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Abstract—Cryptographic accumulators are a crucial building
block for a variety of applications where you need to represent
a set of elements in a compact format while still being able
to provide proofs of (non)membership. In this work, we give a
number of accumulator constructions for the bilinear pairing
setting in the trapdoor-based scenario, where a trusted man-
ager maintains the accumulator. Using modular accumulator
techniques, we first present the first optimally efficient (in
terms of communication cost) dynamic, positive accumulators
in the pairing setting. Additionally, we present a novel modular
approach to construct universal accumulators that avoid costly
non-membership proofs. We instantiate our generic construction
and present the first universal accumulator in the bilinear pairing
setting, that achieves constant parameter size, constant cost
for element additions/deletions and witness generation by the
manager, constant witness updates by the users and constant
(non)membership verification. We finally show how our proposed
universal accumulator construction can give rise to efficient ZK
accumulators with constant non-membership witness updates.

I. INTRODUCTION

Cryptographic accumulators, originally introduced in [9],
allow the compact representation of an arbitrarily large set of
elements S. Given a membership witness w for an accumulated
element x and the current value of the accumulator v, it can be
efficiently verified that the element x is a valid member of the
accumulated set. The accumulated set can change over time
as elements are added and deleted; accumulators that support
both additions and deletions are called dynamic, while the ones
that only support additions or deletions are called additive and
subtractive respectively. Additionally, an accumulator is called
positive if it only supports membership proofs, negative if it
supports non-membership proofs, and universal if it supports
both membership and non-membership proofs.

Accumulators are an important building block for a variety
of applications where a compact representation of a set is
needed while at the same time element (non)membership
should be provable. Access control is a characteristic appli-
cation where accumulators can be used to improve efficiency.
Traditionally, a permitlist (or blocklist) is used to maintain the
set of users with access to a system. Unfortunately though,
the size of such lists is linear to the number of valid (or
revoked) users. Dynamic accumulators, that support additions
and deletions, can offer access control with much smaller
costs. Similarly, for the case of anonymous access control
(anonymous credentials), accumulators are commonly used to
support more efficient anonymous proofs of membership [16],

[4], [1], [15]. Beyond access control, common applications of
accumulators include group signatures [35], [30] to maintain
the list of valid group members, and anonymous cryptocurren-
cies [8], [38], [12] to compact the information posted on the
ledger.

Related Work. Given their widespread use, a variety of
accumulator constructions exist and can be categorized based
on the underlying security assumptions, setup assumptions,
offered functionalities (i.e dynamic, positive, universal etc.), as
well as the security level. The most common types of accumu-
lators, in terms of underlying assumptions, are the RSA-based
constructions [9], [16], [29] and the bilinear pairing (BP) based
constructions [34], [15], [20], [4]. More recently, there have
also been proposals in the lattice-setting, such as [30], [26]. At
the same time, the standard security properties of accumulators
(correctness and soundness) have been formalized in [21],
[37], [6], while a universally composable (UC) formalization
was recently given in [7] and additional security properties
such as zero-knowledge (ZK) were introduced in [23]. Vector
commitment (VC) schemes can also be adapted and used as
universal cryptographic accumulators, as shown in [19], and
relevant constructions exist both in the RSA [19], [27] and BP
setting [19], [27], [24], [39], [31].

Another important categorization is in regards to the re-
quired setup. There exist two main categories: “trapdoor”-
based accumulators managed by a trusted party and “trap-
doorless” or else “strong” accumulators. In a trapdoor-based
accumulator [15], [6], a trusted party, often called accumulator
manager, holds some secret information/trapdoor that allows
it to efficiently add or remove elements and create wit-
nesses. When a new element is added in the accumulator, the
accumulator manager issues the corresponding membership
witness w. The manager is responsible to issue an update
message whenever a new element is added (or deleted) in the
accumulator so that existing witness holders can update their
witnesses. Trapdoor-based accumulators are commonly used in
the anonymous credential scenario [15], [16], [1], [28], [22],
where the credential issuer often serves as the accumulator
manager, to allow for efficient revocation while preserving
privacy. Trapdoor-based accumulators were also used in the
first construction of zero-knowledge accumulators [23].

Trapdoorless, or else “strong” accumulators [14], [32] allow
for public additions or deletions of elements without the



need for a trusted party. Users adding new elements to the
accumulator can compute (and later update) their correspond-
ing witnesses themselves. Most constructions of trapdoorless
accumulators require a trusted setup phase [12], [4], [40].
Trapdoorless accumulators are mostly used in applications
such as stateless blockchains [12], authenticated database
queries [42], authenticated logs [40], etc., where multiple
miners/cloud servers/CAs exist and need to perform updates
and prove correctness of their operations on accumulated
data that belong to different owners. Accumulators derived
from vector commitment schemes typically belong in the
trapdoorless setting.
The importance of trapdoor-based accumulators. In gen-
eral, trapdoor-based accumulators are more efficient than trap-
doorless ones, since the accumulator manager can utilize its
secret trapdoor to allow for more efficient additions/deletions
and witness creations. Thus, in application scenarios where a
trusted party is already required (i.e. an issuer in anonymous
credentials), the use of trapdoor-based accumulators can give
rise to more efficient schemes. In this work, we focus on
the trapdoor-based setting and include a trusted accumulator
manager in our functionality. We note that trapdoorless accu-
mulators which require a trusted setup phase, can be converted
to trapdoor-based ones by replacing the trusted setup phase by
an accumulator manager that holds the secret trapdoor.

In the trapdoor-based setting, a recent work by Baldimtsi
et.al. [6] gives modular, generic constructions of accumulators
and shows that the combination of accumulator schemes with
different functionalities or security properties can yield to new
constructions with improved efficiency or functionality sets.
Beyond their generic modular framework, [6] explored the
case of RSA-based accumulators and provided a new accumu-
lator construction (called Braavos), which is the most efficient
positive, RSA-based accumulator in terms of communication
cost of update messages. The traditional trapdoor RSA-based
accumulator required a communication cost of |a+d| messages
(where a and d are the numbers of added and deleted elements
respectively). This communication cost corresponds to all the
messages the manager has to broadcast to witness holders such
that they can keep their witnesses up-to-date after accumulator
updates, i.e. after other elements get added or deleted. The
Braavos construction of [6] reduced the communication cost
of |d| which matches the lower bound for communication cost
(for positive accumulators) given by Camacho [13]1. We note
that communication cost is an important metric of accumulator
efficiency since in real world settings it is crucial to minimize
the amount of information that needs to be sent between users
and the accumulator manager.
The importance of BP accumulators. Although modular
constructions turned out to provide efficiency gains for RSA

1In [13] it was shown that full batching of update messages in accumu-
lators is impossible, since the lower communication bound for keeping a
membership witness up-to-date equals |d| (i.e. the number of deletions). [6]
computed the equivalent bound for non-membership to be |a| (i.e. the number
of additions), which brings the lower communication bound for universal
accumulators to |a+ d|.

based accumulators, the case of pairing based modular con-
structions remains unexplored. At a high level, the most
popular BP accumulator[34] works as follows: to construct
the accumulator value, one has to exponentiate a prime order
group generator to the product of monomials (x+a) where x
are the accumulated elements and a is a secret trapdoor. The
membership proof for element y is the remaining product in
the exponent if we remove the term (y + a).

Pairing accumulators are used as widely as RSA based ones.
In particular, are commonly used on top of systems built on
known-order groups which are known to have better group
operation performance (smaller group sizes, shorter elements)
and are supported by bilinear pairings. Such systems include
anonymous credential systems, group signatures, authenticated
logs, etc. [15], [2], [5], [18], [33], [35], [43], [42], [36], [38].
Finally, RSA based accumulators are limited to only being
able to accumulate prime elements. Although one can apply
a function that maps to primes (commonly implemented via
a hash-to-prime operation), this makes ZK proofs of member-
ship more complicated due to the non-algebraic format of the
hash function. As an indication, [10] computes that proving
membership for elements of 252 bits in an RSA accumulator
blows from 54.51ms to 479.50ms when conversion to prime
is needed (cases where the domain is not the prime numbers
set). CRS size also grows from 86KB to 6852KB. Thus, a
BP accumulator can also be preferable in applications where
arbitrary elements are being accumulated.

A. Our Contributions

In this work, we deploy modular constructions to design
efficient trapdoor-based bilinear accumulators.

We start by giving two constructions of positive, dynamic
accumulators. As discussed above, positive accumulators allow
users to create membership proofs, i.e. prove that an element
belongs to the accumulated set S. Our constructions are the
first in the bilinear pairing setting to achieve the optimal
communication. Additionally, our constructions are the first
to achieve the join-revoke unlinkability property [6] against
users/witness holders in the bilinear setting. Our next con-
structions focus on optimizing both the parameter size and
the computation costs in universal accumulators by taking
advantage of the presence of a trusted manager. Our third
construction is the first universal accumulator in the bilinear
pairing setting, that achieves constant parameter size, con-
stant cost additions/deletions and witness generation by the
manager, constant witness updates by the users and constant
(non)membership verification. Our final construction adds the
set zero-knowledge property of [23] by not increasing any of
the previously mentioned asymptotic costs.
Construction 1: Non-adaptively sound positive dynamic accu-
mulator. We present our first construction in Section IV. Our
goal is to achieve the optimal communication cost of witness
updates which is |d|, i.e. linear to the number of deleted
elements. In order to achieve this optimal communication
cost we need to keep the accumulator value static when new
elements are being added. Using the construction of [34] as
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a starting point, we adapt the addition protocol so that on
additions of new elements we keep the accumulator value fixed
and instead we add the inverse of the added element x in the
product (which describes the accumulator value in the bilinear
pairing setting) in order to construct a witness for the newly
added element. We note that such a change in the addition
process makes the security analysis of our first construction
quite different from [34].

Updates only during deletions keep the communication cost
equal to the number of deletions which is optimal for a positive
accumulator [13]. While achieving the optimal communication
cost for pairing-based, positive, dynamic accumulators, our
first construction is not adaptively sound, as opposed to [34].
Using this first construction as building block we then build
an adaptively sound accumulator with the same properties.

