol
into a Signal handshake protocol in Section 5.2.

In addition, we implement a post-quantum Signal handshake protocol in C, building on the open source
libraries PQClean and LibTomCrypt (see Section 6). Our implementation [57] is fully generic and can thus
be instantiated with a wide range of KEMs and signature schemes. We instantiate it with several Round 3
candidates (finalists and alternates) to the NIST post-quantum standardization process, and compare the
bandwidth and computation costs that result from these choices. Our protocol performs best with “balanced”
schemes, for example most lattice-based schemes. The isogeny-based scheme SIKE offers good bandwidth
performance, but entails a significant computation cost. Finally, schemes with large public keys (Classic

4Although the X3DH protocol can naturally be made secure against leakage of session-specific secrets (including randomness
generated within the session) by using the generic NAXOS trick, e.g., [59, 45, 56, 79], it typically requires additional computation.
Since this negatively affects efficiency, we target AKE protocols without using the NAXOS trick. See Section 1.3 for more detail.

4

McEliece, Rainbow, etc.) do not seem to be a good match for our protocol, since these keys are transferred
at each run of the protocol.

Finally, while our Signal-conforming AKE already provides a weak form of deniability, we show how to
progressively strengthen its deniability by using a ring signature instead of a signature scheme and adding
a non-interactive zero-knowledge proof system (NIZK) (see Section 7). We propose one protocol that only
uses ring signature while only being deniable against semi-honest adversaries. We then add an NIZK on top
of this protocol to make it secure even against malicious adversaries. Although our construction seemingly
offers (off-line) deniability against malicious adversaries similar to the X3DH protocol [75], the formal proof
relies on a strong knowledge-type assumption. However, relying on such assumptions seems unavoidable
considering that all known deniable AKE protocols secure against key-compromise attacks, including the
X3DH protocol, rely on them [34, 80, 75]. We briefly discuss the efficiency of our Signal-conforming AKE
protocol using ring signatures in Remark 7.10.

1.2 Technical Overview
We first review the X3DH protocol and abstract its required properties by viewing it through the lens of
AKE protocols. We then provide an overview of how to construct a Signal-conforming AKE protocol from
standard assumptions.
Recap on the X3DH Protocol. At a high level, the X3DH protocol allows for an asynchronous key
exchange where two parties, say Alice and Bob, exchange a session key without having to be online at
the same time. Even more, the party, say Bob, that wishes to send a secure message to Alice can do so
without Alice even knowing Bob. For instance, imagine the scenario where you send a friend request and a
message at the same time before being accepted as a friend. At first glance, it seems what we require is a
non-interactive key exchange (NIKE) since Bob needs to exchange a key with Alice who is offline, while Alice
does not yet know that Bob is trying to communicate with her. Unfortunately, solutions based on NIKEs are
undesirable since they either provide weaker guarantees than standard (interactive) AKE or exhibit inefficient
constructions [14, 25, 44, 71].

The X3DH protocol circumvents this issue by considering an untrusted server (e.g., the Signal server)
to sit in the middle between Alice and Bob to serve as a public bulletin board. That is, the parties can
store and retrieve information from the server while the server is not assumed to act honestly. A simplified
description of the X3DH protocol, which still satisfies our purpose, based on the classical Diffie-Hellman
(DH) key exchange is provided in Figure 1.5 As the first step, Alice sends her DH component gx ∈ G and its
signature σA

6 to the server and then possibly goes offline. We point out that Alice does not need to know
who she will be communicating with at this point. Bob, who may ad-hocly decide to communicate with
Alice, then fetches Alice’s first message from the server and uploads its DH component gy to the server. As
in a typical DH key exchange, Bob computes the session key kB using the long-term secret exponent b ∈ Zp

and session-specific secret exponent y ∈ Zp. Since Bob can compute the session key kB while Alice is offline,
he can begin executing the subsequent double ratchet protocol without waiting for Alice to come online.7
Whenever Alice comes online, she can fetch whatever message Bob sent from the server.
Casting the X3DH Protocol as an AKE Protocol. It is not difficult to see that the X3DH protocol
can be cast as a specific type of AKE protocol. In particular, we can think of the server as an adversary that
tries to mount a person-in-the-middle attack in a standard AKE protocol. Viewing the server as a malicious
adversary, rather than some semi-honest entity, has two benefits: the parties do not need to put trust in the
server since the protocol is supposed to be secure even against a malicious server, while the server or the
company providing the app is relieved from having to “prove” that it is behaving honestly. One distinguishing
feature required by the X3DH protocol when viewed as an AKE protocol is that it needs to be a two-round

5We assume Alice and Bob know each other’s long-term key. In practice, this can be enforced by “out-of-bound” authentica-
tions (see [64, Section 4.1]).

6In the actual protocol [64, 69], XEdDSA is used as the signature scheme, and the same long-term key (a, ga) is used for
both key exchange and signing.

7In practice, Bob may initiate the double ratchet protocol using kB and send his message to Alice along with gy to the server
before Alice responds.

5

Alice: (lpkA = (ga, vkA), lskA = (a, skA)) Server Bob: (lpkB = (gb, vkB), lskB = (b, skB))

x←$Zp

σA ← Sign(skA, gx)
Store x

Upload gx, σA to server
–- go offline –-

gx, σA Store
(Alice, gx, σA)

gx, σA Fetch (Alice, gx, σA)

Verify(vkA, gx, σA) ?= 1
y ←$Zp

kB := KDF((gx)b, (ga)y , (gx)y)
Upload gy to server
Erase y

–- come online –-

Fetch ((Alice, Bob), gy)

kA := KDF((gb)x, (gy)a, (gy)x)

gy
Store
((Alice, Bob), gy)

gy

Figure 1: Simplified description of the X3DH Protocol. Alice and Bob have the long-term key pairs (lpkA, lskA)
and (lpkB, lskB), respectively. Alice and Bob agree on a session key kA = kB, where KDF denotes a key
derivation function.

protocol where the initiator message is generated independently from the responder. That is, Alice needs to
be able to store her first message to the server without knowing who she will be communicating with. In this
work, we define an AKE protocol with such functionality as a Signal-conforming AKE protocol.

Regarding the security model for a Signal-conforming AKE protocol, we base it on the vast prior works
on AKE protocols. Specifically, we build on the recent formalizations of [47, 28] that study the tightness of
efficient AKE protocols (including a slight variant of the X3DH protocol) and strengthen the model to also
incorporate state leakage compromise; a model where an adversary can obtain session-specific information
called session-state. Since the double ratchet protocol considers a very strong form of state leakage security,
we believe it would be the most rational design choice to discuss the X3DH protocol in a security model
that captures such leakage as well. Informally, we consider our Signal-conforming AKE protocol in the
Canetti-Krawczyk (CK) type security model [23, 55, 45, 59], which is a strengthening of the Bellare-Rogaway
security model [11] considered by [47, 28]. A detailed discussion and comparison between our model and the
numerous other security models of AKE protocols are provided in Section 3.
Lack of Signal-Conforming AKE Protocol. The main feature of a Signal-conforming AKE protocol is
that the initiator’s message is independent of the responder. Although this seems like a very natural feature
considering DH-type AKE protocols, it turns out that they are quite unique (see Brendel et al. [22] for
some discussion). For instance, as far as we are aware, the only other assumption that allows for a clean
analog of the X3DH protocol is based on the gap CSIDH assumption recently introduced by De Kock et
al. [32] and Kawashima et al. [54]. Considering the community is still in the process of assessing the concrete
parameter selection for standard CSIDH [19, 68], it would be desirable to base the X3DH protocol on more
well-established and versatile assumptions. On the other hand, when we turn our eyes to known generic
constructions of AKE protocols [45, 46, 56, 79, 77, 50, 76] that can be instantiated from versatile assumptions,
including post-quantum ones, we observe that they are either not Signal-conforming or require the NAXOS
trick [59] (see Section 1.3) to be made secure against leakage of session-specific secrets.
Our Construction. To this end, in this work, we provide a new practical generic construction of a
Signal-conforming AKE protocol from an (IND-CCA secure) KEM and a signature scheme. We believe this
may be of independent interest in other scenarios where we require an AKE protocol that has a flavor of
“receiver obliviousness.”8 The construction is simple: let us assume Alice and Bob’s long-term keys consist
of KEM key pairs (ekA, dkA) and (ekB, dkB) and signature key pairs (vkA, skA) and (vkB, skB), respectively.
The Signal-conforming AKE protocol then starts by Alice (i.e., the initiator) generating a session-specific
KEM key (ekT , dkT), creating a signature σA ← SIG.Sign(skA, ekT), and sending (ekT , σA) to Bob (i.e.,

8This property has also been called as post-specified peers [24] in the context of Internet Key Exchange (IKE) protocols.

6

the responder). Here, observe that Alice’s message does not depend on who she will be communicating
with. Bob then verifies the signature and then constructs two ciphertexts: one using Alice’s long-term key
(KA, CA) ← KEM.Encap(ekA) and another using the session-specific key (KT , CT) ← KEM.Encap(ekT). It
then signs these ciphertext M := (CA, CT) as σB ← SIG.Sign(skB, M), where we include other session-specific
components in M in the actual construction. Since sending σB in the clear may serve as public evidence that
Bob communicated with Alice, Bob will hide this. To this end, he derives two keys, a session key kAKE and a
one-time pad key kOTP, by running a key derivation function on input the random KEM keys (KA, KT). Bob
then sends (CA, CT , c := σB⊕kOTP) to Alice and sets the session key as kAKE. Here, note that we do not require
Alice to hide her signature σA since this can only reveal that she was using the Signal app, unlike σB that
may reveal who Bob was talking to. Once Alice receives the message from Bob, she decrypts the ciphertexts
(CA, CT), derives the two keys (kAKE, kOPT), and checks if σ := c⊕ kOTP is a valid signature of Bob’s. If so,
she sets the session key as kAKE. We provide a formal proof and show that our protocol satisfies a strong
flavor of security where the shared session key remains pseudorandom even to an adversary that can obtain
any non-trivial combinations of the long-term private keys (i.e., dkA, dkB, skA, skB) and session-specific secret
keys (i.e., dkT). Notably, our protocol satisfies a stronger notion of security compared to the X3DH protocol
since it prevents an adversary to impersonate Alice even if her session-specific secret key is compromised [64,
Section 4.6].

Finally, our Signal-conforming AKE protocol already satisfies a limited form of deniability where the
publicly exchanged messages do not directly leak the participant of the protocol. However, if Alice at
a later point gets compromised or turns malicious, she can publicize the signature σB sent from Bob to
cryptographically prove that Bob was communicating with Alice. This is in contrast to the X3DH protocol
that does not allow such a deniability attack. We therefore show that we can protect Bob from such attacks
by replacing the signature scheme with a ring signature scheme. In particular, Alice now further sends a
session-specific ring signature verification key vkT , and Bob signs to the ring {vkT , vkB}. Effectively, when
Alice outputs a signature from Bob σB,T , she cannot fully convince a third-party whether it originates from
Bob since she could have signed σB,T using her signing key skT corresponding to vkT . Since we only require
a ring of two users, we can use existing efficient post-quantum ring signatures to instantiate this idea. For
example, targeting NIST security level 1, we have 2.5 KiB for Raptor [61] (based on NTRU), 4.4 KiB for
DualRing [81] (based on M-LWE/SIS), and 3.5 KiB for Calamari [15] (based on CSIDH).

Although the intuition is clear, it turns out that turning this into a formal proof is quite difficult and
we observe that for some practical ring signature schemes, this method only provides deniability against
semi-honest adversaries, which are types of adversaries that follow the protocol description honestly. We
provide a concrete attack where a malicious Alice that registers malformed key packages to the server can
later (informally) prove to a third-party that Bob was trying to communicate with her even if Bob used a
ring signature to sign. We thus propose another protocol that additionally uses NIZKs to make it secure
even against malicious adversaries. Similar to all previous works on AKE protocols satisfying a strong flavor
of key-compromise security [34, 80] (including the X3DH protocol [75]), the proof of deniability against
malicious adversaries relies on a strong knowledge-type assumption.

1.3 Related and Subsequent Work
On the NAXOS trick. The NAXOS trick is a generic/artificial method to boost AKE protocols to be
secure with respect to randomness exposure attacks. At a high level, whenever a party is generating a message
for its peer, it will not simply use a fresh randomness but extract a randomness by feeding a fresh randomness
sampled within that session and its long-term secret key into a randomness extractor. Intuitively, this makes
the protocol secure against randomness exposure attacks since even if the fresh randomness sampled during
in the session is completely exposed, the extracted randomness remains random as long as the long-term
secret key is not compromised.

The NAXOS trick was originally proposed by LaMacchia et al. [59] in the random oracle model. Fujioka
et al. [45] proposed a new primitive called twisted pseudo-random functions (PRF) in the standard model
to mimic its properties and showed how to construct a twisted PRF from any PRF. Alawatugoda et al. [4]
also showed that we can mimic the NAXOS trick in the standard model by using a KEM that satisfies a

7

non-standard notion of pair-generation indistinguishability.
In a two-round AKE protocol, the initiator and responder can both use the NAXOS trick but with

different consequences. While the NAXOS trick adds a noticeable overhead in the computation time for the
initiator, it adds almost none for the responder. This reason for this asymmetry is that the initiator must
perform a wasteful recomputation of (part of) the first message it sent in order to process the second message
sent by the responder. For instance, the initiator may generate a public key and a secret key for a KEM using
the randomness derived by the NAXOS trick. In order to be secure even when the session-specific secret (i.e.,
the secret key for the KEM) is exposed, the initiator must securely erase the secret key from its memory after
it sends the first message and only store the fresh randomness sampled within the session. Later, when the
initiator receives a message from the responder, it must recompute the key generation algorithm again using
the randomness derived from the NAXOS trick in order to decrypt the ciphertext included in the message.
Since the NAXOS trick assumes that secure erasure of memory is possible and adds a possibly wasteful
recomputation step, we simply aim for a two-round AKE protocol that does not use this.
Signal-Conforming AKE Protocol using the NAXOS Trick. Kurosawa and Furukawa [56] generalized
the Signed Diffie-Hellman key exchange to work using an IND-CPA secure KEM and a signature scheme. Since
the initiator’s first message does not depend on the responder’s identity, the protocol is Signal-conforming.
Unfortunately, the protocol is insecure against standard KCI-attacks and exposure of session-specific secrets
(i.e., KEM secret key). Later, Yang et al. [79] showed how to strengthen the security of Kurosawa and
Furukawa’s protocol by using an IND-CCA secure KEM instead and by further applying the NAXOS trick
developed by Alawatugoda et al. [4]. Their protocol results in a secure Signal-conforming AKE protocol that
uses the NAXOS trick.
Subsequent Work. After the proceedings version of our paper [49] appeared, Brendel et al. [21] posted
on ePrint a post-quantum key exchange protocol that can be used in place of X3DH similar to ours. Very
recently, Dobson and Galbraith [36] proposed an X3DH-style protocol tailored to SIDH (SI-X3DH). Details
follow.
Brendel et al. [21]. We summarize their contribution and compare it to our protocol.

1. Brendel et al. provide a generic construction of a deniable Signal-conforming AKE protocol based on a
designated verifier signature (DVS) and a KEM. They show that DVS can be instantiated from a ring
signature, in which case, their core AKE protocol illustrated in [21, Figure 2] becomes almost identical
to our construction in Section 7.2, Figure 5. The following is the main minor differences.

• We additionally encrypt the signature generated by the ring signature by a one-time pad, while
they send it in the clear. This additional layer of encryption offers anonymity with almost no
overhead since the transcript no longer leaks information regarding the sender nor the responder
to a passive eavesdropper.9 The same idea can be applied to their protocol as well.

• They use the NAXOS trick to generate the second message sent by the responder. Effectively, the
protocol remains secure even if the randomness sampled by the responder (i.e., Bob in Figure 1) is
exposed to the adversary. This trick can be used generically to any AKE protocol, including ours
for the same net effect. Unfortunately, similar to our protocol, their protocol is insecure when
the randomness used to generate the first message is exposed. As explained above, applying the
NAXOS trick on the first message requires secure erasure of memory and a wasteful recomputation
step. Making our protocols secure against randomness exposure of the initiator without using the
NAXOS trick remains open. We note that both protocols are secure even if the session-specific
secrets (i.e., the secret that is stored by the initiator in order to process the responder’s second
message) are exposed.

2. In their work, they show that a DVS is implied by a ring signature (for a ring of two users) and left
the other implication as an open problem. In particular, this left open the possibility that a generic

9To be more precise, we additionally assume that the KEM ciphertext to be anonymous (i.e., indistinguishable from random)
as well. This is often the case for standard encryption schemes such as those based on lattices.

8

construction based on DVS to be more general than those based on ring signatures. In Appendix C, we
show that a DVS can be used to construct a ring signature and thus show that a generic construction
based on DVS and ring signature are theoretically equivalent.10

3. In their work, they depart from prior definitions of simulation-based deniability [34, 37, 80, 73, 74, 75] and
introduce a new notion of indistinguishability-based deniability. As the new definition is incomparable
to the prior definitions, we provide a detailed comparison between the two definitions in Remark 7.5.
Very roughly, their definition considers the setting where all the users honestly follow the protocol and
only register valid keys to the server. The adversary (i.e., a non-user) then tries to break deniability
of the AKE protocol while given access to the secret keys of all the users. The restriction on users
behaving honestly in their definition can loosely be captured by prior definitions of deniability by
restricting the adversary to be semi-honest.

4. We provide a concrete attack in Remark 7.11 that breaks deniability of our AKE protocol in Section 7.2,
which we show to be secure against semi-honest adversaries. The same attack works against the protocol
by Brendel et al. that is proven secure in their new deniability definition. The attack exploits the fact
that malicious parties (i.e., non-honest users) can register malicious long-term keys.

5. Finally, we construct an AKE protocol secure even against malicious adversaries in Section 7.3 by
additionally using NIZKs and strong knowledge-type assumptions, including a variant of the plaintext-
awareness (PA) for the KEM scheme [12, 9, 10]. It is an interesting problem if there is a reasonable
definition of deniability that suffices to use in the real-world, which also allows for a construction based
on more natural assumptions.

Dobson and Galbraith [36]. Dobson and Galbraith [36] proposed an X3DH-style protocol tailored to SIDH
(SI-X3DH). Their construction can be seen as a replacement of the DH key exchange in the X3DH protocol
with the SIDH key exchange. Their main contribution is showing that SIDH key exchange, which are in
general insecure against adaptive attacks, can be used securely by adding a zero-knowledge proof that the
long-term SIDH public keys are generated honestly. They explained that the SI-X3DH protocol satisfies the
same notions of security as those satisfied by the X3DH protocol. Unlike ours and Brendel et al.’s protocol [21],
they do not require a ring signature to argue deniability. They require a strong knowledge-type assumption
to prove deniability of the SI-X3DH protocol, which follows similar arguments by [75] that establish the
deniability of the X3DH protocol.

Difference From the Conference Version. The preliminary version appeared at the 24th edition of the
International Conference on Practice and Theory of Public-Key Cryptography [49]. The main differences
between our current version and the preliminary version are as follows:

• In Section 1.3, we added a discussion on what the NAXOS trick is in detail and included more details
on AKE protocols that rely on them. We also made it more clear why we focus on a construction that
does not rely on the NAXOS trick.

• In Section 1.3, we include a detailed comparison between the work of Brendel et al. [21] that came
after our preliminary version [49] became public. We also show in Appendix C that DVS implies a ring
signature, which was a problem left open in [21].

• In Section 3.5, we include related works regarding other AKE security models and provide a thorough
comparison between our model and the previous models.

• We modify our Signal-conforming AKE protocol in Section 4 so that the initiator further signs its
message. The preliminary version did not include this signature. This allows us to prove perfect

10We note that the definition of DVS and ring signature come in various flavors. Thus, we only show equivalence under the
security properties that Brendel et al. [21] required to construct their AKE protocol. Namely, our implication relies on the fact
that their DVS assumes the signature is publicly verifiable.

9

forward secrecy rather than weak forward secrecy. The proof is updated accordingly and is provided in
Theorem 4.3.

• The preliminary version did not provide detail on how to turn our Signal-conforming AKE protocol
into a full-fledged Signal handshake protocol. In Section 5, we explain how to create a post-quantum
Signal handshake protocol and further explain the security implication of reusing the signed-prekey
(i.e., the initiator’s first message).

• We update the implementation and the associated benchmarks in Section 6.

• The missing security proofs of Theorems 7.7 and 7.14 regarding deniability are added.

• Although the technical details regarding deniability remain the same, in Section 7, we added many
new discussions and remarks which we believe make it easier to understand what it means for an AKE
protocol to be deniable. For instance, we discuss a concrete attack showing that deniability against
only a semi-malicious adversary may not suffice in practice.

2 Preliminaries
In this section, we review the basic notations and definitions of cryptographic primitives used in this paper.

2.1 Notation
The operator ⊕ denotes bit-wise “XOR”, and ∥ denotes string concatenation. For n ∈ N, we write [n] to
denote the set [n] := {1, . . . , n}. For j ∈ [n], we write [n\j] to denote the set [n\j] := {1, . . . , n} \ {j}. We
denote by x←$ S the sampling of an element x uniformly at random from a finite set S. PPT (resp. QPT)
stands for probabilistic (resp. quantum) polynomial time.

2.2 Key Encapsulation Mechanisms
Definition 2.1 (KEM Schemes). A key encapsulation mechanism (KEM) scheme with session key space
KS consists of the following four PPT algorithms ΠKEM = (Setup, KeyGen, Encap, Decap):

Setup(1κ)→ pp: The setup algorithm takes the security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

KeyGen(pp)→ (ek, dk): The key generation algorithm takes a public parameter pp as input and outputs a pair
of keys (ek, dk).

Encap(ek)→ (K, C): The encapsulation algorithm takes an encapsulation key ek as input and outputs a session
key K ∈ KS and a ciphertext C.

Decap(dk, C)→ K: The decapsulation algorithm takes a decapsulation key dk and a ciphertext C as input and
outputs a session key K ∈ KS.

Definition 2.2 ((1− δ)-Correctness). We say a KEM scheme ΠKEM is (1− δ)-correct if for all κ ∈ N and
pp ∈ Setup(1κ),

(1− δ) ≤ Pr
[
Decap(dk, C) = K : (ek, dk)← KeyGen(pp);

(K, C)← Encap(ek)

]
.

Definition 2.3 (IND-CPA and IND-CCA Security). Let κ be a security parameter, ΠKEM = (Setup, KeyGen,
Encap, Decap) be a KEM scheme and A = (A1,A2) be an adversary. For ATK ∈ {CPA, CCA}, we define the

10

advantage of A as

AdvIND-ATK
KEM (A) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

pp← Setup(1κ);
(ek∗, dk∗)← KeyGen(pp);
state← AOATK

1 (pp, ek∗);
b←$ {0, 1};

(K∗
0, C∗

0)← Encap(ek∗);
K∗

1←$KS;
b′ ← AOATK

2 (pp, ek∗, (K∗
b , C∗

0), state)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

OATK =
{
⊥ ATK = CPA
ODecap(dk∗, ·) ATK = CCA

.

When ATK = CCA, A2 is not allowed to make an oracle query containing the challenge ciphertext C∗
0. We

say ΠKEM is IND-ATK secure for security parameter κ if the advantage AdvIND-ATK
KEM (A) is negligible for any

QPT adversary A.

Definition 2.4 (Min-Entropy of KEM Encapsulation Key). We say a KEM scheme ΠKEM has ν-high
encapsulation key min-entropy if for all κ ∈ N and pp ∈ Setup(1κ),

ν ≤ − log2

(
max
ek∗

Pr [ek = ek∗ : (ek, dk)← KeyGen(pp)]
)

.

Definition 2.5 (Min-Entropy of KEM Ciphertext). We say a KEM scheme ΠKEM has χ-high ciphertext
min-entropy if for all κ ∈ N and pp ∈ Setup(1κ),

χ ≤ − log2

(
E

[
max

C∗
Pr [C = C∗ : (K, C)← Encap(ek)]

])
,

where the expectation is taken over the randomness used to sample (ek, dk)← KeyGen(pp).

We define plaintext-awareness (PA) for KEM schemes [12, 10] where multiple keys are considered [65].
This property is required to prove the deniability of our authenticated key exchange protocol in Section 7. We
observe that the standard PA security defined for a single key does not immediately imply a multi-key variant
and that the original proof of deniability by Di Raimondo et al. [34, Theorem 2 and 3] crucially relies on the
multi-key variant. Furthermore, below we consider strengthening of the (already strong) PA security where
the efficient extractor EC for the ciphertext creator C can be constructed efficiently given the description of C.
This is required in our deniability proof as the simulator must construct such EC given the description of the
adversary.

Definition 2.6 (Plaintext-Awareness). Let t = poly(κ) be an integer. We say a KEM scheme ΠKEM is
plaintext-aware (PAt-1) secure if for all κ ∈ N and (non-uniform) PPT ciphertext creator C, there exists a
PPT extractor EC such that for any PPT distinguisher D, the following two experiments Expdec

C,D and Expext
C,EC,D

are indistinguishable:
Expdec

C,D(1κ):

(i) The challenger runs pp← Setup(1κ) and (eki, dki)← KeyGen(pp) for i ∈ [t]. It then runs C on input
(pp, (eki)i∈[t]) with uniform randomness randC.

(ii) When C queries an index-ciphertext pair (i, C) to the challenger, the challenger returns KEM.Decap(dki, C).
Here, C can query the challenger polynomially many times in an arbitrary manner.

(iii) C finally outputs a string v.

(iv) The experiment outputs D(v)→ b ∈ {0, 1}.

