
On MILP-based Automatic Search for Bit-Based
Division Property for Ciphers with (large)

Linear Layers

Muhammad ElSheikh and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada
{m elshei,youssef}@ciise.concordia.ca

Abstract. With the introduction of the division trail, the bit-based di-
vision property (BDP) has become the most efficient method to search
for integral distinguishers. The notation of the division trail allows us to
automate the search process by modelling the propagation of the DBP
as a set of constraints that can be solved using generic Mixed-integer
linear programming (MILP) and SMT/SAT solvers. The current models
for the basic operations and Sboxes are efficient and accurate. In con-
trast, the two approaches to model the propagation of the BDP for the
non-bit-permutation linear layer are either inaccurate or inefficient. The
first approach relies on decomposing the matrix multiplication of the
linear layer into COPY and XOR operations. The model obtained by this
approach is efficient, in terms of the number of the constraints, but it is
not accurate and might add invalid division trails to the search space,
which might lead to missing the balanced property of some bits. The sec-
ond approach employs a one-to-one map between the valid division trails
through the primitive matrix represented the linear layer and its invert-
ible sub-matrices. Despite the fact that the current model obtained by
this approach is accurate, it is inefficient, i.e., it produces a large number
of constraints for large linear layers like the one of Kuznyechik. In this pa-
per, we address this problem by utilizing the one-to-one map to propose
a new MILP model and a search procedure for large non-bit-permutation
layers. As a proof of the effectiveness of our approach, we improve the
previous 3- and 4-round integral distinguishers of Kuznyechik and the
4-round one of PHOTON’s internal permutation (P288). We also report,
for the fist time, a 4-round integral distinguisher for Kalyna block cipher
and a 5-round integral distinguisher for PHOTON’s internal permutation
(P288).

Keywords: Bit-based division property · integral · linear layer · MILP
· Kuznyechik · Kalyna · PHOTON

1 Introduction

The division property is a generalized integral property that exploits the al-
gebraic degree of the nonlinear components of block ciphers [17]. Since it was

2 M. ElSheikh et al.

proposed by Todo at Eurocrypt 2015 , it has become one of the most efficient
methods to build integral distinguishers.It has been used to analyze the security
claims of many symmetric-key primitives, e.g., the full round MISTY1 is broken
using a 6-round integral distinguisher found by the division property [18]. The
division property was succeeded by a more precise version called the bit-based
division property (BDP) in [19] which exploits the internal structure of the non-
linear components to analyzes block ciphers at the bit level. Even though the
BDP is more accurate and can find better integral distinguishers, handling its
propagation is computationally intensive. The first search tool utilized the bit-
based division property was limited to building integral distinguishers for block
ciphers with block size less than 32 bits since the complexity of the search is
around O(2n) where n is the block size [19].

Xiang et al. [20] have overcome the problem of the restriction on the block
size by proposing the division trails. Using the division trial, the search process
for an integral distinguisher can be converted to checking whether a specific
division trail exists or not. They also proposed a systematic method to model
the propagation rules of the BDP as a set of linear constraints. Hence, the search
process can be efficiently automated with the help of generic Mixed Integer
Linear Programming (MILP) and SAT solvers. Moreover, Xiang et al. provided
an accurate model for the propagation of the BDP through the basic operations;
COPY, XOR, and AND, in addition to an accurate model for Sboxes. With the help of
these models, it is now feasible to look for integral distinguishers for many ciphers
that utilize these operations when the used linear layer is a bit-permutation.

For ciphers with non-bit-permutation linear layers, Sun et al. [16] proposed
a model relying on decomposing the matrix corresponding to the linear layer
into its basic operations; COPY and XOR. We refer to this model through our
paper as Disjointed Representation and we will provide more details about it
in the following sections. The main two advantages of this model are: (i) it is
applicable to all kinds of linear layers, and (ii) the number of constraints needed
to model the propagation of the BDP is small, precisely, 2n where n denotes the
size of the matrix input in bits. However, this representation does not model the
propagation accurately and might add invalid division trails to the search space
which might lead to missing the balanced property of some bits.

Another model for the propagation of the BDP through non-bit-permutation
linear layers is presented by Zhang and Rijmen in [21]. They observed that there
is a one-to-one map between each valid division trail and one of the invertible
sub-matrices of the matrix, M , representing the linear layer. They were able to
convert this map to a set of MILP constraints. Unlike the first model provided
by [16], the new model is more accurate. However, the number of the MILP
constraints grows exponentially with the size of M . Recently, Hu et al. partially
solved this problem in [10] by utilizing the one-to-one relation to build a model
of 4-degree constraints that can be solved using SMT/SAT. The new number
of the constraints is proportional to the square of matrix size. Unfortunately,
this model is still not suitable for some large linear layers such as the one of
Kuznyechik [4].

Title Suppressed Due to Excessive Length 3

Our Contributions. In this paper, we propose a new model for the propaga-
tion of the BDP through large linear layers. In particular, we utilize the same
one-to-one map proposed by Zhang and Rijmen to derive a set of constraints
that filter out all non-invertible sub-matrices, part of them during the offline
modelling process and the other part on-the-fly during the search process. In
order to validate the correctness of our approach, we use our model to repro-
duce the results of the 4- and 5-round key-dependent integral distinguishers of
AES reported in [10]. With the help of our model, we improved the previous
3- and 4-round integral distinguishers of Kuznyechik block cipher and the 4-
round one of PHOTON’s internal permutation (P288). We also report, for the
fist time, a 4-round integral distinguisher for Kalyna block cipher [13] and a
5-round integral distinguisher for PHOTON’s internal permutation (P288) [8].
Table 1 summarizes our results.

Table 1: Integral distinguishers for Kuznyechik, Kalyna and PHOTON.

Ciphers #Rounds log2(Data) Reference

Kuznyechik

3 116? [2]

3 56 Section 5.1

4 127? [2]

4 120 Section 5.1

Kalyna-128

4† 64 Section 5.2

4§ 96 Section 5.2

4‡ 62 Section 5.2

PHOTON (P288)

4 48 [16]

4 40 Section 5.3

5 280 Section 5.3

? Higher-order differential.
† Without pre-whitening operation.
§ With pre-whitening operation.
‡ A key-dependent distinguisher which depends on the 32

least significant bits of the pre-whitening key.

Outline. The rest of this paper is organized as follows. In Section 2 we recall
some relevant definitions and revisit the MILP model for the basic operations.
In Section 3, we revisit the previous MILP models for the linear layers. Next, we
illustrate in details our new model and search approach in Section 4. In Section
5, we show some applications of the new model. Finally, the paper is concluded
in Section 6.