Construction 2. Adaptively sound positive dynamic accumula-
tor. In Section V, we take a modular construction approach and
present a positive dynamic accumulator as a combination of
two accumulators with different security properties (inspired
by construction H, Figure 4 in [6]). More specifically, we
combine our first construction of a non-adaptively sound
accumulator with a positive, adaptively sound, additive accu-
mulator. The final construction is a positive, adaptively sound,
dynamic accumulator. The overall adaptively sound construc-
tion achieves the minimum communication bound for positive
accumulators. This is true because the additive accumulator
requires no updates for membership proof and the dynamic
accumulator needs updates only in deletions as explained in
the previous paragraph. This construction achieves join-revoke
unlinkability against users/witness holders: given that users are
not informed about additions, a revocation event is not linkable
to a prior addition event.

We instantiate this generic construction in the pairing based
setting by using the BB signature scheme of [11] (described
in Section III-B) as a positive additive accumulator and, our
Construction 1 as a non-adaptively sound positive dynamic ac-
cumulator. The resulting instantiation yields the first optimally
efficient, in terms of communication cost, dynamic positive
pairing based accumulator. Additionally, we also discuss why
our construction supports efficient ZK proofs and thus can be
used as a building block in privacy oriented applications.

Construction 3. Universal Dynamic Pairing Based Accumula-
tor. In Section VI, we construct a universal accumulator as a
modular construction of two positive accumulators. Existing
constructions of traditional accumulators (both RSA and BP
based) have better performance and shorter parameters in the
trapdoor-based setting due to their limited expressiveness when
compared to accumulator schemes derived from vector com-
mitments. Their main overhead is in creating non-membership
proofs since they are usually based on division properties
and require non-constant computation for the accumulator
manager. To overcome this issue we take a novel modular
approach that completely saves us the cost of non-membership
proofs. Specifically, we construct a universal accumulator
by combining two positive accumulators where one keeps

the accumulated elements and the second keeps the rest of
the domain. We start by running a setup phase, where we
add all possible elements in the domain are added in the
second accumulator. Proving membership means that a user
needs to show membership in the first accumulator, while
proving non-membership again means that a user needs to
show membership in the second accumulator. The resulting
accumulator is universal (presented in Figure 3 as a generic
construction) and we prove it to be adaptively sound.

We instantiate our generic construction for the bilinear
pairing setting by using two instances of positive dynamic
Nguyen accumulators [34]. As a result, by running a setup
phase to accumulate all elements in the domain, we manage
to reduce the high cost of non-membership operations of the
original universal bilinear pairing construction of [4] from
linear to the number of accumulated elements to constant. Our
new modular construction technique could be also used beyond
the bilinear setting.

In Table I of Section VII we provide an asymptotic com-
parison of our three first constructions with the state of the art
pairing-based accumulators in the trapdoor-based setting. For
completeness, in Table II we also compare with accumulator
constructions that can be derived from vector commitment
schemes which as discussed above generally suffer from
higher parameter sizes.
Construction 4. Efficient ZK Accumulators. For our last con-
struction we focus on pairing based accumulators with addi-
tional properties. Specifically, we look at the Zero-Knowledge
(ZK) accumulator of [23]. A ZK accumulator hides the infor-
mation about the accumulated set from parties that get to see
membership/non-membership witnesses and the accumulator
value. We show that using the modular approach to create
universal bilinear accumulators can also lead to more efficient
ZK accumulator constructions in terms of computation. We
present our construction and prove it secure in Section VIII.

Our observation is that the ZK-accumulator instantiation
of [23] requires non-membership proof generation which as
argued above can be particularly inefficient. To make matters
worse, [23] introduces a new randomized non-membership
witness update algorithm to achieve privacy. The idea is that
whenever an update happens, non-membership witnesses need
to be created from scratch with fresh randomness. While
typically non-membership witness updates are constant, the
approach of [23] increases the cost to linear to the size of
the accumulated set. To overcome this issue we use the same
approach we took in our third construction by carefully replac-
ing non-membership proofs with membership proofs achieving
constant non-membership witness creation for the accumu-
lator manager. Join-revoke unlinkability in ZK-accumulators
is achieved against external observes/verifiers, since they are
not receiving broadcast messages and the type of the update
(addition/deletion) is not reflected on the accumulator value.

II. ACCUMULATOR PRELIMINARIES

We start by setting the notation used in the rest of the paper.
By λ we denote the security parameter and by negl(·) the
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property that a function is negligible in some parameter. By
〈g〉 we denote a group G with generator g.

A. Accumulator Definitions

Trapdoor-based Setting. Following the definitions of [6],
we consider the following types of parties: the accumulator
manager that possesses a secret key sk (often appears as auxil-
iary/trapdoor information), witness holders that are responsible
for elements present or not in the accumulator and third parties
that are usually interested in verifying membership and non-
membership proofs.

Below we describe the algorithms run by every type of party
in an accumulator setting. After running Gen() we consider
the set of params to be publicly available and default input
to the rest of the algorithms2. Accumulator managers can
send update messages which include update information that
witness holders need in order to keep their witnesses up to
date after additions or deletions happen on the accumulated
set. The usual format of an update message is: upmsg=“the
element y was added/deleted at time t”.

By S we denote the set of currently accumulated elements.
One could also derive S by combining all update messages
up to the current time t, i.e. upmsg[1...t]. The accumulator
manager keeps some local memory, denoted as mt which
includes the set of currently accumulated elements S.
The following algorithms are performed by the accumulator
manager:
• Gen(1λ, S0)→(sk, v0, m0, params): Takes as input the

security parameter λ and an initial set of elements S0

(S0 = ∅ if the accumulator starts as empty) and outputs
the manager’s secret key sk and initial memory m0, the
accumulator’s initial value v0, and the scheme’s public
params. The accumulator’s domain D, (i.e. the type of
elements that can be accumulated) is described in params.

• Add(sk, vt, mt, x) →(vt+1, mt+1, wxt+1, upmsgt+1):
Takes as input the manager’s secret key sk, the current
accumulator value vt, the current manager’s memory
mt, and an element x which is being added to the
accumulator. It outputs the updated accumulator value
vt+1 and memory mt+1, the membership witness wxt+1

of element x and an update message upmsgt+1.
• Del(sk,vt, mt, x) →(vt+1, mt+1, wxt+1, upmsgt+1):

Takes as input the manager’s secret key sk, the current
accumulator value vt, the current manager’s memory mt,
and an element x and deletes it from the accumulator. It
outputs the updated accumulator value vt+1, the updated
manager’s memory mt+1, the non-membership witness
of element x wxt+1 (for negative/universal accumulators)
and an update message upmsgt+1.

The following algorithms can be performed by any third party:
• VerMem(vt, x, wxt )→ {0, 1}: Takes as input the current

accumulator value vt, an element x and its membership

2We note that in some constructions, i.e. bilinear-pairing based instanti-
ations in the trapdoorless with trusted setup setting, the length of params
indicates the capacity of the accumulator, i.e. the maximum number of
elements that can be added such that public operations continue to be feasible.

witness wxt and outputs 1 if wxt is a valid witness for the
fact that x is included in the accumulator, 0 otherwise.

• VerNonMem(vt, x, wxt )→ {0, 1}: Takes as input the
current accumulator value vt, an element x and its
non-membership witness wxt and outputs 1 if wxt is a
valid witness for the fact that x is not included in the
accumulator, 0 otherwise.

The following algorithms are performed by the witness holder
of element x:
• MemWitUpOnAdd(vt, vt+1, x, wxt , upmsgt+1) →
wxt+1: It takes as input the old and updated accumu-
lator values vt and vt+1, an element x and its obsolete
membership witness wxt as well as an addition update
message upmsgt+1 and outputs the updated membership
witness for x, wxt+1.

• MemWitUpOnDel(vt, vt+1, x, wxt , upmsgt+1)→ wxt+1:
It takes as input the old and updated accumulator values
vt and vt+1, an element x and its obsolete member-
ship witness wxt , as well as a deletion update message
upmsgt+1 and outputs the updated membership witness
for x, wxt+1.

For negative or universal accumulators, there are also
the equivalent algorithms NonMemWitUpOnAdd, Non-
MemWitUpOnDel.

In case where an element x was not added using the Add()
algorithm, but instead it was included in the initial set S0 of
elements accumulated, we also have the following algorithms
for witness creation which can be executed by the manager to
create a (non)membership witness for an element x:
• MemWitCreate/ NonMemWitCreate (sk, vt, mt, x )
→ wxt / wxt : Takes as input the manager’s secret key sk,
the current accumulator value vt, the manager’s memory
mt (for NonMemWitCreate this is usually the set S),
and an element x (included/not included in vt). It outputs
a membership witness for x, wxt / a non-membership
witness for x, wxt .

Discussion on Definitional Choices. In our definitions we
assume that the set of currently accumulated elements S is
always part of the manager’s memory mt. When the Add
algorithm is executed, the manager first checks S to verify that
the element is not already in S, and when Del is executed, the
manager checks that the element is already in S. While this is
not a security concern, if not checked could lead to practical
issues, such as accumulation of duplicates or deletion of non-
existing elements.

Trapdoorless Setting. We also provide definitions for the
trapdoorless (with trusted setup) setting, where parties can
add and remove elements without the assistance of a trusted
accumulator manager in Appendix A.

B. Accumulator Security Properties

We now present the security properties for a positive
accumulator. An accumulator must be correct and sound.
Informally, correctness implies that for every element in/not
in the accumulator, an honest witness holder can always
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prove membership/non-membership successfully. A formal
definition is straightforward and given in [37].

Informally, soundness (sometimes called “collision resis-
tance” in the accumulator setting) prevents a dishonest user
from constructing a membership witness for an element not
present in the accumulator or a non-membership witness for
an element included in the accumulator. Soundness has two
flavors: adaptive and non-adaptive. Adaptive soundness is a
stronger notion that allows an adversary to pick elements adap-
tively and perform queries. We provide game-based definitions
for both flavors of soundness:

Definition 1 (Adaptive Soundness for Dynamic Positive
Accumulators). For security parameter λ, for all probabilistic
polynomial time adversaries A with black-box access to Add
and Del oracles on an accumulator for a dynamic set S with
a changing value v:

Pr


(sk, v0,m0, params)← Gen(1λ, S0);
(x,wx)← AAdd,Del(v);
x /∈ S′ :
V erMem(v, x, wx) = 1

 ≤ negl(λ)
Where S′ is the updated accumulated set after the adver-

sary’s addition and deletion queries. Note that [6] allows an
accumulator to hold duplicates of elements but based on most
of related work that simulates a set, we allow an element x to
be added only if it is not already a member.