11

Expext
C,EC,D(1κ):

(i) The challenger runs pp← Setup(1κ) and (eki, dki)← KeyGen(pp) for i ∈ [t]. It then runs C on input
(pp, (eki)i∈[t]) with uniform randomness randC, and runs EC on input (pp, (eki)i∈[t], randC).

(ii) C can adaptively query an index-ciphertext pair C polynomially many times to the challenger. When the
challenger receives (i, C), it returns EC(query, (i, C), randC).11

(iii) C finally outputs a string v.

(iv) The experiment outputs D(v)→ b ∈ {0, 1}.

Moreover, we say the extractor EC is efficiently constructible if the description of EC can be efficiently computed
from the description of C.

2.3 Digital Signatures
Definition 2.7 (Signature Schemes). A signature scheme with message space M consists of the following
four PPT algorithms ΠSIG = (Setup, KeyGen, Sign, Verify):

Setup(1κ)→ pp: The setup algorithm takes a security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

KeyGen(pp)→ (vk, sk): The key generation algorithm takes a public parameter pp as input and outputs a pair
of keys (vk, sk).

Sign(sk, M)→ σ: The signing algorithm takes a signing key sk and a message M ∈M as input and outputs a
signature σ.

Verify(vk, M, σ)→ 1/0: The verification algorithm takes a verification key vk, a message M and a signature σ
as input and outputs 1 or 0.

Definition 2.8 ((1− δ)-Correctness). We say a signature scheme ΠSIG is (1− δ)-correct if for all κ ∈ N,
all messages M ∈M and all pp ∈ Setup(1κ),

(1− δ) ≤ Pr [Verify(vk, M, σ) = 1 : (vk, sk)← KeyGen(pp), σ ← Sign(sk, M)] .

Definition 2.9 (EUF-CMA Security). Let κ be a security parameter, ΠSIG = (Setup, KeyGen, Sign, Verify) be
a signature scheme and A be an adversary. We define the advantage of A as

AdvEUF-CMA
SIG (A) := Pr

 Verify(vk∗, M∗, σ∗) = 1
∧M∗ /∈M∗ :

pp← Setup(1κ);
(vk∗, sk∗)← KeyGen(pp);

(M∗, σ∗)← AOSign(sk∗,·)(pp, vk∗)


where OSign is the signing oracle and M∗ is the set of messages that A submitted to the signing oracle. We
say ΠSIG is EUF-CMA secure for security parameter κ if the advantage AdvEUF-CMA

SIG (A) is negligible for any
QPT adversary A.

2.4 Pseudo-Random Functions
Let F : FK ×D → R be a function family with key space FK, domain D and finite range R. We define a
pseudo-random function as follows. Below, we note that the adversary A is only allowed to make classical
queries to the oracles.

11We assume algorithms C and EC are stateful.

12

Definition 2.10 (Pseudo-Random Function Family). Let A be an adversary that is given oracle access
to either FK(·) := F(K, ·) for K←$FK or a truly random function RF : D → R. We define the advantage of
A as

AdvPRF
F (A) :=

∣∣∣Pr
[
1← AFK(·)(1κ)

]
− Pr

[
1← ARF(·)(1κ)

]∣∣∣ .

We say F is a pseudo-random function (PRF) family if AdvPRF
F (A) is negligible for any QPT adversary A.

2.5 Strong Randomness Extractors
The statistical distance between random variables X, Y over a finite domain S is defined by

SD(X, Y) := 1
2

∑
s∈S

|Pr [X = s]− Pr [Y = s]| .

Definition 2.11 (Strong Randomness Extractors). Let Ext : S × D → R be a family of efficiently
computable functions with set S, domain D and range R, all with finite size. A function family Ext is a strong
(λ, εExt)-extractor if for any random variable X over D with Pr [X = x] ≤ 2−λ (i.e., X has min-entropy
at least λ), if s and R are chosen uniformly at random from S and R, respectively, the two distributions
(s, Exts(X)) and (s, R) are within statistical distance εExt, that is

SD((s, Exts(X)), (s, R)) ≤ εExt.

2.6 Ring Signatures
Definition 2.12 (Ring Signature Schemes). A ring signature scheme consists of four PPT algorithms
ΠRS = (Setup, KeyGen, Sign, Verify):

Setup(1κ)→ pp : The setup algorithm takes as input a security parameter 1κ and outputs a public parameters
pp used by the scheme.

KeyGen(pp)→ (vk, sk) : The key generation algorithm on input the public parameters pp outputs a pair of
public and secret keys (vk, sk).

Sign(sk, M, R)→ σ : The signing algorithm on input a secret key sk, a message M, and a list of public keys,
i.e., a ring, R = {vk1, . . . , vkN}, outputs a signature σ.

Verify(R, M, σ)→ 1/0 : The verification algorithm on input a ring R = {vk1, . . . , vkN}, a message M, and a
signature σ, outputs either 1 or 0.

Definition 2.13 ((1− δ)-Correctness). We say a ring signature scheme ΠRS is (1− δ)-correct if for all
κ ∈ N, N = poly(κ), j ∈ [N], and every message M,

(1− δ) ≤ Pr

 Verify(R, M, σ) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1κ);

(vki, ski)← KeyGen(pp) ∀i ∈ [N];
R := (vk1, · · · , vkN);
σ ← Sign(skj , M, R).

 .

Definition 2.14 (Anonymity). We say a ring signature scheme ΠRS is anonymous if, for any κ ∈ N,
pp ∈ Setup(1κ), (vk0, sk0), (vk1, sk1) ∈ KeyGen(pp), and message M, and any PPT distinguisher A, the two
distributions Db := {σ : σ ← Sign(skb, M, {vk0, vk1})} for b ∈ {0, 1} are indistinguishable.

Definition 2.15 (Unforgeability). We say a ring signature scheme ΠRS is unforgeable if, for all κ ∈ N and
N = poly(κ), any PPT adversary A has at most negligible advantage in the following game played against a
challenger.

13

(i) The challenger runs pp← Setup(1κ) and generates key pairs (vki, ski) = KeyGen(pp; ri) for all i ∈ [N]
using random coins ri. It sets VK := {vki | i ∈ [N]} and initializes two empty sets SL and CL.

(ii) The challenger provides pp and VK to A;

(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– (sign, i, M, R): The challenger checks if vki ∈ R and if so it computes the signature σ ←
Sign(ski, M, R). The challenger provides σ to A and adds (i, M, R) to SL;

– (corrupt, i): The challenger adds vki to CL and returns ri to A.

(iv) A outputs (R∗, M∗, σ∗). If R∗ ⊂ VK\CL, (·, M∗, R∗) ̸∈ SL, and Verify(R∗, M∗, σ∗) = 1, then we say the
adversary A wins.

The advantage of A is defined as AdvUnf
RS (A) = Pr[A wins].

2.7 Non-Interactive Zero-Knowledge
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x, w) ∈ R, we call x the
statement and w the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x, w) ∈ R}. Below,
we define non-interactive zero-knowledge arguments for NP languages.

Definition 2.16 (NIZK Arguments). A non-interactive zero-knowledge (NIZK) argument ΠNIZK for the
relation R consists of PPT algorithms (Setup, Prove, Verify).

Setup(1κ)→ crs: The setup algorithm takes as input the security parameter 1κ and outputs a common reference
string crs.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x,
and a witness w and outputs a proof π.

Verify(crs, x, π)→ ⊤ or ⊥: The verifier’s algorithm takes as input a common reference string, a statement x,
and a proof π and outputs ⊤ to indicate acceptance of the proof and ⊥ otherwise.

Definition 2.17 (Correctness). We say a NIZK argument ΠNIZK is correct if for all pairs (x, w) ∈ R, if
we run crs← Setup(1κ), then we have

Pr[π ← Prove(crs, x, w) : Verify(crs, x, π) = ⊤] = 1.

Definition 2.18 (Soundness). We say a NIZK argument ΠNIZK is sound if for all PPT adversaries A, if
we run crs← Setup(1κ), then we have

Pr[(x, π)← A(1κ, crs) : x ̸∈ L ∧ Verify(crs, x, π) = ⊤] = negl(κ).

Definition 2.19 (Zero-Knowledge). We say a NIZK argument ΠNIZK is zero-knowledge if for all PPT
adversaries A, there exists a PPT simulator Sim = (Sim1, Sim2) such that if we run crs ← Setup(1κ) and
(crs, τ̄)← Sim1(1κ), then we have∣∣∣Pr[AO0(crs,·,·)(1κ, crs) = 1]− Pr[AO1(c̄rs,τ̄ ,·,·)(1κ, crs) = 1]

∣∣∣ = negl(κ),

where O0(crs, x, w) outputs Prove(crs, x, w) if (x, w) ∈ R and ⊥ otherwise, and O1(crs, τ̄ , x, w) outputs
Sim2(crs, τ̄ , x) if (x, w) ∈ R and ⊥ otherwise.

14

3 Security Model for Signal-Conforming AKE Protocols
In this section, we define a security model for a Signal-conforming authenticated key exchange (AKE)
protocol: AKE protocols that can be used as a drop-in replacement of the X3DH protocol. We first provide
in Sections 3.1 to 3.3 a game-based security model building on the recent formalization of [47, 28] targeting
general AKE protocols. We then discuss in Section 3.4 the modifications needed to make it Signal-conforming.
A detailed comparison and discussion between ours and other various security models for AKE protocols are
provided in Section 3.5.

3.1 Execution Environment
We consider a system of µ parties P1 , . . . , Pµ. Each party Pi is represented by a set of ℓ oracles

{
π1

i , . . . , πℓ
i

}
,

where each oracle corresponds to a single execution of a protocol, and ℓ ∈ N is the maximum number of
protocol sessions per party. Each oracle is equipped with fixed randomness but is otherwise deterministic.
Each oracle πs

i has access to the long-term key pair (lpki, lski) of Pi and the public keys of all other parties,
and maintains a list of the following local variables:

• rands
i is the randomness hard-wired to πs

i ;

• sids
i (“session identifier”) stores the identity of the session as specified by the protocol;

• Pids
i (“peer id”) stores the identity of the intended communication partner;

• Ψs
i ∈ {⊥, accept, reject} indicates whether oracle πs

i has successfully completed the protocol execution
and “accepted” the resulting key;

• ks
i stores the session key computed by πs

i ;

• states
i holds the (secret) session-state values and intermediary results required by the session;

• roles
i ∈ {⊥, init, resp} indicates πs

i ’s role during the protocol execution.

For each oracle πs
i , these variables, except the randomness, are initialized to ⊥. An AKE protocol is executed

interactively between two oracles. An oracle that first sends a message is called an initiator (role = init)
and a party that first receives a message is called a responder (role = resp). The computed session key is
assigned to the variable ks

i if and only if πs
i reaches the accept state, that is, ks

i ̸= ⊥ ⇐⇒ Ψs
i = accept.

Partnering. To exclude trivial attacks in the security model, we need to define a notion of “partnering” of
two oracles. Intuitively, this dictates which oracles can be corrupted without trivializing the security game.
We define the notion of partnering via session-identifiers following the work of [23, 33]. Discussions on other
possible choices of the definition for partnering is provided in Section 3.5.

Definition 3.1 (Partner Oracles). For any (i, j, s, t) ∈ [µ]2 × [ℓ]2 with i ̸= j, we say that oracles πs
i and

πt
j are partners if (1) Pids

i = j and Pidt
j = i; (2) roles

i ̸= rolet
j; and (3) sids

i = sidt
j.

For correctness, we require that two oracles executing the AKE protocol faithfully (i.e., without adversarial
interaction) derive identical session-identifiers. We also require that two such oracles reach the accept state
and derive identical session keys except with all but a negligible probability. We call a set S ⊆ ([µ]× [ℓ])2 to
have a valid pairing if the following properties hold:

• For all ((i, s), (j, t)) ∈ S, i ≤ j.

• For all (i, s) ∈ [µ]× [ℓ], there exists a unique (j, t) ∈ [µ]× [ℓ] such that i ≠ j and either ((i, s), (j, t)) ∈ S
or ((j, t), (i, s)) ∈ S.

In other words, a set with a valid pairing S partners off each oracle πs
i and πt

j in a way that the pairing is
unique and no oracle is left out without a pair. We define correctness of an AKE protocol as follows.

15

Definition 3.2 ((1− δ)-Correctness). An AKE protocol ΠAKE is (1− δ)-correct if for any set with a valid
pairing S ⊆ ([µ]× [ℓ])2, when we execute the AKE protocol faithfully between all the oracle pairs included in
S, it holds that

(1− δ) ≤ Pr
[

πs
i and πt

j are partners ∧Ψs
i = Ψt

j = accept
∧ks

i = kt
j ̸= ⊥ for all ((i, s), (j, t)) ∈ S

]
,

where the probability is taken over the randomness used in the oracles.

3.2 Security Game
We define the security of an AKE protocol ΠAKE via a game played between an adversary A and a challenger C.
We consider two slightly different variants, each denoted as GweakFS

ΠAKE
(µ, ℓ) and GFS

ΠAKE
(µ, ℓ). The former and

latter capture a weakly and perfect forward secure AKE protocol, respectively. Roughly, when the long-term
secret key is exposed, the former only ensures the security of past sessions where the adversary did not
modify the exchanged messages. In contrast, the latter ensures the security of all past sessions regardless of
the adversary actively modifying the exchanged messages. Further details on the difference are provided in
Section 3.3. Looking ahead, our main AKE protocol in Section 4 achieves perfect forward secrecy and its
variants that satisfy deniability in Section 7 achieve weak forward secrecy.

More formally, the security game is parameterized by two integers µ (the number of honest parties) and ℓ
(the maximum number of protocol executions per party), and proceeds as follows, where the freshness clauses
Item 5a and Item 5b is used to define GFS

ΠAKE
(µ, ℓ) and GweakFS

ΠAKE
(µ, ℓ), respectively:

Setup: C first chooses a challenge bit b ∈ {0, 1} at random. C then generates the public parameter of ΠAKE and
µ long-term key pair {(lpki, lski) | i ∈ [µ]}, and initializes the collection of oracles {πs

i | i ∈ [µ], s ∈ [ℓ]}.
C runs A providing the public parameter and all the long-term public keys {lpki | i ∈ [µ]} as input.

Phase 1: A adaptively issues the following queries any number of times in an arbitrary order:

• Send(i, s, m): This query allows A to send an arbitrary message m to oracle πs
i . The oracle will

respond according to the protocol specification and its current internal state. To start a new oracle,
the message m takes a special form:
⟨START : role, j⟩; C initializes πs

i in the role role, having party Pj as its peer, that is, C sets Pids
i := j

and roles
i := role. If πs

i is an initiator (i.e., role = init), then C returns the first message of the
protocol.12

• RevLTK(i): For i ∈ [µ], this query allows A to learn the long-term secret key lski of party Pi . After
this query, Pi is said to be corrupted.

• RegisterLTK(i, lpki): For i ∈ N \ [µ], this query allows A to register a new party Pi with public key
lpki. We do not require that the adversary knows the corresponding secret key. After the query,
the pair (i, lpki) is distributed to all other oracles. Parties registered by RegisterLTK are corrupted
by definition.

• RevState(i, s): This query allows A to learn the session-state states
i of oracle πs

i . After this query,
states

i is said to be revealed.
• RevSessKey(i, s): This query allows A to learn the session key ks

i of oracle πs
i .

Test: Once A decides that Phase 1 is over, it issues the following special Test-query which returns a real or
random key depending on the challenge bit b.

• Test(i, s): If (i, s) /∈ [µ]× [ℓ] or Ψs
i ̸= accept, C returns ⊥. Else, C returns kb, where k0 := ks

i and
k1←$K (where K is the session key space).

After this query, πs
i is said to be tested.

12Looking ahead, when the first message is independent of party Pj (i.e., C can first create the first message without knowledge
of Pj and then set Pids

i := j), we call the scheme receiver oblivious. See Section 3.4 for more details.

16

Phase 2: A adaptively issues queries as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. At this point, the tested oracle must be fresh. Here, an oracle
πs

i with Pids
i = j13 is fresh if all the following conditions hold:

1. RevSessKey(i, s) has not been issued;
2. if πs

i has a partner πt
j for some t ∈ [ℓ], then RevSessKey(j, t) has not been issued;

3. Pi is not corrupted or states
i is not revealed;

4. if πs
i has a partner πt

j for some t ∈ [ℓ], then Pj is not corrupted or statet
j is not revealed;

5. if πs
i has no partner oracle, then

(a) in game GFS
ΠAKE

(µ, ℓ), Pj is corrupted only after πs
i finishes the protocol execution.

(b) in game GweakFS
ΠAKE

(µ, ℓ), Pj is not corrupted.

If the tested oracle is not fresh, C aborts the game and outputs a random bit b′ on behalf of A.

We say that A wins the game if b = b′. The advantage of A in the security game Gxxx
ΠAKE

(µ, ℓ) for xxx ∈
{weakFS, FS} is defined as

AdvAKE-xxx
ΠAKE

(A) :=
∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ .

Definition 3.3 (Security of AKE Protocol). An AKE protocol ΠAKE is secure with perfect (resp. weak)
forward secrecy if AdvAKE-FS

ΠAKE
(A) (resp. AdvAKE-weakFS

ΠAKE
(A)) is negligible for any QPT adversary A.

3.3 Security Properties
In this section, we explain the security properties captured by our security model. Comparison between other
protocols is deferred to Section 3.5.

The freshness clauses Items 1 and 2 imply that we only exclude the reveal of session keys for the tested
oracle and its partner oracles. These capture key independence: if the revealed session keys are different from
the tested oracle’s key, then such session keys must not enable computing the session key of the tested oracle.
Note that key independence implies resilience to “no-match attacks” presented by Li and Schäge [60]. This is
because revealed keys have no information on the tested oracle’s key. Moreover, the two items capture implicit
authentication between the involved parties. This is because an oracle π that computes the same session key
as the tested oracle but disagrees on the peer would not be a partner of the tested oracle, and hence, an
adversary can obtain the tested oracle’s key by querying the session key computed by π. Specifically, our
model captures resistance to unknown key-share (UKS) attacks [18]: a successful UKS attack is a specific
type of attack that breaks implicit authentication where two parties compute the same session key but have
different views on whom they are communicating with.

The freshness clauses Items 3 to 5 indicate that the game allows the adversary to reveal any subset of the
four secret items of information — the long-term secret keys and the session-states of the two parties (where
one party is the party defined by the tested oracle and the other its peer) — except for the combination
where both the long-term secret key and session-state of one of the party is revealed. In particular, Item 5a
captures perfect forward secrecy [35, 23]: the adversary can obtain the long-term secret keys of both parties
once the tested oracle finishes the protocol and generates a session key. On the other hand, Item 5b captures
weak forward secrecy [55]: the adversary can obtain the long-term secret keys of both parties only when it has
been passive during the protocol run of the tested oracle. In other words, if an adversary is active (i.e., inject
malicious messages) during the protocol execution and further corrupts both long-term secret keys after the
oracles evaluate some session keys, then the adversary can test the oracle in GFS

ΠAKE
(µ, ℓ), while it cannot in

GweakFS
ΠAKE

(µ, ℓ). Another property captured by our model is resistance to key-compromise impersonation (KCI)
13Note that by definition, the peer id Pids

i of a tested oracle πs
i is always defined.

17

attacks [17]. Recall that KCI attacks are those where the adversary uses a party Pi ’s long-term secret key
to impersonate other parties towards Pi . This is captured by our model because the adversary can learn
the long-term secret key of a tested oracle without any restrictions. Most importantly, our model captures
resistance to state leakage [23, 55, 59, 45] where an adversary is allowed to obtain session-states of both
parties. We point out that our security model is strictly stronger than the recent models [47, 28] that do not
allow the adversary to learn sessions-states. More discussion on state leakage is provided in Section 3.5.

3.4 Property for Signal-Conforming AKE: Receiver Obliviousness
In this work, we care for a specific type of (two-round) AKE protocol that is compatible with the X3DH
protocol [64] used by the Signal protocol [2]. As explained in Section 1.2, the X3DH protocol can be viewed
as a special type of AKE protocol where the Signal server acts as an (untrusted) bulletin board, where parties
can store and retrieve information from. More specifically, the Signal server can be viewed as an adversary
for an AKE protocol that controls the communication channel between the parties. When casting the X3DH
protocol as an AKE protocol, one crucial property is that the first message of the initiator is generated
independently of the communication partner. This is because, in secure messaging, parties are often offline
during the key agreement so if the first message depended on the communication partner, then we must wait
until they come online to complete the key agreement. Since we cannot send messages without agreeing on a
session key, such an AKE protocol where the first message depends on the communication partner cannot be
used as an alternative to the X3DH protocol.

We abstract this crucial yet implicit property achieved by the X3DH protocol as receiver obliviousness. As
noted in Footnote 8, this property has also been called as post-specified peers [24] in the context of Internet
Key Exchange (IKE) protocols.

Definition 3.4 (Receiver Obliviousness / Signal-Conforming). An AKE protocol is receiver oblivious
(or Signal-conforming) if it is two-rounds and the initiator can compute the first-message without knowledge
of the peer id and long-term public key of the communication peer.

Many Diffie-Hellman type AKE protocols (e.g., the X3DH protocol used in Signal and some CSIDH-based
AKE protocols [32, 54]) can be checked to be receiver oblivious.

3.5 Relation to Other Security Models
In the literature of AKE protocols, many security models have been proposed: the Bellare-Rogaway (BR)
model [11], the Canetti-Krawczyk (CK) model [23], the CK+ model [55, 45], the extended CK (eCK)
model [59], and variants therein [31, 6, 47, 28, 50, 51]. Although many of these security models are built based
on similar motivations, there are subtle differences. We point out the notable similarities and differences
between our model and the models listed above.
Long-Term Key Reveal. We first compare the models with respect to the secret information the adversary
is allowed to obtain. All models including ours allow the adversary to obtain the party’s long-term secret key
{lski | i ∈ [µ]}. In some models such as the BR model [11] and its variants (e.g., [6, 47, 28])14, this will be
the only information given to an adversary. Although this may be a restricted model, it often serves as an
initial step in proving the security of an AKE protocol.
Session-State Reveal. We can also consider a stronger and more realistic security model where the
adversary is allowed to obtain the secret session-states of the parties. Unlike a party’s long-term secret key
where the definition is clear from context, the notion of secret session-states is rather unclear, and this is
one of the main reasons for the various incomparable security models. In the original CK model [23], the
session-state can depend arbitrarily on the long-term secret and the randomness used by the party. More
formally, using the terminology from Section 3.1, an adversary can query an oracle πs

i for a secret session-state
f(lski, rands

i) for an arbitrary function f , where rands
i is the randomness hardwired to the oracle πs

i , and we
14We note that the subsequent variants differ from the original BR model [11] as they also model forward secrecy and KCI

attacks.

18

say the AKE protocol is secure with respect to the session-state defined by f .15 The eCK model [59] and
the CK+ model [55, 45] made the CK model more accessible by only considering a specific but natural set
of functions.16 The eCK model defines the secret session-state as the randomness used by the oracle (i.e.,
f(lski, rands

i) := rands
i). On the other hand, the CK+ model defines the session-state to be what we called

session-state in Section 3.1. More specifically, the model allows the adversary to obtain the session-state states
i

(defined at the implementation level) for all oracles except for the tested oracle and allows the adversary
to only obtain the randomness rands∗

i∗ of the tested oracle. As Cremers [29, 30] points out, depending on
how we define the function f , states

i and rands
i , these notions provide incomparable security guarantees. For

instance, we can always artificially modify the scheme so that states
i := rands

i but this usually results in an
unnatural and less efficient implementation. Recent works [50, 51] consider an arguably more simple and
natural definition compared to the CK+ model where the adversary can obtain all the session-state states

i

including the tested oracle. This seems to align with the type of state leakage considered by the double
ratchet protocol and we choose to follow this formalization in our work.
Partnering. Another point of difference is how to define the partnering of two oracles, where recall that this
is used to capture attacks that trivialize the security game. One popular method to define partnering of two
oracles is by the so-called matching conversations used for instance by [11, 55, 45, 59, 31, 6, 28, 50, 51]. As
the name indicates, two oracles are partnered when the input-output (i.e., the conversation between the two
oracles) matches. One benefit of using matching conversations is that they are simple to handle; given a
particular instantiation of an AKE protocol, a matching conversation is uniquely defined. However, it was
recently observed by Li and Schäge [60] that some protocols using matching conversations are vulnerable
against no-match attacks, where two oracles compute the same session key but do not have matching
conversations. A protocol with a no-match attack allows the adversary to trivially win the security game
since it can query the oracle that is not a partner of the tested oracle but computes the same session key as
the tested oracle. It was noted by Li and Schäge that this is only a hypothetical attack that takes advantage
of the security model and has no meaningful consequence in the real-world. Therefore, in this work, we
chose to use a more robust definition based on session-identifiers [23, 33]. Unlike matching conversations,
session-identifiers must be explicitly defined for each AKE protocol and we note that if a session-identifier is
defined to be the concatenation of sent and received messages, then defining partnering via session-identifiers
and matching conversations become equivalent. Finally, we note that Li and Schäge [60] proposed another
method to define partnering called original-key partnering. This has been used in [47]. The original-key of
two oracles is defined as the session key that is computed when the oracles are executed faithfully. Then, in
the security game (i.e., in the presence of an adversary), if two oracles compute their original-key, they are
said to be partners. The original-key partnering is conceptually cleaner but arguably harder to handle since
we need to consider two session keys for each oracle: the original-key and the actual key, in the security game.
Therefore, in this work, we use partnering based on session-identifiers.
Number of Test queries. Finally, we allow the adversary to issue only one Test-query in the security game.
This single-challenge setting has been widely used in the literature. However, recently, in order to evaluate
the tightness of the security proof, [6, 47, 28, 51] consider the multi-challenge setting, where an adversary is
allowed to make multiple Test-queries.