4 M. ElSheikh et al.

2 Preliminaries

2.1 Notations and Definitions

We represent n-bit vectors using bold letters, e.g., uuu ∈ Fn
2 . The i-th element of

uuu is expressed as ui and the Hamming weight hw(uuu) is calculated as hw(uuu) =∑n−1
i=0 ui. For a matrix M ∈ Fp×q

2 , we use the notation M(i, j) to represent the
element of M located at the i-th row and j-th column, ri = M(i, ∗) to represent
the i-th row, and cj = M(∗, j) to represent the j-th column of M . Given two

q-bit and p-bit vectors uuu and vvv, we define Mvvv,uuu ∈ Fhw(vvv)×hw(uuu)
2 as a sub-matrix

of M as follows

Mvvv,uuu = [M(i, j)], s.t. vi = uj = 1,∀ 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1

Given a q-bit vector uuu, we define Muuu ∈ Fp×hw(uuu)
2 as a sub-matrix of M as

follows
Muuu = [M(∗, j)], s.t. uj = 1,∀ 0 ≤ j ≤ q − 1

Definition 1 (Bit product function). For two n-bit vectors xxx and uuu, the bit
product function πuuu(xxx) : Fn

2 → F2 is defined as

πuuu(xxx) =

n−1∏
i=0

xui
i

Definition 2 (Bit-based Division Property[19]). Let X be a multiset whose
elements take a value of Fn

2 . When the multiset X has the division property Dn
K,

where K denotes a set of n-dimensional vectors whose i-th element takes 0 or 1,
it fulfills the following conditions for any uuu ∈ Fn

2 :

⊕
xxx∈X

πuuu(xxx) =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

Definition 3 (Division Trail[20]). Let f denote the round function of an
iterated block cipher. Assume that the input multiset to the block cipher has the
initial division property Dn

{k}, and denote the division property after i-round
propagation through f by Dn

Ki
. Thus, we have the following chain of division

property propagations: {k} def
= K0

f−→ K1
f−→ K2

f−→ · · · f−→ Kr. Moreover, for any
vector k∗i ∈ Ki(i ≥ 1), there must exist a vector k∗i−1 ∈ Ki−1 such that k∗i−1
can propagate to k∗i by the division property propagation rules. Furthermore,
for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

Definition 4 (Binary Matrix [10]). Suppose for a matrix M
′ ∈ Fs×s

2m , we

represent the element M
′
(i, j) in M

′
as a polynomial in the extension field F2m '

F[x]/(f), where f is the irreducible polynomial over F2 with degree m, then
we call M

′
a binary matrix if all such polynomials in M

′
can only be 0 or

1. Otherwise, M
′

is called a non-binary matrix.

Title Suppressed Due to Excessive Length 5

2.2 MILP-based Automated Search for Bit-based Division Property

As we mentioned above, the first automated search tool for the bit-based division
property was limited to building integral distinguishers for block ciphers with
block size less than 32 bits [19]. Then, Xiang et al. [20] proposed the division
trails to solve this problem. In particular, with the help of the division trial,
the search process for an integral distinguisher is converted to checking if the
division trail k0 → · · · → ei (a unit vector whose i-th element is 1) does exist or
not. If it does not exist, then the i-th bit of r-round output is balanced.

In the following, we summarize the MILP constraints that are used to model
the propagation rules of the bit-based division property through the basic oper-
ations in block ciphers. For more details, we refer the reader to [20,16,5,7].

– Model for COPY: Let (a)
COPY−−−→ (b1, b2, . . . , bm) denote the division trail

through COPY function, where a single bit (a) is copied to m bits. Then, it
can be described using the following MILP constraints:

a− b1 − b2 − · · · − bm = 0, where a, b1, b2, . . . , bm are binary variables.

– Model for XOR: Let (a1, a2, . . . , am)
XOR−−→ (b) denote the division trail through

an XOR function, where m bits are compressed to a single bit (b) using an
XOR operation. Then, it can be described using the following MILP con-
straints:

a1 + a2 + · · ·+ am − b = 0, where a1, a2, . . . , am, b are binary variables.

– Model for Sboxes: The bit-based division property introduced in [19] is lim-
ited to bit-orientated ciphers and cannot be applied to ciphers with Sboxes.
Xiang et al. [20] complemented this work by proposing an algorithm to accu-
rately compute the bit-based division property through an Sbox. Briefly, they
represented the Sbox using its algebraic normal form (ANF). Then,the divi-
sion trail though an n-bit Sbox can be represented as a set of 2n-dimensional
binary vectors ∈ {0, 1}2n which has a convex hull. The H-Representation of
this convex hull can be computed using readily available functions such as
inequality generator() function in SageMath1 which returns a set of lin-
ear inequalities that describe these vectors. We use this set of inequalities as
MILP constraints to present the division trail though the Sbox.

3 Previous MILP-based Modelling for Linear Layers

The propagation of the bit-based division property through bit-permutation lin-
ear layers, e.g., the linear layers of PRESENT [3] and GIFT [1], can be easily
modelled by rearranging the variables based on the permutation. In contrast, the
non-bit-permutation linear layers, e.g., the linear layers of AES and Kuznyechik
[4], needs a more complex model.

1 http://www.sagemath.org/

http://www.sagemath.org/

6 M. ElSheikh et al.

In this section, we revisit the two methods used to model the propagation
of the BDP through non-bit-permutation linear layers. These methods relay on
representing the matrix multiplication in the linear layer at the bit level. Suppose
the linear layer can be represented as a matrix multiplication over the field F2m

using the matrix M
′ ∈ Fs×s

2m . Given the irreducible polynomial of the field F2m ,
we can derive a unique equivalent matrix M ∈ Fn×n

2 called the primitive matrix
at the bit level where n = s×m.

3.1 Disjointed Representation

Since the primitive matrix M is presented at the bit level, i.e., M(i, j) ∈ {0, 1},
we can decompose the linear layer into its basic operations, i.e., AND with 0 or
1 and XOR operations. Consequently, the propagation of the BDP can be easily
modelled using the models of the basic operations [16].

Let uuu
M−→ vvv denote the division trail through the linear layer where uuu,vvv ∈ Fn

2 .
By defining a set of auxiliary binary variables ttt = {t(i,j) if M(i, j) = 1, 0 ≤ i, j ≤
n − 1}, we can model the propagation of the BDP at the bit level in two steps
as follows:

– (uj)
COPY−−−→ (t(0,j), t(1,j), . . . , t(n−1,j)) where

−uj +

n−1∑
i=0

M(i,j)=1

t(i,j) = 0

– (t(i,0), t(i,1), . . . , t(i,n−1))
XOR−−→ (vi) where

−vi +

n−1∑
j=0

M(i,j)=1

t(i,j) = 0

Hence, the total number of constraints #L = 2n.

Limitations. Despite the fact that this method is simple and efficient in terms of
the number of constraints, it cannot handle the cancellation between monomials
since it handles each output bit individually. Hence, it is not precise and it might
produce invalid division trails leading to missing the balanced property of some
output bits. For further details, See [21].