Definition 2 (Non-Adaptive Soundness for Dynamic Positive
Accumulators). For any λ, for all PPT adversaries A with
black-box access to Add and Del oracles on an accumulator
for a dynamic set S with a changing value v:
Let LD be the list of deletions that A submits ahead of time.

Pr


{(x1, ..., x|A|) ∈ LA,
(x1, ..., x|D|) ∈ LD} ← A(λ);
(sk, v,m0, params)← Gen(1λ, S0);
(x,wx)← AAdd,Del(v);
x /∈ S′ :
V erMem(v, x, wx) = 1]

 ≤ negl(λ)

Where S′ is the updated accumulated set after the ad-
versary’s addition and deletion queries. Oracle Add returns
nothing if x ∈ S′ or x /∈ LA and Del returns nothing if
x /∈ S′ or x /∈ LD.

III. BILINEAR PAIRINGS AND PAIRING ACCUMULATORS
BACKGROUND

In this section we present the required building blocks and
underlying assumptions to be used in our constructions. We
start by giving the standard definition of a bilinear pairing,
written in multiplicative notation. Pairings take as input two
elements of known-order groups and are used by bilinear
accumulators during the witness verification process.

Definition 3 (Bilinear Pairing). For multiplicative groups G1,
G2, GT with prime order p, a bilinear pairing is a map e :
G1 ×G2 → GT , satisfying the following properties:

• bilinearity: ∀u ∈ G1, v ∈ G2: e(ua, vb) = e(u, v)ab, for
a, b ∈ Z

• non-degeneracy: For g1 being a generator of G1, g2
being a generator of G2 holds that: e(g1, g2) 6= 1

A bilinear pairing must be also efficiently computable.
A pairing instance is denoted as (p,G1,G2,GT ,e,g1,g2). When
G1 = G2 = 〈g〉, the pairing is called symmetric and is
denoted as (p,G,GT ,e,g).

Now we give the q-Strong Diffie Hellman assumption for
known-order groups. This is the main assumption used when
proving security of bilinear accumulators [34], [4], [20] and
will also be the basis for the security in our constructions.

Assumption 1 (q-Strong Diffie-Hellman q-SDH). Let G=〈g〉
be a cyclic group of prime order p and a ∈ Z∗p. Any PPT
algorithm A, given the set {gai , i ∈ [0, q]} has negligible
probability to compute pair (x, g

1
x+a ) ∈ Z∗p ×G.

In the trapdoorless with a trusted setup setting, where
entities being able to perform AddPublic, DelPublic,
(Non)MemWitCreatePublic without knowing the accumula-
tor secret key (here denoted as a), we treat the secret key a as
a polynomial variable. In Equation 1 below we show how a
group element raised to a product of degree one polynomials of
unknown a (similar to accumulator value and element witness
structure) can be computed when the element raised to powers
of a is given as public information.

Multiplication of Polynomials in the Exponent. One can
compute the evaluation of a degree k polynomial pk(x) =∑i=k
i=0 cix

i at an unknown point a in the exponent using k

elements ga
i

, i = {0, . . . , k} as follows:
For any group element g, it holds that

g
∏i=k

i=1 pi(a) = g
∑k

i=0 cia
i

= gc0(ga)c1 · (ga
2

)c2 · · · · · (ga
k

)ck

(1)
Update: in order to multiply the exponent with the mono-

mial (y + x) evaluated at x = a, the whole polynomial gets
re-computed as pk(x)(y+x) =

∑i=k+1
i=0 c′ix

i and re-evaluated
at a using equation 1 and the new coefficients c′i.

A. Bilinear Accumulators Based on q-SDH

A bilinear positive accumulator on additive groups was first
constructed by Nguyen [34], and it got extended to a universal
accumulator in [20], [4]. Such constructions can be adapted
to both trapdoor-based and trapdoorless settings.

We present the trapdoor-based version of the original uni-
versal BP [4] (in multiplicative notation), since it will be a
building block for our construction.
• Gen(1λ, S0 = ∅): Takes as input the security parameter

and outputs a pairing instance (p, G, GT , e, g), where
|p| = λ and p prime, the accumulator’s domain D =
Zp−{a}, the initial empty accumulator’s value v0 = g1,
and the manager’s secret key a ∈ Z∗p. It also outputs the
accumulator params=(pairing instance, ga).

• Add/Del(sk, vt, x): In order to add x, the manager com-
putes the new acc value as vt+1 = v

(x+a)
t and returns the
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membership witness wxt+1 = vt. In order to delete x, the
manager sets vt+1 = vt

1
x+a and calls NonMemWitCre-

ate (sk, vt+1,mt, x) to compute the non-membership
witness wxt+1. It outputs the updated accumulator value
vt+1 and an update message upmsgt+1.

• MemWitCreate(sk, vt, x): A witness for an element x
can be created by manager as wxt = v

1
x+a

t .
• MemWitUpOnAdd(vt, x, wxt , upmsg = y): Any witness

holder of element x, when y is added, can update witness
to wxt+1 = vt(w

x
t )
y−x.

• MemWitUpOnDel(vt+1, x, w
x
t , upmsg = y): Any wit-

ness holder of element x, when y is deleted, can update
witness to wxt+1 = (wxt )

1
y−x v

1
x−y

t+1 .
• VerMem(vt, x, wxt ): A third party or the manager can

verify that wx is the witness of an element x that is a
member of the accumulator with the following pairing
comparison: e(wxt , g

xga) = e(vt, g).
Note that this construction is a universal accumulator
so it also supports the following algotithms: VerNon-
Mem, NonMemWitCreate, NonMemWitUpOnAdd, Non-
MemWitUpOnDel. We present the algorithm for non-
membership witness creation to show how manager memory
mt and the set S (set of currently accumulated elements) play
a role in non-membership witness creation:
• NonMemWitCreate(sk, vt,mt, x): Parse mt = S and

find u =
∏
xi∈S(xi + a) ∈ Z. Compute d = u

mod(a + x) and c = g
u−d
x+a . Output non-membership

witness wxt+1 = (c, d).
Non-membership witnesses can be updated by users in con-
stant time as follows:
• NonMemWitUpOnAdd(vt, x, wxt = (ct, dt), upmsg =
y): Any non-membership witness holder of element
x, when y is added, can update witness to wxt+1 =
(ct+1, dt+1) = (vtct

y−x, dt(y − x)).
• NonMemWitUpOnDel(vt+1, x, wxt = (ct, dt), upmsg =
y): Any non-membership witness holder of element x,
when y is deleted, can update witness to wxt+1 =

(ct+1, dt+1) = ((ctvt+1)
1

y−x , d
y−x ).

Witnesses for non-membership can be verified by the follow-
ing algorithm:
• VerNonMem(vt, x, wxt = (c, d)): If d 6= 0 and
e(c, gxga)e(g, g)d = e(vt, g), return 1.

Trapdoorless bilinear pairing accumulator. For completeness,
in Appendix B we present the algorithms that can be run by
the public without knowledge of the secret in the trapdoorless
(with a trusted setup) setting.

B. The BB Signature Construction of [11]

A signature scheme can serve as a positive additive accu-
mulator. Essentially, the signature on a user’s element x can
serve as a membership witness and the signing public key and
parameters serve as the accumulator value. A signature is an
additive only accumulator (i.e. elements cannot be deleted)
since an issued signature cannot be retracted.

For the case of pairing-friendly groups with the q-SDH
assumption, we describe the signature construction of [11].
Recall that every signature scheme is described as a set of
three algorithms: KeyGen for generation of parameters, Sign
for signing a message under the signer’s secret key and Verify
for publicly verifying that a signature is valid.
• KeyGen(1λ): (p,G1,G2,GT , e, g1, g2) with |G1| =
|G2| = p (p prime) and |p| = λ and pick random
y1, y2 ∈ Z∗p and calculate z = e(g1, g2) ∈ GT . Let v1 =
g2
y1 , v2 = g2

y2 . pk=(g1, g2, v1, v2, z), sk=(g1, y1, y2)
• Sign(sk, x): For x in Domain D = Zp, pick a random
r 6= −(y1+x)/y2 and compute σ = (A = g1

1
y1+x+y2r , r)

• Verify(pk, x, σ): If e(A, v1g2xv2r) = z return 1.
The scheme is existentially unforgeable for adaptive chosen

message attacks under a variation of q-SDH assumption for
groups G1, G2 (pairing input groups).

IV. A COMMUNICATION OPTIMAL PAIRING BASED
POSITIVE DYNAMIC NON-ADAPTIVELY SECURE

ACCUMULATOR

Here we give our first modular construction which uses the
BP accumulator of [34] as a building block. Our construction
is a positive, dynamic accumulator that satisfies non-adaptive
soundness. We note that compared to [34], we do not support
public updates and public witness creation. Depending on the
underlying application such properties might not be required.
Additionally, as we explain below, our first construction is non-
adaptively secure (when [34] satisfies adaptive security). The
advantage of our construction though, is that it does not have to
update the accumulator value on additions (running algorithm
MemWitUpOnAdd is not necessary). As a result this has an
advantage on efficiency and optimal communication cost as
we discuss in Section VII.

The basic intuition behind our construction is that it is
static in additions. Typically, when a new element x is added
in a dynamic accumulator, the membership witness for x
is set to be the old accumulator value and a term relevant
to x (depending on the exact construction) is added to the
previous accumulator value. Our approach here is different:
on additions we keep the accumulator value fixed and then,
in order to construct a witness for the newly added element
we add the inverse of the added element x in the product
(the accumulator exponent in the BP case). Thus, no update
witness needs to take place when a new element is added
in the accumulator. Note that this calculation is feasible by
the accumulator manager, as the knowledge of the secret key
sk allows for witness creation of any possible element in
the domain. This way, only the newly added member gets
a witness and there is no need to deliver messages to the rest
of the witness holders or for the witness holders to run any
witness update algorithm, as opposed to before. Their previous
witnesses remain valid after the addition. The verification
process also remains the same (recall that verification consists
of witness raised to the new term and a check if this equals
to the current accumulator value).
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Our technique is a modification of the idea that was
informally introduced in a remark on page 12 of [16] but
instead of applying to the RSA accumulator (as in [6]) we
extend it to bilinear based accumulators. The idea describes
how the accumulator value gets updated only during deletions
for proving membership and how the accumulator manager is
always capable of constructing a witness for any element.

