
Smooth Zero-Knowledge Hash Functions

Behzad Abdolmaleki1, Hamidreza Khoshakhlagh?2, and Helger Lipmaa??3,4

1 Max Planck Institute for Security and Privacy, Bochum, Germany
2 Aarhus University, Denmark
3 Simula UiB, Bergen, Norway
4 University of Tartu, Estonia

Abstract. We de�ne smooth zero-knowledge hash functions (SZKHFs)
as smooth projective hash functions (SPHFs) for which the completeness
holds even when the language parameter lpar and the projection key
hp were maliciously generated. We prove that blackbox SZKHF in the
plain model is impossible even if lpar was honestly generated. We then
de�ne SZKHF in the registered public key (RPK) model, where both
lpar and hp are possibly maliciously generated but accepted by an RPK
server, and show that the CRS-model trapdoor SPHFs of Benhamouda
et al. are also secure in the weaker RPK model. Then, we de�ne and
instantiate subversion-zero knowledge SZKHF in the plain model. In this
case, both lpar and hp are completely untrusted, but one uses non-
blackbox techniques in the security proof.

Keywords: plain model, RPK model, SPHF, trapdoor SPHF, subver-
sion zero-knowledge

1 Introduction

Smooth projective hash functions (SPHFs, [CS02]) for an NP language Llpar
(with corresponding relation Rlpar such that Llpar = {x : ∃w, (x, w) ∈ Rlpar}),
parametrized by a language parameter lpar, are cryptographic primitives with
the following properties. Given lpar and a word x, one can compute a hash of
x in two di�erent ways: either (i) using a projection key hp (an analogue of a
public key), and (x, w) ∈ Rlpar, as pH ← projhash(lpar; hp, x, w), or (ii) using a
hashing key hk (an analogue of a secret key) and any x, as H← hash(lpar; hk, x).
If (x, w) ∈ Rlpar, then the completeness property guarantees that the two ways
of computing the hash result in the same value, pH = H. If x 6∈ Llpar, then the
smoothness property guarantees that, knowing hp but not hk, one cannot dis-
tinguish H from random. SPHFs are useful in many di�erent applications, start-
ing from constructing IND-CCA2 secure cryptosystems [CS02] and password-
authenticated key exchange [GL03], and ending with honest-veri�er zero knowl-
edge [BBC+13], and non-interactive zero knowledge (NIZK, [ABP15]).

? Funded by the Concordium Foundation under Concordium Blockchain Research
Center, Aarhus.

?? Partially supported by the Estonian Research Council grant (PRG49).

2 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

Several varieties of SPHFs exist. In KV-SPHFs [KV11], hp is created �rst
and then x can depend on hp. In GL-SPHFs [GL03], the order is opposite. In
the current paper, we are primarily interested in the GL-SPHFs. Recent re-
search [BBC+13,ABP15,Ben16] has shown how to construct e�cient GL-SPHFs
for a large variety of languages. In particular, it is known how to construct GL-
SPHFs for the class of algebraic languages LΓ ,θ := {x : ∃w,Γ (x) · w = θ(x)},
where Γ and θ are x-dependent linear maps, [BBC+13,ABP15,Ben16]. Alge-
braic languages are quite powerful and include quadratic languages like the lan-
guages of the Elgamal encryption of bits, [BBC+13,CH20]. It is also known
how to create GL-SPHFs for conjunction and disjunction of two algebraic lan-
guages [BBC+13,ABP15,Ben16]. On the other hand, assuming the polynomial
hierarchy does not collapse, it is impossible to construct SPHF for NP-complete
languages [Ben16].