Remark 3.5 (Implicit and Explicit Authentication). Our model captures implicit authentication, where each
party is assured that no other party aside from the intended peer can gain access to the session key. Here,
note that implicit authentication does not guarantee that the intended peer holds the same key. What it
guarantees is that although your intended peer may be computing a different key, that peer is the only
possible party that can have information on your computed session key. On the other hand, the property that
also guarantees that the intended peer has computed the same session key is called explicit authentication. In
(mutual) explicit authentication protocols, if both parties reach the accept state, then they are guaranteed
to share the same session key. In practice, the distinction between implicit and explicit authentication is a

15Note that the meaning of the session-state is different from those we defined in Section 3.1 (i.e., states
i). In the CK model, a

“session-state” is only defined in the security model and does not capture the states
i specified by the implementation.

16These variants also strengthen the CK model by allowing the adversary to obtain the session-state of the tested oracle and
further modeling KCI attacks.

19

Common public parameters: (s, ppKEM, ppwKEM, ppSIG)
Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj , vkj), lskj = (dkj , skj)

(ekT , dkT)← wKEM.KeyGen(ppwKEM)
σi ← SIG.Sign(ski, ekT)
statei := dkT

K← KEM.Decap(dki, C)
KT ← wKEM.Decap(dkT , CT)
K1 ← Exts(K); K2 ← Exts(KT)
sidi := Pi∥Pj∥lpki∥lpkj∥ekT ∥C∥CT

ki∥k̃ ← FK1 (sidi)⊕ FK2 (sidi)

σj ← c⊕ k̃

SIG.Verify(vkj , sidi, σj) ?= 1
Output the session key ki

ekT , σi

C, CT , c

SIG.Verify(vki, ekT , σi)
?= 1

(K, C)← KEM.Encap(eki)
(KT , CT)← wKEM.Encap(ekT)
K1 ← Exts(K); K2 ← Exts(KT)
sidj := Pi∥Pj∥lpki∥lpkj∥ekT ∥C∥CT

kj∥k̃ ← FK1 (sidj)⊕ FK2 (sidj)
σj ← SIG.Sign(skj , sidj)

c← σj ⊕ k̃

Output the session key kj

Figure 2: Our Signal-conforming AKE protocol ΠSC-AKE.

minor issue since we can always add a key confirmation step to enhance an implicit authentication AKE
protocol into an explicit one [78, 28, 33]. For instance, we can send an encrypted message or a MAC tag
under the established session key to check if the peer computed the same key without compromising security.
In the context of Signal, the double ratchet protocol that comes after the X3DH protocol can be viewed as
adding an explicit authentication step.

4 Generic Construction of Signal-Conforming AKE ΠSC-AKE

In this section, we propose a Signal-conforming AKE protocol ΠSC-AKE that can be used to construct a
Signal’s initial key agreement (Signal handshake) protocol such as the X3DH protocol. Unlike the X3DH
protocol, our protocol can be instantiated from post-quantum assumptions, and moreover, it also provides
stronger security against state leakage. The protocol description is presented in Figure 2. Details follow.
Building Blocks. Our Signal-conforming AKE protocol ΠSC-AKE consists of the following building blocks.

• ΠKEM = (KEM.Setup, KEM.KeyGen, KEM.Encap, KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-high
ciphertext min-entropy.

• ΠwKEM = (wKEM.Setup, wKEM.KeyGen, wKEM.Encap, wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1−δwKEM)-correctness, νwKEM-high encapsulation
key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of presentation
and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

• ΠSIG = (SIG.Setup, SIG.KeyGen, SIG.Sign, SIG.Verify) is a signature scheme that is EUF-CMA secure and
(1− δSIG)-correctness. We denote d as the bit length of the signature generated by SIG.Sign.

• F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space FK.

• Ext : S × KS → FK is a strong (γKEM, εExt)-extractor.

20

Public Parameters. All the parties in the system are provided with the following public parameters as
input: (s, ppKEM, ppwKEM, ppSIG). Here, s is a random seed chosen uniformly from S for the strong randomness
extractor, and ppX for X ∈ {KEM, wKEM, SIG} are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ← KEM.KeyGen(ppKEM) and
(vki, ski)← SIG.KeyGen(ppSIG). Party Pi ’s long-term public key and secret key are set as lpki = (eki, vki) and
lski = (dki, ski), respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πs

i) and responder Pj in the
t-th session (i.e., πt

j) is executed as in Figure 2. More formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT , ekT) ← wKEM.KeyGen(ppwKEM) and
σi ← SIG.Sign(ski, ekT). Then it sends (ekT , σi) to party Pj . Pi stores the ephemeral decapsulation key
dkT as the session-state, i.e., states

i := dkT .17

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving (ekT , σi), Pj first checks whether
SIG.Verify(vki, ekT , σi) = 1 holds. If not, Pj sets (Ψj , kt

j , statej) := (reject,⊥,⊥) and stops. Oth-
erwise, it computes (K, C) ← KEM.Encap(eki) and (KT , CT) ← wKEM.Encap(ekT). Then Pj de-
rives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then defines the session-identifier as
sidt

j := Pi∥Pj∥lpki∥lpkj∥ekT ∥C∥CT and computes kj∥k̃ ← FK1(sidj)⊕ FK2(sidj), where kj ∈ {0, 1}κ and
k̃ ∈ {0, 1}d, and sets the session key as kt

j := kj . Pj then signs σ ← SIG.Sign(skj , sidt
j) and encrypts it

as c ← σ ⊕ k̃. Finally, it sends (C, CT , c) to Pi and sets Ψj := accept. Here, note that Pj does not
require to store any session-state, i.e., statet

j = ⊥.

3. Upon receiving (C, CT , c), Pi first decrypts K← KEM.Decap(dki, C) and KT ← wKEM.Decap(dkT , CT),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then sets the session-identifier as
sids

i := Pi∥Pj∥lpki∥lpkj∥ekT ∥C∥CT and computes ki∥k̃ ← FK1(sidi)⊕ FK2(sidi), where ki ∈ {0, 1}κ and
k̃ ∈ {0, 1}d. Pi then decrypts σ ← c⊕ k̃ and checks whether SIG.Verify(vkj , sids

i , σ) = 1 holds. If not,
Pi sets (Ψi, ks

i , statei) := (reject,⊥,⊥) and stops. Otherwise, it sets (Ψi, ks
i , statei) := (accept, ki,⊥).

Here, note that Pi deletes the session-state states
i = dkT at the end of the key exchange.

Remark 4.1 (A Note on Session-State). The session-state of the initiator Pi contains the ephemeral decryption
key dkT , and Pi must store it until the peer responds. Any other information that is computed after receiving
the message from the peer is erased after the session key is established. In contrast, the responder Pj has no
session-state because the responder directly computes the session key after receiving the initiator’s message
and does not need to store any session-specific information. That is, all states can be erased as soon as the
session key is computed.

Security. The following theorems establish the correctness and security of our protocol ΠSC-AKE.

Theorem 4.2 (Correctness of ΠSC-AKE). Assume ΠKEM and ΠwKEM are (1 − δKEM)-correct and ΠSIG is
(1− δSIG)-correct. Then, ΠSC-AKE is (1− µℓ(δSIG + 2δKEM)/2)-correct.

Proof. It is clear that an initiator oracle and a responder oracle become partners when they execute the protocol
faithfully. Moreover, if no correctness error occurs in the underlying KEM and signature scheme, the partner
oracles compute an identical session key. Since each oracle is assigned to uniform randomness, the probability
that a correctness error occurs in one of the underlying schemes is bounded by δSIG + 2δKEM. Since there are
at most µℓ/2 responder oracles, the AKE protocol is correct except with probability µℓ(δSIG + 2δKEM)/2.

Theorem 4.3 (Security of ΠSC-AKE). For any QPT adversary A that plays the game GFS
ΠSC-AKE

(µ, ℓ) with µ
parties that establishes at most ℓ sessions per party, there exist QPT algorithms B1 breaking the IND-CPA

17Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.

21

Strategy Role of tested oracle Partner oracle lskinit stateinit lskresp stateresp

Type-1 init or resp Yes ✓ ✗ ✓ ✗
Type-2 init or resp Yes ✓ ✗ ✗ ✓
Type-3 init or resp Yes ✗ ✓ ✓ ✗
Type-4 init or resp Yes ✗ ✓ ✗ ✓
Type-5 init No ✓ ✗ ✗ -
Type-6 init No ✗ ✓ ✗ -
Type-7 resp No ✗ - ✓ ✗
Type-8 resp No ✗ - ✗ ✓

Table 1: The strategy taken by the adversary in the security game when the tested oracle is fresh. “Yes” means
the tested oracle has some (possibly non-unique) partner oracles and“No” means it has none. “✓” means the
secret-key/session-state is revealed to the adversary, “✗” means the secret-key/session-state is not revealed. “-” means
the session-state is not defined.

security of ΠwKEM, B2 breaking the IND-CCA security of ΠKEM, B3 breaking the EUF-CMA security of ΠSIG,
and D1 and D2 breaking the security of PRF F such that

AdvAKE-FS
ΠSC-AKE (A) ≤max


µ2ℓ2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2ℓ · (AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt) + µℓ2 ·
(

1
22χKEM + 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG (B3),


+ µℓ

2 · (δSIG + 2δKEM),

where νKEM (resp. χKEM) is the encapsulation key (resp. ciphertext) min-entropy of ΠwKEM and ΠKEM. The
running time of B1, B2, B3, D1, and D2 are about that of A.

The full proof of Theorem 4.3 can be found in Appendix A. Here, we provide an overview of the proof.

Proof sketch. Let A be an adversary that plays the security game GFS
ΠSC-AKE

(µ, ℓ). We distinguish between all
possible strategies that can be taken by A. Specifically, A’s strategy can be divided into the eight types of
strategies listed in Table 1. Here, each strategy is mutually independent and covers all possible (non-trivial)
strategies. We point out that for our specific AKE construction we have stateresp := ⊥ since the responder
does not maintain any states (see Remark 4.1). Therefore, the Type-1 (resp. Type-3, Type-7) strategy is
strictly stronger than the Type-2 (resp. Type-4, Type-8) strategy. Concretely, for our proof, we only need to
consider the following four cases and to show that A has no advantage in each case: (a) A uses the Type-1
strategy; (b) A uses the Type-3 strategy; (c) A uses the Type-5 or Type-6 strategy; (d) A uses the Type-7
strategy.

In cases (a) and (b), the session key is informally protected by the security properties of KEM, PRF,
and randomness extractor Ext. In case (a), since the ephemeral decapsulation key dkT is not revealed, KT

is indistinguishable from a random key due to the IND-CPA security of ΠwKEM. On the other hand, in case
(b), since the initiator’s decapsulation key dkinit is not revealed, K is indistinguishable from a random key
due to the IND-CCA security of ΠKEM. Here, we require IND-CCA security because there are initiator oracles
other than the tested oracle that uses dkinit, which the reduction algorithm needs to simulate. This is in
contrast to case (a) where dkT is only used by the tested oracle. Then, in both cases, since either KT or K
has sufficient high min-entropy from the view of the adversary, Ext on input KT or K outputs a uniformly
random PRF key. Finally, we can invoke the pseudo-randomness of the PRF and argue that the session key
in the tested oracle is indistinguishable from a random key.

In cases (c) and (d), the session key is informally protected by the security property of the signature
scheme. More concretely, in both cases, the peer’s signing key sk of the tested oracle is not revealed when the
tested oracle runs the protocol. Thus, due to the EUF-CMA security of ΠSIG, A cannot forge the signature for
the session-identifier of the tested oracle sidtest (in case (c)) or for the ephemeral encapsulation key ekT (in

22

Alice

Bob

Charlie

mA,1

mB

mA,2

mC

(a) AKE protocol

á
Server

mA,1, mA,2

. .

á

mA,1

m′
B

mA,2

m′
C

. .

á
m′

B , m′
C

(b) Signal handshake as secure as
AKE protocol but with large over-
head (not used by the Signal app)

á
mA

. .

á

mA

m′′
B

mA

m′′
C

. .

á
m′′

B , m′′
C

(c) Signal handshake slightly weaker
compared to AKE protocol but with
small overhead (used by the Signal
app)

Figure 3: Comparison of the message flow of an AKE protocol (left) and that of a Signal handshake (center
and right). The center protocol is more secure than the right protocol, while the right protocol is storage and
bandwidth efficient compared to the center. The implemented Signal protocol uses the right protocol.

case (d)). In addition, since the tested oracle has no partner oracles, no oracle ever signs sidtest (in case (c))
or ekT (in case (d)). Therefore, combining these two facts, we conclude that the tested oracle cannot be in
the accept state unless A breaks the signature scheme. In other words, when A issues Test-query, the tested
oracle always returns ⊥. Thus, the session key of the tested oracle is hidden from A.

5 Post-Quantum Signal Handshake
In this section, we provide a concrete discussion on how to turn our Signal-conforming AKE protocol ΠSC-AKE
into a post-quantum Signal handshake protocol. Our protocol can be used as a simple drop-in for the current
X3DH protocol as a post-quantum secure replacement.

5.1 Signal Handshake From Signal-conforming AKE protocol
We first explain how to obtain a Signal handshake (i.e., Signal’s initial key agreement protocol) from a
Signal-conforming AKE protocol. Figure 3a depicts the message flow in AKE protocols. If Alice wants to
share session keys with Bob and Charlie respectively, she sends the first message mA,1 (resp. mA,2) to Bob
(resp. Charlie). On receiving the message, Bob and Charlie return the second message mB and mC to Alice
respectively, and she derives the session keys. In AKE protocols, each party communicates synchronously
and the communicating parties are online at the same time.

In contrast, in secure messaging, parties are not always online, and even more, the communicating partner
may be unknown at the time of registration. Therefore, we need a mechanism that allows parties to start
communication even when the partners are offline and undefined. Signal handshake realizes an asynchronous
and anonymous communication by using a possibly untrusted server (see Figure 3b). In its most secure
version (which is not used by the Signal app), if Alice anticipates communicating with at most two parties,

23

she first uploads two first messages mA,1 and mA,2 of the AKE protocol to the server and goes offline. She
will replenish the first messages on the server periodically so that the server does not use up all the first
messages. Since Alice does not know who will use the first messages in this case, only Signal-conforming
AKE protocols (i.e., two-round and the first message can be generated independently of the responder) can
be used for the Signal handshake. Next, if Bob wants to share a session key with Alice, he accesses the server
and receives the unused mA,1. Then, Bob computes the session key and uploads the second message m′

B . If
Charlie also exchanges a session key with Alice, he executes the protocol in the same way as Bob, using a
different unused first message mA,2. Finally, when Alice comes online, she downloads the second messages
m′

B and m′
C from the server and derives the session keys between Bob and Charlie. In this way, parties can

exchange session keys asynchronously. Moreover, the Signal handshake in Figure 3b can be shown to be as
secure as the underlying AKE protocol. This is because we can view the server as a person-in-the-middle
adversary in AKE protocols, and AKE protocols are defined to be secure against such adversaries.

Although secure, the downside of this approach is that Alice must upload as many first messages as the
number of parties she anticipates communicating with. To reduce storage overhead, the Signal protocol reuses
the first message for multiple key exchange sessions (see Figure 3c). Alice uploads one first message mA to
the server, and periodically updates it, e.g., once a week or once a month. Bob and Charlie exchange session
keys with Alice using the same first message mA. Effectively, both the party’s and server’s storage overhead
are reduced. The downside of reusing the first message is that it may make the protocol less secure compared
to the underlying AKE protocol with the cost of better storage size. For example, if an adversary obtains the
randomness used to generate mA, depending on the underlying AKE protocol, it may expose both session
keys exchanged between Bob and Charlie. In contrast, if the first message was not reused, then the security
of the AKE protocol guarantees that an adversary can recover only the session key that used mA. A more
detailed discussion on the side effect of reusing the first message in our Signal handshake is provided next.

5.2 Details of Our Post-Quantum Signal Handshake
We provide the details of our post-quantum Signal handshake based on our Signal-conforming AKE protocol
ΠSC-AKE. Unlike the X3DH protocol, our protocol can be made post-quantum by choosing appropriate
post-quantum building blocks. The protocol description is presented in Figure 4.

As explained in the previous section, parties communicate with each other with the help of the server
and reuse the first messages of the AKE protocol for a certain interval (see Figure 3c). First, Alice and
Bob generate their long-term keys lpkA and lpkB, respectively, and register them to the server (see the top
of Figure 4). Note that parties upload their long-term keys only once. As in the Signal app, we assume
the validity of the long-term keys are checked between the parties by some “out-of-bound” authentication
mechanism (see [64, Section 4.1]). Next, Alice uploads a first message of the AKE protocol: an encapsulation
key ekT (called signed pre-key in the Signal white paper [64]) along with a signature σA (called pre-key
signature in the Signal white paper [64]) to the server (see the center of Figure 4)18. The signed pre-key
is reused for multiple key exchange sessions and is updated at some interval (e.g. once a week or once a
month). Finally, when Bob wants to communicate with Alice, he accesses the server and downloads Alice’s
long-term key and signed pre-key (lpkA, ekT , σA). Then, he runs the AKE protocol of the responder’s part
and uploads the response message (C, CT , c) to the server. Finally, when Alice comes online, she downloads
the long-term key and the response message from Bob and derives the shared initial secret (see the bottom of
Figure 4). It is clear that if the signed pre-keys are not reused, then the protocol is secure as the underlying
Signal-conforming AKE protocol.

Let us discuss the security implication of reusing signed pre-keys. It is clear that it seems insecure to reuse
the signed pre-keys compared to not reusing them. The question is, to what extent are they insecure? In our
post-quantum Signal handshake, multiple session keys are exchanged using the same pair of long-term key and
signed pre-key. We first argue that, if either the long-term key or the signed pre-key are not leaked, then the
exchanged keys remain secure. Our security model (defined in Section 3) guarantees that the session key of
oracle π is secure even if an adversary forwards the first message, i.e., a signed pre-key and pre-key signature,

18Unlike in the figure, the signed pre-key and pre-key signature are uploaded by all the parties and not only by Alice.

24

Common public parameters: (s, ppKEM, ppwKEM, ppSIG)

Alice (Initiator) Server Bob (Responder)

lskA = (dkA, skA),
lpkA = (ekA, vkA)
Upload lpkA to server

lpkA

long-term key
lpkB

long-term key
lskB = (dkB, skB),
lpkB = (ekB, vkB)
Upload lpkB to server

. .

(ekT , dkT)←
wKEM.KeyGen(ppwKEM)

σA ← SIG.Sign(skA, ekT)
Store ekT , dkT

Upload ekT , σA to server

ekT , σA

signed pre-key and
pre-key signature

Store
(Alice,

(lpkA, ekT , σA))

. .

Fetch
((Alice, Bob), (lpkB, C, CT , c))

K← KEM.Decap(dkA, C)
KT ← wKEM.Decap(dkT , CT)
K1 ← Exts(K); K2 ← Exts(KT)

kA∥k̃ ← FK1 (sid)⊕ FK2 (sid)

σ ← c⊕ k̃

SIG.Verify(vkB, sid, σ) ?= 1
Output the session key kA

lpkB, C, CT , c Store
((Alice, Bob),
(lpkB, C, CT , c))

lpkA, ekT , σA

C, CT , c

Fetch
(Alice, (lpkA, ekT , σA))

SIG.Verify(vkA, ekT , σA) ?= 1
(K, C)← KEM.Encap(ekA)
(KT , CT)← wKEM.Encap(ekT)
K1 ← Exts(K); K2 ← Exts(KT)

kB∥k̃ ← FK1 (sid)⊕ FK2 (sid)
σ ← SIG.Sign(skB, sid)

c← σ ⊕ k̃

Upload C, CT , c to server
Output the session key kB

Figure 4: Post-quantum Signal handshake protocol based on our Signal-conforming AKE protocol ΠSC-AKE
that reuses the same first message (i.e., signed pre-key and pre-key signature). The session identifier is defined
as sid := A∥B∥lpkA∥lpkB∥ekT ∥C∥CT . Alice and Bob only need to upload their long-term (public) keys to the
server once, and the signed pre-key and pre-key signature are reused by multiple responders throughout some
interval.

25

generated by oracle π, to multiple responder oracles and obtains at most one of the two KEM keys include in
the long-term key or the signed pre-key used by π. This attack captures the scenario where a party sends
the same first message to multiple responders, i.e., reuses its signed pre-key. Therefore, our post-quantum
Signal handshake is as secure as a variant that never reuses a signed pre-key (i.e., our Signal-conforming AKE
protocol) as long as one of the long-term key or the signed pre-key are not leaked. The distinction between
our post-quantum Signal handshake and our Signal-conforming AKE protocol becomes clear when both the
long-term key and the signed pre-key are leaked. Observe that once both keys are leaked, the adversary
can compute all session keys that were exchanged using them. In other words, the number of session keys
that are compromised is the same as the number of times the signed pre-key was reused. Thus, the Signal
handshake is less secure than the underlying AKE protocol since the number of session keys that are exposed
is larger when both the long-term key and the signed pre-key are leaked. To mitigate the number of exposed
session keys, those parties looking for better security can use signed pre-keys only once or add a so-called
one-time pre-key in the first message (i.e., an additional non-signed one-time KEM key). This is exactly what
the Signal app does. In this case, even if all the KEM keys used in a specific session are leaked, an adversary
can not compute the session keys of the other sessions since a different KEM key is used for each session.
Thus, this mitigation can be used to enhance the security in a scenario where the long-term key and the
signed pre-key are both exposed but the one-time pre-key is not.

6 Instantiating Post-Quantum Signal Handshake
In this section, we present the implementation details of our post-quantum Signal handshake protocol
presented in Figure 4. We take existing implementations of post-quantum KEMs and signature schemes
submitted for the NIST PQC standardization. To instantiate our Signal handshake, we pair variants of
KEMs and signature schemes corresponding to the same security level. We consider security levels 1, 3 and
5 as defined by NIST for the PQC standardization. With more than 20 variants of KEM and 14 variants
of signature schemes, we can create at least 93 different instantiations19 of post-quantum Signal handshake
protocols. The provided implementation simulates post-quantum, weakly deniable authenticated key exchange
between two parties. We study the efficiency of our instantiations through two metrics — the total amount
of data exchanged between parties and run-time performance. Our implementation [57] is available in the
form of open-source software.

6.1 Instantiation details
Our implementation is instantiated with the following building blocks:

• s: (pseudo)-randomly generated 32 bytes of data calculated at session initialization phase,

• Exts: uses HMAC-SHA256 as a strong randomness extractor. As an input message, we use a key K/KT

prepended with byte 0x02 which works as a domain separator (since we also use HMAC-SHA256 as a
PRF). Security of using HMAC as a strong randomness extractor is studied in [43],

• PRF: uses HMAC-SHA256 as a PRF. The session-specific sid is used as an input message to HMAC,
prepended with byte 0x01. An output from Exts is used as a key. Security of using HMAC as a PRF is
studied in [7, 8],

• b: equals the security level of the underlying post-quantum KEM scheme, where b ∈ {128, 192, 256},

• d: equals the byte length of the signature generated by the post-quantum signature scheme ΠSIG,

• ΠKEM, ΠwKEM, ΠSIG: the implementation uses pairs of KEM and signature schemes. The list of the
schemes used can be found in Table 2. We always use the same KEM scheme for ΠKEM and ΠwKEM.

26

NIST
security level KEM Signature

1
SABER, CLASSIC-MCELIECE, KYBER, NTRU

HQC, SIKE, FRODOKEM
RAINBOW, FALCON, DILITHIUM

SPHINCS†

3
SABER,NTRU‡, CLASSIC-MCELIECE, KYBER,

HQC, FRODOKEM
DILITHIUM, RAINBOW

SPHINCS†

5
SABER, CLASSIC-MCELIECE, NTRU, KYBER

FRODOKEM, HQC
FALCON, RAINBOW,DILITHIUM

SPHINCS†

Table 2: Considered KEM and signature schemes under NIST security level 1, 3, and 5. †: Use two SPHINCS
instantiations with different hash functions. ‡: Use two NTRU instantiations with different parameter sets.

At a high level, the implementation is split into 4 main parts. A setup phase, where both parties
perform long-term key generation and initialization of required during memory benchmarking. The session
establishment phase implements an initiator’s signed pre-key generation (the offer function), the responder’s
session key generation (accept function), and initiator’s session key generation (finalize function), which
finalizes session establishment resulting in session key. To evaluate the cost of our post-quantum Signal
handshake, we instantiate the protocol with KEM and signature schemes from Table 2.

The concrete implementation of post-quantum schemes is provided by PQ Crypto Catalog library [58],
which is a collection of implementations submitted to NIST PQC standardization process. We also use
LibTomCrypt library [1] which provides an implementation of the building blocks HMAC, HKDF and SHA-256.
We note that we use portable C code implementations of schemes, which do not include platform specific
optimizations. There are two reasons for such a choice. First, our goal was to show the expected results on
a broad number of platforms. Second, the PQ Crypto Catalog library does not provide hardware-assisted
optimizations for all schemes, hence enabling those optimizations only for some algorithms would result in
unfair comparison.

6.2 Efficiency Analysis
In this subsection, we provide an assessment of the costs related to running the concrete instantiation of the
post-quantum Signal handshake.