3.2 Compact Representation

One method to overcome the problem of the monomial cancellations is to deal
with the linear layer as a one single block like an S-box. However, the large size of
the linear layer renders this approach computationally infeasible in many cases.

In this context, Zhang and Rijmen observed that there is a one-to-one map
between the accurate division trails of the primitive matrix M and invertible
sub-matrices of M [21]. This observation is stated in the following theorem.

Title Suppressed Due to Excessive Length 7

Theorem 1 ([21]). Let M be the n×n primitive matrix of an invertible linear

transformation and uuu,vvv ∈ Fn
2 . Then uuu

M−→ vvv is one of the valid division trails of
the linear transform M if and only if Mvvv,uuu is invertible.

Using this one-to-one map, they proposed a systematic method to model a
binary matrix M

′ ∈ Fs×s
2m as a set of MILP constraints. For more derails, see

[21]. In this case, the total number of constraints #L = m× (2s − 1).

Regarding the non-binary matrices, we can still use the same method, but
the number of constrains will exponentially increase with the size of the prim-
itive matrix, i.e., if the primitive matrix M is n × n, then the total number of
constraints #L = 2n − 1.

Hu et al. presented an updated version of Theorem 1 in [10]. They removed
the restriction that the primitive matrix M must be invertible to have valid
division trails. Consequently, the primitive matrix M could be in general of size

p× q. Hence, uuu
M−→ vvv is one of the valid division trails of M if and only if Mvvv,uuu

is invertible where uuu and vvv are q- and p-bit vectors, and hw(uuu) = hw(vvv). Hu et
al. also utilized this one-to-one map to present a new model for the propagation
of the BDP through a non-binary matrix using less number of constraints. If a
primitive matrix M is p×q, then the total number of constraints will be #L = p2.
It should be mentioned that the constraints are 4-degree ones, therefore it is
solvable using SMT/SAT solvers and cannot be handled using MILP solvers.
For more details, see [10].

Limitations. Even though the models by Zhang and Rijmen, and Hu et al. are
accurate, they are inefficient for large linear layers, e.g., the primitive matrix
corresponding to the linear layer of Kuznyechik is 128 × 128, therefore we will
need 2128 or 1282 = 214 constraints to model a single linear layer if we use Zhang
and Rijmen and Hu et al. methods receptively. Therefore, when the distinguisher
covers many rounds, it will be computationally infeasible for current MILP/SAT
solvers to handle the model due to the large number of the constraints.

4 MILP-based Modelling for (large) Linear Layers

As mentioned in the previous section, the current models for the non-bit-permutation
linear layer in the literature are either inaccurate or inefficient for large linear
layers. In this paper, we tackle this problem by proposing an accurate model
for the linear layer when its input division property is priorly known before the
modelling step. Thereby, this model is more suitable for the first round of the
distinguisher. Regarding the other rounds of the distinguisher when the input
division property cannot be determined during the modelling, we use the dis-
jointed representation described in Section 3.1 and address its inaccuracy by
discarding any invalid trails on-fly during the search process.

8 M. ElSheikh et al.

4.1 Prior-Known Input Division Property to the Linear Layer

Suppose the primitive matrix M is of size p× q and let uuu be the input division
property to M and assume it is determined a priori. Consequently, we can utilize
Theorem 1 and its updated version in [10] to derive all correct division trails.
The naive method to do so is by exhaustively trying all the values of the output
division property vvv such that hw(uuu) = hw(vvv) and checking if the sub-matrix
Mvvv,uuu is invertible. Despite the correctness of this method, we need to try

(
p

hw(uuu)

)
sub-matrices which is a very large number in almost all the cases. Moreover, we
have to find a method to encode these division trails as MILP constraints to
build a large model that covers many number of rounds. In the following, we
explain our main idea to overcome this problem.

Main Idea. Based on Theorem 1, the sub-matrix Mvvv,uuu must be invertible to

have a valid trail uuu
M−→ vvv, i.e., the sub-matrix Mvvv,uuu must not include linearly

dependant rows. Given the input division property uuu, we can construct the col-
umn matrix Muuu. Subsequently, we can get the row echelon form of Muuu using the
Gaussian eliminations, and obtain all the sets of linearly dependent rows. Then,
instead of checking each value of vvv (as in the naive method), we derive a set of
constraints that guarantee the bits vi do not lead to including any set of linearly
dependent rows from Muuu. In order to complete the model, one more constraint
should be added to enforce hw(uuu) = hw(vvv). Hence, the value of vvv that satisfies
these constraints is indeed a valid output division property.

The following examples illustrates our idea.

Detailed Example. Assume a toy linear layer where its primitive matrix M is
8×8. Given the input division property uuu = (1, 1, 1, 1, 1, 0, 0, 0), we can construct
the column matrix Muuu by choosing the columns of M that correspond to the
nonzero bits in uuu.

M =



1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0
1 1 0 0 0 0 1 0
0 0 1 1 0 0 0 1


uuu−−−−→Muuu =



1 0 0 0 0
1 1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0
0 0 1 1 0


We follow the procedure given below to derive a set of linear constraints as a
function in the output division property vvv = (v0, v1, v2, v3, v4, v5, v6, v7) to trace
the propagation of the division property for Muuu.

1. Check whether Rank(Muuu) = hw(uuu) to ensure that there is at least one
full rank (invertible) sub-matrix, and hence at least one valid division trail.
Otherwise, we conclude that uuu cannot be propagated to any valid vvv.

Title Suppressed Due to Excessive Length 9

2. Use Gaussian eliminations to put Muuu in its row echelon form while keeping
track the row operations. Hence, each all-zero row in the row echelon form
implies a set of linearly dependent rows in the original matrix Muuu, e.g., the
first all-zero row in our example can be expressed as r0 + r1 + r5 = 000 which
means that the rows {r0, r1, r5} from Muuu are linearly dependent. The details
of the Gaussian eliminations for our example can be found in Appendix A.



1 0 0 0 0 r0
1 1 0 0 1 r1
0 1 0 0 0 r2
0 0 1 0 0 r3
0 0 0 1 0 r4
0 1 0 0 1 r5
1 1 0 0 0 r6
0 0 1 1 0 r7


Gaussian−−−−−−−−→

Elimination



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 1 r2 + r1 + r0
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 0 r6 + r2 + r0
0 0 0 0 0 r7 + r3 + r4


→


r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000



In general, if Muuu is p× hw(uuu), then there are p− hw(uuu) all-zero rows in the
row echelon form given that Rank(Muuu) = hw(uuu).