It is usually assumed that the creator of hp is honest; this explains, e.g., why
the SPHF-based two-message zero-knowledge argument of [BBC+13] is honest-
veri�er only. Benhamouda et al. [BBC+13] de�ned trapdoor SPHFs (TSPHFs)
as SPHFs where one can verify that the projection key has been generated cor-
rectly. Unfortunately, TSPHFs are de�ned in the strong common reference string
(CRS) model, where everybody has to trust the same CRS creator. In many ap-
plications, such a universally trusted third party does not exist. This creates
another avenue of subversion to which TSPHFs provide no answer: one obtains
security against a malicious projection-key creator but not against a malicious
CRS creator.

Several recent papers on zero-knowledge arguments [BFS16], including suc-
cinct non-interactive arguments of knowledge (SNARKs [ABLZ17,Fuc18]) and
quasi-adaptive NIZKs (QA-NIZKs [ALSZ20]), have shown how to achieve either
soundness or zero-knowledge even when the public parameters, like the CRS
or the public key, have been maliciously subverted. In the case of NIZK, many
well-known (im)possibility results exist. E.g., one cannot achieve (say) black-
box or even auxiliary-string non-blackbox NIZK in the weak Bare Public Key
(BPK, [CGGM00,MR01]; see also Section 2) model [GO94] while e�cient no-
auxiliary-string non-blackbox zero-knowledge (Sub-ZK) NIZK in the BPK model
is possible [ABLZ17,Fuc18,ALSZ20]. Moreover, it is impossible to achieve NIZK
that, at the same time, has the properties of subversion-resistant soundness and
subversion-resistant zero-knowledge, [BFS16].

We are not aware of similar positive or negative results for SPHFs in the case
of trusted or untrusted hp, or of any previous research on the applications of
non-blackbox assumptions to SPHF. We emphasize that in the case of SPHFs,
this issue is even more critical than in the case of NIZKs: in SPHFs, hp is created
by the veri�er (who is by de�nition untrusted by the prover), while in NIZKs,
the CRS creator may be honest, depending on the application.

Smooth Zero-Knowledge Hash Functions 3

Our Contributions.We study SPHFs with untrusted language-parameter and
projection-key generator. We say that an SPHF HF is a smooth zero-knowledge
hash function (SZKHF5) if

(i) smoothness holds even for a maliciously generated lpar (but honestly gen-
erated hp), and

(ii) zero-knowledge (i.e., completeness) holds even for a maliciously generated
lpar and a maliciously generated hp, where lpar and hp are accepted
respectively by a public lpar-veri�cation algorithm verpar and a public
hp-veri�cation algorithm verhp.

First, we show that SZKHFs are impossible in the plain model. Second, we de�ne
SZKHFs in the RPK (registered public key) model, which is weaker than the CRS
model. We show that SZKHFs exist in the RPK model. Third, we de�ne Sub-ZK
SZKHFs in the plain model, which are SZKHFs without any trust assumption,
but similarly to Sub-ZK NIZKs, we use non-blackbox techniques to construct
them and show that Sub-ZK GL-SZKHFs exist for all algebraic languages. We
focus on the plain model in the main body of the paper, while moving the
de�nitions and constructions for the RPK model to the Appendix B.

On the other hand, Sub-ZK NIZKs are only known in the bare public key
model [CGGM00,MR01], which is in stark contrast to our results. In a parallel
work, we motivate the di�erence by showing that Sub-ZK SZKHFs are equiva-
lent to Sub-ZK deterministic-prover quasi-adaptive two-message zero-knowledge
arguments.

Our Results and Techniques. First, we de�ne blackbox SZKHFs in the plain
model without any trust assumptions. Motivated by a classical impossibility
result for blackbox two-round zero knowledge in the plain model [GO94], we
prove that such SZKHFs are impossible for hard languages even if lpar is trusted.
Thus, one has two options: either (i) allow SZKHFs to rely on non-blackbox
assumptions, or (ii) construct SZKHFs in a trust model.

Second, we consider blackbox SZKHFs in the RPK [BCNP04] model (see
Appendix B), where each party P trusts some key-registration authority R and
has registered her public key pk with R. If P is honest, then the secret key sk
can be extracted, and pk is correctly distributed. Otherwise, sk can be extracted,
but there is no guarantee about its distribution. The RPK model is considerably
weaker than the better known CRS model since, in the latter, one assumes that
sk is always correctly distributed and that all parties trust the same CRS.