To properly assess the cost, we modeled a scenario according to Figure 4. Namely, two parties try to
establish a session key. Alice (the initiator) and Bob (the responder) generate and make their long-term public
keys (lpkA, lpkB) available to others. Alice then generates her signed pre-key ekT and creates her pre-key
signature σA by signing it. The pair (ekT , σA) is also uploaded to the publicly accessible server. Bob retrieves
the pre-key bundle (lpkA, ekT , σA) and uses it to perform his part of the session establishment. Namely, Bob
generates the triple (C, CT , c) and makes it available for Alice to download from the server. Once Alice
comes online, she downloads the session initialization bundle from Bob together with his long-term key, lpkB.
She then finalizes the process by computing the session key on her side. Note that in the Signal protocol,
long-term public keys lpk are fetched from the server. Parties do not store the keys lpk corresponding to
those that they have not communicated with before.20

We provide three metrics:

• Data transfer cost: the amount of data exchanged when two parties establish a session key.

• Storage cost: the amount of data that needs to be stored on the server to allow a session establishment
between parties.

19In Table 2, pairing KEMs and signatures schemes with the same NIST security level yields 7× 5 + 7× 4 + 6× 5 = 93 distinct
combinations (some schemes offer multiple instantiations at a given NIST level).

20The X3DH protocol assumes the parties authenticate the long-term public keys through some authenticated channel [64,
Section 4.1].

27

• Computational cost: the number of CPU cycles spent in computation during session establishment by
both parties.

Cost analysis for each metric is provided separately.
Data Transfer Cost. Table 3 provides the selected results for Round 3 candidates of the NIST PQC
standardization process.21 The lpk column contains the byte size of a long-term key. The following four
columns contain the byte size of the data exchanged by the initiator, the server and the responder during
a session key establishment (as per Figure 4). Finally, the column Total contains the total size of data
exchanged between Alice and Bob.

From Table 3, we can conclude that the transfer cost for Falcon512 paired with SIKEp434 is the order of
magnitude lower than in the case of the other two pairs. Also, the small size of the Falcon public key and
signature size makes it an attractive choice for the signature scheme in the case of that particular application.

Note that the long-term public keys (lpk) are uploaded to the server only once by each party (initiator
and responder), hence the cost of uploading them is probably negligible for most applications. To further
minimize the transfer cost, some implementations may decide to use caching mechanisms, meaning long-term
keys are downloaded only once and cached locally. In this case, the validity of the key may be checked by
hashing the lpkA at both sides and comparing the hash values. In this case, Bob sends a hash of cached
lpkA when requesting the pre-key bundle, the server compares hashes and depending on the result of such
comparison sends a response either with long-term keys or without.

Remark 6.1 (Note on Low Quality Network Links). We anticipate the Signal handshake to be used with
handheld devices and areas with a poor quality network connection. In such cases, larger key, ciphertext and
signature sizes generated may negatively impact the quality of the connection. Network packet loss is an
additional factor that should be considered when choosing schemes for concrete instantiation.

Data on the network is exchanged in packets. The maximum transmission unit (MTU) defines the maximal
size of a single packet, usually set to 1500 bytes. Ideally, the size of data sent between participants in a single
pass is less than MTU. Network quality is characterized by a packet loss rate. When a packet is lost, the
TCP protocol ensures that it is retransmitted, where each retransmission causes a delay. A typical data loss
on a high-quality network link is below 1%, while data loss on a mobile network depends on the strength of
the network signal.

Depending on the scheme used, an increased packet loss may negatively impact session establishment time
(see [66]). For example, a scheme instantiated with Falcon512 paired with Saber Light requires exchange
of npacks = 7 packets over the network, where instantiation with SPHINCS-SHAKE256-128f-simple paired
with Saber Light requires 27 packets. Assuming increased packet rate loss of 2%, the probability of losing a
packet in the former case is 1− (1− rate)npacks = 13%, where in the latter it is 42%. In the latter case, at
the median, every third session key establishment will experience packet retransmission and hence a delay.

Storage Cost. The Signal handshake protocol assumes the usage of an intermediate server during session
key establishment. This allows parties to be offline during the establishment. The server stores long-term
keys of each party uploaded during registration, signed pre-keys and pre-key signatures needed to initiate
session establishment, as well as data generated during session establishment. Hence, it is important to
correctly assess the amount of storage required.

The cost can be split into two parts. One part contains storage of the long-term key lpk and signed pre-key
pair (ekT , σA). The latter is updated on regular basis, but the server always stores one signed pre-key, hence
that cost is constant and depends on the number of parties registered. The second part of the cost is data
produced during session establishment, namely triple (C, CT , c) uploaded by the receiver. It is a variable
cost, as data can be deleted from the server as soon as the initiator downloads it to finalize the session
establishment.

Table 4 shows the split between both costs for a selected number of post-quantum schemes. We can see
that to reduce the storage cost, it is beneficial to pair Falcon with SIKE for security levels 1 and 5 and
Dilithium with NTRU for security level 3. In some applications, it could be interesting to reduce only the

21The results for all 93 instantiations can be found in the repository containing the implementation [57].

28

Scheme lpk I→S S→R R→S S→I Total
NIST security level 1

Falcon512/Saber Light 1569 1362 2931 2162 3731 10186
Falcon512/SIKEp434 1227 1020 2247 1382 2609 7258
Dilithium2/NTRU hps2048509 2011 3119 5130 3818 5829 17896
SPHINCS-SHAKE256-128f-s/Saber Light 704 17760 18464 18560 19264 74048

NIST security level 3

Dilithium3/NTRU hps2048677 2882 4223 7105 5153 8035 24516
Dilithium3/Saber 2944 4285 7229 5469 8413 25396
Rainbow III/McEliece460896 1406240 524324 1930564 540 1406780 3862208
SPHINCS-SHAKE256-192f-s/Kyber768 1232 36848 38080 37840 39072 151840

NIST security level 5

Falcon1024/NTRU hps4096821 3023 2560 5583 3790 6813 18746
Falcon1024/Saber Fire 3105 2642 5747 4274 7379 20042
SPHINCS-SHAKE256-256f-s/Saber Fire 1376 51168 52544 52800 54176 210688

Table 3: Data transfer cost in bytes of Figure 4 instantiated with various post-quantum schemes. We use the
following abbreviations: I = Initiator, S = Server, R = Responder. Note that:
(a) (S→R) – (I→S) = (S→I) – (R→S) = lpk.
(b) Total := (I→S) + (S→R) + (R→S) + (S→I).

variable cost. In that case, instantiation can use Rainbow and McEliece pair of algorithms at a higher cost of
long-term key storage.

Scheme Data per user Data per session
NIST security level 1

Falcon512/Saber Light 2931 2162
Falcon512/SIKEp434 2247 1382
Dilithium2/NTRU hps2048509 2985 2088
SPHINCS-SHAKE256-128f-s/Saber Light 18464 18560

NIST security level 3

Dilithium3/NTRU hps2048677 7105 5153
Dilithium3/Saber 7229 5469
Rainbow III/McEliece460896 1930564 540
SPHINCS-SHAKE256-192f-s/Kyber768 38080 37840

NIST security level 5

Falcon1024/NTRU hps4096821 5583 3790
Falcon1024/Saber Fire 5747 4274
Dilithium5/Kyber1024 10323 7731
SPHINCS-SHAKE256-256f-s/Saber Fire 52544 52800

Table 4: Data storage cost in bytes of Figure 4 instantiated with various post-quantum schemes.

Computational Cost. The computational cost of the protocol depends on the performance of the
cryptographic primitives used. More precisely, the most expensive operations are those done by the post-
quantum schemes. Our post-quantum Signal handshake performs 9 such operations during a session agreement:
the initiator runs a KEM key generation, two KEM decapsulations, one signature generation and one signature

29

verification, and the responder performs two KEM encapsulations, one signature generation and one signature
verification.

It is important that our post-quantum Signal handshake protocol runs efficiently. But as it is an offline
protocol, the performance is less critical when compared to online protocols (like for example TLS). The
most important difference is that, in the case of Signal handshake, the server does not perform any CPU
heavy operations, the session establishment happens less often and parties perform session establishment
asynchronously when they are online.

The most performance-critical part of the protocol is the final part of session establishment done by the
initiator. At that stage, it may happen that multiple parties request to establish a session with the initiator.
In that case, the initiator downloads multiple (and unknown) triples of (C, CT , c), which then need to be
efficiently processed. Hence, when optimizing for speed the performance of KEM decapsulation and signature
verification is most important.

Table 5 contains the number of CPU cycles spent during session establishment for selected post-quantum
schemes. The 3-way handshake column shows the cost of the whole session establishment, the Finish
column contains the final part of the handshake, performed by the initiator. Presented results exclude the
cost of long-term key (lpk) generation.

The best performance comes from instantiations that use Saber KEM and either Falcon or Dilithium
signature scheme. We see instantiation with SIKE, SPHINCS, Rainbow or McEliece schemes negatively
impacts performance, resulting in orders of magnitude slower execution.

We note that the computational cost is far less absolute as it depends on the concrete implementation of
the post-quantum schemes.

Scheme 3-way handshake Finish
NIST security level 1

Falcon512/Saber Light 3596396 638610
Falcon512/SIKEp434 1803371672 810254556
Dilithium2/NTRU hps2048509 6159630 748797
SPHINCS-SHAKE256-128f-s/Saber Light 256821041 11827077

NIST security level 3

Dilithium3/NTRU hps2048677 11747527 1493656
Dilithium3/Saber 7597588 1476533
Rainbow III/McEliece460896 2798014516 513810164
SPHINCS-SHAKE256-192f-s/Kyber768 710632430 17476256

NIST security level 5

Falcon1024/NTRU hps4096821 12718741 1328866
Falcon1024/Saber Fire 7611706 1417632
Dilithium5/Kyber1024 10576515 1672158
SPHINCS-SHAKE256-256f-s/Saber Fire 1343959982 18091448

Table 5: Computational cost in CPU cycles of Figure 4 instantiated with various post-quantum schemes.
Benchmarking run on the Intel Xeon E3-1220v3 @3.1GhZ with Turbo Boost disabled.

In conclusion. Instantiations of our post-quantum Signal handshake protocol that use Saber as a KEM and
either Falcon or Dilithium as signature scheme seem to be the most promising choice for minimizing transfer
and storage cost and maximizing performance.

Lastly, our implementation is based on open-source libraries. In total, we created 93 instantiations with
different post-quantum schemes. We store the results in the repository containing the implementation [57].
We note that a variety of fine-tuning can be done, leading to different results. For example, one could imagine
a scenario crafted for IoT devices, in which devices are pre-configured to communicate only with selected

30

parties. In such a case, the exchange of long-term keys can be done ahead of time.

7 Adding Deniability to Our Basic Signal-Conforming AKE ΠSC-AKE

In this section, we discuss to what extent our Signal-conforming AKE protocol ΠSC-AKE satisfies deniability
and show how to modify the protocol to satisfy a progressively stronger notion of deniability. We first
motivate what deniability is and then provide an overview of this section.
Difference Between Deniability of an AKE Protocol and The Signal Handshake. Due to the
subtle difference in the model of the standard AKE protocol and the Signal handshake, there is also a subtle
difference in what it means to be deniable. In an AKE protocol, roughly, deniability states that the exchanged
transcript does not leave any trace of the two parties that supposedly communicated with each other. Namely,
both the initiator and responder in Figure 2 should be able to deny the fact that they engaged in a key
exchange protocol. In contrast, in the Signal handshake, we mainly care about the deniability of the responder
(i.e, Bob in Figure 4). This is because the initiator (i.e., Alice in Figure 4) only uploads materials that are
independent of the responder. Specifically, an adversary can at most prove to a third-party that the initiator
was using the Signal app by showing the pre-key signature of the initiator, and nothing more. Therefore, in
the Signal handshake, the main focus is to prevent an adversary from later proving that a certain responder
tried to exchange a key with some (possibly malicious) initiator. In summary, the deniability required by an
AKE protocol is arguably stronger than what is required by the Signal handshake since it also considers the
deniability of the initiator.

That being said, in this section, we mainly focus on the deniability of our AKE protocol rather than the
Signal handshake for three reasons. First, we believe our AKE protocol is interesting even outside the context
of Signal so it is worth investigating what kind of deniability it offers. Second, it is easy to argue deniability
of the Signal handshake once the deniability of the AKE protocol is established since it only consists of
ignoring the deniability of the initiator. Finally, if our AKE protocol (or a variant of it) can be shown to be
deniable, then when viewed as the Signal handshake, we can further show that the initiator can deny the fact
of using the Signal app. Specifically, since the uploaded content of the initiator would also be deniable, it
cannot be used as evidence that the initiator was using the Signal app.
Overview of This Section. We first informally show that our AKE protocol ΠSC-AKE already has a very weak
form of deniability that may be acceptable in some applications. We then show that we can slightly modify
ΠSC-AKE by replacing a standard signature with a ring signature to satisfy a stronger notion of deniability.
Although this satisfies a much stronger notion of deniability compared to our vanilla ΠSC-AKE, it still assumes
the parties follow the protocol description (i.e., honest-but-curious). We discuss in Remark 7.11 why this
notion of deniability can still be insufficient in practice. Finally, we show how to make the protocol even
secure against malicious adversaries that can deviate arbitrarily from the protocol by additionally relying on
NIZKs. As it is common with all deniable AKE protocols22 secure against key-compromise attacks [34, 80, 75],
we rely on strong knowledge-type assumptions, including a variant of the plaintext-awareness (PA) for the
KEM scheme [12, 9, 10].

We note that our protocol is deniable against quantum adversaries when they are limited to be honest-
but-curious. However, we were not able to formally prove if our protocol satisfies deniability against quantum
adversaries taking arbitrary strategies. We believe this is an artifact of the current definition or proof strategy
of deniability and leave it as an interesting open problem to formalize and prove quantum deniability of our
protocol (see Remark 7.4 for more discussion).

Weak Deniability of ΠSC-AKE. Our Signal-conforming AKE protocol ΠSC-AKE already satisfies a very weak
notion of deniability, where the communication transcript does not leave a trace of the responder if the
two parties honestly execute the AKE protocol. Note that it clearly leaves a trace of the initiator since a
signature is included. Concretely, an adversary (e.g., the server) that is passively collecting the communication

22We only consider schemes that are proven secure in the (possibly slight variant of the) deniability framework proposed by
the seminal work of Di Raimondo et al. [34].

31

transcript cannot convince a third-party that some responder tried to communicate with some initiator.
Informally, this can be checked by observing that the message sent from the responder can be simulated
by the adversary on its own. This notion of weak deniability may suffice for some particular settings: only
the deniability of the responder is required; the two engaging parties fully trust each other for the correct
execution of the protocol; and if they can tolerate the assumption that corruption will not occur. For instance,
this includes the Signal handshake setting where the server is trying to provide a proof to a judge that some
responder tried to engage in a conversation with some initiator without the help of either of the parties. Our
protocol will guarantee deniability in such a scenario.

However, in other cases, we may want to guarantee deniability even in the case the communicating peer
may be compromised, or even worse, acting maliciously. In the above example, if the server is colluding with
the initiator of the protocol, then they can provide a proof that the responder wanted to start a conversation
with the initiator by using knowledge of the session key. This is clear from the fact that in our ΠSC-AKE
protocol, the responder generates a signature which nobody else can. Furthermore, in the context of an AKE
protocol, it is also desirable for the initiator to be able to deny the fact that it was trying to engage in a key
exchange protocol with some responder.

We now discuss how to make our protocol satisfy a stronger notion of deniability where both the initiator
and responder can deny even when the communicating peer may be compromised. To this end, we first define
deniability for AKE protocols.

7.1 Definition of Deniability and Tool Preparation
We follow a simplified definition of deniability for AKE protocols introduced in the seminal work by Di
Raimondo et al. [34]. Discussion on the simplification is provided in Remark 7.3. At a high level, if there
exists a simulator SIMM that uses only public information that can produce the same view to an adversary
M that engages in a real AKE protocol with honest parties, then the protocol is deniable. The intuition is
that if such a SIMM exists, then when M presents a protocol transcript as a “proof” that some party was
trying to communicate with it, the party can deny the fact by claiming that the transcript could have been
generated by M running SIMM (that only uses public information).

Let Π be an AKE protocol and KeyGen be the key generation algorithm. That is, for any integer
µ = poly(κ) representing the number of parties in the system, define KeyGen(1κ, µ) → (pp,

−→
lpk,
−→
lsk), where

pp is the public parameter used by the system and −→lpk := {lpki | i ∈ [µ]} and −→lsk := {lski | i ∈ [µ]} are the
corresponding long-term public and secret keys of the µ parties, respectively.

Let M denote an adversary that engages in an AKE protocol with µ-honest parties in the system with
long-term public keys −→lpk, acting as either an initiator or a responder. M may run individual sessions against
an honest party in a concurrent manner and may deviate from the AKE protocol in an arbitrary fashion. The
goal of M is not to impersonate someone to an honest party P but to collect (cryptographic) evidence that
an honest party P interacted withM. Therefore, whenM interacts with P, it can use a (possibly maliciously
generated) long-term public key lpkM that can be either associated to or not to M’s identity. We then define
the view of the adversary M as the entire sets of inputs and outputs of M and the session keys computed
in all the protocols in which M participated with an honest party. Here, we assume in case the session is
not completed by M, the session key is defined as ⊥. We denote this view as ViewM(pp,

−→
lpk,
−→
lsk). Note that

if the session key is deniable, then the subsequent communications (that does not use any long-term keys)
are deemed deniable as well. In other words, if the establishment of the session key is deniable, then any
communications only using that session key between the two parties are deniable as well.

In order to define deniability, we consider a simulator SIM that simulates the view of honest parties (both
initiator and responder) to the adversary M without knowledge of the corresponding long-term secret keys
−→
lsk of the honest parties. Specifically, SIM takes as input all the input given to the adversary M (along with
the description of M) and simulates the view of M with the real AKE protocol Π. We denote this simulated
view as SIMM(pp,

−→
lpk). Roughly, if the view simulated by SIMM is indistinguishable from those generated

by ViewM, then we say the AKE protocol is deniable since M could have run SIMM (which does not take
any secret information as input) to generate its view in the real protocol. Here, unlike the zero-knowledge

32

simulator for NIZKs, the simulator for an AKE protocol must be executable in the real world [67]. More
formally, we have the following.

Definition 7.1 (Deniability). We say an AKE protocol Π with key generation algorithm KeyGen is deniable,
if for any integer µ = poly(κ) and PPT adversary M, there exist a PPT simulator SIMM such that the
following two distributions are (computationally) indistinguishable for any PPT distinguisher D:

FReal := {pp,
−→
lpk, ViewM(pp,

−→
lpk,
−→
lsk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)},

FSim := {pp,
−→
lpk, SIMM(pp,

−→
lpk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)}.

When M is semi-honest (i.e., it follows the prescribed protocol), we say Π is deniable against semi-honest
adversaries. WhenM is malicious (i.e., it takes any efficient strategy), we say Π is deniable against malicious
adversaries.

In the above definition, a semi-honest adversary M is equivalent to an adversary that engages in the
protocol honestly but it may try to learn as much as possible from the messages they receive from other
parties. Semi-honest adversaries are also termed passive since they are only allowed to break security by
observing a view of an honest protocol execution.

Remark 7.2 (Including Public Information and Session Keys). It is crucial that the two distributions FReal and
FSim include the public information (pp,

−→
lpk). Otherwise, SIMM can simply create its own set of (pp′,

−→
lpk′,
−→
lsk′)

and simulate the view to M. However, this does not correctly capture deniability in the real-world since
M would not be able to convince anybody with such a view using public information that it cooked up on
its own. In addition, it is essential that the value of the session key is part of the output of SIMM. This
guarantees that the exchanged contents of the sessions authenticated by the session key can also be denied.

Remark 7.3 (Comparison Between Prior Definition). Our definition is weaker than the deniability notion
originally proposed by Di Raimondo et al. [34]. In their definition, an adversary M (and therefore the
simulator SIMM) is also provided as input some auxiliary information aux that can depend non-trivially on
(pp,
−→
lpk,
−→
lsk). For instance, this allows capturing information that M may have obtained by eavesdropping

on conversations between honest parties (which is not modeled by ViewM). Since our goal is to provide a
preliminary result on the deniability of our protocol, we only focus on the weaker definition where M does
not obtain such auxiliary information. We leave it as future work to prove our protocol deniable in the sense
of Di Raimondo et al. [34].23 We also note that stronger forms of deniability are known and formalized in the
universally composable (UC) model [37, 73, 74], however, AKE protocols satisfying such a strong deniability
notion are known to achieve weaker security guarantees. For instance, as noted in [74], an AKE protocol
cannot be on-line deniable while also being secure against KCI attacks.

Remark 7.4 (Extending to Malicious Quantum Adversaries). We only consider classical deniability in this
work, where the adversary M is restricted to be classical. To be precise, although we are able to easily show
deniability against semi-honest quantum adversaries, we are not able to do so against malicious quantum
adversaries. This is mainly due to the fact that to prove deniability against malicious classical adversaries, we
require a strong knowledge-type assumption (i.e., plaintext-awareness for KEM) that assumes the existence
of an extractor that can invoke an adversary multiple of times on the same randomness. The notion of fixing
a randomness is not well-defined in the quantum setting and rewinding an adversary without disturbing the
adversary’s quantum state is a non-trivial task. We leave it as an interesting problem to formally define a set
of tools that allow to show deniability even against malicious quantum adversaries.

Remark 7.5 (A Note on the Deniability Definition of [21]). After the proceedings version of our paper [49]
appeared, Brendel et al. [21] introduced a new definition of deniability for AKE protocols. Unlike prior

23We observe that although in [34, Definition 2], aux is defined as fixed information that M cannot adaptively choose, their
proof implicitly assumes that aux is sampled adaptively from some distribution dependent on (pp,

−→
lpk,
−→
lsk). Such adaptivity of

aux is necessary to invoke PA-2 security of the underlying encryption scheme in their security proof. We view enhancing the
deniability definition of [34] to capture this adaptivity to be an important future work.

33

definitions for AKE deniability [34, 37, 80, 73, 74, 75], Brendel et al. considers an indistinguishability-based
definition rather than a simulation-based definition. They consider a scenario where all the users honestly
generate their keys and the adversaryM is given the secret keys to all of the users. Informally,M can receive
a transcript by querying the challenge oracle on a pair (I, R), representing the Initiator and Receiver. In one
mode, M is given an honest transcript of a real AKE protocol between I and R. In another mode, M is
given a transcript simulated by a simulator SIM who is only given the secret key of R (i.e., the responder) as
input. An AKE protocol is then said to be deniable if no efficient adversary M can tell apart the two modes.

Other than the fact that their definition is not simulation-based, there are three main differences between
the definition of Brendel et al. and Definition 7.1: (1) the users are assumed to generate their keys honestly;
(2) the adversary M is assumed to remain passive during the execution of the AKE protocol between I and
R; and (3) M is given all the secret keys of the users. Regardless of M being malicious or semi-honest in
Definition 7.1, the definition of Brendel et al. is stronger regarding (3) since the secret keys of the users are
not provided to M in Definition 7.1. On the other hand, Definition 7.1 is always stronger than Brendel et al.
regarding (2) since M is allowed to deviate from the AKE protocol. Finally, when M can act maliciously
in Definition 7.1, it is stronger than Brendel et al. regarding (1) since M can inject malicious keys to the
system. In general, the two definitions are incomparable.

It is not immediately clear what the real-world impact is of whether or not (1), (2), and (3) are satisfied.
In Remark 7.11, we show that if M can register malicious keys, then it can break deniability, thus showing
that deniability under (1) can be insufficient in some practical applications. Put differently, considering only
a semi-honest adversary M in Definition 7.1 or the definition of Brendel et al. may be insufficient. We leave
investigation of the impact of (2) and (3) as an interesting future work.

Required Tools. To argue deniability in the following sections we rely on the following tools: ring signature,
plaintext-aware (PA-1) secure KEM scheme, and a non-interactive zero-knowledge (NIZK) argument. We
use standard notions of ring signatures and NIZK arguments as provided in Sections 2.6 and 2.7. On the
other hand, we use a slightly stronger variant of PA-1 secure KEM schemes than those originally defined in
[12, 9, 10]. Informally, a KEM scheme is PA-1 secure if for any adversaryM that outputs a valid ciphertext C,
there is an extractor ExtM that outputs the associating plaintext K. In our work, we require PA-1 security to
hold even when M is given multiple public keys rather than a single public key [65]. We note that although
Di Raimondo et al. [34] considered the standard notion of PA-1 security in their seminal work on deniability of
AKE protocols, we observe that their proof only works in the case where multiple public keys are considered.
Finally, we further require the extractor ExtM to be efficiently computable given M (which is another subtle
restriction omitted in the definition used in [34]). The formal definition is provided in Section 2.2.

7.2 Deniable Signal-Conforming AKE ΠSC-DAKE against Semi-Honest Adversaries
We provide a Signal-conforming AKE protocol ΠSC-DAKE that is deniable against semi-honest adversaries.
The construction of ΠSC-DAKE is a simple modification of ΠSC-AKE where the initiator no longer signs the first
message and a standard signature is replaced by a ring signature. In the context of the Signal handshake,
this means the initiator no longer uploads a pre-key signature. We show that this modification provides a
secure AKE protocol that has weak forward secrecy as in Definition 3.3. In Remark 7.12, we provide some
discussion on what happens if the initiator signs the first message as in ΠSC-AKE, while the responder uses a
ring signature.

In Section 7.3, we show how to further modify ΠSC-DAKE to a protocol that is deniable even against
malicious adversaries by relying on other tools. The high-level idea presented in this section naturally extends
to the malicious setting.

An overview of ΠSC-DAKE and Π′
SC-DAKE is provided in Figure 5, where the gray and dotted-box components

are only used to obtain deniability against malicious adversaries.