Our simulation works for specially crafted initial accumula-
tor values (such that queries don’t give out g

1
x+a ). Therefore,

our construction is non-adaptively sound.
Deletion works the same as Construction of Section III-A.

However, the membership witness now has to be created by
the manager with the secret key, as opposed to the previous
construction where the users could simulate all additions
except the deleted element. This is only for the case when
a user did not keep their initial witness or the accumulator
was initiated as half full. If the users keep the witnesses given
at the time they were added, they can update them efficiently
in constant time with the use of upmsg.

We present the Pairing Based Positive Dynamic Non-
Adaptively Secure Accumulator in Figure 1. The differences
from Construction of Section III-A are marked with blue. After
Gen() is run, manager’s memory is kept fixed, so it is not given
as input to other algorithms.

Security. Correctness of our construction is straightforward,
for completeness we include it in Appendix B. For soundness
we prove the following Theorem in Appendix C.

Theorem 1. The accumulator construction of Figure 1 satis-
fies non-adaptive soundness as defined in Definition 2 under
the q-SDH assumption.

V. A COMMUNICATION OPTIMAL PAIRING BASED
POSITIVE DYNAMIC ADAPTIVELY SECURE ACCUMULATOR

From [6] we know that if we combine a positive additive ac-
cumulator for authenticated additions with a positive dynamic
accumulator to manage deletions, we get an optimal in terms
of communication cost positive dynamic accumulator. We also
know that if we combine an adaptively sound accumulator with
a non-adaptively sound accumulator with elements being the
outputs of a PRF, then we get an adaptively sound accumulator.
These two ideas can be combined in order to construct a
positive adaptively-sound dynamic accumulator by utilizing
an adaptively-sound positive additive accumulator ACCA and
a non-adaptively sound positive dynamic accumulator ACCNA.
This was already done in [6] and we recall the generic
construction of such an accumulator in Figure 2. After the
generic construction, and utilizing our new construction of
Figure 1, we show how Figure 2 can be instantiated in the
BP setting which would give as a result a positive adaptively-
sound dynamic accumulator with optimal communication cost.
Security. Correctness of our Figure 2 construction is self-
evident and is derived by correctness of ACCNA,ACCA as the
witness is a conjuction of the two witnesses.

Adaptive security follows directly by the following Theorem
which was stated and proved in [6]:

Gen(1λ,S = ∅)
1) Generate a pairing instance (p, G, GT , e, g), where |p| =

λ and p prime.
2) Pick random a, u0 ∈ Z∗p
3) Set the initial accumulator value as v0 = gu0∈ G, where

u0 is a random value instead of the identity element.
4) Set the domain D = Zp − {a}
5) Return sk = a, the initial accumulator value v0, public

params=((p,G, GT , e, g), ga)
Add(sk = a, vt, x)
1) If x /∈ D, FAIL
2) Let wxt+1 = v

1
x+a and keep the same accumulator value

vt+1 = vt
3) Return wxt+1

Del(sk = a, vt, y)
1) If y /∈ D, FAIL
2) Let vt+1 = vt

1
y+a

3) Return vt+1, upmsg = y

MemWitUpOnDel(vt+1, x, w
x
t , upmsg = y)

1) Compute wxt+1 = wxt
1

y−x × v
1

x−y

t+1

2) Return wxt+1

VerMem(sk = a, vt, x, w
x
t ) - accumulator manager veri-

fication
1) If vt = (wxt )

(x+a), return 1
2) otherwise, return 0
VerMem(vt, x, wxt ) - third party verification
1) If e(g,vt)=e(gxga, wxt ), return 1 (note that ga is in

params).
2) otherwise, return 0

Fig. 1. A BP Based Positive Dynamic Non-Adaptively Secure Accumulator

Gen(1λ, ∅)
1) (ACCNA.params,ACCNA.sk,ACCNA.v)← ACCNA.Gen(1λ,
∅)

2) (ACCA.params,ACCA.sk,ACCA.v)← ACCA.Gen(1λ,∅)
3) Let Fs (s ←−

R
{0, 1}λ) be a PRF s.t. Fs : DACCA →

DACCNA

4) Return sk=(ACCA.sk,ACCNA.sk,s), (params=
ACCNA.params, ACCA.params), ACCNA.v, ACCA.v

Add(sk,ACCNA.v, ACCA.v, x)
1) Set r = Fs(x)
2) ACCA.w(x,r) ← ACCA.Add(sk,ACCA.v, (x, r))
3) ACCNA.wr ← ACCNA.Add(sk,ACCNA.v, r)
4) Return wx=(ACCA.w(x,r),ACCNA.wr)
Del(sk, ACCNA.v, x)
1) Set r = Fs(x)
2) (ACCNA.v,upmsg) ← ACCNA.Del(sk,ACCNA.v, r)
3) Return ACCNA.v,upmsg

MemWitUpOnDel(ACCNA.v, x ,wx, upmsg)
1) (ACCNA.wx) ← ACCNA.MemWitUpOnDel(ACCNA.v, x,

wx, upmsg)
2) Return ACCNA.wx
VerMem(ACCNA.v,ACCA.v, x, wx)
1) Set r = Fs(x)
2) b1 ← ACCA.VerMem(ACCA.v, (x, r), w(x,r))
3) b2 ← ACCNA.VerMem(ACCNA.v, r, wr)
4) Return b1 AND b2

Fig. 2. A Generic Construction of a Dynamic Adaptively Secure Accumulator
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Theorem 2. A combination of accumulators ACCA, to accu-
mulate and bind elements (x, r), and ACCNA to accumulate
elements r where r = Fs(x), is an adaptively sound positive
dynamic accumulator, if ACCA is an adaptively sound positive
additive accumulator, ACCNA is a non-adaptively sound posi-
tive dynamic accumulator, and Fs is a pseudorandom function.

A. Instantiation

An instantiation of our adaptively sound construction can
be given by using the BB signature scheme of [11] (described
in Section III-B) as a positive additive accumulator and the
positive dynamic accumulator from Figure 1 which we proved
that is non-adaptively sound. The signature scheme of [11] is
existentially unforgeable for adaptive chosen message attacks,
which makes it an adaptively sound accumulator.

B. ZK Proof Of Membership in Modular Accumulator

In privacy-preserving applications (such as anonymous cre-
dentials), it is often desirable for the witness holders to
prove their membership and at the same time to hide their
element and witness. For the case of our generic construction
of a dynamic adaptively secure accumulator (Figure 2), a
zero-knowledge proof of membership ZKP consists of the
conjunction (i.e. an AND-proof) of proofs of membership
in ACCA and ACCNA and a proof that those members have
the correct relationship. We can describe the ZK statement as
follows (using Camenisch-Stadler [17] notation):

ZKP =

 (x, r,ACCA,ACCNA) :
ACCA.VerMem(ACCA.v, (x, r),ACCA.w(x,r))∧

ACCNA.VerMem(ACCNA.v, r,ACCNA.wr)


(ACCA.v,ACCNA.v)

The concrete instantiation of such a ZK statement depends
on the concrete building blocks of the modular accumulator. In
Appendix G we give an instantiation for the case where ACCA

is instantiated with strong Boneh-Boyen signatures III-B and
ACCNA is instantiated by our protocol in Figure 1.

VI. A UNIVERSAL DYNAMIC PAIRING BASED
ACCUMULATOR

All our previous constructions are of positive accumulators.
In this Section we provide a third construction of a universal
bilinear accumulator, i.e. an accumulator that supports both
proofs of membership and non-membership, again utilizing
modular construction techniques.

Typically, in universal (or negative) accumulators the high-
est cost comes by computing non-membership witnesses in the
accumulator manager side (with the exception of some of the
schemes derived by VC which as discussed can have higher
setup and parameters costs). For both the state of the art works,
RSA and BP, non-membership is computed with the use of the
extended Euclidean algorithm. This requires the full exponent
(without modular reduction) which is a product of terms that
correspond to the currently added elements, therefore it grows
linearly to the size of |S|. The computational cost of Euclidean

algorithm also grows along with the full exponent product.
Exponent division can also be used for the BP accumulator
and has equivalent costs.

The goal of our third construction is to achieve creation
of non-membership witnesses with constant cost while main-
taining constant size of parameters. We take the following
approach: we keep the added elements in a positive accu-
mulator ACC1 and the not-yet-added/deleted/revoked elements
in a second positive accumulator ACC2. By “not-yet-added”
we mean all possible universe elements to be accumulated
(i.e. the accumulator domain D). The second accumulator
will start “full”, i.e. having accumulated the whole domain
D. The resulting accumulator is universal and we present this
generic construction in Figure 3. A membership witness in the
second accumulator ACC2 works as non-membership in a typ-
ical universal accumulator construction, while a membership
witness in the first accumulator ACC1 serves as a membership
witness in the overall universal accumulator. We note that such
a generic construction might have further applications beyond
the bilinear pairing setting.

Note 1. We note that the cost of the setup phase (i.e. that
of creating the full accumulator) is equivalent to the size of
the accumulator domain. This puts a polynomial bound in the
domain which is reasonable for most real life applications, i.e.
accumulating ID numbers, and is similar to that of accumula-
tors derived from VC schemes as shown in Table II.

Gen(1λ):
1) ACC1.Gen(1

λ, ∅)
2) ACC2.Gen(1

λ, D) with the same random coins for pa-
rameters, where D is the accumulator’s domain

Add(x):
1) ACC1.Add(x)
2) wx = ACC1.MemWitCreate(x)
3) ACC2.Del(x)
Del(x):
1) ACC2.Add(x)
2) wx=ACC2.MemWitCreate(x)
3) ACC1.Del(x)
MemWitUpOnAdd/Del(y):
1) ACC1.MemWitUpOnAdd/Del(y)
NonMemWitUpOnAdd/Del (y):
1) ACC2.MemWitUpOnAdd/Del(y)
VerMem(x):
1) ACC1.VerMem(x)
VerNonMem(x):
1) ACC2.VerMem(x)

Fig. 3. Generic Construction for Universal Dynamic accumulator

Security. Correctness is straightforward as it is reduced to the
correctness of individual schemes ACC1,ACC2 and is based
on algorithms MemWitCreate, VerMem, MemWitUpOn-
Add/Del that all refer to the same accumulator (ACC1 for
membership and ACC2 for non-membership).