3. Find all the sets of linearly dependent rows. We do so by trying the com-
binations between the relations derived from all-zero rows obtained in the
previous step, e.g., combine r0 +r1 +r5 = 000 and r0 +r2 +r6 = 000 will produce
r0 + r1 + r5 + r0 + r2 + r6 = 000⇒ r1 + r2 + r5 + r6 = 000 which means the rows
{r1, r2, r5, r6} are linearly dependent.



r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000

r1 + r2 + r5 + r6 = 000

r0 + r1 + r3 + r4 + r5 + r7 = 000

r0 + r2 + r3 + r4 + r6 + r7 = 000

r1 + r2 + r3 + r4 + r5 + r6 + r7 = 000

4. For each set of linearly dependent rows, we derive a constraint on some bits
of vvv enforcing any selected sub-matrix to be invertible, e.g., r0 + r1 + r5 = 000
means the rows {r0, r1, r5} are linearly dependent. In other words, these rows
together must not be a part of any sub-matrix in order to have valid trails.
Reflecting on vvv, this means the bits v0, v1, v5 cannot be 1 at the same time.
We can represent this relation as a linear constrain v0 + v1 + v5 ≤ 2. The
initial model for our toy linear layer includes:

10 M. ElSheikh et al.



v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0 + v1 + v3 + v4 + v5 + v7 ≤ 5

v0 + v2 + v3 + v4 + v6 + v7 ≤ 5

v1 + v2 + v3 + v4 + v5 + v6 + v7 ≤ 6

v0, . . . , v7 are binary variables

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

5. Remove the redundancy constraints, e.g., the constraint C5 is redundant
because if the constraints C1 and C3 are satisfied, then the constraint C5
is satisfied. Also, if the constraints C1 and C3 are not satisfied, then the
constraint C5 is not satisfied. In contrast, if one of the constraints C1 and
C3 is satisfied and the other is not satisfied, the solution will be rejected
even though the constraint C5 is satisfied.
We can automate this step by checking if a set of dependent rows (A) is a
sub-set of another set of dependent rows (B), then the constraint on the set
B is redundant. The model for our toy linear layer is then reduced to:

v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0, . . . , v7 are binary variables

6. Finally, add a constraint to enforce that hw(uuu) = hw(vvv). The model for our
toy linear layer will be

v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0 + v1 + · · ·+ v7 = 5

v0, . . . , v7 are binary variables

Number of Constraints. Although we cannot count exactly the number of the
required constraints before performing the procedure, we can give the upper
bound of the number based on Step 3 as follows:

#L ≤ 1 +

p−hw(uuu)∑
i=1

(
p− hw(uuu)

i

)
= 1 + 2p−hw(uuu) − 1 = 2p−hw(uuu)

Title Suppressed Due to Excessive Length 11

In the light of this upper bound, it is clear that the model is practically more
applicable when p − hw(uuu) is relatively small which is usually the case for the
linear layer at the first round when we search for a distinguisher that covers a
large number of rounds where the Hamming weight of the input division property
of the distinguisher (the number of active bits) is very close to the block size.

4.2 Complete Model and Search Approach

In the previous section, we presented a model for the linear layer at the first
round when its input division property is known before the modelling step. In
this section, we propose a search approach allowing us to use that model even
though the targeted distinguisher does not start from a linear layer. We also
complete the model for the targeted distinguisher by showing how to handle the
intermediate linear layers.

Intermediate Linear Layers. We use the disjointed representation described
in Section 3.1 to model the intermediate linear layers. When a candidate division
tail is obtained by solving the complete model, we then extract the values of the
input and the output division property of each matrix multiplication in the
trail. After that, we check whether Mvvv,uuu is invertible or not for each matrix
multiplications. If one of them is not invertible, we discard the trail by updating
the model through adding a special craft constraint and resolving the updated
model.

Discarding Invalid Trails. Let (u0, . . . , un−1) and (v0, . . . , vn−1) be the variables
in the model representing the input and the output division property of a matrix
multiplication where Mvvv,uuu is not invertible in the current solution of the model.
Let Iu0 (Iu1) be the indices of uuu’s variables that equal to 0 (1) in the current
solution. Similarly, let Iv0 (Iv1) be the indices of vvv’s variables that equal to 0 (1)
in the current solution. We update the model based on the current solution by
adding the following constraint∑

i∈Iu
0

(ui) +
∑
i∈Iu

1

(1− ui) +
∑
i∈Iv

0

(vi) +
∑
i∈Iv

1

(1− vi) ≥ 1

Therefore, when we attempt to resolve the updated model, the current solu-
tion, i.e., the invalid trial, will violate the new constraint and the solver will not
consider it as a solution and try to obtain another solution.

Implementation. Although the models for both the first linear layer with known
input division property and the intermediate linear layers with the discarding
approach above are applicable using MILP and SMT/SAT, the approach to
discard invalid trails is more efficient using MILP solvers via the callback function
and the concept of lazy constraints [9,11] without needing to resolve the model
from scratch.

12 M. ElSheikh et al.

Last Linear Layer. When the distinguisher ends with a linear layer, we can
model it using the disjointed representation (like the intermediate linear lay-
ers) or we can efficiently model it using the model for XOR operation. Let
(u0, . . . , un−1) and (v0, . . . , vn−1) be the variables in the model which represent
the input and the output division property of the matrix multiplication in the
last linear layer. Suppose we check if there is a division trail from the input
division property of the distinguisher to the unit vector ei, i.e., checking if the
i-th bit of the output is balanced or not. Therefore, the variables that represent
the output division property will be set to{

vi = 1

vl = 0, 0 ≤ l ≤ n− 1, l 6= i

Consequently, during modelling, we focus on row ri = M(i, ∗) of the primitive
matrix M and the constraints on the input division property of the matrix
multiplication will be

n−1∑
j=0

M(i,j)=1

uj = 1

uj = 0, 0 ≤ j ≤ n− 1,M(i, j) = 0

After solving the model, if there is a division trail from the input division prop-
erty of the distinguisher to the unit vector ei, we conclude that there are other
division trails from the same input division property of the distinguisher to other
unit vectors without creating/solving their corresponding models. The original
division trial can be split into two sub-trails; from the input division property
of the distinguisher to the input division property of the last linear layer uuu, and
from uuu to the unit vector ei where hw(uuu) = hw(vvv) = 1, i.e., only one variable
from (u0, . . . , un−1) is 1 and the other are 0. Suppose this variable is uj . There-
fore, the column matrix Muuu can be created from a single column cj = M(∗, j).
Based on Theorem 1, the division trail from the input division property of the
distinguisher to the unit vector el, passing through uuu, exists for the l-th output
bit if M(l, j) = 1 where 0 ≤ l ≤ n− 1.

Search Approach. If the targeted distinguisher starts from a linear layer, the
input division property of this linear layer is known and we can use the model
described in Section 4.1. Hence, we create only one model for the distinguisher.
Otherwise, we perform the following search approach:

1. We firstly determine all the possible values of the input division property
of the first linear layer by propagating the input division property of the
distinguisher through other parts of the first round, which is usually a non-
linear layer of Sboxes.