In this case, the zero-knowledge de�nition is similar to the soundness de�ni-
tion of trapdoor SPHFs (TSPHFs) in [BBC+13], except that the latter is given in
the CRS model while we use the weaker RPK model. In addition, motivated by

5 We considered other terms. This notion corresponds to completeness/projectiv-
ity when lpar and hp are subverted, and thus it could be called subversion-

completeness/subversion-projectivity. For trapdoor SPHFs, it was called soundness

in [BBC+13] and, �nally, zero knowledge in [Ben16]. Zero-knowledge is the most
intuitive term since in a typical application of HF; it guarantees that a malicious
creator of hp does not learn anything new from seeing pH compared to when she
sees H that does not depend on the witness.

4 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

recent work on Sub-ZK QA-NIZK [ALSZ20], we assume that lpar is also created
in the RPK model, i.e., its trapdoor is extractable, but there is no guarantee
about its distribution; this is in contrast to [BBC+13] that assumed that lpar is
honestly generated. After appropriate tweaking, all known TSPHFs [BBC+13]
will become computationally-smooth blackbox SZKHFs in the RPK model. Un-
fortunately, a TSPHF only shifts the subversion problem: instead of having to
trust the generator of hp, one has to trust the generator of lpar and the RPK;
however, in the RPK model, lpar and the RPK can be handled by di�erent RPK
authorities, and there is no need to assume that their trapdoors are correctly
distributed. We defer the de�nitions and constructions of blackbox SZKHF in
the RPK model to Appendix B.

Third, inspired by research on Sub-ZK
NIZK [BFS16,ABLZ17,Fuc18,ALSZ20], we de�ne Sub-ZK SZKHF in the
plain model. Motivated by an impossibility result about two-message zero-
knowledge [GO94] and its use in [ALSZ20], we prove that auxiliary-string
non-blackbox SZKHF in the plain model is impossible for languages not in
BPP, even if lpar is honestly generated. This impossibility result is strictly
stronger than the impossibility result mentioned at the beginning of this
subsection. Thus, as in [ALSZ20], Sub-ZK corresponds to no-auxiliary-string
non-blackbox zero-knowledge. Di�erently from Sub-ZK NIZK, where one as-
sumes non-blackbox extraction of the secret key, we only require that one
can extract κ(hk), where κ can be a hard-to-invert bijection. Such a notion of
κ-extractability emphasizes the fact that in many applications of SPHFs, it is
not essential to extract hk; instead, it su�ces to recover a related value κ(hk)
that can be used to verify e�ciently that projhash was correctly computed.

More formally, let κ be an e�cient algorithm, e.g., identity map or exponenti-
ation/bilinear map. An SZKHF is κ-extractable Sub-ZK if it supports determin-
istic algorithms verpar (language-parameter veri�cation), verhp (projection-key
veri�cation) and simhash (subversion hash), s.t. : for each PPT subverter Z
that creates a verpar-accepted lpar and verhp-accepted hp, there exists a non-
blackbox PPT extractor ExtZ that outputs κ(hk), s.t. simhash(lpar;κ(hk), x) =
projhash(lpar; hp, x, w) for every (x, w) ∈ Rlpar. Importantly, compared to black-
box SZKHFs in the RPK model, a Sub-ZK SZKHF in the plain model does not
rely on a trusted RPK, and thus, we get full subversion-resistance.

We construct a Sub-ZK SZKHF in the plain model based on SPHFs from
DVSs (diverse vector spaces) [BBC+13,Ben16]. Then, we give a construction of
computationally smooth blackbox SZKHF in the RPK model based on DVS-
based SPHFs. We also present a Sub-ZK SZKHF in the plain model and
a blackbox SZKHF in the RPK model, both based on Benhamouda et al.'s
TSPHFs [BBC+13] in Appendix C.