In Appendix D we now prove adaptive soundness of our
construction as stated in the following theorem:
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Theorem 3. A combination of accumulators ACC1,ACC2

is a universal dynamic adaptively-sound accumulator if
ACC1,ACC2 are positive dynamic adaptively-sound accumu-
lators of domain D where the one is holding a set S ⊂ D
and the other one is holding S ⊂ D and public updates are
not permitted3.

A. An Instantiation of our Universal BP Accumulator

We can instantiate our generic construction for universal
dynamic accumulator (Figure 3) for the BP setting by using
two instances of positive dynamic Nguyen accumulators [34].
The goal is to reduce the increasing cost of non-membership
witness creation of the original universal pairing construction
of [4]. Given that [34] is adaptively-secure, our resulting
instantiation is also adaptively secure by Theorem 3.

VII. EFFICIENCY COMPARISONS

In this Section we provide an asymptotic comparison of
our results with the state of the art trapdoor-based, bilinear
pairing accumulators, where we focus on the costs that occur
in the accumulator manager side4. We expect concrete costs
to be equivalent for all constructions as they refer to groups of
same structure and size. Therefore, we use asymptotic notation
to show the presence/absence of some specific operation or
communication. We include two comparison tables, Table I
compares our schemes with “traditional” BP accumulators and
Table II compares our schemes with accumulators that can be
derived from vector commitments. By parameters we denote
the public keys and other public information that is created
during the generation of the scheme and is kept fixed.

Comparison of Positive Accumulators. We compare our
positive accumulator constructions with the positive bilinear
accumulator of [15] and the positive accumulator of [34].
As shown in Table I we keep all operations constant and at
the same time we require no witness updates for additions
(MemWitUpOnAdd) which gives as the optimal communica-
tion cost of |d| for positive accumulators as opposed to [34],
[34] where communication cost is |a|+ |d|.

We note that if we attempted a concrete comparison with
[15] that has the same domain, then [15] is more efficient
for constant operations (group exponentiations are replaced by
modular multiplications), but it has parameters twice as long
as its capacity (required also in the trapdoor-based setting i.e.
for witness update by users).

Finally, we also note that public parameters of length q (that
denotes capacity) used in the trapdoorless setting of [34] are
not needed for the functionality in the trapdoor-based setting.
They are used in the proof of our pairing based positive
dynamic non-adaptively secure accumulator (Figure 1) but
their absence favors security.

3This can be enforced by requiring the accumulator manager to always sign
the most up to date value of the accumulator. Any attempt for a public update
will not be verified since it will be missing the manager signature.

4In all comparisons of positive accumulators the algorithms related to non-
membership are missing since this type of proofs is not supported.

Positive Universal
[15] [34] Constr.

of Fig. 1
Instant.
of Fig. 2

[4] Instant.
of Fig. 3

Add/Del 1 1 1 1 1 1
MemWitCreate 1 1 1 1 1 1
NonMemWitCreate - - - - |S| 1
MemWitUpOnAdd 1 1 0 0 1 1
MemWitUpOnDel 1 1 1 1 1 1
NonMemWitUpOnAdd - - - - 1 1
NonMemWitUpOnDel - - - - 1 1
VerMem (3rd party) 1 1 1 1 1 1
VerNonMem - - - - 1 1

Storage
Accumulator Size 1 1 1 1 1 1
Witness Size 1 1 1 1 1 1
parameters 2*q 1 1 1 1 1

Properties
Dynamic? X X X X X X
Positive? X X X X X X
Negative? X X

Total communication |a|+
|d|

|a|+
|d| |d| |d| |a|+

|d|
|a| +
|d|

Adaptively Sound? X X X X X
TABLE I

AN ASYMPTOTIC COMPARISON OF OUR PROPOSED CONSTRUCTIONS
WITH TRADITIONAL BP ACCUMULATORS. |a| DENOTES THE NUMBER OF

ELEMENTS ADDED TO THE ACCUMULATOR, |d| DENOTES THE NUMBER OF
ELEMENTS DELETED FROM THE ACCUMULATOR, AND |S| DENOTES THE
TOTAL NUMBER OF MEMBER ELEMENTS CURRENTLY ACCUMULATED. IT

HOLDS THAT |S| = |a| − |d|. BY q < p− 1 WE DENOTE THE THE
BILINEAR ACCUMULATORS’ CAPACITY THAT CORRESPONDS TO
ACCUMULATOR’S DOMAIN Z∗p AND DEPENDS ON THE DESIRED

PUBLISHED PARAMETERS SIZE.

Comparison of Universal Accumulators. In the last two
columns of Table I we compare the instantiation of our generic
construction for universal dynamic accumulator (Figure 3)
with the universal accumulator of [4].

Overall, communication cost for our construction remains
the same as in [4] (optimal for universal accumulators) and
constant asymptotic costs for operations remain constant.

Our main advantage is in the cost of NonMemWitCre-
ate. In [4] this cost is linear to |S| since as described in
Section III-A when a non-membership proof is computed by
running NonMemWitCreate, the accumulator manager uses
the set S to compute the exponent u which requires a mul-
tiplication of all elements in S. In our modular construction,
we bring non-membership cost from |S| down to constant by
only requiring membership proofs to be computed even for
proving non-membership.

We note that in [4], the manager could alternatively keep
a copy of the last used full exponent of the accumulator,
ut−1. If we consider the simple case where one element y
was added since time t − 1, the manager, in order to run
NonMemWitCreate has to compute ut = ut−1(y + a). ut−1
is of size |S| − 1 and the whole integer multiplication has
cost |S|. Since this cost (of keeping an up-to-date exponent)
is not captured in any other algorithm and is only used in
NonMemWitCreate, we include it here which results to |S|.

Finally, we note that in Table I, we only include func-
tions of repeated use (i.e. we don’t include algorithm Gen,
which is only run once). Our universal dynamic accumulator
construction (Figure 3) includes a generation algorithm with
computation time that depends on domain D, i.e. each element
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that could be added. The rest of concrete costs remain almost
the same as [4] with the exception of NonMemWitCreate
where we have asymptotic level gains.
Vector commitment schemes as trapdoor-based accumula-
tors. We also compare our universal accumulator constructions
with those derived by vector commitments. The main idea
on how to get an accumulator from a position-binding VC
scheme has as follows: to add an element i, one can commit
to a vector of value 1 in position i (commitment to vector
(v1, ..., vi = 1, ...)). A proof of opening vi to 1 translates to
a proof of membership for i and a proof of opening vi to 0
translates to a proof of non-membership. Such accumulators
can be converted to trapdoor-based ones by allowing for a
manager that holds the setup trapdoor. Typically, by holding
the trapdoor, a manager can update a commitment to vi into
v′i or create a proof of opening at position i faster. This
yields to trapdoor-based accumulators with better efficiency
than their trapdoor-less counterparts. In all our comparisons
below, the published parameters are the minimum parameters
in the trapdoor based setting, required by users to update their
witnesses and verifiers to run the verification algorithm.

Vector commitment schemes in the bilinear pairing envi-
ronment that can be converted to trapdoor-based accumulators
are [19], [27], [24], [39], [31]. The schemes derived by [19],
[27] and [24] require public parameters of length O(|D|2)
and O(|D|) respectively, where D is the accumulator domain.
Note, that in the VC case, the parameter size would only
affect the vector’s length -not its domain- but when converted
to an accumulator, the length of parameters translates to the
maximum number of possible positions, i.e. the accumulator
domain. The schemes derived by [39], [31], have the advantage
of smaller parameters (of length O(|q|) where q is the accumu-
lator capacity) when compared to [19], [27], [24] but are more
expensive (non-constant) when it comes to other operations
such as addition/deletion of elements and non-membership
creation computation costs.

For the instantiation of our generic construction of Figure
3 (and later in our ZK accumulator construction of Figure 4),
we used the “traditional” BP accumulator of [4] instead of a
VC derived one, given that [4] has constant parameters and
constant updates and membership witness creation cost in the
trapdoor-based setting. This way, although we require O(|D|)
setup time (for our universal constructions), there is no need to
publish longer parameters for verification and witness update
as in the VC derived constructions.

In Table II we summarize the efficiency costs of our uni-
versal accumulators when compared to accumulators derived
by VC schemes. By params we denote the public information
that has to be available in order to be used by the rest of
the entities, i.e. the witness holders/users and the verifier. As
opposed to [4], some of these schemes can offer constant
NonMemWitCreate as in our constructions, but at the cost
of rather large public parameters (compared to constant).

The ZK column of Table II, describes the notion of zero-
knowledge in set queries which also extends to accumulators
as shown in [23] and [21]. In our construction (Fig. 4)

|params| Add/Del NonMem-
WitCreate

Setup
time

ZK

[19],[27] |D|2 1 1 |D|2
[24] |D| 1 1 |D|
[39] q |S| |S| q
[31] q 1 |S| q X[21]
Instant. of Fig. 3 1 1 1 |D|
Fig. 4 1 1 1 |D| X[23]

TABLE II
AN ASYMPTOTIC COMPARISON OF OUR UNIVERSAL CONSTRUCTIONS

WITH UNIVERSAL ACCUMULATORS DERIVED BY BP VC SCHEMES IN THE
TRAPDOOR-BASED SETTING. |S| DENOTES THE TOTAL NUMBER OF
MEMBER ELEMENTS CURRENTLY ACCUMULATED. Q DENOTES THE

ACCUMULATOR CAPACITY AND D THE ACCUMULATOR DOMAIN.

we consider the stronger notion of [23], i.e. a verifier or a
third party cannot check the correctness of their guess about
elements in the set (we refer to Section VIII for details).

On applying batching techniques. Our constructions can
further benefit from batching approaches and we discuss it
more in Appendix F.

VIII. ZERO-KNOWLEDGE ACCUMULATORS

In a recent work Ghosh et al. [23], introduced the notion
of Zero-Knowledge (ZK) accumulators. Their setting assumes
an outsourced storage environment and the following entities:
(a) the data owner, who possesses the accumulator’s secret
key and is in charge of accumulator updates, (b) a server
that gets the accumulator value and some auxiliary infor-
mation and constructs/delivers element witnesses for proving
(non)membership (i.e. performs most of the computational
work) and (c) clients (or else verifiers) that see the accumu-
lator value and query the server asking for (non)membership
witnesses of specific elements which they can locally verify.