2. Then, we check the i-th output bit by creating a group of sub-models starting
from the first linear layer with different input division property, thereby, we

Title Suppressed Due to Excessive Length 13

can employ the model described in Section 4.1 for the first linear layer in
each sub-model.

3. Finally, we solve the sub-models independently in parallel by dividing our
computational power between them. If the valid division trail that ends at
the unity vector ei exists for a sub-model, we terminate the search process
for the other sub-models. If it does not exist for all sub-models, then the i-th
output bit is balanced. The last two steps are repeated for all output bits.

Remark. Even though the model for the linear layer using the disjointed repre-
sentation with discarding invalid trails approach is applicable to the first linear
layer, we believe that modelling the first linear layer accurately from the be-
ginning is important. Our reasoning for that is as follows. First, the Hamming
weight of the input/output division property for the first linear layer is the
highest compared to the successive linear layers, i.e., the number of its possible
propagation is high and the chance to find invalid sub-trails will increase, which
leads to the second reason. Since every sub-trail in early rounds is branched to
many trails in the successive rounds, invalid sub-trails in the first round have
a larger effect on expanding the search space, and hence increasing the time
of solving the model. We verified our hypothesis experimentally by comparing
the running time to find the 4-round key-dependent integral distinguish of AES
reported in [10] using the same platform in the two cases; the case when the
first linear layer is modelled accurately from the beginning and the other case
when we model the first linear layer using the disjointed representation with dis-
carding approach. In the first case, the solver found the distinguisher in around
50 minutes. In contrast, the solver did not finish in the second case even after
running for more than a day.

5 Applications of our New Approach

In this section, we report our findings when applying our approach to Kuznyechik
and Kalyna block ciphers and a variant of PHOTON permutations. We also have
reproduced the results of the 4- and 5-round dependent-key integral distinguish-
ers of AES reported in [10].

During our experiments, We use either Gurobi2 solver [9] or the CPLEX
optimizer [11] to solve the models. Our source codes are available at https:
//github.com/mhgharieb/MILP DivisionProprerty LinearLayer

We use the following notation to present the integral property of each byte
in the plaintext and ciphertext:

– C: Each bit of the byte at the plaintext is fixed to constant.
– A: All bits of the byte at the plaintext are active.

2 We use the version of Groubi that has some problems reported in [6]. Therefore,
when we find some balanced bits by solving a model using Gurobi and we could not
verify this results by propagating the traditional integral property, we resolve the
model again using the CPLEX optimizer in order to validate the results.

https://github.com/mhgharieb/MILP_DivisionProprerty_LinearLayer
https://github.com/mhgharieb/MILP_DivisionProprerty_LinearLayer

14 M. ElSheikh et al.

– B: Each bit of the byte at the ciphertext is balanced (the XOR sum is zero).
– U : A byte at the ciphertext with unknown status (the XOR sum is unknown).

When each bit of a byte has a different property, we use lowercase letters to
present the property, i.e., c, a and b will represent a constant bit, an active bit,
and a balanced bit, respectively. For example, caaaaaaa represents a byte where
the most significant bit is constant and the other bits are active.

In general during our experiments, when an R-round distinguisher is found,
we follow two different paths in parallel as a next step; we examine whether
(R + 1)-round exists or not, and we try to find another R-round distinguisher
that needs a less number of active bits, i.e., less data complexity.

5.1 Application to Kuznyechik

The Russian encryption standard — Kuznyechik [4,14], also known as GOST
34.12-2015, is a 9-round SPN-based block cipher with a 128-bit block size and
256 bits of key. The encryption procedure is performed as follows. After loading
a block of 128-bit plaintext to a 16-byte internal state xxx = (x0, . . . , x15) where
x0 is the least significant byte, the state is Xored with a whitening round key
(XOR Layer (X)). Then, the state is updated 9 times using an identical round
function denoted as R = (X ◦ L ◦ S) that consists of:

– Non-linear Layer (S): Each byte of the state is mapped using 8-bit Sbox.
– Linear Layer (L): The 16-byte state is multiplied by 16 × 16 MDS matrix

over the field F28 with the irreducible polynomial X8 +X7 +X6 +X + 1.
– XOR Layer (X): The 16-bye state is Xored with the corresponding round

key.

In [2], Biryukov et al. studied Kuznyechik security against the multiset-
algebraic cryptanalysis in which they reported the 3- and 4-round integral dis-
tinguisher based on their algebraic degree.

3-round Integral Distinguishers. Biryukov et al. reported that the 3-round
has degree at most 116 [2]. Therefore the XOR sum over a set of plaintexts with
dimension 117 will be zero, i.e., the 3-round integral distinguisher exists with the
data complexity of 2117. However, we found several 3-round integral distingushers
with a much lower data complexity of 256. One of these distinguishers is as
follows.

(C, C, C, C, C, C, C, C, C,A,A,A,A,A,A,A)
⇓ 3R ◦X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

4-round Integral Distinguishers. Biryukov et al. also reported a 4-round
distinguisher with the data complexity of 2127 depending on the 4-round has
degree at most 126 [2]. In our experiments, we were able to find several 4-round
integral distinguishers with data complexity of 2120 (120 active bits). One of
these distingushers is as follows.

Title Suppressed Due to Excessive Length 15

(C,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)
⇓ 4R ◦X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

Other Experiments. Biryukov et al. extended the 4-round key-independent
integral distinguisher to a 5-round key-dependent one with the same data com-
plexity by appending the linear layer (L) before the 4-round one. The new dis-
tinguisher depends on the least significant byte of the master key. We were able
to verify the existence of this distinguisher using our model by setting one bit
to a constant and the other bits to active as shown below.

(caaaaaaa,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)
⇓ 4R ◦X ◦ L

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

As a next step, we employ the search approach proposed in the previous
section to check the existence of the 5-round key-independent distinguisher with
a single bit constant and 127 bits active, and we confirmed that this distinguisher
does not exist even with the use of the accurate propagation of the BDP.

5.2 Application to Kalyna

The Ukrainian standard Kalyna [13], also known as DSTU 7624:2014, is a
family of five SPN-based block ciphers denoted as Kalyna-l/k where l, k ∈
{128, 256, 512} are the block size and the key size, respectively, such that k = l
or k = 2× l. The number of rounds depends on the key size.

We targeted the two members with the block size of 128 bits, Kalyna-128.
The encryption procedure is performed as follows. The 16 bytes of the plaintext
block xxx = (x0, . . . , x15) where x0 is the least significant byte, is loaded to the 8×2
16-byte state matrix in column-wise order. After that, pre-whitening round key
is added to each column independently using addition modulo 264. We denote
this operation as (�64). Then, The following round function denoted as R =
(X ◦ L ◦ SR ◦ S) is iterated 10 or 14 times depending on the key size:

– Non-linear Layer (S): 4 different 8-bit Sboxes πs, s ∈ {0, 1, 2, 3} are used to
map the bytes of the state matrix where the i-th byte (xi) is substituted by
πi mod 4(xi).