2 Preliminaries

For a matrix A, colspace(A) is the subspace generated by its columns. Let
PPT denote probabilistic polynomial-time. Let vect(A) be the vectorization of

Smooth Zero-Knowledge Hash Functions 5

the matrix A. The cokernel of A is de�ned as coker(A) = {a : a>A = 0}.
Let λ ∈ N be the security parameter. All adversaries will be stateful. For an
algorithm A, im(A) is the image of A (the set of valid outputs of A), RNDλ(A)
is the random tape of A (for a �xed choice of λ), and r←$RNDλ(A) denotes the
random choice of r from RNDλ(A). By y ← A(x; r) we denote that A, given an
input x and a randomizer r, outputs y. By x←$D we denote that x is sampled
according to distribution D or uniformly randomly if D is a set. Let negl(λ)
be an arbitrary negligible function. We write a ≈λ b if |a− b| ≤ negl(λ). We
follow Bellare et al. [BFS16] by using �cryptographic� style in security de�nitions
where all complexity (adversaries, algorithms, assumptions) is uniform, but the
security (say, soundness) is quanti�ed over all inputs chosen by the adversary.

A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1, [1]2),
where G1, G2, and GT are three additive cyclic groups of prime order p, [1]ι is
a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2), and ê : G1 × G2 →
GT is a non-degenerate e�ciently computable bilinear pairing. We assume λ is
implicitly described by p, and as in [BFS16], we assume that p is a deterministic
function of λ and thus cannot be subverted. (This is usually the case in practice.)
We require the bilinear pairing to be Type-3, that is, we assume that there
is no e�cient isomorphism between G1 and G2. We use the additive implicit
notation of [EHK+13], that is, we write [a]ι to denote a[1]ι for ι ∈ {1, 2, T}.
We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then
[A]1 • [B]2 = [C]T . We also assume that [A]2 • [B]1 := ([B]>1 • [A]>2)

> = [AB]T .

Algebraic Languages. Let p be system parameters, including say the descrip-
tion of a bilinear group. Let lpar = (Γ ,θ,λ), where Γ ,θ,λ are all linear maps
in their their inputs. More precisely, Γ (x) is an n × k matrix, θ(x) is an n-
dimensional vector, and λ(x, w) is a k-dimensional vector. Moreover, di�erent
coe�cients of θ(x), Γ (x), and λ(x, w) can belong to di�erent algebraic struc-
tures (most commonly, given a bilinear group p = (p,G1,G2,GT , ê), either to
Zp, G1, G2, or GT) as long as the equation θ(x) = Γ (x) ·λ(x, w) is �well-typed�.
E.g., the equation

(
[θ1]T
[θ2]1

)
=
(

[Γ11]T [Γ12]2
[Γ21]1 Γ22

)(
λ1

[λ2]1

)
is well-typed. We omit the

subscript lpar if it is clear from the context. De�ne

Llpar = {x : ∃w,θ(x) = Γ (x) · λ(x, w)} . (1)

Let RL = {(x, w) : θ(x) = Γ (x) · λ(x, w)} be the corresponding witness-relation.
Languages of the form Eq. (1) have been studied at least since [BBC+13], and
they called algebraic6 in [CH20]. All linear languages are algebraic, but alge-
braic languages also include non-linear languages. E.g., the language of Elgamal
encryptions of bits is algebraic [BBC+13]; in this case, Γ (x) depends on x.