Apart from correctness and soundness, ZK in the setting of
[23] assures that a client that gets to see only witnesses, learns
nothing about the accumulated set, apart from the elements
she queried since the last accumulator update. This is due
to the lack of auxiliary information that prevents the client
from reconstructing witnesses and check their guess until they
achieve a whole set enumeration. Moreover, in the case the
accumulator value is a merge of different accumulated sets
(from multiple owners), a ZK accumulator with updates on
auxiliary information in all sets, can prevent the client from
locating the source of the update, by turning all previously
obtained witnesses obsolete.
Generalizing the ZK setting of [23] beyond outsourced
storage. The notion of ZK accumulators can also refer to the
more general setting of set membership (outside the narrow
application of outsourced storage). In that setting, as presented
in Section II-A, initial witness creation happens with the use of
the secret but by a trusted entity, the manager. Later witnesses
are computed by users/element holders using public infor-
mation. Soundness should be preserved at all times. Finally,
interaction takes place between the user and a verifier. The role
of the verifier is the same in both settings: verifiers get to see
the updated accumulator value and verify (non)membership
witnesses.
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In this more general setting, we still consider the ZK
notion of [23]: the verifier should not infer any information
about the set S, apart from the information gained by the
witnesses seen after the last update. This implies, that after
an accumulator update, the verifier cannot locally update the
witnesses received earlier and has no way to check if these
elements are still in the accumulator or not. Moreover, no
further information is leaked to the verifier, like the size
of the set or the type of the updates taking place (addition
or deletion). We note, that prior to [23], some weaker ac-
cumulator indistinguishability notion was considered in [21]
however, [21] does not satisfy ZK as defined in [23], since the
witness updates are deterministic which makes it possible for
a verifier (who can see witnesses) to check whether a specific
element was added in the accumulated set upon an update.
We finally note that this is a different notion compared to the
one discussed in Section V-B where an element holder could
prove (non)membership without revealing its element.

The high level idea, in order to construct accumulators that
satisfy our ZK notion, is to include a randomization process.
Concretely, randomness is added during Setup(1λ, S0) (i.e.
in the case where the accumulator is initialized with added
elements) and fresh randomness is added with every call to
Add()/Del(). Randomness is included in auxiliary information
aux, known to the parties that perform accumulator updates
and hold witnesses. The key to preserving ZK against the
verifier is (i) verification does not use aux as input (as long as
the same randomness is included in the accumulator value and
the randomized witness) and (ii) witness updates (that used to
be feasible to compute with public information and a guess
about the added/deleted element) are not longer feasible to
compute without knowledge of aux.

A. Definition of ZK Accumulators

A ZK accumulator, as defined in [23] can be adjusted to
work in our setting with some changes to the algorithms
of Section II-A in order to use some auxiliary information.
More specifically, the Gen() algorithm now returns some
auxiliary information, aux, as output. Usually, aux belongs
to the same domain as the accumulator elements because its
role is to obfuscate the exact update that happened and/or
the elements already in the set (also derived by updates in
the clear). aux is updated to aux′ via Add(),Del(). Finally,
aux is given as input to MemWitCreate(), NonMemWitCre-
ate(), while MemWitUpOnAdd(), MemWitUpOnDel(),
NonMemWitUpOnAdd(), NonMemWitUpOnDel() receive
aux, aux′ (i.e. aux in time t and aux′ in time t+ 1).

Below we recall the definition of the ZK property of an
accumulator as given in [23] modified for our setting: a
witness is honestly generated with the use of a secret and
soundly updated by users with public information. Witnesses
are submitted by the users to the verifier. Soundness for ZK
accumulator is defined as in Definition 1.

Definition 4 (ZK property in accumulators). Let a D be
a function that for a given element x and a set X ,

D(query, x,X) = 1 if x belongs in X and 0 otherwise.
Also, D(update, x, add/del,X) = 1 if an update, for example
addition of x in X is valid (not already a member). Let
RealAdv(1

λ) be the game between an adversary A and the
Challenger and IdealAdv,Sim(1

λ) be the the game between A
and a simulator Sim = (Sim1,Sim2)

• RealAdv(1
λ)

– Setup: The Challenger generates the key and publishes
the params to A. A picks a set S0 and gives it to the
Challenger who initializes the accumulator to include
the set and returns back the value acc.v0 (and keeps
X = S0, acc.v = acc.v0, aux).

– Queries: A can query on updates or witness queries.

∗ If A queries for a witness on x, if x ∈ S then Chal-
lenger runs MemWitCreate(sk,acc.v,x, aux) and re-
turns wx and its type (membership), otherwise
it runs NonMemWitCreate(sk,acc.v,x, aux) and re-
turns wx and its type (non-membership).

∗ If A asks for an update (addition/deletion) on x,
Challenger runs Add/Del(sk, v, x, aux) and returns
acc.v to A (and keeps acc.v′, S′ = S ∪ {x}/S −
{x}, aux′)

• IdealAdv,Sim(1
λ)

– Setup: On input 1λ, Sim1 forwards to A the ac-
cumulator params. A chooses a set S0 and Sim1

responds with acc.v0 without seeing S0. It also keeps
S = S0, acc.v = acc.v0 and same stateS for all
variables it has seen so far.

– Queries: A can query on updates or witness queries.

∗ If A queries for a witness on x, simulator runs
Sim2(acc.v, x, stateS,D(query, x, S)), gets a wit-
ness and its type (membership/non-membership)
and returns it to A.
∗ If A asks for an update (addi-

tion/deletion) on x, simulator runs
Sim2(acc.v, stateS, D(update, x, add/del, S)).
If output is 1 and update is of type add, then
S = S ∪ {x} and if update is of type del, then
S = S −{x}. Sim responds to A with acc.v′ and
sets acc.v = acc.v′.

RealAdv(1
λ), IdealAdv,Sim(1

λ) should be indistinguishable
except with negligible probability.

1) The BP Universal ZK Accumulator of [23]: The ZK
accumulator of [23] builds on top of the Nguyen accumulator
which we described in Section III-A. Below, we briefly present
the construction of [23]. Note that public updates of the
accumulator value are not available, as the manager controls
the randomization process. An extra parameter aux stores the
product of all random integers used so far (we ignore the
size of the accumulated set as updatable variable because all
needed parameters are already published by Gen()).
• Gen(1λ, S0): The same as Gen() algorithm of section

III-A, but now v0 is raised to r0 and aux0 = r0.
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• Add/Del(sk = a, vt, x, aux): In order to add x, manager
parses auxt = r chooses a random r′ ∈ Z∗p and computes
the new acc value as vt+1 = v

(x+a)r′

t and for deletion
as vt+1 = v

r′
x+a . It also outputs the updated accumulator

value vt+1, an update message and the updated informa-
tion auxt+1 = rr′.

• MemWitCreate(sk = a, vt, x, aux): wxt = v
1

x+a

t

• NonMemWitCreate(vt, x, S, aux): The algorithm is the
same for secret key holders/users with auxiliary in-
formation and is also called by NonMemWitUpOn-
Add()/NonMemWitUpOnDel(). Using the extended Eu-
clidean algorithm, compute polynomials q1(y), q2(y) s.t.
q1(y)

∏
(xi + y) + q1(y)(x + y), xi ∈ S. Pick random

γ ∈ Z∗p and set q′1 = q1(y) + γ(x + y) and q′2(y) =

q2(y) − γ
∏

(xi + y). Set wxt = (gq
′
1(a)r

−1

, gq
′
2(a)) =

(w1, w2). Note that wi can be calculated by a user
with the use of Equation 1 and all calculations can be
performed by the manager in integers (due to knowledge
of sk = a).

• MemWitUpOnAdd(vt, x, wx, upmsg =
y, auxt, auxt+1): Any witness holder of element x,
when y is added, can retrieve r’ by auxt+1/auxt and
update witness to wxt+1 = vt(w

x
t )

(y−x)r′ .
• MemWitUpOnDel(vt+1, x, wx, upmsg =
y, auxt, auxt+1): Any witness holder of element x,
when y is deleted, can retrieve r’ by auxt+1/auxt and

update witness to wxt+1 = (wxt )
r′

y−x v
1

x−y

t+1 .
• VerMem(vt, x, wxt ): Outputs 1 if e(vt, g) = e(wxt , g

xga).
• VerNonMem(vt, x, wxt = (w1, w2)): Outputs 1 if
e(w1, vt)e(w2, gxga) = e(g, g).

B. Our Bilinear Universal ZK-Accumulator

The ZK-accumulator instantiation of [23] (inspired by the
construction of Section III-A) is noticeably less efficient in the
case of non-membership proof generation (manager/user) and
witness updates. This is due to the complexity of the algorithm
NonMemWitCreate(), which involves |S| degree polynomials
for users or integers increasing with the size of S for the man-
ager. Non-membership witness update is no more constant,
as opposed to construction of Section III-A, as it requires a
fresh execution of NonMemWitCreate() and comes with the
same cost. This is the main efficiency overhead, considering
that NonMemWitUpOnAdd(), NonMemWitUpOnDel() are
run |D| − |S| times, i.e. for every element not present in the
accumulator, in every update. Moreover, in the case where
users run it, they need to store all elements of S (S can be
derived by update messages).

To keep the cost of all operations constant and achieve
the property of a ZK universal accumulator, we use our
construction of Section VI to replace non-membership with
membership proofs. The frequency of communication remains
the same (|a| + |d| lower bound for universal accumulators),
with a small overhead in every message.

Compared to construction of Section III-A, we add the
auxiliary information and we also separate accumulator up-

dates from witness creation to simulate the stand-alone witness
queries. Our instantiation is presented in Figure 4.
Security. Below we discuss why our proposed construction
satisfies the properties of Soundness and Zero-Knowledge.
Correctness is straightforward and derives from the correctness
of the generic construction (generic construction for universal
dynamic accumulator (Figure 3)).