– ShiftRows (SR): The bytes of each row in the state matrix are cyclically
shifted to right by b i4c where i, 0 ≤ i ≤ 7 is the row index.

– Linear Layer (L): Each 8-byte column of the state matrix is independently
multiplied by 8× 8 MDS matrix over the field F28 with the irreducible poly-
nomial X8 +X4 +X3 +X2 + 1.

– XOR Layer (X): the state matrix is Xored with the corresponding round
key.

In the last round, the XOR Layer (X) is replaced by a post-whitening mod-
ular key addition modulo 264.

16 M. ElSheikh et al.

4-round Integral Distinguishers without pre-whitening. During our ex-
periments, we found two 4-round integral distinguisher starting after the pre-
whitening step with 8 active bytes as depicted below. The correctness of these
distinguishers can be easily verified by propagating the integral properties though
the equivalent structure of the round function. Given that, each 8-bit Sbox is
reused every 4 bytes and the first (second) 4 rows of the state matrix is shifted
by the same step, the state matrix can be reconstructed as 2×2 matrix such that
each 4 successive bytes are concatenated in a 32-bit word and the 4 different 8-bit
Sboxes build a 32-bit super Sbox. Therefore, when the diagonal (anti-diagonal)
words of the new state matrix are active, i.e., take all possible values from F2

232 ,
the output after 4-rounds will be balanced similar to the 4-round integral dis-
tinguisher of AES [12].

C A
C A
C A
C A
A C
A C
A C
A C


OR



A C
A C
A C
A C
C A
C A
C A
C A


4R
=⇒



B B
B B
B B
B B
B B
B B
B B
B B


Appending �64−−−−−−−−−−→



C A
C A
C A
C A
A A
A A
A A
A A


OR



A C
A C
A C
A C
A A
A A
A A
A A


4R◦�64=====⇒



B B
B B
B B
B B
B B
B B
B B
B B


4-round Integral Distinguishers with pre-whitening. We were able to
extend each of the previous 4-round distinguishers to cover the pre-whitening
operation. The new distinguishers need 12 active bytes as depicted above. In the
following, we illustrate the way we use to select a set of plaintexts so that it
satisfies the input division property of the 4-round distinguisher after applying
the pre-whitening operation.

Since the pre-whitening operation is performed per column, we focus on each
column independently. Suppose X, Y , and K denote a 64-bit word of the input,
the output and the whitening key, respectively, such that Y = X �64 K. Each
64-bit word can be considered as the concatenation of two 32-bit words, i.e.,
X = Xl||Xr, Y = Yl||Yr, and K = Kl||Kr. Therefore, Yr = Xr �32 Kr and
Yl = Xl �32 Kl �32 C where �32 denotes the addition modulo 232 and C is the
carry from the first addition part.

Consequently, a set of plaintexts such that Xr is fixed to constant and the 4
bytes of Xl takes all the possible values from F4

28 , will give an output set such
that Yr will be constant and the 4 bytes of Yr will take all the possible values
from F4

28 . This is because the whitening key is constant and the carry will be
fixed over all the set’s elements based on the previous two questions. As the
result, we can easily satisfy one of the two column in the 4-round distinguishers.

The same method cannot be applied to the other column because if Xr

takes all the possible values, Yr will take all the possible values, but, the value
of the carry will change depending on the value of the whitening key. Hence,
we cannot adapt the values of Xl to enforce Yl to be fixed over the set. To
overcome this problem, we construct a set of plaintexts such that the 8 bytes

Title Suppressed Due to Excessive Length 17

of X take all the possible values from F8
28 , hence, the 8 bytes of Y will take all

the possible values from F8
28 . As the result, the output set Y t can be considered

as 232 sub-sets in which each sub-set satisfies the input division property of the
other column of the 4-round distinguisher. Combining these two approaches, the
4-round distinguishers with the pre-whitening need 12 active bytes.

Using the BDP, we are able to verify the existence of these distingushers with
the help of the propagation model of the BDP through modular addition with
a constant proposed in [5]. Additionally, we have tried to reduce the number of
active bits by iterating over the active bits one-by-one and set it to constant
then check if the distinguisher still exists. Unfortunately, the distinguisher does
not exist.

Other Experiments. During our experiments, we build a 4-round key-dependent
distinguisher using 62 active bits. The new distinguisher depends on the 32 least
significant bits of the pre-whitening key. The distinguisher starts at the linear
layer of the first round with the input division property as shown below.

ccaaaaaa C
A C
A C
A C
C A
C A
C A
C A


3R◦X◦L◦SR
========⇒



B B
B B
B B
B B
B B
B B
B B
B B


5.3 Application to PHOTON

PHOTON [8] is a family of lightweight hash functions proposed by Guo et al. at
CRYPTO 2011 and it has been standardized in ISO/IEC 29192-5:2016. PHO-
TON has 5 variants with 5 internal unkeyed permutations denoted as Pt where
t ∈ {100, 144, 196, 256, 288} is the internal state size. We target here the internal
permutation P288. The structure of the internal permutation follows the struc-
ture of AES where the internal state is represented as a d × d square matrix
of cells. Thus, the internal state of P288 is a 6 × 6 matrix of bytes. Its round
function consists of:

– AddConstants (X): Each byte of the 1st column of the state matrix is Xored
with a round-dependent constant.

– SubCells (S): Each byte (xi) of the state is substituted by Sbox(xi) where
Sbox is the 8-bit Sbox of AES.

– ShiftRows (SR): The bytes of each row in state are cyclically shifted to left
by i where i ∈ 0 ≤ i ≤ 5 is the row index.

– MixColumnsSerial (L): Each column of the state is independently multiplied
by 6 × 6 MDS matrix over F28 with the irreducible polynomial X8 + X4 +
X3 +X + 1.

18 M. ElSheikh et al.

3- and 4-round Integral Distinguishers. Since the permutation is followed
the AES structure, there are 3- and 4-round distinguishers that exploit the struc-
ture itself and independent on the used Sboxes and the MDS matrix. In par-
ticular, when the state matrix has a single byte active and the other bytes are
constant (the data complexity is 28), each output bit after 3 rounds will have
zero-sum (balanced). Also, there is a 4-round distinguisher when all diagonal’s
bytes of the state matrix are active (the data complexity is 248). In [16], Sun et
al. verified the existence of these 3- and 4-round distinguishers using the MILP
models for the propagation of the BDP. They have modelled the linear layer
using the disjointed representation.