Projective Hash Functions. Let Llpar ⊂ Xlpar be a language parametrized
by lpar (the language parameter), where Xlpar is the underlying domain, e.g.,
a group. Let Rlpar be the witness-relation de�ned by Llpar = {x : ∃w, (x, w) ∈
6 Couteau and Hartmann [CH20] considered λ(x, w) := w only; however, one can just
rede�ne the witness to contain all elements of λ(x, w)

6 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

Rlpar}. A projective hash function (PHF, [CS02]) for {Llpar} is a tuple of PPT
algorithms HF = (Pgen, setup.lpar, hashkg, projkg, hash, projhash), where

Pgen(1λ): Takes a security parameter λ and generates the global parameters p.
setup.lpar(p): sets up the language parameters lpar. lpar contains p and some

public parameters specifying the relation (e.g., an encryption key).
hashkg(lpar): Inputs a language parameter lpar. It generates and outputs a

hashing key hk for Llpar.
projkg(lpar; hk, x): Inputs a language parameter lpar, a hashing key hk, and

possibly a word x ∈ Xlpar. It outputs deterministically a projection key hp.
hash(lpar; hk, x): Inputs a language parameter lpar, a hashing key hk, and a

word x ∈ Xlpar. It outputs deterministically a hash value H.
projhash(lpar; hp, x, w): inputs a language parameter lpar, a projection key hp,

and (x, w) ∈ Rlpar. It outputs deterministically a projected hash value pH.

The set of hash values is called the range of HF and is denoted by HashSet. We
assume HashSet is an e�ciently sampleable set that has size, exponential in λ.
To shorten notation, we will denote the sequence �hk ← hashkg(lpar); hp ←
projkg(lpar; hk, x)� by (hp, hk)← kgen(lpar; x).

A distribution Dp (e.g., the output distribution of setup.lpar(p)) on Llpar is
witness-sampleable [JR13] if there exists a PPT algorithm setup.ltrap(p) that
samples (lpar, ltrap) ∈ Rp such that lpar is distributed according to Dp, and
membership of x in the parameter language Llpar can be veri�ed in PPT given
ltrap. We always assume that lpar can be e�ciently computed from ltrap. In
SPHF-related research, Dp is often assumed to be witness-sampleable, even if it
is not always necessary. Couteau and Hartmann [CH20] extended the de�nition
of witness-sampleable languages to all algebraic languages.

HF is perfectly complete if for all lpar ∈ im(setup.lpar(p)), (x, w) ∈ Rlpar,
and (hp, hk) ∈ im(kgen(lpar; x)), hash(lpar; hk, x) = projhash(lpar; hp, x, w).

There are at least three types of smooth PHFs (SPHFs). Intuitively, in GL-
SPHF [GL03], security is required even when hp maliciously depends on x. On
the other hand, in KV-SPHF [KV11], security is required even when x can ma-
liciously depend on hp. The third type is CS-SPHF, [CS02]; we will not discuss
CS-SPHFs in what follows. See [Ben16, Section 2.5] for more information.

A PHF HF for a language L ⊆ X is ε-GL-smooth (an ε-GL-SPHF) if for any
lpar and any word x ∈ Xlpar \ Llpar, the following distributions are ε-close:

{(hp,H) : (hp, hk)← kgen(lpar; x);H← hash(lpar; hk, x)}
{(hp,H) : (hp, hk)← kgen(lpar; x);H←$HashSet}

A PHF is GL-smooth if it is ε-GL-smooth with ε negligible in λ.

HF for L ⊆ X is ε-KV-smooth (an ε-KV-SPHF) if for any lpar and any (not
necessarily computable in polynomial-time) function f from the set of possible
projection keys hp to Xlpar \ Llpar, the following distributions are ε-close:

{(hp,H) : (hp, hk)← kgen(lpar);H← hash(lpar; hk, f(hp))}
{(hp,H) : (hp, hk)← kgen(lpar);H←$HashSet}

Smooth Zero-Knowledge Hash Functions 7

A PHF is KV-smooth if it is ε-KV-smooth with ε negligible in λ. Since projkg
does not depend on x in this case, we often omit x as an argument for projkg.

For all (subset-membership-hard) algebraic languages, one can construct an
e�cient SPHF, [BBC+13,ABP15,Ben16], s.t. the hash value belongs to a source
group, G1 or G2.