• Gen(1λ, S0)→(sk,acc.v0,params, aux0) : Publish the
pairing instance, create the accumulator’s secret key a
and publish the accumulator’s public parameters (as in
construction of section III-A). Pick random r1, r2 ∈
Z∗p. Set acc1.v0 = gr1

∏
(xi+a), xi ∈ S, acc2.v0 =

gr2
∏
yi+a, yi ∈ D − S and acc.v0 = (acc1.v0, acc2.v0)

• Add(sk = a, acc.vt, x, auxt) →(acc.vt+1,
upmsgt+1, auxt+1) : Pick random r′1, r

′
2 ∈ Z∗p.

Set acc1.vt+1 = acc1.vt
r′1(x+a), acc2.vt+1 =

acc2.vt
r′2/(x+a) and acc.vt+1 = (acc1.vt+1, acc2.vt+1).

auxt = (r1, r2), auxt+1 = (r1r
′
1, r2r

′
2)

• Del(sk = a, vt, mt, x, auxt) →(acc.vt+1,
upmsgt+1, auxt+1) : Pick random r′1, r

′
2 ∈ Z∗p. Set

acc2.vt+1 = acc2.v
r′2(x+a)
t , acc1.vt+1 = acc1.v

r′1/(x+a)
t

and acc.vt+1 = (acc1.vt+1, acc2.vt+1). auxt = (r1, r2),
auxt+1 = (r1r

′
1, r2r

′
2)

• MemWitUpOnAdd/NonMemWitOnAdd(acc.vt,
acc.vt+1, x, wxt , upmsgt+1, auxt, auxt+1 )
→ wxt+1/w

x
t+1 : Parse upmsgt+1 = y,

auxt = (r1, r2), auxt+1 = (r1r
′
1, r2r

′
2) and divide

coefficients to get r′1, r′2. wxt+1 = acc1.vtw
x
t
(x−y)r′1 /

wxt+1 = acc2.v
y−x

t+1 (wxt )
r′2

x−y

• MemWitUpOnDel/NonMemWitOnDel(acc.vt,
acc.vt+1, x, wxt , upmsgt+1, auxt, auxt+1 )
→ wxt+1/w

x
t+1 : Parse upmsgt+1 = y, auxt = (r1, r2),

auxt+1 = (r1r
′
1, r2r

′
2) and divide coefficients

to get r′1, r
′
2. wxt+1 = acc1.v

1
y−x

t+1 w
x
t

r′1
x−y /

wxt+1 = acc2.vt(w
x
t )

(x−y)r′2

• MemWitCreate/ NonMemWitCreate (sk = a, acc.vt, x
) → wxt / wxt : wxt = acc1.v

1
x+a
t /wxt = acc2.v

1
x+a
t

• VerMem(acc.vt, x, wxt )→ {0, 1} : Run
VerMem(acc1.vt, x, wxt ) (section III-A) and return
output.

• VerNonMem(acc.vt, x, wxt )→ {0, 1} : Run
VerMem(acc2.vt, x, wxt ) (section III-A) and return
output.

Fig. 4. Universal bilinear ZK-Accumulator by two positive accumulators

Soundness. The soundness adversary has the same privileges
as a witness holder, i.e. receives the auxiliary information after
every update. The bilinear instantiation of [23] (acc1, acc2
of Figure 4) is adaptively sound under the q-Strong Bilinear
Diffie Hellman assumption which can be reduced to the q-SDH
assumption, according to [20]. Therefore, the soundness of our
universal bilinear ZK-Accumulator by two positive accumula-
tors (Figure 4) is adaptively-sound according to Theorem 3.
Zero-Knowledge. In Appendix E we prove zero-knowledge
of our construction as stated in the following theorem:

Theorem 4. The universal bilinear ZK-Accumulator
(acc1, acc2) of Figure 4 that instantiates the generic universal
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modular construction of Figure 3 (where acci, i ∈ {1, 2}
is the positive bilinear instantiation of [23] with auxiliary
information ri) satisfies the ZK property of Definition 4.

Efficiency of our ZK Accumulator. Our construction main-
tains all constant operations and decreases non-membership
witness creation from O(|S|) to O(1). It also decreases non-
membership witness updates fromO(|S|) toO(1) and requires
from users to only keep the last two update messages in order
to update their witness (as opposed to the ZK bilinear instan-
tiation of [23] that requires all of the update messages in order
to recreate the set S in every update). The communication cost
per update remains O(1) and happens in every addition and
deletion as indicated by the optimal communication bound for
universal accumulators.
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APPENDIX

A. Algorithm definitions in the trapdoorless setting

Here we provide definitions for the trapdoorless (with
trusted setup) setting, where parties can add and remove ele-
ments without the assistance of a trusted accumulator manager.
Here, users need to know the set S of all currently accumulated
elements.
• AddPublic/DelPublic(vt, x, S) →(vt+1, wxt+1,
upmsgt+1) : Takes as input the current accumulator
value vt, an element x included/not included in the
accumulator and the set S. It outputs the updated
accumulator value vt+1 after addition/deletion of x, and
a membership witness wxt+1/non-membership witness
wxt+1. To notify other parties about the update, it
outputs a message upmsgt+1. The witness wxt+1/wxt+1

is the output of a call to MemWitCreatePublic/
NonMemWitCreatePublic for public witness creation
(which we describe below).

• MemWitCreatePublic/ NonMemWitCreatePublic (vt,
x, S ) → wxt / wxt : Takes as input the current ac-
cumulator value vt, an element x (included/not included
in the accumulator) and the currently accumulated set
S. It outputs a membership witness for x, wxt / a non-
membership witness for x, wxt .

Notice that in the trapdoorless setting the algorithms per-
formed for verification (VerMem,VerNonMem) and for wit-
ness updates (MemWitUpOnAdd/Del, NonMemWitUpOn-
Add/Del) are the same as before. Finally, we note that
MemWitCreatePublic/ NonMemWitCreatePublic can also
be useful in the trapdoor-based scenario, in order for users to
create their current witness (i.e. in case they lost w), without
the help of the accumulator manager, as long as they know
the current set of accumulated elements S.

B. Algorithms of [4] in the trapdoorless setting

We present the algorithms that can be run by the public
without knowledge of the secret in the trapdoorless with
a trusted setup setting. First, the Gen() algorithm (run by
a trusted entity) needs to additionally output the following
parameters: a tuple {gaj}, j ∈ [2, capacity]. Also, set S (i.e.
the set of accumulated elements) is used:
• AddPublic/DelPublic(vt, x, S): In order to add x,

a third party computes the new acc value as
vt+1 = (g

∏
xi∈S

(xi+a))(x+a) (and Equation 1)
and for deletion as vt+1 = g

∏
xi∈S

(xi+a), where
x /∈ S. Then it can call MemWitCreatePublic
(vt+1, x, S)/ NonMemWitCreatePublic(vt+1, x, S) to
return a membership/non-membership witness for x. It
also outputs the updated accumulator value vt+1 and a
message upmsgt+1.

• MemWitCreatePublic(vt, x, S): A witness for element
x can be created by a third party as wxt = g

∏
xi∈S

(xi+a),
where x /∈ S (and Equation 1).

• NonMemWitCreatePublic(vt, x, S): Compute the poly-
nomial v(a) =

∏
xi∈S(xi + a). Perform a polynomial

division of v(a) by (x + a) as v(a) = c(a)(x + a) + d.
Expand c(a) =

∑|S|−1
i=0 (uia

i) according to Equation 1.
Compute c = gc(a)=

∏|S|−1
i=0 gui . Output non-membership

witness wxt+1 = (c, d).
Correctness in accumulators ensures that a valid witness will

verify via the VerMem algorithm. A membership witness for
an element x is equal to wx. Recall that in our construction
when new elements are added to the accumulator the witnesses
for rest of the elements remain the same. When a witness
holder proves membership in the accumulator at time t, she
needs to present a witness wx that satisfies the equation
wxt = v

1
x+a

t . The verifier (seeing the current accumulator
value vt) can either check if wxt

(x+a) = vt holds (in the
case she holds the secret information a) or equivalently if
e(wxt , g

xga) = e(vt, g) (using public information). As long as
issued witness was valid and satisfied the equations above, the
membership proof will go through. Our construction preserves
the relationship between the membership witness and the
accumulator value of the original scheme [34], [4] presented
in Section III-A and also the verification and witness update
algorithm that we are analyzing below.

In case that a witness holder wishes to prove membership
after a number of deletions has happened, they would have to
update their witness first.

However, we can see that the above relationship is preserved
since MemWitUpOnDel (Section III-A) works as follows:

It can be verified in integers that

y + a

(x+ a)(y − x)
+

1

x− y
=

y + a

(x+ a)(y − x)
− x+ a

(y − x)(x+ a)

=
(y + a)− (x+ a)

(y − x)(x+ a)
=

y − x
(y − x)(x+ a)

=
1

(x+ a)

MemWitUpOnDel performs the following operations

wxt+1 = wxt
1

y−x vt+1
1

x−y = [vt+1

y+a
x+a ]

1
y−x (vt+1)

1
x−y

which equals v
1

x+a

t+1 as shown above.

C. Soundness proof of our pairing based positive dynamic
non-adaptively secure accumulator (Figure 1)

We now provide the proof of Theorem 1.

Proof. Let R be a reduction that receives as input a pairing in-
stance and the public params of the accumulator. R leverages
an adversary A which can break the non-adaptive soundness
of the accumulator. A is allowed to submit accumulator update
queries to R. Queries are of the form Query(update, add/del,
element to be added/deleted). The goal of R is to break the
q-SDH assumption. The reduction works as follows:
• A submits the attack information:

In the first step, A is going to send a list of additions and
deletions, LA= (x1,...,x|A|), LD=(x1,...,x|D|).

• R initializes the accumulator:
R picks an index j ∈ [1, |D|]
R picks a counter c ∈ [0, |D|], saves ci = |D| for i 6= j
and cj = c
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R initializes accumulator value as v = g
∏|D|

i=1 (xi+a)
ci =

g
∑C

k=0 bka
k

, where C =
∑
ci, xi ∈ LD the elements to

be deleted and bk the coefficients of the polynomial in
Zp[a] that comes from extending the product in exponent.
Note that R does not know a but given the public params
knows ga thus can compute v according to Equation 1.
R returns v to A along with accumulator params

• A submits Query(update, add, x):
if in LA continue, else abort
R computes cr = cr − 1 and wxr = g

∏|D|
i=1,i 6=r(xi+a)

ci =
g
∑C

k=0 bka
k

• A submits Query(update, del, x)
If xr ∈ LD continue, else abort
R computes cr = cr − 1 and v = g

∏|D|
i=1(xi+a)

ci =
g
∑C

k=0 bka
k

and sends upmsg
Add/Del queries can repeat. If at any point the number
of additions or deletions of xj is greater than c, FAIL.