New 4-round Integral Distinguisher. At Crypto 2016, Sun et al. exploited
a specific property of the matrix used in AES to introduce the first 5-round
key-dependent integral distinguisher [15]. This property is that each column of
the matrix has two equal elements. We employ a similar property to reduce the
date complexity of the 4-round distinguisher of P288 and build a new 5-round
one.

Suppose MP and M−1P denote the matrix and its inverse that are used in
P288 where

MP =


02 03 01 02 01 04

08 0e 07 09 06 11

22 3b 1f 25 18 42

84 e4 79 9b 67 0b

16 99 ef 6f 90 4b

96 cb d2 79 24 a7

 , M−1
P =


15 50 eb 62 79 99

29 a5 c9 c2 fb 2b

56 54 8e 9f e9 57

ae af 03 20 c8 ae

47 47 01 44 8e 46

8c 8d 01 8d 02 8d


Suppose xxx = (x0, x1, x2, x3, x4, x4)T and yyy = (y0, y1, y2, y3, y4, y5)T be the

input and the output vectors to the matrix MP such that yyy = MP ×xxx. Suppose
xxx take 25×8=40 values where each of x0, x1, x2, x3 and x4 take all the possible
values from F28 . Therefore, yyy will take 240 values. Also, xxx = M−1P × yyy can be
expressed as shown below

x0

x1

x2

x3

x4

x4

 =


15 50 eb 62 79 99

29 a5 c9 c2 fb 2b

56 54 8e 9f e9 57

ae af 03 20 c8 ae

47 47 01 44 8e 46

8c 8d 01 8d 02 8d




y0
y1
y2
y3
y4
y5


Hence, we can express x4 as follows in equations (1) and (2).

x4 = 47 · y0 ⊕ 47 · y1 ⊕ 01 · y2 ⊕ 44 · y3 ⊕ 8e · y4 ⊕ 46 · y5
x4 = 8c · y0 ⊕ 8d · y1 ⊕ 01 · y2 ⊕ 8d · y3 ⊕ 02 · y4 ⊕ 8d · y5
00 = cb · y0 ⊕ ca · y1 ⊕ 00 · y2 ⊕ c9 · y3 ⊕ 8c · y4 ⊕ cb · y5

(1)

(2)

(3)

From (1) and (2), we can derive the equation (3) which implies that {y0, y1, y3, y4, y5}
are linearly dependent, i.e., they can take at most 24×8=32 values. Since yyy takes

Title Suppressed Due to Excessive Length 19

240 values, y2 must take 28 values, i.e., y2 is an active bye and takes its all
possible values (A).

Constructing 4-round Integral Distinguisher. We construct a set of 240 chosen
plaintexts such that the state matrix is as follows. The first 4 elements of the
diagonal are active, the last two elements of the diagonal are equal and active
(denoted as Ā), and the other elements of the state matrix are fixed to constant as
shown below. After applying the three operations: AddConstants (X), SubCells
(S), and ShiftRows (SR), the first column of the state matrix will be in the form
of the vector xxx. Therefore, the output set, after applying the MixColumnsSerial
(L) operation (a full round from the input set), can be divided into 232 sub-
set so that each has one active byte and the other are constant. Consequently,
after another 3 rounds, each bit of the output will have zero-sum as mentioned
previously in the 3-round distinguisher section.
A C C C C C
C A C C C C
C C A C C C
C C C A C C
C C C C Ā C
C C C C C Ā


SR◦S◦X
=====⇒


A C C C C C
A C C C C C
A C C C C C
A C C C C C
Ā C C C C C
Ā C C C C C


L
=⇒ 232 ×




C C C C C C
C C C C C C
A C C C C C
C C C C C C
C C C C C C
C C C C C C


3R
=⇒


B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B




MILP for the New 4-round Distinguisher. Our model can be started at
the MixColumnsSerial (L) operation of the first round, therefore, we can use the
accurate model for the propagation of the BDP described in Section 4.1. The
first column of the state matrix (in the form of xxx) will be multiplied by MP . Since
the last two element of the vector xxx are equal, we can express the multiplication
operation yyy = MP × xxx as yyy = M̂P × x̂xx where x̂xx = (x0, x1, x2, x3, x4)T and M̂P

can be derived as follows.
y0
y1
y2
y3
y4
y5

 =


02 03 01 02 01 04

08 0e 07 09 06 11

22 3b 1f 25 18 42

84 e4 79 9b 67 0b

16 99 ef 6f 90 4b

96 cb d2 79 24 a7




x0

x1

x2

x3

x4

x4

 =


02 03 01 02 01⊕ 04

08 0e 07 09 06⊕ 11

22 3b 1f 25 18⊕ 42

84 e4 79 9b 67⊕ 0b

16 99 ef 6f 90⊕ 4b

96 cb d2 79 24⊕ a7




x0

x1

x2

x3

x4



=


02 03 01 02 05

08 0e 07 09 17

22 3b 1f 25 5a

84 e4 79 9b 6c

16 99 ef 6f db

96 cb d2 79 83




x0

x1

x2

x3

x4

 , M̂P


x0

x1

x2

x3

x4


Consequently, we use the primitive matrix of M̂P for the first column and the

primitive matrix of MP for other columns. Regarding the intermediate linear
layers, we use the disjointed representation with discarding the invalid trails
approach presented at Section 4.2. The result of solving the model is that a
valid division trail that ends at a unit vector does not exist for any output bits,

20 M. ElSheikh et al.

i.e., each output bit after 4 rounds will have zero-sum. It should be mentioned
that the model of the first linear layer using the disjointed representation and
not discarding the invalid trails leads some bits to be imbalanced.

5-round Integral Distinguisher. Similar to the new 4-round one, we em-
ployed the same property of the matrix MP to build the 5-round distinguisher.
We firstly construct a set of 2280 chosen plaintexts where the last two elements
of the diagonal are active and equal (denoted as Ā), and the other elements of
the state matrix are active. This set can be divided, after the first round, into
2232 sub-sets such that every sub-set has 6 bytes active at specific positions as
shown below. Therefore, each sub-set can be considered as an input to 4-round
distinguisher that exploit the structure of the round function.
A A A A A A
A A A A A A
A A A A A A
A A A A A A
A A A A Ā A
A A A A A Ā


SR◦S◦X
=====⇒


A A A A A A
A A A A A A
A A A A A A
A A A A A A
Ā A A A A A
Ā A A A A A


L
=⇒ 2232 ×




C C C C A C
C C C C C A
A C C C C C
C A C C C C
C C A C C C
C C C A C C


4R
=⇒


B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B
B B B B B B




MILP for the 5-round distinguisher. We have followed the same steps as
modelling the 4-round distinguisher to model the 5-round one, where we use the
primitive matrix of M̂P for the first column multiplication in the first round at
which the model starts and the primitive matrix of MP for the other columns.
The result of solving the model indicates that each output bit after 5 rounds is
balanced.