Building Blocks. Our deniable Signal-conforming AKE protocol ΠSC-DAKE against semi-honest adversaries
consists of the following building blocks.

34

Common public parameters: (s, ppKEM, ppwKEM, ppRS , crs)

Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj , vkj), lskj = (dkj , skj)

(ekT , dkT)← wKEM.KeyGen(ppwKEM)

(vkT , skT)← RS.KeyGen(ppRS; randT)

XT ← (ppRS, vkT); WT ← (skT , randT)

πT ← NIZK.Prove(crs, XT , WT)

statei := dkT

K← KEM.Decap(dki, C)
KT ← wKEM.Decap(dkT , CT)
K1 ← Exts(K); K2 ← Exts(KT)
sidi := Pi∥Pj∥lpki∥lpkj∥ekT ∥vkT ∥C∥CT

ki∥k̃ ← FK1 (sidi)⊕ FK2 (sidi)

σ ← c⊕ k̃

RS.Verify({vkT , vkj} , sidi, σ) ?= 1

Output the session key ki

ekT , vkT , πT

C, CT , c

XT ← (ppRS, vkT)

NIZK.Verify(crs, XT , πT) ?= 1

(K, C)← KEM.Encap(eki)
(KT , CT)← wKEM.Encap(ekT)
K1 ← Exts(K); K2 ← Exts(KT)
sidj := Pi∥Pj∥lpki∥lpkj∥ekT ∥vkT ∥C∥CT

kj∥k̃ ← FK1 (sidj)⊕ FK2 (sidj)

σ ← RS.Sign(skj , sidj , {vkT , vkj})

c← σ ⊕ k̃

Output the session key kj

Figure 5: Deniable Signal-conforming AKE protocol ΠSC-DAKE and Π′
SC-DAKE. The initiator no longer signs

the first message and the other components that differ from the non-deniable protocol ΠSC-AKE are indicated
by a box. The protocol with (resp. without) the gray and dotted-box component satisfies deniability against
malicious (resp. semi-honest) adversaries.

35

• ΠKEM = (KEM.Setup, KEM.KeyGen, KEM.Encap, KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-high
ciphertext min-entropy.

• ΠwKEM = (wKEM.Setup, wKEM.KeyGen, wKEM.Encap, wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1−δwKEM)-correctness, νwKEM-high encapsulation
key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of presentation
and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

• ΠRS = (RS.Setup, RS.KeyGen, RS.Sign, RS.Verify) is a ring signature scheme that is anonymous and
unforgeable and assume we have (1− δRS)-correctness. We denote d as the bit length of the signature
generated by RS.Sign.

• F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space FK.

• Ext : S × KS → FK is a strong (γKEM, εExt)-extractor.

Public Parameters. All the parties in the system are provided the following public parameters as
input: (s, ppKEM, ppwKEM, ppRS). Here, s is a random seed chosen uniformly from S, and ppX for X ∈
{KEM, wKEM, RS} are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ← KEM.KeyGen(ppKEM) and
(vki, ski)← RS.KeyGen(ppRS). Party Pi ’s long-term public key and secret key are set as lpki = (eki, vki) and
lski = (dki, ski) , respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πs

i) and responder Pj in the
t-th session (i.e., πt

j) is executed as in Figure 2. More formally, we have the following.

1. Party Pi sets Pids
i := j and roles

i := init. Pi computes (dkT , ekT) ← wKEM.KeyGen(ppwKEM) and
(vkT , skT) ← RS.KeyGen(ppRS), and sends (ekT , vkT) to party Pj . Pi erases the signing key skT and
stores the ephemeral decapsulation key dkT as the session-state i.e., states

i := dkT .24

2. Party Pj sets Pidt
j := i and rolet

j := resp. Upon receiving (ekT , vkT), Pj first computes (K, C) ←
KEM.Encap(eki) and (KT , CT)← wKEM.Encap(ekT) and derives two PRF keys K1 ← Exts(K), K2 ←
Exts(KT). It then defines the session-identifier as sidt

j := Pi∥Pj∥lpki∥lpkj∥ekT ∥vkT ∥C∥CT and computes
kj∥k̃ ← FK1(sidj)⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pj sets the session key as kt

j := kj . Pj

then signs σ ← RS.Sign(skj , sidt
j , {vkT , vkj}) and encrypts it as c← σ⊕ k̃. Finally, it sends (C, CT , c) to

Pi and sets Ψj := accept. Here, note that Pj does not require to store any session-state, i.e., statet
j = ⊥.

3. Upon receiving (C, CT , c), Pi first decrypts K← KEM.Decap(dki, C) and KT ← wKEM.Decap(dkT , CT),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT). It then sets the session-identifier as
sids

i := Pi∥Pj∥lpki∥lpkj∥ekT ∥vkT ∥C∥CT and computes ki∥k̃ ← FK1(sidi)⊕ FK2(sidi), where ki ∈ {0, 1}κ

and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕ k̃ and checks whether RS.Verify({vkT , vkj} , sids
i , σ) = 1

holds. If not, Pi sets (Ψi, ks
i , statei) := (reject,⊥,⊥) and stops. Otherwise, Pi sets (Ψi, ks

i , statei) :=
(accept, ki,⊥). Here, note that Pi deletes the session-state states

i = dkT at the end of the key exchange.

Security. We first check that ΠSC-DAKE is correct and secure as a standard AKE protocol. Since the proof is
similar in most parts to the non-deniable protocol ΠSC-AKE, we defer the details to Appendix B. The main
difference from the security proof of ΠSC-AKE is that we have to make sure that removing the initiator’s
signature only affects forward secrecy, and using a ring signature instead of a standard signature does not allow
the adversary to mount a key-compromise impersonation (KCI) attack (see Section 3.3 for the explanation
on KCI attacks).

Theorem 7.6 (Correctness of ΠSC-DAKE). Assume ΠKEM and ΠwKEM are (1− δKEM)-correct and ΠRS is
(1− δRS)-correct. Then, the Signal-conforming AKE protocol ΠSC-DAKE is (1− µℓ(δRS + 2δKEM)/2)-correct.

24Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.

36

Theorem 7.7 (Security of ΠSC-DAKE). For any QPT adversary A that plays the game GweakFS
ΠSC-DAKE

(µ, ℓ) with
µ parties that establishes at most ℓ sessions per party, there exist QPT algorithms B1 breaking the IND-CPA
security of ΠwKEM, B2 and B4 breaking the IND-CCA security of ΠKEM, B3 breaking the unforgeability of ΠRS,
and D1, . . . ,D3 breaking the security of PRF F such that

AdvAKE-weakFS
ΠSC-DAKE (A) ≤max


µ2ℓ2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2ℓ · (AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt) + µℓ2 ·
(

1
22χKEM + 1

2νKEM

)
,

AdvUnf
RS (B3),

µ2ℓ ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µℓ2 · 1

2χKEM .


+ µℓ

2 · (δRS + 2δKEM),

where νKEM is the encapsulation key min-entropy of ΠwKEM and ΠKEM, and χKEM is the ciphertext min-entropy
of ΠwKEM and ΠKEM. The running time of B1, . . . ,B4 and D1, . . . ,D3 are about that of A.

Remark 7.8 (Why the Protocol Does Not Satisfy Full Forward Secrecy). For completeness, we show that
ΠSC-DAKE does not satisfy full forward secrecy by constructing an adversary A that wins the game GFS

ΠSC-DAKE
(µ, ℓ)

with overwhelming probability. For simplicity, we consider the game with 2 parties P1 and P2 that establishes
one session per party, i.e., µ = 2 and ℓ = 1. A performs the following attack:

1. C setups the oracles π1
1 and π1

2 , and A obtains the public parameter and the long-term public keys lpk1
and lpk2 from the challenger C.

2. A sends Send(2, 1, m = ⟨START : resp, 1⟩) to C, which initializes the oracle π1
2 as the responder and sets

its partner to P1 .

3. A generates the first message (ekT , dkT) and (vkT , skT) according to the protocol description and sends
Send(2, 1, m = (ekT , vkT)) to C and receives (C, CT , c) from C. Note that π1

2 terminates at this point.

4. A then corrupts P1 by sending RevLTK(1) to C and receives P1 ’s long-term secret key lsk1 = (dk1, sk1).

5. A decrypts C and CT using dk1 and dkT , respectively. Then it computes the session key k and verifies
the signature according to the protocol description.

6. A sends Test(2, 1) and receive k′. If k = k′, A outputs 0 as the guessed bit; otherwise outputs 1.

It is clear that A perfectly impersonates P1 acting as an initiator. The session key k computed by A is the
same session key computed by π1

2 , and thus, A can guess the challenge bit with overwhelming probability.
Moreover, the tested oracle π1

2 is fresh because A did not send RevSessKey and RevState queries, and it
corrupted P1 only after π1

2 finished the protocol execution. Therefore, A is a valid adversary against the full
forward secrecy game.

The following guarantees deniability of our protocol ΠSC-DAKE against semi-honest adversaries.

Theorem 7.9 (Deniability of ΠSC-DAKE Against Semi-Honest Adversaries). Assume ΠRS is anonymous.
Then, the Signal-conforming protocol ΠSC-DAKE is deniable against semi-honest adversaries.25

Proof. Let M be any PPT semi-honest adversary. We explain the behavior of the simulator SIMM by
considering three cases: (a)M initializes an initiator Pi , (b)M queries the initiator Pi on message (C, CT , c),
and (c) M queries the responder Pj on message (ekT , vkT). In case (a), SIMM runs the honest initiator
algorithm and returns (ekT , vkT) as specified by the protocol. In case (b), since M is semi-honest, we are
guaranteed that it runs the honest responder algorithm to generate (C, CT , c). In particular, since M is
run on randomness sampled by SIMM, SIMM gets to learn the key K that was generated along with C.
Therefore, SIMM runs the real initiator algorithm except that it uses K extracted from M rather than
computing K← KEM.Decap(dki, C). Here, note that SIMM cannot run the latter since it does not know the

25Although we only consider a classical adversary M, it can be checked that the exact same proof holds even for a quantum
adversary.

37

corresponding dki held by an honest initiator party Pi . In case (c), similarly to case (b), SIMM learns dkT

and skT used by M to generate ekT and vkT . Therefore, SIMM runs the honest responder algorithm except
that it runs σ ← RS.Sign(skT , sidj , {vkT , vkj}) instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}) as in the
real protocol. Here, note that SIMM cannot run the latter since it does not know the corresponding skj held
by an honest responder party Pj .

Let us analyze SIMM. First, for case (a), the output by SIMM is distributed exactly as in the real transcript.
Next, for case (b), the only difference between the real distribution and SIMM’s output distribution (which is
the derived session key k) is that SIMM uses the KEM key K output by KEM.Encap to compute the session
key rather than using the KEM key decrypted using KEM.Decap with the initiator party Pi ’s decryption key
dki. However, by (1− δKEM)-correctness of ΠKEM, these two KEM keys are identical with probability at least
(1− δKEM). Hence, the output distribution of SIMM and the real view are indistinguishable. Finally, for case
(c), the only difference between the real distribution and SIMM’s output distribution (which is the derived
session key and the message sent (C, CT , c)) is how the ring signature is generated. While the real protocol
uses the signing key skj of the responder party Pj , the simulator SIMM uses skT . However, the signatures
outputted by these two distributions are computationally indistinguishable assuming the anonymity of ΠRS.
Hence, the output distribution of SIMM and the real view are indistinguishable.

Combining everything together, we conclude the proof.

Remark 7.10 (Efficiency of ΠSC-DAKE). We evaluate the message size of ΠSC-DAKE. The first message of ΠSC-DAKE
contains the additional ring signature verification key vkT . Thus, the size of the first message increases by
the amount of vkT compared to ΠSC-AKE.26 The second message of ΠSC-DAKE contains the ring signature
for a ring of two users instead of the standard signature. Examples of post-quantum ring signatures sizes
for a ring of two users at the NIST security level 1 are 2.5 KiB (Raptor [61], based on NTRU), 4.4 KiB
(DualRing [81], based on M-LWE/SIS), or 3.5 KiB (Calamari [15], based on CSIDH). On the other hand,
examples of standard signatures sizes at the same security level are 0.6 KiB (Falcon [72], based on NTRU),
2.3 KiB (Dilithium [62], based on M-LWE/SIS) or 0.26 KiB (CSI-FiSh [16], based on CSIDH). Therefore,
when using ring signature schemes [61, 15, 81], it is possible to get the size of the second message to be about
2-3 KiB larger than ΠSC-AKE.

Remark 7.11 (Why Deniability Against a Semi-Malicious Adversary May Not Suffice). We provide a concrete
attack on ΠSC-DAKE in case the adversary may act maliciously.27 The scenario is as follows: Alice, the initiator
in Figure 5, wants to prove that Bob, the responder in Figure 5, was engaging in a communication with her.
In the context of Signal, this means that Alice who uploads her (possibly maliciously generated) key package
to the server wants to later prove that Bob was trying to communicate with her.

We consider a specific type of ring signature where for any public parameter ppRS, the language of all
possible verification key vk that can be output by RS.KeyGen(ppRS, ·) is an NP ∩ coNP language. That is, if
vk is in the image of RS.KeyGen(ppRS, ·), then the randomness used to generate it will be the NP-witness, and
if vk is not in the image, we assume there is a coNP-witness to prove it. We further assume the NP ∩ coNP
language can be sampled efficiently along with an accompanying witness. Although it depends on the concrete
set of parameters, many lattice-based ring signatures such as [20, 61, 39, 40, 41, 15] where the verification key
includes an LWE or NTRU instance could satisfy this property since the (approximated) gap closest vector
GapCVP problem lies in NP ∩ coNP [3].

With such a ring signature, the attack is simple. Alice generates her ring signature verification key vkA

with an accompanying coNP-witness wno to prove that vkA does not have a corresponding secret key skA.
This can informally be used as cryptographic evidence that justifies Alice’s incapability of signing any message
using vkA. Now, if Bob generates a ring signature σ ← RS.Sign(skB , sidB , {vkA, vkB}) that includes Alice’s
verification key, then Alice can later claim to a third-party (e.g., a judge) by presenting (vkA, wno, σ) that Bob

26To be fair, we compare ΠSC-DAKE with a variant of ΠSC-AKE who not sign the first message. Presented in [49], such variant is
as secure as ΠSC-DAKE (modulo the difference between weak and perfect forward secrecy), and the main difference of the two
schemes is deniability.

27The attack equally works for the subsequent protocol proposed by Brendel et al. [21]. We note that this does not contradict
their security proof since the new definition of indistinguishability-based deniability they introduce does not capture malicious
adversaries.

38

engaged in a conversation with her. We note that to make this argument formal in a theoretical sense, Alice
would also need to prove that any adversary that can output a valid σ can forge a signature using vkB . That
is, unless Alice knew Bob’s verification key, she would not have been able to create σ. As a concrete example,
we can consider the Raptor signature scheme [61]. Alice can set her verification key to be a zero-polynomial
element. Then, the ring signature produced by Bob reduces to a standard signature created by Bob since the
components that depend on Alice’s verification key disappears.

Although informal, we believe there are several other simpler ways Alice may convince a real-world
third-party her incapability of signing the ring signature provided from Bob. For instance, she may create
the verification key using a cryptographically secure hash function, i.e., vkA = H(rand). Even if vkA is not in
NP ∩ coNP, this may already be “good enough” evidence in practice to convince a third-party that Alice
could not have signed the message. This is because we can safely assume that computing the secret key from
a random vkA is infeasible.

Considering that the extent of cryptographic evidence that can be considered as real-world judicious
evidence is unclear, Bob may want to be able to prove that Alice could have signed the ring signature in a
cryptographically sound manner. We provide one possible way on how to achieve this in the next section.

Remark 7.12 (Taking Advantage of the Asymmetry). As we explained at the beginning of this section, there
is a subtle difference between the level of deniability we can target for a standard AKE protocol and the
Signal handshake. Alice, the initiator in Figure 5, may not need to deny the fact that she was using the
Signal app. In this case, Alice may be willing to sign her first message as in our original Signal-conforming
AKE protocol ΠSC-AKE. Such a signature allows us to prove perfect forward secrecy in Theorem 7.7 rather
than weak forward secrecy while still providing deniability for the responder.

7.3 Deniable Signal-Conforming AKE Π′SC-DAKE against Malicious Adversaries
We provide a Signal-conforming AKE protocol Π′

SC-DAKE that is secure even against malicious adversaries.
The construction is provided in Figure 5. To achieve deniability against malicious adversaries, we modify our
ΠSC-DAKE protocol so that the initiator party adds a NIZK proof attesting to the fact that it constructed the
verification key of the ring signature vkT honestly. Formally, we require the following additional building
blocks.
Building Blocks. Our deniable Signal-conforming AKE protocol Π′

SC-DAKE against malicious adversaries
requires the following primitives in addition to those required by ΠSC-DAKE in the previous section.

• ΠKEM = (KEM.Setup, KEM.KeyGen, KEM.Encap, KEM.Decap) is an IND-CCA secure KEM scheme as in
the previous section that additionally satisfies PAµ-1 security with an efficiently constructible extractor,
where µ is the number of parties in the system.

• ΠNIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify) is a NIZK argument system for the relation RRS where
(X, W) ∈ RRS if and only if the statement X = (pp, vk) and witness W = (sk, rand) satisfy (vk, sk) =
RS.KeyGen(pp; rand).

Additional Assumption. We require a knowledge-type assumption to prove deniability against malicious
adversaries. Considering that all of the previous AKE protocols satisfying a strong form of security and
deniability require such knowledge-type assumptions [34, 80, 75], this seems unavoidable. On the other hand,
there are protocols achieving a strong form of deniability from standard assumptions [37, 73, 74], however,
they make a significant compromise in the security such as being vulnerable to KCI attacks and state leakages.

The following knowledge assumption is defined similarly in spirit to those of Di Raimondo et al. [34]
that assumed that for any adversary M that outputs a valid MAC, then there exists an extractor algorithm
Ext that extracts the corresponding MAC key. Despite it being a strong knowledge-type assumption in the
standard model, we believe it holds in the random oracle model if we further assume the NIZK comes with
an online knowledge extractor28 like those provide by Fischlin’s NIZK [42]. We leave it to future works to

28This guarantees that the witness from a proof can be extracted without rewinding the adversary.

39

investigate the credibility of the following assumption and those required to prove deniability of the X3DH
protocol [75]. We also believe defining a more relaxed notion of deniability that still suffices in practice while
also being satisfiable from standard assumptions to be of great importance.

Assumption 7.13 (Key-Awareness Assumption for Π′
SC-DAKE). We say that Π′

SC-DAKE has the key-awareness
property if for all PPT adversaries M interacting with a real protocol execution in the deniability game as in
Definition 7.1, there exists a PPT extractor ExtM such that for any choice of (pp,

−→
lpk,
−→
lsk) ∈ KeyGen(1κ, µ),

whenever M outputs a ring signature verification key vk and a NIZK proof π for the language LRS, then
ExtM taking input the same input as M (including its randomness) outputs a signing key sk such that
(vk, sk) ∈ RS.KeyGen(ppRS) for any ppRS ∈ RS.Setup(1κ).

With the added building blocks along with the key-awareness assumption, we prove the following theorem.
The high-level approach is similar to the previous proof against semi-honest adversaries but the concrete
proof required is rather involved. The main technicality is when invoking the PAµ-1 security: if we do the
reduction naively, the extractor needs the randomness used to sample the ring signature key pairs of the
honest party but the simulator of the deniability game does not know such randomness. We circumvent this
issue by hard-wiring the verification key of the ring signature of the adversary and considering PAµ-1 security
against a non-uniform adversary.

Theorem 7.14 (Deniability of Π′
SC-DAKE against Malicious Adversaries). Assume ΠKEM is PAµ-1

secure with an efficiently constructible extractor, ΠRS is anonymous, ΠNIZK is sound,29 and the key-awareness
assumption in Assumption 7.13 holds. Then, the Signal-conforming protocol Π′

SC-DAKE with µ parties is
deniable against malicious adversaries.

Proof. The high-level idea of the proof is similar to those of Theorem 7.9. Below, we consider a sequence of
simulators SIMM,i where the first and last simulators SIMM,0 and SIMM,3 simulate the real and simulated
protocols, respectively. That is, SIMM,3 is the desired simulator SIMM. We define Fi to be the distribution
of (pp,

−→
lpk) along with the output of SIMM,i. Our goal is to prove that F0 and F3 are indistinguishable.

SIMM,0: It is given (pp,
−→
lpk,
−→
lsk) as input and simulates the interaction with the adversary M following the

protocol description of the real-world. Here, note that M is invoked by SIMM,0 on input (pp,
−→
lpk) with

uniform randomness. By definition FReal := F0.

SIMM,1: This is the same as SIMM,0 except that wheneverM queries an honest responder party Pj on input
(ekT , vkT , πT), SIMM,1 extracts the corresponding secret ring signature signing key skT . More formally,
due to the key-awareness assumption of Π′

SC-DAKE, for any PPT M, there exists a PPT extractor
ExtM such that whenever M outputs a ring signature verification key vkT and a NIZK proof πT for
the language LRS, then ExtM taking input the same input as M (including its randomness) outputs
a signing key skT such that (vkT , skT) ∈ RS.KeyGen(ppRS). Since SIMM,1 knows all the input and
randomness fed to M, it can run ExtM. Namely, whenever M makes the above query, SIMM,1 invokes
ExtM on input fed to M until that point along with its initial randomness and extracts skT . Since
the output of SIMM,1 is unaltered, the distribution F1 is identical to the previous game. Below, for
simplicity, we assume that M always outputs skT whenever it queries an honest responder party Pj on
input (ekT , vkT , πT). This is without loss of generality since we can combine M and ExtM and view it
as another adversary against the deniability game.

SIMM,2: This is the same as SIMM,1 except that when M queries an honest responder party Pj on input
(ekT , vkT , skT , πT), SIMM,2 responds as in the real protocol except that it runs σ ← RS.Sign(skT , sidj , {vkT ,
vkj}) instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}). Due to the anonymity of the ring signature
ΠRS, the distributions F1 and F2 are indistinguishable.

29We note that this is redundant since it is implicitly implied by the key-awareness assumption. We only include it for clarity.

40

Before explaining the next simulator, notice that we can view the combined algorithm (SIMM,2,M) as a
ciphertext creator C for the PAµ-1 security of the KEM scheme ΠKEM. Formally, we decompose SIMM,2 into two
algorithms: SIM′

M,2 and Odec, where SIM′
M,2 is identical to SIMM,2 except that it outsources the decapsulation

of ciphertexts corresponding to those of honest initiator parties to Odec. That is, SIM′
M,2 proceeds as SIMM,2

except that when M queries the honest initiator Pi on message (C, CT , c), it queries (i, C) to Odec to receive
the corresponding KEM key K. Since SIM′

M,2 no longer requires the secret KEM keys {dki | i ∈ [µ]} of the
honest initiator parties, we can assume that SIM′

M,2 only takes as input (pp, {eki | i ∈ [µ]}). Here, we also
assume it has µ-ring signature verification keys {vki | i ∈ [µ]} hard-wired rather than SIM′

M,2 generating it
on its own. At this point, it is clear that the combined algorithm (SIM′

M,2,M) can be viewed as a valid
ciphertext creator C that outputs the view of M as the string v, where Odec corresponds to the decapsulation
oracle KEM.Decap run by the challenger in Expdec

C,D. Then, by the PAµ-1 security, there must exist an extractor
EC that simulates Odec that only takes as input (pp, (eki)i∈[µ], randC), where randC is the randomness used by
C (i.e., by (SIM′

M,2,M)). Moreover, such an extractor EC is efficiently constructible given the description of
C. Here, note that randC does not include the randomness used to generate the µ-ring signature verification
keys since we hard-wire these to the description of SIM′

M,2. In particular, EC does not require randomness
used to generate −→lpk to be executed. We are now ready to define the next simulator.

SIMM,3 := SIMM: This is the same as SIMM,2 except that it constructs the extractor EC and when M
queries the honest initiator Pi on message (C, CT , c) it runs EC(i, C) instead of Odec(dki, C). Notice that
SIMM,3 no longer requires any long-term secret key −→lsk to simulate M. Due to the PAµ-1 security of
the KEM scheme ΠKEM, the two distributions F2 and F3 := FSim are indistinguishable.

This completes the proof.

Finally, it remains to show that the Π′
SC-DAKE is correct and secure as a standard Signal-conforming AKE

protocol. Due to the correctness of ΠNIZK, the correctness of Π′
SC-DAKE follows from Theorem 7.6. Moreover,

the security of Π′
SC-DAKE follows almost immediately from the proof of Theorem 7.7. The only difference is

that in the proof of Lemma B.1 (which is a sub-lemma used to prove Theorem 7.7), the reduction algorithm
that does not know the corresponding signing key skT of the verification key vkT invokes the zero-knowledge
simulator to simulate the proof πT . The rest of the proof is identical.

Acknowledgement. The second author was supported by JST CREST Grant Number JPMJCR19F6. The
third and fourth authors were supported by the Innovate UK Research Grant 104423 (PQ Cybersecurity).