• A sends its forgery (x∗, w∗):
If x∗ /∈ LD, abort
If A’s witness w∗ = wxi , i 6= j FAIL
If number of deletions of xj does not equal c (cj 6= c),
abort
Else check if A’s witness is valid: w∗ s.t. e(g, v) =
e(gx

∗
ga, w∗)

In case the reduction does not abort: R has a computed value
u =

∏
xi∈LD,xi 6=x∗(xi + a)ci =

∑C
k=0 bka

k, C =
∑
ci

(x∗+a) 6 |u (because they share no binomials of degree one as
factors, which makes them co-prime) so there is a polynomial
k(a) with deg(k(a)) < C and a positive integer r s.t.
w∗(x

∗+a) = gu = gk(a)(x
∗+a)+r and g

1
x∗+a = [w∗g−k(a)]1/r.

R breaks q-SDH as g−k(a) is computable by R in a known
order group.

Let A perform a successful forgery with probability ε. Then
the probability of R breaking q-SDH is 1

|D|
1

|D|+1ε, where 1
|D|

is the probability of a correct guess of x∗ and 1
|D|+1 is the

probability of a correct guess of the number of deletions on
x∗.

Discussion. Our security proof is based on the fact that at
any point, for accumulator value v = gu and x /∈ acc:
(x+a) 6 |u. Initialization of acc as v0 = gu0 , where u0 random
element of Z∗p cannot be proved to satisfy this condition
for all x ∈ D. Our construction is proven secure against a
non-adaptive adversary, therefore it uses an arbitrary initial
exponent u0 according to the attacker’s queries and a guess
for the attack. Random elements can be safely accumulated in
a non-adaptively sound accumulator, since those elements are
chosen without using any information about the accumulator,
according to [6].

D. Soundness proof of our generic construction for universal
dynamic accumulator (Figure 3)

We provide the proof of Theorem 3.

Proof. Let A be an adversary that breaks the adaptive sound-
ness of acc = (ACC1,ACC2). Then, there is a reduction R

that breaks the adaptive soundness of accR, where accR is an
adaptively-sound positive accumulator.
A is allowed to submit accumulator update queries to R and
R to a challenger Ch. Queries are of the form accumula-
tor.Query(update, add/del, element to be added/deleted).

Ch runs Gen(1λ, ∅) and returns accR.v0, params to
R. R initializes ACC1.v0 = accR.v0, and asks for
accR.Query(update, add,x), ∀x ∈ D and gets back accR.vD.
It also keeps a set L for all the currently accumulated elements
in accR, S for all elements in ACC1 and S for ACC2. R
sets L, S = ∅, S = D, ACC2.v0 = accr.vD and publishes
acc.v0 = (ACC1.v0,ACC2.v0), params to A, who can run the
following queries polynomial times:
• A performs acc.Query(update,add,x1) (t = t1):
∀y ∈ L, R asks for accR.Query(update, del, y).
∀x ∈ S, R asks for accR.Query(update, add, x).
R asks for accR.Query(update, add, x1) and returns
ACC1.vt1 = accR.v, wx1

, upmsg to A.
R sets L = S ∪ {x1} and ∀y ∈ L, R asks for
accR.Query(update, del, y).
R sets L = D − S and ∀y ∈ L, R asks for
accR.Query(update, add, y).
R asks for accR.Query(update, del, x1) and returns
ACC2.vt1 = accR.v, upmsg to A.
R sets S = S ∪ {x1} and L = D − S

• A performs acc.Query(update,del,y2) (t = t2):
∀y ∈ L, R asks for accR.Query(update, del, y).
∀x ∈ S, R asks for accR.Query(update, add, x).
R asks for accR.Query(update, del, x2) and returns
ACC1.vt2 = accR.v, upmsg to A.
R sets L = S − {x2} and ∀y ∈ L, R asks for
accR.Query(update, del, y).
R sets L = D − S and ∀y ∈ L, R asks for
accR.Query(update, add, y).
R asks for accR.Query(update, add, x2) and returns
ACC2.vt2 = accR.v, wx2 , upmsg to A.
R sets S = S − {x2} and L = D − S

At t = t∗, A performs a valid forgery (x∗, w∗) to acc. If
w∗ = wx∗, x∗ /∈ acc and VerMem(ACC1.vt∗ , x

∗, w∗)=1: R
asks for deletion of L and addition of S to accR and achieves a
forgery (x∗, w∗) to accR with the same probability. Otherwise,
if w∗ = wx∗, x∗ ∈ acc and VerMem(ACC2.vt∗ , x

∗, w∗)=1: R
asks for deletion of L and addition of D − S to accR and
achieves a forgery (x∗, w∗) to accR.

E. Zero-Knowledge property of our universal bilinear ZK-
Accumulator by two positive accumulators (Figure 4)

Here we provide the proof of Theorem 4.

Proof. Sim is defined to work as follows:
• Sim generates the pairing instance/parameters. It then

picks a random a ∈ Z∗p and returns the public params to
A. A picks a set S. Then Sim picks random r1, r2 ∈ Z∗p,
stores them and sends back to A the accumulator which
consists of two pieces (gr1 , gr2) and initializes an empty
list C of triples (to keep track of the witnesses).
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• A asks for an update add(x)/del(x):
Sim runs D(update,x,add/del,S) and if it outputs 1, Sim
picks random r′1, r

′
2 ∈ Z∗p and returns to A the accumula-

tor values (gr
′
1 , gr

′
2). Then updates stored values r1 = r′1,

r2 = r′2, C = ∅ and S.
• A queries element x:
Sim checks if (x,−,−) ∈ C. If yes returns wx/wx.
Otherwise, it queries D(query,x,S). If gets back 1, it
computes wx = gr1(x+a)

−1

and sends it to A. Otherwise,
it computes wx = gr2(x+a)

−1

and sends it to A. It also
appends (x,non-membership/membership,wx/wx) to C.

The returned values are distributed the same as in the real
game. For more details, we refer to the corresponding proof
of [23] for the case of the distribution of membership witnesses
and the accumulator value in the presence of updates.

F. Applying batching techniques to our constructions

Recent results for RSA accumulators [12], suggest that
batching witnesses in one aggregated witness along with a
proof of correct aggregation can bring the size of the witness
for multiple elements and total verification time (in terms
of group operations) of a (non)membership proof down to
constant and could potentially be applied to our constructions
as well. Interestingly though, the construction of a batched
non-membership proof for the RSA accumulator depends on
both the number of batched elements and S. If we apply
such an aggregation technique for non-membership proofs to
our generic construction for universal dynamic accumulator
(Figure 3), S would not affect the proof cost (since we skip
non-membership proofs all-together).

Additionally [12] proposes a technique to batch accumulator
value updates. In the trapdoorless setting, they show how an
untrusted entity can add or delete a bunch of elements and
prove correctness of the accumulator update that corresponds
to these elements with reduced communication cost for the
proof. Note that this does not reduce the communication cost
of update messages, as it would break the communication
bound [13]. If other users have elements in the accumulator
they need to update their witnesses with individual update
messages. Therefore, our communication gain for instantiation
of Figure 2 still holds in an environment of batched updates.
Alternatively, it has been proposed that a central entity recre-
ates and redistributes all witnesses after a batched update. By
applying this technique to our instantiation of Figure 2 we can
get rid of the redistribution communication cost in the case of
an update that consists only of additions or achieve less total
computation time before distributions of witnesses (n|d| for n
witness holders). The same holds for batch witness updates in
the trapdoor-based setting.

In [41] the manager’s broadcast message is computed using
the trapdoor, in order for users to update their witnesses more
efficiently. The communication cost is still linear to the update.
In this case, instead of the individual elements, the update
message is a common polynomial where individual witness
holders can use their element as an input. The number of
coefficients of the polynomial (as well as its degree) equals the

number of updates, therefore follows the lower communication
bound. Applying such techniques on instantiation of Figure 2
can benefit the computation time for witness holders while still
saving from communication after batch additions (no need to
update/broadcast).

G. Instantiations for Zero-Knowledge Proofs of Membership
in Bilinear Accumulators

Instantiation for Figure 2: We give an instantiation for the
case where ACCA is instantiated with strong Boneh-Boyen
signatures III-B and ACCNA is instantiated by our protocol in
Figure 1.

For the signature scheme of Section III-B, a user can commit
to an element m that satisfies the Verify() algorithm. The proof
is an adaptation of [3], where instead of proving knowledge
of a signature on a committed message m and revealing the
message, we prove knowledge of a signature on m along with
a commitment to m.

For the case of ACCNA ( instantiated with protocol of Figure
1), the following proofs, adapted from [4], [38], prove in zero-
knowledge that the user knows the opening to a commitment to
an element r and also knowledge of a witness w that satisfies
the membership verification equation of the construction if
Section III-A (this is ZKP1 below).

Let D = Gq = 〈hi〉, i = 0, 1, 2, G = 〈gi〉, i = 0, 1 be
publicly known generators to be used for commitments.

ZPK1 =
{

(w, r, r̃) : e(w, gr0g
a
0 ) = e(v, g0) ∧ C = gr0g

r̃
1

}
which can be converted to the following proof that hides

the witness w:

ZPK′1 =


(r1, r2, r, δ1, δ2, r̃) : w1 = gr10 g

r2
1 ∧ wr1 = gδ10 g

δ2
1

∧ e(w2,g
a
0 )

e(v,g0)
= e(w2, g0)

−re(g1, g0)
δ1e(g1, g

a
0 )
r1

∧C = gr0g
r̃
1


where r1, r2 ← Zp, w1 = gr10 g

r2
1 , w2 = wgr11 , δ1 = r1r,

δ2 = r2r.
Instantiation for Figures 3 and 4: The above proof can also
be used in the positive accumulator of [34], as well as in our
bilinear instantiations for our universal modular accumulators
of Figures 3 and 4.

Instantiating ZKP for membership verification (that is done
in the bilinear pairing environment) can be done more effi-
ciently using the Groth-Sahai system [25] when there is no
need for the user to hide the element accumulated (corresponds
to non-bilinear group arithmetic) but still needs to hide the
witness.
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