Other Experiments. We have employed our search approach (Section 4.2) to
build a regular 5-round distinguisher that does not exploit the previous property
of the matrix. We verified that this kind of distinguisher does not exist even when
the number of active bits are 287 bits. Also, we have tried to reduce the number
of active bits in both the regular and the new 4-round distinguisher by setting
one of the active bits to constant and resolving the model. We verified that a
distinguisher using less number of active bits does not exist.

6 Conclusions

In this paper, we proposed a new MILP model for the propagation of the BDP
through non-bit-permutation linear layers. To the best of our knowledge, this
model is the most efficient one for large linear layers. With the help of our model,
we improved the previous 3- and 4-round integral distinguishers of Kuznyechik
block cipher and the 4-round one of PHOTON’s internal permutation (P288). We
also found, for the first time, two 4-round integral distinguishers for Kalyna block
cipher and a 5-round integral distinguisher for PHOTON’s internal permutation
(P288).

Title Suppressed Due to Excessive Length 21

A Gaussian Elimination for the Toy Linear Layer



1 0 0 0 0 r0
1 1 0 0 1 r1
0 1 0 0 0 r2
0 0 1 0 0 r3
0 0 0 1 0 r4
0 1 0 0 1 r5
1 1 0 0 0 r6
0 0 1 1 0 r7


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 1 0 0 0 r2
0 0 1 0 0 r3
0 0 0 1 0 r4
0 1 0 0 1 r5
0 1 0 0 0 r6 + r0
0 0 1 1 0 r7


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 0 0 1 r2 + r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 1 r6 + r1
0 0 1 1 0 r7


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 0 1 r2 + r1 + r0
0 0 0 1 0 r4
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 1 r6 + r1
0 0 1 1 0 r7


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 0 1 r2 + r1 + r0
0 0 0 1 0 r4
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 1 r6 + r1
0 0 0 1 0 r7 + r3


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 1 r2 + r1 + r0
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 1 r6 + r1
0 0 0 1 0 r7 + r3


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 1 r2 + r1 + r0
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 1 r6 + r1
0 0 0 0 0 r7 + r3 + r4


→



1 0 0 0 0 r0
0 1 0 0 1 r1 + r0
0 0 1 0 0 r3
0 0 0 1 0 r4
0 0 0 0 1 r2 + r1 + r0
0 0 0 0 0 r5 + r1 + r0
0 0 0 0 0 r6 + r2 + r0
0 0 0 0 0 r7 + r3 + r4


→


r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000



References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A Small
Present. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embed-
ded Systems – CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer International
Publishing, Cham (2017)

2. Biryukov, A., Khovratovich, D., Perrin, L.: Multiset-Algebraic Crypt-
analysis of Reduced Kuznyechik, Khazad, and secret SPNs. IACR
Transactions on Symmetric Cryptology 2016(2), 226–247 (Feb 2017).
https://doi.org/10.13154/tosc.v2016.i2.226-247, https://tosc.iacr.org/index.
php/ToSC/article/view/572

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Ci-
pher. In: Cryptographic Hardware and Embedded Systems - CHES 2007. LNCS,
vol. 4727, pp. 450–466. Berlin, Heidelberg (2007)

4. Dolmatov, V.: GOST R 34.12-2015: Block Cipher ”Kuznyechik”. RFC 7801, RFC
Editor (3 2016), https://tools.ietf.org/html/rfc7801

https://doi.org/10.13154/tosc.v2016.i2.226-247
https://tosc.iacr.org/index.php/ToSC/article/view/572
https://tosc.iacr.org/index.php/ToSC/article/view/572
https://tools.ietf.org/html/rfc7801

22 M. ElSheikh et al.

5. ElSheikh, M., Tolba, M., Youssef, A.M.: Integral Attacks on Round-Reduced Bel-
T-256. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography –
SAC 2018. LNCS, vol. 11349, pp. 73–91. Springer International Publishing, Cham
(2019)

6. ElSheikh, M., Youssef, A.M.: A cautionary note on the use of Gurobi for crypt-
analysis. Cryptology ePrint Archive, Report 2020/1112 (2020), https://eprint.iacr.
org/2020/1112

7. ElSheikh, M., Youssef, A.M.: Integral Cryptanalysis of Reduced-Round Tweakable
TWINE. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology and Net-
work Security CANS 2020. LNCS, vol. 12579, pp. 485–504. Springer International
Publishing, Cham (2020)

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. LNCS,
vol. 6841, pp. 222–239. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

9. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2020), http://www.
gurobi.com

10. Hu, K., Wang, Q., Wang, M.: Finding Bit-Based Division Property for Ciphers with
Complex Linear Layers. IACR Transactions on Symmetric Cryptology 2020(1),
396–424 (May 2020). https://doi.org/10.13154/tosc.v2020.i1.396-424, https://tosc.
iacr.org/index.php/ToSC/article/view/8570

11. IBM: IBM ILOG CPLEX 12.10 User’s Manual (2020), https://www.ibm.com/
support/knowledgecenter/SSSA5P 12.10.0/COS KC home.html

12. Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer (2002)

13. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., Gor-
benko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov, R., Kaidalov, D.:
A New Encryption Standard of Ukraine: The Kalyna Block Cipher. Cryptology
ePrint Archive, Report 2015/650 (2015), https://eprint.iacr.org/2015/650

14. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.:
Low-weight and hi-end: Draft Russian encryption standard. In: 3rd Workshop on
Current Trends in Cryptology - CTCrypt 2014. pp. 183–188 (2014)

15. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New Insights on AES-Like SPN
Ciphers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016. LNCS, vol. 9814, pp. 605–624. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

16. Sun, L., Wang, W., Wang, M.Q.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IET Information Security 14, 12–
20(8) (January 2020), https://digital-library.theiet.org/content/journals/10.1049/
iet-ifs.2018.5283

17. Todo, Y.: Structural Evaluation by Generalized Integral Property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer
(2015)

18. Todo, Y.: Integral Cryptanalysis on Full MISTY1. Journal of Cryptology 30(3),
920–959 (2017)

19. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer (2016)

20. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Searching Inte-
gral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer (2016)

https://eprint.iacr.org/2020/1112
https://eprint.iacr.org/2020/1112
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.13154/tosc.v2020.i1.396-424
https://tosc.iacr.org/index.php/ToSC/article/view/8570
https://tosc.iacr.org/index.php/ToSC/article/view/8570
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/COS_KC_home.html
https://eprint.iacr.org/2015/650
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5283
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5283

Title Suppressed Due to Excessive Length 23

21. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary
diffusion layer. IET Information Security 13, 87–95(8) (March 2019), https://
digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5151

https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5151
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2018.5151

	On MILP-based Automatic Search for Bit-Based Division Property for Ciphers with (large) Linear Layers