References
[1] LibTomCrypt. https://github.com/libtom/libtomcrypt. 27

[2] Signal protocol: Technical documentation. https://signal.org/docs/. 3, 18

[3] D. Aharonov and O. Regev. Lattice problems in NP cap coNP. In 45th FOCS, pages 362–371. IEEE
Computer Society Press, Oct. 2004. 38

[4] J. Alawatugoda, D. Stebila, and C. Boyd. Modelling after-the-fact leakage for key exchange. In S. Moriai,
T. Jaeger, and K. Sakurai, editors, ASIACCS 14, pages 207–216. ACM Press, June 2014. 7, 8

[5] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and modularization for
the Signal protocol. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 129–158. Springer, Heidelberg, May 2019. 3, 4

[6] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated key exchange. In
Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 629–658. Springer,
Heidelberg, Mar. 2015. 18, 19

41

https://github.com/libtom/libtomcrypt
https://signal.org/docs/

[7] M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In C. Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer, Heidelberg, Aug. 2006. 26

[8] M. Bellare. New proofs for NMAC and HMAC: Security without collision resistance. Journal of
Cryptology, 28(4):844–878, Oct. 2015. 26

[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer,
Heidelberg, Aug. 1998. 9, 31, 34

[10] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without random oracles. In
P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 48–62. Springer, Heidelberg, Dec.
2004. 9, 11, 31, 34

[11] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, Aug. 1994. 6, 18, 19

[12] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, Heidelberg, May 1995. 9, 11, 31, 34

[13] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs. Ratcheted encryption and key
exchange: The security of messaging. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 619–650. Springer, Heidelberg, Aug. 2017. 3

[14] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, Heidelberg, Apr. 2006. 5

[15] W. Beullens, S. Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic (linkable) ring signatures
from isogenies and lattices. In S. Moriai and H. Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 464–492. Springer, Heidelberg, Dec. 2020. 7, 38

[16] W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based signatures through
class group computations. In S. D. Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 227–247. Springer, Heidelberg, Dec. 2019. 38

[17] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their security analysis.
In M. Darnell, editor, 6th IMA International Conference on Cryptography and Coding, volume 1355 of
LNCS, pages 30–45. Springer, Heidelberg, Dec. 1997. 3, 18

[18] S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the station-to-station (STS) protocol.
In H. Imai and Y. Zheng, editors, PKC’99, volume 1560 of LNCS, pages 154–170. Springer, Heidelberg,
Mar. 1999. 17

[19] X. Bonnetain and A. Schrottenloher. Quantum security analysis of CSIDH. In A. Canteaut and Y. Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 493–522. Springer, Heidelberg, May
2020. 6

[20] Z. Brakerski and Y. T. Kalai. A framework for efficient signatures, ring signatures and identity
based encryption in the standard model. Cryptology ePrint Archive, Report 2010/086, 2010. https:
//eprint.iacr.org/2010/086. 38

[21] J. Brendel, R. Fiedler, F. Günther, C. Janson, and D. Stebila. Post-quantum asynchronous deniable key
exchange and the signal handshake. Cryptology ePrint Archive, Report 2021/769, 2021. 8, 9, 33, 38, 60,
61, 62

[22] J. Brendel, M. Fischlin, F. Günther, C. Janson, and D. Stebila. Towards post-quantum security for
signal’s X3DH handshake. In O. Dunkelman, M. J. Jacobson, Jr., and C. O’Flynn, editors, Selected
Areas in Cryptography, pages 404–430, Cham, 2020. Springer International Publishing. 3, 4, 6

42

https://eprint.iacr.org/2010/086
https://eprint.iacr.org/2010/086

[23] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474. Springer,
Heidelberg, May 2001. 4, 6, 15, 17, 18, 19

[24] R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol. In
M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 143–161. Springer, Heidelberg, Aug. 2002.
https://eprint.iacr.org/2002/120/. 6, 18

[25] D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In N. P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 127–145. Springer, Heidelberg, Apr. 2008. 5

[26] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security analysis of the
signal messaging protocol. In IEEE European Symposium on Security and Privacy (EuroS&P), pages
451–466, 2017. 3, 4

[27] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security analysis of the
signal messaging protocol. Journal of Cryptology, 33(4):1914–1983, 2020. 3, 4

[28] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager. Highly efficient key exchange
protocols with optimal tightness. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 767–797. Springer, Heidelberg, Aug. 2019. 6, 15, 18, 19, 20

[29] C. Cremers. Examining indistinguishability-based security models for key exchange protocols: the case
of CK, CK-HMQV, and eCK. In B. S. N. Cheung, L. C. K. Hui, R. S. Sandhu, and D. S. Wong, editors,
ASIACCS 11, pages 80–91. ACM Press, Mar. 2011. 19

[30] C. J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking the NAXOS
authenticated key exchange protocol. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud,
editors, ACNS 09, volume 5536 of LNCS, pages 20–33. Springer, Heidelberg, June 2009. 19

[31] C. J. F. Cremers and M. Feltz. Beyond eCK: Perfect forward secrecy under actor compromise and
ephemeral-key reveal. In S. Foresti, M. Yung, and F. Martinelli, editors, ESORICS 2012, volume 7459 of
LNCS, pages 734–751. Springer, Heidelberg, Sept. 2012. 18, 19

[32] B. de Kock, K. Gjøsteen, and M. Veroni. Practical isogeny-based key-exchange with optimal tightness.
In O. Dunkelman, M. J. Jacobson, Jr., and C. O’Flynn, editors, Selected Areas in Cryptography, pages
451–479, Cham, 2020. Springer International Publishing. 6, 18

[33] C. de Saint Guilhem, M. Fischlin, and B. Warinschi. Authentication in key-exchange: Definitions,
relations and composition. In L. Jia and R. Küsters, editors, CSF 2020 Computer Security Foundations
Symposium, pages 288–303. IEEE Computer Society Press, 2020. 15, 19, 20

[34] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable authentication and key exchange. In A. Juels,
R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 400–409. ACM Press,
Oct. / Nov. 2006. 5, 7, 9, 11, 31, 32, 33, 34, 39

[35] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges.
Designs, Codes and cryptography, 2(2):107–125, 1992. 17

[36] S. Dobson and S. D. Galbraith. Post-quantum signal key agreement with SIDH. Cryptology ePrint
Archive, Report 2021/1187, 2021. https://ia.cr/2021/1187. 8, 9

[37] Y. Dodis, J. Katz, A. Smith, and S. Walfish. Composability and on-line deniability of authentication. In
O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 146–162. Springer, Heidelberg, Mar. 2009.
9, 33, 34, 39

43

https://eprint.iacr.org/2002/120/
https://ia.cr/2021/1187

[38] F. B. Durak and S. Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear complexity.
In N. Attrapadung and T. Yagi, editors, IWSEC 19, volume 11689 of LNCS, pages 343–362. Springer,
Heidelberg, Aug. 2019. 3

[39] M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge proofs: New techniques
for shorter and faster constructions and applications. In A. Boldyreva and D. Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 115–146. Springer, Heidelberg, Aug. 2019. 38

[40] M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu. Short lattice-based one-out-of-many proofs
and applications to ring signatures. In R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors,
ACNS 19, volume 11464 of LNCS, pages 67–88. Springer, Heidelberg, June 2019. 38

[41] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. MatRiCT: Efficient, scalable and post-
quantum blockchain confidential transactions protocol. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
editors, ACM CCS 2019, pages 567–584. ACM Press, Nov. 2019. 38

[42] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg, Aug.
2005. 39

[43] P.-A. Fouque, D. Pointcheval, and S. Zimmer. HMAC is a randomness extractor and applications to
TLS. In M. Abe and V. Gligor, editors, ASIACCS 08, pages 21–32. ACM Press, Mar. 2008. 26

[44] E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson. Non-interactive key exchange. In K. Kurosawa
and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271. Springer, Heidelberg,
Feb. / Mar. 2013. 5

[45] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Strongly secure authenticated key exchange from
factoring, codes, and lattices. In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume
7293 of LNCS, pages 467–484. Springer, Heidelberg, May 2012. 4, 6, 7, 18, 19

[46] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Practical and post-quantum authenticated key
exchange from one-way secure key encapsulation mechanism. In K. Chen, Q. Xie, W. Qiu, N. Li, and
W.-G. Tzeng, editors, ASIACCS 13, pages 83–94. ACM Press, May 2013. 6

[47] K. Gjøsteen and T. Jager. Practical and tightly-secure digital signatures and authenticated key exchange.
In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 95–125.
Springer, Heidelberg, Aug. 2018. 6, 15, 18, 19

[48] S. Guo, P. Kamath, A. Rosen, and K. Sotiraki. Limits on the efficiency of (ring) LWE based non-
interactive key exchange. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020,
Part I, volume 12110 of LNCS, pages 374–395. Springer, Heidelberg, May 2020. 3

[49] K. Hashimoto, S. Katsumata, K. Kwiatkowski, and T. Prest. An efficient and generic construction
for signal’s handshake (X3DH): Post-quantum, state leakage secure, and deniable. In J. Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 410–440. Springer, Heidelberg, May 2021. 1, 8, 9, 33,
38

[50] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh. Generic authenticated key exchange in the quantum
random oracle model. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 389–422. Springer, Heidelberg, May 2020. 6, 18, 19

[51] T. Jager, E. Kiltz, D. Riepel, and S. Schäge. Tightly-secure authenticated key exchange, revisited. In
A. Canteaut and F.-X. Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages
117–146. Springer, Heidelberg, Oct. 2021. 18, 19

44

[52] D. Jost, U. Maurer, and M. Mularczyk. Efficient ratcheting: Almost-optimal guarantees for secure
messaging. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 159–188. Springer, Heidelberg, May 2019. 3

[53] D. Jost, U. Maurer, and M. Mularczyk. A unified and composable take on ratcheting. In D. Hofheinz
and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 180–210. Springer, Heidelberg,
Dec. 2019. 3

[54] T. Kawashima, K. Takashima, Y. Aikawa, and T. Takagi. An efficient authenticated key exchange from
random self-reducibility on CSIDH. In D. Hong, editor, ICISC 20, volume 12593 of LNCS, pages 58–84.
Springer, Heidelberg, Dec. 2020. 6, 18

[55] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In V. Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer, Heidelberg, Aug. 2005. 4, 6, 17, 18, 19

[56] K. Kurosawa and J. Furukawa. 2-pass key exchange protocols from CPA-secure KEM. In J. Benaloh,
editor, CT-RSA 2014, volume 8366 of LNCS, pages 385–401. Springer, Heidelberg, Feb. 2014. 4, 6, 8

[57] K. Kwiatkowski. An efficient and generic construction for signal’s handshake (X3DH): Post-quantum,
state leakage secure, and deniable. proof of concept implementation, December 2020. https://github.
com/post-quantum-cryptography/post-quantum-state-leakage-secure-ake. 4, 26, 28, 30

[58] K. Kwiatkowski. PQ Crypto Catalog, December 2020. https://github.com/kriskwiatkowski/pqc.
27

[59] B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In
W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages 1–16. Springer,
Heidelberg, Nov. 2007. 4, 6, 7, 18, 19

[60] Y. Li and S. Schäge. No-match attacks and robust partnering definitions: Defining trivial attacks for
security protocols is not trivial. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
ACM CCS 2017, pages 1343–1360. ACM Press, Oct. / Nov. 2017. 17, 19

[61] X. Lu, M. H. Au, and Z. Zhang. Raptor: A practical lattice-based (linkable) ring signature. In R. H.
Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors, ACNS 19, volume 11464 of LNCS, pages
110–130. Springer, Heidelberg, June 2019. 7, 38, 39

[62] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé, and S. Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 38

[63] M. Marlinspike and T. Perrin. The double ratchet algorithm, November 2016. https://signal.org/
docs/specifications/doubleratchet/. 3

[64] M. Marlinspike and T. Perrin. The X3DH key agreement protocol, November 2016. https://signal.
org/docs/specifications/x3dh/. 3, 4, 5, 7, 18, 24, 27

[65] S. Myers, M. Sergi, and a. shelat. Blackbox construction of a more than non-malleable CCA1 encryption
scheme from plaintext awareness. In I. Visconti and R. D. Prisco, editors, SCN 12, volume 7485 of
LNCS, pages 149–165. Springer, Heidelberg, Sept. 2012. 11, 34

[66] C. Paquin, D. Stebila, and G. Tamvada. Benchmarking post-quantum cryptography in TLS. In J. Ding
and J.-P. Tillich, editors, Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 72–91. Springer, Heidelberg, 2020. 28

[67] R. Pass. On deniability in the common reference string and random oracle model. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer, Heidelberg, Aug. 2003. 33

45

https://github.com/post-quantum-cryptography/post-quantum-state-leakage-secure-ake
https://github.com/post-quantum-cryptography/post-quantum-state-leakage-secure-ake
https://github.com/kriskwiatkowski/pqc
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/

[68] C. Peikert. He gives C-sieves on the CSIDH. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 463–492. Springer, Heidelberg, May 2020. 6

[69] T. Perrin. The XEdDSA and VXEdDSA signature schemes, October 2016. https://signal.org/docs/
specifications/xeddsa/. 5

[70] B. Poettering and P. Rösler. Towards bidirectional ratcheted key exchange. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 3–32. Springer, Heidelberg,
Aug. 2018. 3

[71] D. Pointcheval and O. Sanders. Forward secure non-interactive key exchange. In M. Abdalla and R. D.
Prisco, editors, SCN 14, volume 8642 of LNCS, pages 21–39. Springer, Heidelberg, Sept. 2014. 5

[72] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset, G. Seiler,
W. Whyte, and Z. Zhang. FALCON. Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions. 38

[73] N. Unger and I. Goldberg. Deniable key exchanges for secure messaging. In I. Ray, N. Li, and C. Kruegel,
editors, ACM CCS 2015, pages 1211–1223. ACM Press, Oct. 2015. 3, 9, 33, 34, 39

[74] N. Unger and I. Goldberg. Improved strongly deniable authenticated key exchanges for secure messaging.
PoPETs, 2018(1):21–66, Jan. 2018. 3, 9, 33, 34, 39

[75] N. Vatandas, R. Gennaro, B. Ithurburn, and H. Krawczyk. On the cryptographic deniability of the
Signal protocol. In M. Conti, J. Zhou, E. Casalicchio, and A. Spognardi, editors, ACNS 20, Part II,
volume 12147 of LNCS, pages 188–209. Springer, Heidelberg, Oct. 2020. 3, 5, 7, 9, 31, 34, 39, 40

[76] H. Xue, M. H. Au, R. Yang, B. Liang, and H. Jiang. Compact authenticated key exchange in the
quantum random oracle model. Cryptology ePrint Archive, Report 2020/1282, 2020. https://eprint.
iacr.org/2020/1282. 6

[77] H. Xue, X. Lu, B. Li, B. Liang, and J. He. Understanding and constructing AKE via double-key key
encapsulation mechanism. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 158–189. Springer, Heidelberg, Dec. 2018. 6

[78] Z. Yang. Modelling simultaneous mutual authentication for authenticated key exchange. In J. L. Danger,
M. Debbabi, J.-Y. Marion, J. Garcia-Alfaro, and N. Zincir Heywood, editors, Foundations and Practice
of Security, pages 46–62, Cham, 2014. Springer International Publishing. 20

[79] Z. Yang, Y. Chen, and S. Luo. Two-message key exchange with strong security from ideal lattices. In
N. P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 98–115. Springer, Heidelberg, Apr.
2018. 4, 6, 8

[80] A. C.-C. Yao and Y. Zhao. Deniable internet key exchange. In J. Zhou and M. Yung, editors, ACNS 10,
volume 6123 of LNCS, pages 329–348. Springer, Heidelberg, June 2010. 5, 7, 9, 31, 34, 39

[81] T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding. DualRing: Generic construction of ring
signatures with efficient instantiations. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 251–281. Springer, Heidelberg, Aug. 2021. 7, 38

A Full Proofs for Signal-Conforming AKE ΠSC-AKE

We prove the security of our Signal-conforming AKE protocol ΠSC-AKE.

46

https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1282
https://eprint.iacr.org/2020/1282

Proof of Theorem 4.3. Let A be an adversary that plays the security game GFS
ΠSC-AKE

(µ, ℓ) with the challenger
C with advantage AdvAKE-FS

ΠSC-AKE
(A) = ϵ. In order to prove Theorem 4.3, we distinguish between the strategy that

can be taken by the A. Specifically, A’s strategy can be divided into the eight types of strategies listed in
Table 1. Here, each strategy is mutually independent and covers all possible (non-trivial) strategies.30 We
point out that for our specific AKE construction we have stateresp := ⊥ since the responder does not maintain
any states (see Remark 4.1). Therefore, the Type-1 (resp. Type-3, Type-7) strategy is strictly stronger than
the Type-2 (resp. Type-4, Type-8) strategy. We only include the full types of strategies in Table 1 as we
believe it would be helpful when proving other AKE protocols, and note that our proof implicitly handles
both strategies at the same time.

For each possible strategy taken by A, we construct an algorithm that breaks one of the underlying
assumptions by using such an adversary A as a subroutine. More formally, we construct six algorithms B1,
B2, B3,0, B3,1, D1 and D2 satisfying the following:

1. If A uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of ΠwKEM
with advantage ≈ 1

µ2ℓ2 ϵ or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ2 ϵ.

2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2ℓ ϵ or D2 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ ϵ.

3. If A uses the Type-5 or Type-6 strategy, then B3,0 succeeds in breaking the EUF-CMA security of ΠSIG
with advantage ≈ 1

µ ϵ.

4. If A uses the Type-7 (or Type-8) strategy, then B3,1 succeeds in breaking the EUF-CMA security of
ΠSIG with advantage ≈ 1

µ ϵ.
We present a security proof structured as a sequence of games. Without loss of generality, we assume that

A always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in game Gj and let
ϵj := |Pr [Sj]− 1/2| denote the advantage of the adversary in game Gj . Regardless of the strategy taken by
A, all proofs share a common game sequence G0-G1 as described below.
Game G0. This game is identical to the original security game. We thus have

ϵ0 = ϵ.

Game G1. This game is identical to G0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πs

i and πt
j that do not agree on the same session key. If Ecorr occurs, then C

aborts (i.e., sets A’s output to be a random bit) at the end of the game.
There are at most µℓ/2 responder oracles and each oracle is assigned uniform randomness. From

Theorem 4.2, the probability of error occurring during the security game is at most µℓ(δSIG + 2δKEM)/2.
Therefore, Ecorr occurs with probability at most µℓ(δSIG + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤ µℓ

2 · (δSIG + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s

strategy, we prove that ϵ1 is negligible, which in particular implies that ϵ is also negligible. Formally, this is
shown in Lemmata A.1 to A.4 provided in their respective subsections below. We first complete the proof of
the theorem. Specifically, by combining all the lemmata together and folding adversaries B3,0 and B3,1 into
one adversary B3, we obtain the following desired bound:

AdvAKE-FS
ΠSC-AKE (A) ≤ max


µ2ℓ2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2ℓ · (AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt) + µℓ2 ·
(

1
22χKEM + 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG (B3),

 + µℓ

2 · (δSIG + 2δKEM)

30We note that although we can consider an adversary A that makes no reveal queries (i.e., all lsk and state are either 7 or
“-”), we can exclude them without loss of generality since such A can always be modified into an adversary A′ that follows one of
the strategies listed in Table 1.

47

Here, the running time of the algorithms B1, B2, B3, D1 and D2 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.

It remains to prove Lemmata A.1 to A.4.
Proof of Lemma A.1: Against Type-1 or Type-2 Adversary.

Lemma A.1. For any QPT adversary A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of ΠwKEM and D1 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Proof of Lemma A.1. We present the rest of the sequence of games from game G1.
Game G2. In this game, at the beginning of the game, C chooses an initiator oracle πŝ

ı̂ and a responder
oracle πt̂

ȷ̂ uniformly at random from the µℓ oracles. Let EtestO be the event that the tested oracle is neither
πŝ

ı̂ nor πt̂
ȷ̂, or πŝ

ı̂ and πt̂
ȷ̂ are not partner. Since EtestO is an efficiently checkable event, C aborts as soon as it

detects that event EtestO occurs.31 C guesses the choice made by A correctly with probability at least 1/µ2ℓ2,
so we have

ϵ2 ≥
1

µ2ℓ2 ϵ1.

Game G3. In this game, we modify the way the initiator oracle πŝ
ı̂ responds on its second invocation. In

particular, when πŝ
ı̂ is invoked (on the second time) on input (C, CT , c), it proceeds as in the previous game

except that it uses the key KT that was generated by the responder oracle πt̂
ȷ̂ rather than using the key

obtained through decrypting CT . Here, conditioned on EtestO not occurring, we are guaranteed that the
responder oracle πt̂

ȷ̂ generated CT by running (KT , CT)← wKEM.Encap(ekT), where ekT is the encapsulation
key that πŝ

ı̂ outputs on the first invocation. This is because otherwise, the oracles πŝ
ı̂ and πt̂

ȷ̂ will not be
partner oracles. Conditioning on event Ecorr (i.e., decryption failure) not occurring, the two games G2 and G3
are identical. Hence,

ϵ3 = ϵ2.

Game G4. In this game, we modify the way the responder oracle πt̂
ȷ̂ responds. When the responder

oracle πt̂
ȷ̂ is invoked on input ekT , the game samples a random key KT ←$KSwKEM instead of computing

(KT , CT)← wKEM.Encap(ekT). Note that when the initiator oracle πŝ
ı̂ is invoked (on the second time) on

input (C, CT , c), it uses this random key KT . We claim G3 and G4 are indistinguishable assuming the IND-CPA
security of ΠwKEM. To prove this, we construct an algorithm B1 breaking the IND-CPA security as follows.
B1 receives a public parameter ppwKEM, a public key ek∗, and a challenge (K∗, C∗) from its challenger. B1

sets up the public parameter of ΠSC-AKE using ppwKEM and computes (lpki, lski) for all i ∈ [µ] by running the
protocol honestly, and samples (̂ı, ȷ̂, ŝ, t̂) uniformly random from [µ]2 × [ℓ]2. It then invokes A on the public
parameter of ΠSC-AKE and {lpki | i ∈ [µ]} and answers queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): If (i, s, j) = (̂ı, ŝ, ȷ̂), then B1 returns ek∗ to A and implicitly sets states
i := dk∗.

Otherwise, B1 responds as in G4.

• Send(j, t, m = (ekT , σi)): Let i := Pidt
j . Depending on the values of (j, t, i), it performs the following:

– If (j, t) = (ȷ̂, t̂) and i ̸= ı̂, then πŝ
ı̂ and πt̂

ȷ̂ cannot be partner oracles. Therefore, since event EtestO
is triggered B1 aborts.

31For example, C can efficiently notice if the two oracles πŝ
ı̂ and πt̂

ȷ̂ become non-partners even before A makes a Test-query by
checking the input-output of each oracles.

48

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B1 checks if ekT = ek∗. If not, event EtestO is triggered so it aborts.
Otherwise, it proceeds as in G4 except that it sets KT = K∗ and CT = C∗ rather than sampling
them on its own. It then returns the message (C, CT , c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B1 responds as in G4.

• Send(i, s, m = (C, CT , c)): Let j := Pids
i . Depending on the values of (i, s, j), it performs the following:

– If (i, s) = (̂ı, ŝ) and j ̸= ȷ̂, then πŝ
ı̂ and πt̂

ȷ̂ cannot be partner oracles. Therefore, since event EtestO
is triggered B1 aborts.

– If (i, s, j) = (̂ı, ŝ, ȷ̂), then B1 checks if CT = C∗. If not, event EtestO is triggered so it aborts.
Otherwise, it responds as in G4.

– If (i, s, j) ̸= (̂ı, ŝ, ȷ̂), then B1 responds as in G4.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B1 proceeds as in the previous game. Here,
note that since A follows the Type-1 or Type-2 strategy, B1 can answer all the RevState-query. Namely,
A never queries RevState(̂ı, ŝ) (i.e., stateŝ

ı̂ := dk∗) conditioning on EtestO not occurring, which is the
only query that B1 cannot answer.

• Test(i, s): B1 responds as in G4. Here, in case (i, s) ̸∈
{

(̂ı, ŝ), (ȷ̂, t̂)
}

, then event EtestO is triggered so it
aborts.

Finally, if A outputs a guess b′, B1 outputs b′. It can be checked that B1 perfectly simulates game G3
(resp. G4) to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S3]− Pr [S4]| ≤ AdvIND-CPA
wKEM (B1).

Game G5. In this game, we modify how the PRF key K2 is generated by the tested oracle and its partner
oracle. Instead of computing K2 ← Exts(KT), both oracles use the same randomly sampled K2←$FK. Due
to the modification we made in the previous game, KT is chosen uniformly at random from KSwKEM so KT

has log2(|KSwKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S4]− Pr [S5]| ≤ εExt.

Game G6. In this game, we modify how the session key k is generated by the tested oracle. Instead of
computing k∥k̃ ← FK1(sid)⊕ FK2(sid), the tested oracle (which is either πŝ

ı̂ or πt̂
ȷ̂ conditioned on event EtestO

not occurring) computes the session key as k∥k̃ ← FK1(sid)⊕ x, where x is chosen uniformly at random from
{0, 1}κ+d. Since K2 is chosen uniformly and hidden from the views of the adversary A, games G5 and G6 are
indistinguishable by the security of the PRF.32 In particular, we can construct a PRF adversary D1 that uses
A as a subroutine such that

|Pr [S5]− Pr [S6]| ≤ AdvPRF
F (D1).

In G6, the session key in the tested oracle is uniformly random. Thus, even an unbounded adversary A
cannot have distinguishing advantages. Therefore, Pr [S6] = 1/2. Combining everything together, we have

ϵ1 ≤ µ2ℓ2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Proof of Lemma A.2: Against Type-3 or Type-4 Adversary.
32We note that for Lemma A.1 we do not require the full power of the PRF; a pseudorandom generator (PRG) would have

sufficed since the key K2 is used nowhere else in the game.

49

Lemma A.2. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of ΠKEM and D2 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Proof of Lemma A.2. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add another abort condition. Let Euniq be the event
that there exists an oracle that has more than one partner oracles. If Euniq occurs, then C aborts. Since G1
and G2 proceed identically unless Euniq occurs, we have

|ϵ1 − ϵ2| ≤ Pr [Euniq] .

We claim
Pr [Euniq] ≤ µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Fix j ∈ [µ] and consider the set of oracles Sj = {πs
i | Pids

i = j}. For any πs
i ∈ Sj , if there exist two oracles πt

j

and πt′

j with t ≠ t′ ∈ [ℓ] that are partners of πs
i , then sids

i = sidt
j = sidt′

j holds. We distinguish between the
following cases.

Case 1. We first consider the case πs
i is an initiator and πt

j and πt′

j are responders. Let ekT be the
ephemeral encapsulation key generated by πs

i . In this case, Euniq occurs if the responder oracles πt
j and

πt′

j generate the same ciphertext with respect to eki and ekT . Since eki and ekT are independently and
honestly generated by the game and each responder oracle is assigned uniform randomness, the probability
of a ciphertext collision is upper bounded by ℓ2/22χKEM , where recall χKEM is the ciphertext min-entropy of
ΠwKEM and ΠKEM. Taking the union bound over all j ∈ [µ], we conclude that Case 1 occurs with probability
at most µℓ2/22χKEM .

Case 2. We next consider the case πs
i is a responder and πt

j and πt′

j are initiators. In this case, Euniq

occurs if the initiator oracles πt
j and πt′

j generate the same ephemeral encapsulation key. Since each initiator
oracle samples an encapsulation key independently, the probability of an encapsulation key collision is upper
bounded by ℓ2/2νKEM , where recall νKEM is the encapsulation key min-entropy of ΠwKEM. Taking the union
bound over all j ∈ [µ], we conclude that Case 2 occurs with probability at most µℓ2/2νKEM .

The claim can be shown by combining the two probabilities from Case 1 and Case 2. In the following
games we assume every oracle has a unique partner oracle if it exists.
Game G3. In this game, at the beginning of the game, C chooses a random party Pı̂ from the µ parties and
a random responder oracle πt̂

ȷ̂ from the µℓ oracles. Let EtestO be the event where ¬EtestO denotes the event
that either the tested oracle is πŝ

ı̂ for some s ∈ [ℓ] and its partner oracle is πt̂
ȷ̂, or the tested oracle is πt̂

ȷ̂ and
its peer is Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it detects that event EtestO
occurs. C guesses the choice made by A correctly with probability 1/µ2ℓ, so we have

ϵ3 = 1
µ2ℓ

ϵ2.

Game G4. In this game, we modify the way the initiator oracle πs
ı̂ for any s ∈ [ℓ] responds on its second

invocation. Let (K, C) be the ΠKEM key-ciphertext pair generated by oracle πt̂
ȷ̂. Then, when πs

ı̂ is invoked
(on the second time) on input (C′, CT , c), it first checks if C′ = C. If so, it proceeds as in the previous game
except that it uses the key K that was generated by πt̂

ȷ̂ rather than using the key obtained through decrypting
C′. Otherwise, if C′ ̸= C, then it proceeds exactly as in the previous game. Conditioning on event Ecorr (i.e.,
decryption failure) not occurring, the two games G3 and G4 are identical. Hence,

ϵ4 = ϵ3.

50

Game G5. In this game, we modify the way the responder oracle πt̂
ȷ̂ responds. When the responder oracle πt̂

ȷ̂

is invoked on input ekT , it samples a random key K←$KSKEM instead of computing (K, C)← KEM.Encap(ekı̂).
Note that due to the modification we made in the previous game, when the initiator oracle πs

ı̂ for any s ∈ [ℓ]
is invoked (on the second time) on input (C′, CT , c) for C′ = C, it uses the random key K generated by oracle
πt̂

ȷ̂. We claim G4 and G5 are indistinguishable assuming the IND-CCA security of ΠKEM. To prove this, we
construct an algorithm B2 breaking the IND-CCA security as follows.
B2 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗, C∗) from its challenger.

B2 then samples a random (̂ı, ȷ̂, t̂)←$ [µ]2 × [ℓ], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B2 runs (vkı̂, skı̂)← SIG.KeyGen(ppSIG) and sets
the long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B2 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B2 computes the long-term key
pairs (lpki, lski) as in G5. Finally, B2 invokes A on input the public parameter of ΠSC-AKE and {lpki | i ∈ [µ]}
and answers the queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): B2 responds as in G5.

• Send(j, t, m = (ekT , σi)): Let i := Pidt
j . Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B2 responds as in G5 except that it sets (K, C) := (K∗, C∗) rather than
generating them on its own. It then returns the message (C∗, CT , c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B2 responds as in G5.

• Send(i, s, m = (C, CT , c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B2 checks if C = C∗. If so, it responds as in G5 except that it sets K := K∗. Otherwise,
if C ̸= C∗, then it queries the decapsulation oracle on C and receives back K′. B2 then responds as
in G5 except that it sets K := K′.

– If i ̸= ı̂, then B2 responds as in G5.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B2 responds as in G5. Here, note that since
A follows the Type-3 or Type-4 strategy, B2 can answer all the RevLTK-query. Namely, A never queries
RevLTK(̂ı) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only query that B2
cannot answer.

• Test(i, s): B2 responds to the query as the definition. Here, in case i ̸= ı̂ or (i, s) ̸= (ȷ̂, t̂), then event
EtestO is triggered so it aborts.

If A outputs a guess b′, B2 outputs b′. It can be checked that B2 perfectly simulates game G4 (resp. G5)
to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ AdvIND-CCA
KEM (B2).

Game G6. In this game, whenever we need to derive K∗
1 ← Exts(K∗), we instead use a uniformly and

randomly chosen PRF key K∗
1←$FK (fixed once and for all), where K∗ is the KEM key chosen by oracle πt̂

ȷ̂.
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so K
has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game G7. In this game, we sample a random function RF and whenever we need to compute FK∗
1
(sid) for any

sid, we instead compute RF(K∗
1, sid). Due to the modification we made in the previous game, K∗

1 is sampled
uniformly from FK. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D2 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRF
F (D2).

51

It remains to show that the session key output by the tested oracle in the game G7 is uniformly random
regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0 and prove that
the honestly generated session key by the tested oracle is distributed uniformly random. First conditioning
on event EtestO not occurring, it must be the case that the tested oracle (and its partner oracle) prepares the
session key as k∗∥k̃ ← RF(K∗

1, sid∗)⊕ FK2(sid∗) for some sid∗. That is, K∗
1 sampled by the responder oracle

πt̂
ȷ̂ is used to compute the session key. Next, conditioning on event Euniq not occurring, the only oracles

that share the same sid∗ must be the tested oracle and its partner oracle since otherwise it would break the
uniqueness of partner oracles. Therefore, we conclude that RF(K∗

1, sid∗) is only used to compute the session
key of the tested oracle and its partner oracle. Since the output of RF is distributed uniformly random for
different inputs, we conclude that Pr [S7] = 1/2. Combining all the arguments together, we obtain

ϵ1 ≤ µ2ℓ ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Proof of Lemma A.3: Against Type-5 or Type-6 Adversary.

Lemma A.3. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm
B3,0 breaking the EUF-CMA of ΠSIG such that

ϵ1 ≤ µ · AdvEUF-CMA
SIG (B3,0).

Proof of Lemma A.3. We present the rest of the sequence of games from game G1.
Game G2. In this game, at the beginning of the game, C chooses a party Pȷ̂ uniformly at random from the
µ parties. Let EtestO be the event that the peer of the tested oracle is not Pȷ̂. If event EtestO occurs, C aborts.
Since C guesses the choice made by A correctly with probability 1/µ, we have

ϵ2 = 1
µ

ϵ1.

Game G3. This game is identical to G2, except that we add an abort condition. Let S be a list of message-
signature pairs that Pȷ̂ generated as being a responder oracle. That is, every time πt

ȷ̂ for some t ∈ [ℓ] is invoked
as a responder, it updates the list S by appending the message-signature pair (sidt

ȷ̂, σt
ȷ̂) that it generates.

Then, when an initiator oracle πs
i for any (i, s) ∈ [µ]× [ℓ] is invoked on input (C, CT , c) from party Pȷ̂ (i.e.,

Pids
i = ȷ̂), it first computes sids

i and σ as in the previous game, and it checks if SIG.Verify(vkȷ̂, sids
i , σ) = 1

and Pȷ̂ is not corrupted, then (sids
i , σ) ∈ S. If not, the game aborts. Otherwise, it proceeds as in the previous

game. We call the event that abort occurs as Esig. Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following the
Type-5 or Type-6 strategy has winning advantage in game G3, i.e., Pr[S3] = 1/2. To see this, first let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. That is πs∗

i∗ is in the accept state. Due
to the modification we made in game G2 and by the definition of the Type-5 or Type-6 strategy, πs∗

i∗ has
no partner oracle πt

ȷ̂ for any t ∈ [ℓ] and the peer Pȷ̂ was not corrupted before πs∗

i∗ completes the protocol
execution conditioning on EtestO not occurring. On the other hand, if πs∗

i∗ is in the accept state, then event
Esig must have not triggered. Consequently, there exists some oracle πt

ȷ̂ that output (sids∗

i∗ , σ∗). Parsing
sids∗

i∗ as Pi∗∥Pȷ̂∥lpki∗∥lpkȷ̂∥ek∗
T ∥C∗∥C∗

T , this implies that πt
ȷ̂ and πs∗

i∗ are partner oracles. Since this forms a
contradiction, A can only receive ⊥ when it issues Test(i∗, s∗). Hence, since the challenge bit b is statistically
hidden from A, we have Pr[S3] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3,0 against the EUF-CMA security
of ΠSIG. The description of B3,0 follows: B3,0 receives the public parameter ppSIG and the challenge verification

52

key vk∗. B3,0 sets up the public parameter of ΠSC-AKE as in G2 using ppSIG. B3,0 then samples ȷ̂ randomly from
[µ], runs (dkȷ̂, ekȷ̂)← KEM.KeyGen(ppKEM), and sets the long-term public key of party Pȷ̂ as lpkȷ̂ := (ekȷ̂, vk∗).
The long-term secret key is implicitly set as lskȷ̂ := (dkȷ̂, sk∗), where sk∗ is unknown to B3,0. For the rest of
the parties Pi for i ∈ [µ\ȷ̂], B3,0 generates (lpki, lski) as in G2. Finally, B3,0 invokes A on input the public
parameter of ΠSC-AKE and {lpki | i ∈ [µ]} and answers the queries by A as follows:

• Send(i, s, ⟨START : role, j⟩): B3,0 responds as in G2.

• Send(j, t, m = (ekT , σi)): Depending on the value of j, it performs the following:

– If j = ȷ̂, then B3,0 prepares sidt
ȷ̂ as in G2, and then sends sidt

ȷ̂ to its signing oracle and receives back
a signature σ′ for message sidt

ȷ̂ under sk∗. B3,0 then responds as in G2 except that it sets σ := σ′.
– If j ̸= ȷ̂, then B3,0 responds as in G2.

• Send(i, s, m = (C, CT , c)): B3,0 responds as in G2.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B3,0 responds as in G2. Here, note that
since A follows the Type-5 or Type-6 strategy, B3,0 can answer all the RevLTK-query. Namely, A never
queries RevLTK(ȷ̂) (i.e., lskȷ̂ := (dkȷ̂, sk∗)) conditioning on EtestO not occurring, which is the only query
that B3,0 cannot answer.

• Test(i, s): B3,0 responds as in G2. Here, in case Pids
i ̸= ȷ̂, then event EtestO is triggered so it aborts.

It is clear that B3,0 perfectly simulates the view of game G2 to A. Below, we analyze the probability that
B3,0 breaks the EUF-CMA security of ΠSIG and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗

i∗ be (ek∗
T , σi∗) and the

message received by πs∗

i∗ be (C∗, C∗
T , c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition

of the Type-5 or Type-6 strategy and conditioned on EtestO not occurring, the tested oracle πs∗

i∗ satisfies the
following conditions:

• roles∗

i∗ = init and Pids∗

i∗ = ȷ̂,

• πs∗

i∗ is in the accept state. This implies SIG.Verify(vk∗, Pi∗∥Pȷ̂∥lpki∗∥lpkȷ̂∥ek∗
T ∥C∗∥C∗

T , σ∗) = 1 holds,

• Pȷ̂ was not corrupted before πs∗

i∗ completes the protocol execution,

• πs∗

i∗ has no partner oracles.

Since πs∗

i∗ has no partner oracles, there exists no responder oracle πt
ȷ̂ that has received ek∗

T from Pi∗ and out-
put (C∗, C∗

T). In other words, there is no oracle πt
ȷ̂ that has signed on the message Pi∗∥Pȷ̂∥lpki∗∥lpkȷ̂∥ek∗

T ∥C∗∥C∗
T .

Notice that this is exactly the event Esig; an initiator oracle πs∗

i∗ receives a signature that was not signed by an
oracle πt

ȷ̂ for any t ∈ [ℓ], and Pȷ̂ was not corrupted when πs∗

i∗ receives the signature. Therefore, B3,0 obtains
a valid forgery (Pi∗∥Pȷ̂∥lpki∗∥lpkȷ̂∥ek∗

T ∥C∗∥C∗
T , σ∗), and we have Pr[Esig] = AdvEUF-CMA

SIG (B3,0). Combining
everything together, we conclude

ϵ1 ≤ µ · AdvEUF-CMA
SIG (B3,0).

Proof of Lemma A.4: Against Type-7 or Type-8 Adversary.

Lemma A.4. For any QPT adversary A using the Type-7 or Type-8 strategy, there exists a QPT algorithm
B3,1 breaking the EUF-CMA of ΠSIG such that

ϵ1 ≤ µ · AdvEUF-CMA
SIG (B3,1).

53

Proof of Lemma A.4. We present the rest of the sequence of games from game G1.
Game G2. In this game, at the beginning of the game, C chooses a party Pı̂ uniformly at random from the
µ parties. Let EtestO be the event that the peer of the tested oracle is not Pı̂. If event EtestO occurs, C aborts.
Since C guesses the choice made by A correctly with probability 1/µ, we have

ϵ2 = 1
µ

ϵ1.

Game G3. This game is identical to G2, except that we add an abort condition. Let S be a list of
message-signature pairs that Pı̂ generated as being an initiator oracle. That is, every time πs

ı̂ for some s ∈ [ℓ]
is invoked as an initiator, it updates the list S by appending the message-signature pair (eks

ı̂ , σs
ı̂) that it

generates. Then, when a responder oracle πt
j for any (j, t) ∈ [µ]× [ℓ] is invoked on input (ekT , σ) from party

Pı̂ (i.e., Pidt
j = ı̂), it checks if SIG.Verify(vkı̂, ekT , σ) = 1 and Pı̂ is not corrupted, then (ekT , σ) ∈ S. If not,

the game aborts. Otherwise, it proceeds as in the previous game. We call the event that abort occurs as Esig.
Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following the
Type-7 or Type-8 strategy has winning advantage in game G3, i.e., Pr[S3] = 1/2. To see this, first let us
assume A issued Test(j∗, t∗) and received a key that is not a ⊥. That is πt∗

j∗ is in the accept state. Due
to the modification we made in game G2 and by the definition of the Type-7 or Type-8 strategy, πt∗

j∗ has
no partner oracle πs

ı̂ for any s ∈ [ℓ] and the peer Pı̂ was not corrupted before πt∗

j∗ completes the protocol
execution conditioning on EtestO not occurring. On the other hand, if πt∗

j∗ is in the accept state, then event
Esig must have not been triggered. Consequently, there exists some oracle πs

ı̂ that output (eks
ı̂ , σs

ı̂) and πt∗

j∗

receives it. This implies that πs
ı̂ and πt∗

j∗ are partner oracles. Since this forms a contradiction, A can only
receive ⊥ when it issues Test(j∗, t∗). Hence, since the challenge bit b is statistically hidden from A, we have
Pr[S3] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3,1 against the EUF-CMA security
of ΠSIG. The description of B3,1 follows: B3,1 receives the public parameter ppSIG and the challenge verification
key vk∗. B3,1 sets up the public parameter of ΠSC-AKE as in G2 using ppSIG. B3,1 then samples ı̂ randomly from
[µ], runs (dkı̂, ekı̂)← KEM.KeyGen(ppKEM), and sets the long-term public key of party Pı̂ as lpkı̂ := (ekı̂, vk∗).
The long-term secret key is implicitly set as lskı̂ := (dkı̂, sk∗), where sk∗ is unknown to B3,1. For the rest of
the parties Pi for i ∈ [µ\ı̂], B3,1 generates (lpki, lski) as in G2. Finally, B3,1 invokes A on input the public
parameter of ΠSC-AKE and {lpki | i ∈ [µ]} and answers the queries by A as follows:

• Send(i, s, ⟨START : role, j⟩): Depending on the value of i, it performs the following:

– If i = ı̂, then B3,1 prepares ekT as in G2, and then sends ekT to its signing oracle and receives back
a signature σ′ for message ekT under sk∗. B3,1 then responds as in G2 except that it sets σi := σ′.

– If i ̸= ı̂, then B3,1 responds as in G2.

• Send(j, t, m = (ekT , σi)): B3,1 responds as in G2.

• Send(i, s, m = (C, CT , c)): B3,1 responds as in G2.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B3,1 responds as in G2. Here, note that
since A follows the Type-7 or Type-8 strategy, B3,1 can answer all the RevLTK-query. Namely, A never
queries RevLTK(̂ı) (i.e., lskı̂ := (dkı̂, sk∗)) conditioning on EtestO not occurring, which is the only query
that B3,1 cannot answer.

• Test(i, s): B3,1 responds as in G2. Here, in case Pids
i ̸= ı̂, then event EtestO is triggered, so it aborts.

54

It is clear that B3,1 perfectly simulates the view of game G2 to A. Below, we analyze the probability that
B3,1 breaks the EUF-CMA security of ΠSIG and relate it to Pr[Esig].

We assume A issues Test(j∗, t∗). Let the message received by the responder oracle πt∗

j∗ be (ek∗
T , σ∗). Then,

by the definition of the Type-7 or Type-8 strategy and conditioned on EtestO not occurring, the oracle πt∗

j∗

satisfies the following conditions:

• rolet∗

j∗ = resp and Pidt∗

j∗ = ı̂,

• πt∗

j∗ is in the accept state. This implies SIG.Verify(vk∗, ek∗
T , σ∗) = 1 holds,

• Pı̂ was not corrupted before πt∗

j∗ completes the protocol execution,

• πs∗

i∗ has no partner oracles.

Since πt∗

j∗ has no partner oracles, there exists no initiator oracle πs
ı̂ that has output (ek∗

T , σ∗). In other
words, there is no oracle πs

ı̂ that has signed the message ek∗
T . Notice that this is exactly the event Esig; a

responder oracle πt∗

j∗ receives a signature that was not signed by an oracle πs
ı̂ for any s ∈ [ℓ], and Pı̂ was not

corrupted when πt∗

j∗ receives the signature. Therefore, B3,1 obtains a valid forgery (ek∗
T , σ∗), and we have

Pr[Esig] = AdvEUF-CMA
SIG (B3,1)

Combining everything together, we conclude

ϵ1 ≤ µ · AdvEUF-CMA
SIG (B3,1).

B Full Proofs for Deniable Signal-Conforming AKE ΠSC-DAKE

In this section, we provide the proofs of the correctness and security of our deniable Signal-conforming AKE
protocol ΠSC-DAKE.

B.1 Correctness of Deniable Signal-Conforming AKE ΠSC-DAKE

We prove the correctness of our deniable Signal-Conforming AKE protocol ΠSC-DAKE.

Proof of Theorem 7.6. This proof is similar to the proof of Theorem 4.2. It is clear that an initiator oracle
and a responder oracle become partners when they execute the protocol faithfully. Moreover, if no correctness
error occurs in the underlying KEM schemes and ring signature scheme, the partner oracles compute an
identical session key. Since each oracle is assigned to uniform randomness, the probability that a correctness
error occurs in one of the underlying schemes is bounded by δRS + 2δKEM. Since there are at most µℓ/2
responder oracles, the AKE protocol is correct except with probability µℓ · (δRS + 2δKEM)/2.

B.2 Security of Deniable Signal-Conforming AKE ΠSC-DAKE

We prove the security of our deniable Signal-Conforming AKE protocol ΠSC-DAKE.

Proof of Theorem 7.7. Let A be an adversary that plays the security game GweakFS
ΠSC-DAKE

(µ, ℓ) with the challenger
C with advantage AdvAKE-weakFS

ΠSC-DAKE
(A) = ϵ. The bulk of the proof is identical to the proof of Theorem 4.3 for the

(non-deniable) protocol ΠSC-AKE. Namely, we divide the strategy that can be taken by A (listed in Table 1)
and we construct an algorithm that breaks one of the underlying assumptions by using such an A as a
subroutine. Formally, we construct seven algorithms B1, . . . ,B4 and D1, . . . ,D3 satisfying the following:

1. If A uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of ΠwKEM
with advantage ≈ 1

µ2ℓ2 ϵ or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ2 ϵ.

55

2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2ℓ ϵ or D2 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ ϵ.

3. If A uses the Type-5 or Type-6 strategy, then B3 succeeds in breaking the unforgeability of ΠRS with
advantage ≈ ϵ.

4. If A uses the Type-7 (or Type-8) strategy, then B4 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2ℓ ϵ or D3 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2ℓ ϵ.

We present a security proof structured as a sequence of games. Without loss of generality, we assume that
A always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in game Gj and let
ϵj := |Pr [Sj]− 1/2| denote the advantage of the adversary in game Gj . Regardless of the strategy taken by
A, all proofs share a common game sequence G0-G1 as described below. Although they are identical to those
of Theorem 4.3, we provide them for completeness.
Game G0. This game is identical to the original security game. We thus have

ϵ0 = ϵ.

Game G1. This game is identical to G0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πs

i and πt
j that do not agree on the same session key. If Ecorr occurs, then C

aborts (i.e., sets A’s output to be a random bit) at the end of the game.
There are at most µℓ/2 responder oracles and each oracle is assigned uniform randomness. From Theo-

rem 7.6, the probability of error occurring during the security game is at most µℓ(δRS + 2δKEM)/2. Therefore,
Ecorr occurs with probability at most µℓ(δRS + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤ µℓ

2 · (δRS + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s

strategy, we prove that ϵ1 is negligible, which in particular implies that ϵ is also negligible. Formally, this is
shown in Lemmata B.1 to B.4 provided below. We first complete the proof of the theorem. Specifically, by
combining all the lemmata together, we obtain the following desired bound:

AdvAKE-weakFS
ΠSC-DAKE (A) ≤ max


µ2ℓ2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2ℓ · (AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt) + µℓ2 ·
(

1
22χKEM + 1

2νKEM

)
,

AdvUnf
RS (B3),

µ2ℓ ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µℓ2 · 1

2χKEM


+ µℓ

2 · (δRS + 2δKEM).

Here, the running time of the algorithms B1, . . . ,B4 and D1, . . . ,D3 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.

It remains to prove Lemmata B.1 to B.4. Since the proof of Lemmata B.3 and B.4 is a direct consequence
of the proof of the corresponding Lemmata A.1 and A.2 of Theorem 4.3,33 we focus on proving Lemma B.1
and Lemma B.2 below.

Lemma B.1. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm
B3 breaking the unforgeability of ΠRS such that

ϵ1 ≤ AdvUnf
RS (B3).

33Note that Lemma B.3 (resp. Lemma B.4) corresponds to Lemma A.1 (resp. Lemma A.2).

56

Proof of Lemma B.1. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add an abort condition. Let Sj be a list of message-
signature pairs that Pj generated as being a responder oracle. That is, every time πt

j for some t ∈ [ℓ] is invoked
as a responder, it updates the list Sj by appending the message-signature pair (sidt

j , σt
j) that it generates.

Then, when an initiator oracle πs
i for any (i, s) ∈ [µ]× [ℓ] is invoked on input (C, CT , c) from party Pj (i.e.,

Pids
i = j), it first computes sids

i and σ as in the previous game and checks if RS.Verify({vkT , vkj} , sids
i , σ) = 1

and (sids
i , σ) ∈ Sj . If not, the game aborts. Otherwise, it proceeds as in the previous game. We call the event

that abort occurs as Esig. Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following the
Type-5 or Type-6 strategy has winning advantage in game G2, i.e., Pr[S2] = 1/2. To see this, first let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. In other words, πs∗

i∗ is in the accept state.
By the definition of the Type-5 or Type-6 strategy, πs∗

i∗ has no partner oracle πt
j for any (j, t) ∈ [µ] × [ℓ].

On the other hand, if πs∗

i∗ is in the accept state, then event Esig must have not triggered. Consequently,
there exists some oracle πt

j that output (sids∗

i∗ , σ∗). Parsing sids∗

i∗ as Pi∗∥Pj∥lpki∗∥lpkj∥ek∗
T ∥vk∗

T ∥C∗∥C∗
T , this

implies that πt
j and πs∗

i∗ are partner oracles. Since this forms a contradiction, A can only receive ⊥ when it
issues Test(i∗, s∗). Hence, since the challenge bit b is statistically hidden from A, we have Pr[S2] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3 against the unforgeability
of ΠRS. The description of B3 follows: B3 receives the public parameter ppRS and µ + µℓ verification keys
vk1, . . . , vkµ and vk1

1, . . . , vkℓ
µ. B3 sets up the public parameter of ΠSC-DAKE as in game G2 using ppRS. B3

then runs (dki, eki)← KEM.KeyGen(ppKEM) and sets the long-term public key of party Pi as lpki := (eki, vki).
The long-term secret key is implicitly set as lski := (dki, ski), where ski is unknown to B3. Finally, B3 invokes
A on input the public parameter of ΠSC-DAKE and {lpki | i ∈ [µ]} and answers the queries by A as follows:

• Send(i, s, ⟨START : role, j⟩): B3 responds as in G1 except that it sets vkT := vks
i .

• Send(j, t, m = (ekT , vkT)): B3 responds as in G1 except that rather than constructing the signature
σ on its own, it sends (sign, j, sidt

j , {vkT , vkj}) to its signing oracle and uses the signature σ′ that it
receives.

• Send(i, s, m = (C, CT , c)): B3 responds as in G1.

• RevLTK(i): B3 sends (corrupt, i) to its corruption oracle and receives back a signing key sk′
i. B3 then

sets ski := sk′
i and returns lski = (dki, ski).

• RevState(i, s), RevSessKey(i, s): B3 responds as in G1.

• Test(i, s): B3 responds as in G1.

It is clear that B3 perfectly simulates the view of game G2 to A. Below, we analyze the probability that B3
breaks the unforgeability of ΠRS and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗

i∗ be (ek∗
T , vk∗

T) and the
message received by πs∗

i∗ be (C∗, C∗
T , c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition

of the Type-5 or Type-6 strategy, the tested oracle πs∗

i∗ satisfies the following conditions:

• roles∗

i∗ = init,

• Pj is not corrupted where Pids∗

i∗ = j and j ∈ [µ],

• πs∗

i∗ is in the accept state. This implies RS.Verify({vk∗
T , vkj} , Pi∗∥Pj∥lpki∗∥lpkj∥ek∗

T ∥vk∗
T ∥C∗∥C∗

T , σ∗) =
1 holds,

• πs∗

i∗ has no partner oracles.

57

Since Pj is not corrupted, A has never queried RevLTK(j)-query. Moreover, since an honest initiator
discards sk∗

T on generation, B3 never uses them for simulation. These two facts imply that (corrupt, j) and
(corrupt, (i, T)) has never been queried, where (corrupt, (i, T)) is a query regarding the verification key vks∗

i∗ . In
particular, the ring {vk∗

T , vkj} consists of non-corrupted verification keys. Moreover, since πs∗

i∗ has no partner
oracles, there exists no responder oracle πt

j that has received (ek∗
T , vk∗

T) from Pi∗ and sent (C∗, C∗
T). In other

words, there is no oracle πt
j that has signed on the message Pi∗∥Pj∥lpki∗∥lpkj∥ek∗

T ∥vk∗
T ∥C∗∥C∗

T . Notice that
this is exactly the event Esig; an initiator oracle πs∗

i∗ receives a signature that was not signed by an oracle πt
j

for any t ∈ [ℓ]. Therefore, we have Pr[Esig] = AdvUnf
RS (B3).

Combining everything together, we conclude

ϵ1 ≤ AdvUnf
RS (B3).

Lemma B.2. For any QPT adversary A using the Type-7 or Type-8 strategy, there exist QPT algorithms B4
breaking the IND-CCA security of ΠKEM and D3 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

AdvIND-CCA
KEM (B4) + AdvPRF

F (D3) + εExt

)
+ µℓ2 · 1

2χKEM
.

Proof of Lemma B.2. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add another abort condition. Let Ecoll be the event
that there exists two responder oracles πt

j and πt′

j for any j ∈ [µ] and t ̸= t′ ∈ [ℓ] such that they output the
same ΠKEM ciphertext. That is, there exists two oracles πt

j and πt′

j that output (C, CT , c) and (C′, C′
T , c′)

such that C = C′. Here, we only consider the case where Pidt
j and Pidt′

j correspond to parties generated by
the game (and not parties added by the adversary). If Ecoll occurs, then C aborts. Since G1 and G2 proceed
identically unless Ecoll occurs, we have

|ϵ1 − ϵ2| ≤ Pr [Ecoll] .

We claim
Pr [Ecoll] ≤ µℓ2 · 1

2χKEM
.

Since each oracles πt
j are initialized with uniform random and independent randomness and eki is honestly

generated, where i = Pidt
j , each ciphertext C output by oracle πt

j has χKEM-min entropy due to the χKEM-high
ciphertext min-entropy of ΠKEM. Fixing on one j ∈ [µ], the probability of a collision occurring is upper
bounded by µ2/2χKEM . Then, taking the union bound on all the parties, we obtain the claimed bound.
Game G3. In this game, before starting the game, C chooses a responder oracle πt̂

ȷ̂ and a party Pı̂ uniformly
at random from µℓ oracles and µ parties, respectively. Let EtestO be the event that the tested oracle is not πt̂

ȷ̂

or the peer of the tested oracle is not Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it
detects that event EtestO occurs. C guesses the choice made by A correctly with probability 1/µ2ℓ, so we have

ϵ3 = 1
µ2ℓ

ϵ2.

Game G4. In this game, we modify the way the initiator oracle πs
ı̂ for any s ∈ [ℓ] responds on its second

invocation. Let (K, C) be the ΠKEM key-ciphertext pair generated by oracle πt̂
ȷ̂. Then, when πs

ı̂ is invoked
(on the second time) on input (C′, CT , c), it first checks if C′ = C. If so, it proceeds as in the previous game
except that it uses the key K that was generated by πt̂

ȷ̂ rather than using the key obtained through decrypting
C′. Otherwise, if C′ ̸= C, then it proceeds exactly as in the previous game. Conditioning on event Ecorr (i.e.,
decryption failure) not occurring, the two games G3 and G4 are identical. Hence,

ϵ4 = ϵ3.

58

Game G5. In this game, we modify the way the responder oracle πt̂
ȷ̂ responds. When the responder oracle πt̂

ȷ̂

is invoked on input ekT , it samples a random key K←$KSKEM instead of computing (K, C)← KEM.Encap(ekı̂).
Note that due to the modification we made in the previous game, when the initiator oracle πs

ı̂ for any s ∈ [ℓ]
is invoked (on the second time) on input (C′, CT , c) for C′ = C, it uses the random key K generated by oracle
πt̂

ȷ̂. We claim G4 and G5 are indistinguishable assuming the IND-CCA security of ΠKEM. To prove this, we
construct an algorithm B4 breaking the IND-CCA security as follows.
B4 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗, C∗) from its challenger.

B4 then samples a random (̂ı, ȷ̂, t̂)←$ [µ]2 × [ℓ], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B4 runs (vkı̂, skı̂)← RS.KeyGen(1κ) and sets the
long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B3,1 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B4 computes the long-term key
pairs (lpki, lski) as in G5. Finally, B4 invokes A on input the public parameter of ΠSC-AKE and {lpki | i ∈ [µ]}
and answers the queries made by A as follows:

• Send(i, s, ⟨START : role, j⟩): B4 proceeds as in G5.

• Send(j, t, m = (ekT , σi)): Let i := Pidt
j . Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (ȷ̂, t̂, ı̂), then B4 responds as in G5 except that it sets (K, C) := (K∗, C∗) rather than
generating them on its own. It then returns the message (C∗, CT , c).

– If (j, t, i) ̸= (ȷ̂, t̂, ı̂), then B4 responds as in G5.

• Send(i, s, m = (C, CT , c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B4 checks if C = C∗. If so, it responds as in G5 except that it sets K := K∗. Otherwise,
if C ̸= C∗, then it queries the decapsulation oracle on C and receives back K′. B3,1 then responds
as in G5 except that it sets K := K′.

– If i ̸= ı̂, then B4 responds as in G5.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B4 responds as in G5. Here, note that since
A follows the Type-7 or Type-8 strategy, B3,1 can answer all the RevLTK-query. Namely, A never
queries RevLTK(̂ı) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only query
that B3,1 cannot answer.

• Test(i, s): B4 responds to the query as in the definition. Here, in case (i, s) ̸= (ȷ̂, t̂), then event EtestO is
triggered so it aborts.

If A outputs a guess b′, B4 outputs b′. It can be checked that B4 perfectly simulates game G4 (resp. G5)
to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ AdvIND-CCA
KEM (B4).

Game G6. In this game, whenever we need to derive K∗
1 ← Exts(K∗), we instead use a uniformly and

randomly chosen PRF key K∗
1←$FK (fixed once and for all), where K∗ is the KEM key chosen by oracle πt̂

ȷ̂.
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so K
has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game G7. In this game, we sample a random function RF and whenever we need to compute FK∗
1
(sid) for any

sid, we instead compute RF(K∗
1, sid). Due to the modification we made in the previous game, K∗

1 is sampled
uniformly from FK. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D3 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRF
F (D3).

59

It remains to show that the session key outputted by the tested oracle in the game G7 is uniformly
random regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0
and prove that the honestly generated session key by the tested oracle is distributed uniformly random.
First conditioning on event EtestO not occurring, it must be the case that the tested oracle πt̂

ȷ̂ prepares the
session key as k∗∥k̃ ← RF(K∗

1, sid∗)⊕ FK2(sid∗) for some sid∗. Here, recall K∗
1 is the random PRF key sampled

by the oracle πt̂
ȷ̂ (see game G6). Next, since the tested oracle has no partner oracle (by definition of the

Type-7 and Type-8 strategy), there are no oracles πs
i such that i ̸= i that runs RF(K∗

1, ·) on input sid∗.
Moreover, conditioning on event Ecoll not occurring, no oracles πt

ı̂ for t ̸= t̂ run RF(K∗
1, ·) on input sid∗ as well

since (C, CT) output by these oracles must be distinct from what πt̂
ȷ̂ outputs. Therefore, we conclude that

RF(K∗
1, sid∗) is only used to compute the session key of the tested oracle and used nowhere else. Since the

output of RF is distributed uniformly random for different inputs, we conclude that Pr [S7] = 1/2. Combining
all the arguments together, we obtain

ϵ1 ≤ µ2ℓ ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µℓ2 · 1

2χKEM
.

For completeness, we state the remaining Lemmata B.3 and B.4 and provide a proof sketch.

Lemma B.3. For any QPT adversary A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of ΠwKEM and D1 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Lemma B.4. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of ΠKEM and D2 breaking the security of PRF F such that

ϵ1 ≤ µ2ℓ ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µℓ2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Proof Sketch of Lemmata B.3 and B.4. The difference between ΠSC-DAKE and ΠSC-AKE is that the former uses
a ring signature and the first message sent by the initiator includes the ephemeral verification key vkT ; and
the initiator does not sign the first message. In addition, the former considers weak forward secrecy (A plays
GweakFS

ΠSC-DAKE
(µ, ℓ)), and the latter considers perfect forward secrecy (A plays GFS

ΠSC-AKE
(µ, ℓ)). However, it can be

easily verified that this modification brings no advantage to the adversary following the strategies in the
statement. In particular, when A uses the Type-1, Type-2, Type-3 or Type-4 strategy (i.e., the tested oracle
has a partner oracle), the winning condition (cf. freshness clauses Items 1 to 4) of the two security game is
identical. Specifically, the proofs are identical to the proofs of Lemmata A.1 and A.2.

In slightly more detail, notice the session key derivation step in ΠSC-DAKE is exactly the same as those in
ΠSC-AKE. Namely, the value of the derived session key is independent of the signature conditioning on the
signature being valid. Further, notice the proofs of Lemmata A.1 and A.2 only relies on the security properties
of the KEM, PRF, and extractor. That is, the proof does not hinge on the security offered by the signature
scheme and this holds even if remove the signature from the first message and replace the signature scheme
with a ring signature scheme. Here, we note that the validity of the ephemeral ring signature verification key
never comes in play in the security proof. Therefore, the proofs of Lemmata A.1 and A.2 follow.

C Equivalence Between DVS and Ring Signature
In a subsequent work, Brendel et al. [21] showed a generic construction of a deniable Signal-conforming AKE
protocol based on a designated verifier signature (DVS) and a KEM. They showed how to instantiate DVS

60

from a ring signature (for a ring of two users) but left open the opposite implication and speculated the
possibility of constructing DVS easier than a ring signature.

In this section, we solve this open problem. We show how to instantiate a ring signature (for a ring of two
users) from DVS and show that DVS is a ring signature in disguise. As discussed in Footnote 10, the security
notion of DVS and ring signatures may come in different flavors so it is not always the case that they are
equivalent. We only focus on DVS and ring signatures that Brendel et al. [21] required to construct their
AKE protocol. Namely, the definition of ring signature we provide in Section 2.6 is strictly stronger than
those considered in [21]. We make this clear when we provide the security proof of our ring signature based
on DVS.

The following syntax and security definition of DVS is taken almost verbatim from [21, Section 3]. One
thing to keep in mind is that even though it is called designated verifier, the syntax of Brendel et al. allows
the signature to be publicly verifiable. This will be essential when building a ring signature.

Definition C.1. A DVS is a tuple of algorithms DVS = (SKGen, VKGen, Sign, Vrfy, Sim) along with a message
space M.

• SKGen()→ (pkS, skS): A probabilistic key generation algorithm that outputs a public-/secret-key pair
for the signer.

• VKGen()→ (pkD, skD): A probabilistic key generation algorithm that outputs a public-/secret-key pair
for the verifier.

• Sign(skS, pkD, M)→ σ: A probabilistic signing algorithm that uses a signer’s secret key skS to produce a
signature σ for a message M ∈M for a designated verifier with public key pkD.

• Vrfy(pkS, pkD, M, σ) → 1/0: A deterministic verification algorithm that checks a message M and a
signature σ against a signer’s public key pkS and a verifier’s public key pkD.

• Sim(pkS, skD, M)→ σ: A probabilistic signature simulation algorithm that uses the verifier’s secret key
skD to produce a signature σ on a message M for signer’s public key pkS.

Definition C.2 (Unforgeability). A DVS is unforgeable if for any efficient adversary A we have Pr[Guf(A) =
1] is negligible, where the game Guf is defined in Figure 6.

Definition C.3 (Source Hiding). A DVS is source hiding if for any efficient adversary A we have∣∣Pr[Gsrchid(A) = 1]− 1/2
∣∣ is negligible, where the game Gsrchid is defined in Figure 6.

Using a standard hybrid argument, we can assume without loss of generality that A queries oracle Chall
once.

Construction. We now provide a generic construction of a ring signature from any DVS satisfying the above
syntax and security definitions. Following Brendel et al. [21], we assume there is no public parameter and
omit RS.Setup. We also only consider a ring signature for a ring of two users as this is sufficient to construct
an AKE protocol. Moreover, we assume without loss of generality that pkS can be ordered lexicographically,
e.g., pkS < pkS

′.

RS.KeyGen() : Run (pkS, skS)← SKGen() and (pkD, skD)← VKGen(), and output (RS.vk := (pkS, pkD), RS.sk :=
(skS, skD)).

RS.Sign(RS.sk, M, R =
{

RS.vk, RS.vk′}) : Parse (pkS, pkD)← RS.vk and (pkS
′, pkD

′)← RS.vk′. If pkS < pkS
′,

then output σ ← Sign(skS, pkD
′, M). Otherwise, output σ ← Sim(pkS

′, skD, M).

RS.Verify(R =
{

RS.vk, RS.vk′} , M, σ) : Parse (pkS, pkD) ← RS.vk and (pkS
′, pkD

′) ← RS.vk′. If pkS < pkS
′,

then output Vrfy(pkS, pkD
′, M, σ). Otherwise, output Vrfy(pkS

′, pkD, M, σ).

61

Guf(A)
1 : Q← ∅
2 : L← ∅
3 : (pkS, skS)← SKGen()
4 : (pkD, skD)← VKGen()
5 : for i ∈ [n] do
6 : (pkD,i, skD,i)← VKGen()

7 : L← L ∪
{

(pkD,i, skD,i)
}

8 : (M∗, σ∗)← ASign(·,·)(pkS, pkD, L)
9 : d← Vrfy(pkS, pkD, M∗, σ∗)

10 : return [d = 1 ∧M∗ /∈ Q]

Sign(pk, M)
1 : if pk = pkD then
2 : Q← Q ∪ {M}
3 : elseif (pk, sk) /∈ L then
4 : return ⊥
5 : σ ← Sign(skS, pk, M)
6 : return σ

Gsrchid(A)
1 : (pkS, skS)← SKGen()
2 : (pkD, skD)← VKGen()
3 : b← {0, 1}

4 : b′ ← AChall(·)(pkS, skS, pkD, skD)
5 : return [b = b′]

Chall(M)
1 : if b = 0 then
2 : σ ← Sign(skS, pkD, M)
3 : else
4 : σ ← Sim(pkS, skD, M)
5 : return σ

Figure 6: Unforgeability and source hiding for DVS.

Security. We first prove anonymity of the ring signature. The anonymity definition considered by Brendel
et al. [21] is almost identical to those in Definition 2.14 except that they additionally consider the verification
and signing keys to be generated honestly, rather than being generated by possibly malicious randomness.
This suffices to prove their deniability since the AKE keys are assumed to be generated honestly.

Lemma C.4. If DVS satisfies source hiding, then the ring signature is anonymous (with respect to honestly
generated verification and signing keys with rings of size two).

Proof. Assume there exists an adversary B against the anonymity of the ring signature. We construct an
adversary A against the source hiding of DVS as follows.
A is provided (pkS, skS, pkD, skD) from the DVS challenger. It queries M to oracle Chall and receives σ.

It then generates (pkS, skS)← SKGen() and (pkD, skD)← VKGen() conditioned on pkS < pkS. Note that this
is without loss of generality since A can simply regenerate pkS until it succeeds (and possibly halt after it
exceeds some number of trials to make A run in strict polynomial time). It then samples a random bit
d← {0, 1} and sets

(RS.vkd, RS.skd) := ((pkS, pkD), (skS, skD)) and (RS.vk1−d, RS.sk1−d) := ((pkS, pkD), (skS, skD)).

It finally provides B with {(RS.vki, RS.ski)}i∈{0,1} and σ. When B outputs d′ as its guess, A outputs its guess
as b′ := d⊕ d′.

Let us analyze the advantage of A. First of all, since d is information theoretically hidden from B, the ring
signature keys {(RS.vki, RS.ski)}i∈{0,1} are distributed identically to the anonymity game even conditioned
on pkS < pkS. Moreover, if oracle Chall was using b = 0, then σ ← Sign(skS, pkD, M). Since pkS < pkS,
σ is distributed identical to RS.Sign(RS.skd, M, R = {RS.vk0, RS.vk1}). On the other hand, if oracle Chall
was using b = 1, then σ ← Sim(pkS, skD, M). Then, this is distributed identical to RS.Sign(RS.sk1−d, M, R =
{RS.vk0, RS.vk1}). Hence, if B outputs a guess d′ and d = 0, then A simply needs to output d′ as its guess.
Otherwise, A flips the guess d′ in order to uncompute the swap induced by d = 1. This completes the
proof.

The unforgeability definition considered by Brendel et al. [21] is similar to those in Definition 2.15 except
that they restrict the adversary to only query the signing oracle on rings consisting of honestly generated
verification keys. This weaker definition suffices for their application since they consider deniability only
against honestly generated long-term keys.

62

Lemma C.5. If DVS satisfies source hiding and unforgeability, then the ring signature is unforgeable (with
respect to honestly generated rings of size two).

Proof. Before providing the reduction, we first modify the unforgeability game of the ring signature (with
respect to honestly generated rings of size two) to the following. The modification from the original Defi-
nition 2.15 is underlined in black. The only difference is that the challenger samples two random distinct
indices (i∗

0, i∗
1) ∈ [N]× [N] and hopes that the adversary outputs a forgery on the ring

{
RS.vki∗

0
, RS.vki∗

1

}
.

Moreover, whenever the adversary A queries the signing oracle, the challenger will never use RS.ski∗
0

to sign
the message.

(i) The challenger generates key pairs (RS.vki, RS.ski) = RS.KeyGen() for all i ∈ [N]. It sets VK :=
{RS.vki | i ∈ [N]} and initializes two empty sets SL and CL. It also samples two distinct (i∗

0, i∗
1)← [N]× [N].

(ii) The challenger provides VK to A;

(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– (sign, i, M, R = {RS.vki, RS.vkj}): The challenger checks if (RS.vki, RS.vkj) ⊆ R and outputs ⊥
if not. Otherwise, if i = i∗

0, then it computes the signature σ ← RS.Sign(RS.skj , M, R). If i ̸= i∗
0,

then it computes the signature σ ← RS.Sign(RS.ski, M, R). Finally, the challenger provides σ to A
and adds (i, M, R) to SL;

– (corrupt, i): If i ∈ {i∗
0, i∗

1}, then abort the game. Otherwise, the challenger adds RS.vki to CL and
returns RS.ski to A.

(iv) A outputs (R∗, M∗, σ∗). If R∗ =
{

RS.vki∗
0
, RS.vki∗

1

}
, (·, M∗, R∗) ̸∈ SL, and Verify(R∗, M∗, σ∗) = 1, then

we say the adversary A wins.

It is straightforward to show that this modified unforgeability game is as hard as the original unforgeability
game assuming that the ring signature is anonymous (which from Lemma C.4 is an implication of the source
hiding of DVS). Concretely, we first modify the original game to a game in which the challenger simply
guesses the non-corrupted indices (i∗

0, i∗
1) ∈ [N]× [N] that the adversary will use for its forgery. Since these

indices are information theoretically hidden from the adversary, this is indistinguishable from the original
game (except for a loss of 1/N2 in the reduction). Next, assuming A makes at most Q-queries to the signing
oracle, we can define Q-hybrids, where in the k-th hybrid, the challenger answers as in the original game up to
the (k − 1)-th signing query and as in the modified game from the k-th signing query. Each adjacent hybrids
(k − 1) and k are indistinguishable assuming the anonymity of the ring signature; the reduction samples a
random index j∗ ← [N] and embeds its two verification keys provided by the anonymity game in the two
indices (i∗

0, j∗). It generates all other verification keys as in the unforgeability game. Note that the reduction
knows the signing keys to all parties. It answers all k′-th signing query for k′ ̸= k as in hybrids (k − 1) and k.
If i = i∗

0 is used in the k-th query, it further checks if vkj∗ is used. If so, the reduction simulates the signing
oracle by embedding its challenge. If vkj∗ is not used, then aborts the game. Otherwise, if i ̸= i∗

0, then it
answers the signing oracle as in the (k − 1)th and k-th hybrids. This completes the reduction. In case the
signature is created using ski∗

0
(resp. skj), it perfectly simulates the (k − 1)-th (resp. k-th) hybrid (condition

on not aborting). Therefore, assuming the ring signature is anonymous, the two hybrids are indistinguishable.
Now, we are ready to show that this modified unforgeability for the ring signature is hard assuming the

unforgeability of the DVS. Assume there exists an adversary B against the modified unforgeability of the ring
signature. We construct an adversary A against the unforgeability of DVS as follows:
A is given pkS, pkD, and L =

{
(pkD,i, skD,i)

}
i∈[n]. It generates (pkD, skD) ← VKGen(), (pkS, skS) ←

SKGen(), and (pkS,i, skS,i) ← SKGen() for i ∈ [n]. It then creates (n + 2) pairs of verification key pair for
the ring signature (pkS, pkD), (pkS, pkD), and

{
(pkS,i, pkD,i)

}
i∈[n] and randomly permutes them and sets

them as (RS.vki)i∈[n+2]. Let i∗
0 be the index such that RS.vki∗

0
:= (pkS, pkD) and i∗

1 be the index such that
RS.vki∗

1
:= (pkS, pkD). A finally provides VK := {RS.vki | i ∈ [n + 2]} to B. Notice A knows the signing keys

for indices in [n + 2]\ {i∗
0, i∗

1}, so it can simulate the signing query and corrupt query for any i /∈ {i∗
0, i∗

1}.

63

Moreover, since A aborts when i ∈ {i∗
0, i∗

1} is queried to the corruption oracle, it remains to see how A
simulates the signing queries when i ∈ {i∗

0, i∗
1}. Due to the modification we made to the unforgeability game,

A never needs to sign using the signing key corresponding to index i∗
0, so it suffices to check the case i = i∗

1.
Now, when i = i∗

1 and pkS < pkS,j , then A queries its signing oracle and obtains a signature using skS.
Otherwise, it uses skD to generate σ ← Sim(pkSj , skD, M). This completes the description of A.

Notice the winning condition of the modified unforgeability of the ring signature and the unforgeability of
the DVS is identical. Moreover, since A randomly permutes the indices in [n + 2], A simulates the distribution
of the two indices (i∗

0, i∗
1) perfectly. Therefore, A has the same advantage as B. This concludes the proof.

64

	Introduction
	Our Contribution
	Technical Overview
	Related and Subsequent Work

	Preliminaries
	Notation
	Key Encapsulation Mechanisms
	Digital Signatures
	Pseudo-Random Functions
	Strong Randomness Extractors
	Ring Signatures
	Non-Interactive Zero-Knowledge

	Security Model for Signal-Conforming AKE Protocols
	Execution Environment
	Security Game
	Security Properties
	Property for Signal-Conforming AKE: Receiver Obliviousness
	Relation to Other Security Models

	Generic Construction of Signal-Conforming AKE SC-AKE
	Post-Quantum Signal Handshake
	Signal Handshake From Signal-conforming AKE protocol
	Details of Our Post-Quantum Signal Handshake

	Instantiating Post-Quantum Signal Handshake
	Instantiation details
	Efficiency Analysis

	Adding Deniability to Our Basic Signal-Conforming AKE SC-AKE
	Definition of Deniability and Tool Preparation
	Deniable Signal-Conforming AKE SC-DAKE against Semi-Honest Adversaries
	Deniable Signal-Conforming AKE 'SC-DAKE against Malicious Adversaries

	Full Proofs for Signal-Conforming AKE SC-AKE
	Full Proofs for Deniable Signal-Conforming AKE SC-DAKE
	Correctness of Deniable Signal-Conforming AKE SC-DAKE
	Security of Deniable Signal-Conforming AKE SC-DAKE

	Equivalence Between DVS and Ring Signature