3 De�ning SZKHF

While completeness of SPHF, de�ned for honestly generated hp, is su�cient
in many applications, it is natural to ask what happens if hp was gener-
ated maliciously. Consider, e.g., an application of SPHFs in the construction
of zero-knowledge proof systems. One can use SPHFs to design two-message
honest-veri�er zero-knowledge proof systems [BBC+13] and non-interactive zero-
knowledge (NIZKs) argument systems in the CRS model [ABP15]. In the former
case, the need to trust the hp generator translates to the need to trust the veri�er
who creates hp (hence, one gets honest-veri�er zero-knowledge). While [BBC+13]
showed how to obtain two-message zero-knowledge proof systems, they did it by
introducing a trusted CRS generator. In this case and the case of SPHF-based
NIZKs, [ABP15], the need to trust the hp generator is transformed to the need
to trust the CRS generator.

The CRS model assumes the existence of a universally trusted CRS creator
who creates the CRS from the correct distribution and does not leak any in-
formation. Unfortunately, NIZK in the plain model, and even auxiliary-string
NIZK in the BPK [CGGM00,MR01] model, is impossible, [GO94]. One can
construct e�cient no-auxiliary-string non-blackbox zero-knowledge NIZK in the
BPK model based on SNARKs and QA-NIZKs [ABLZ17,Fuc18,ALSZ20] as-
suming there exists a public BPK veri�cation procedure PKV and, in the case of
QA-NIZK [ALSZ20], a public language parameter veri�cation procedure verpar.
No-auxiliary-string non-blackbox implies that, given the BPK pk is accepted by
PKV, one can use an adversary-dependent extractor to extract the trapdoor of
pk, and, in the case of QA-NIZK, lpar is accepted by verpar. For the extraction
to succeed, it is required that the adversary has no auxiliary string since an
auxiliary string could encode a pk for which she does not know the trapdoor.

Since SPHFs can be used to construct NIZKs [ABP15], one can hope that
some of the known (im)possibility results about NIZKs can be translated to
the case of SPHFs. However, this is not evident, in particular since there is
no prior work on non-blackbox SPHFs or SPHFs in di�erent trust models, ex-
cept [BBC+13] that only considers SPHFs in the CRS model. Thus, we need to
use known (im)possibility results about two-message zero-knowledge argument
systems.

We approach the question of untrusted lpar and hp systematically. We will
de�ne a stronger version of completeness (zero-knowledge) of an SPHF that
guarantees that even if lpar and hp are created maliciously then either
(i) one detects that this is the case, or
(ii) if (x, w) ∈ RL then hash(lpar; hk, x) = projhash(lpar; hp, x, w).

8 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

Additionally, we de�ne a stronger version of smoothness, called Sub-PAR smooth-
ness of an SPHF which guarantees that the smoothness holds even if lpar (but
not hp) is created maliciously. Asmooth zero-knowledge hash function (SZKHF)
is an SPHF that satis�es zero-knowledge and Sub-PAR smoothness. The pre-
cise model (Sub-PAR smoothness and Sub-ZK) is motivated by the model used
in [ALSZ20] in the case of QA-NIZK. However, since SZKHFs are related not
to QA-NIZK but to a �avour of two-message zero-knowledge argument systems,
and thus the completeness of this model has to established separately in the case
of SZKHFs.

We will consider SZKHFs in the following three models:

Blackbox zero-knowledge (ZK) in the plain model: ZK holds without
the use of non-blackbox techniques or trust assumptions. We show that black-
box SZKHF in the plain model is impossible for languages not in BPP, even
if lpar was honestly generated and auxiliary input is not allowed.7

Blackbox ZK in the RPK model: ZK holds without the use of non-
blackbox techniques but one relies on the RPK model. In this case, SZKHF
is a variant of the de�nition of TSPHFs from [BBC+13] that however were
de�ned in the stronger CRS model. More precisely, both lpar and hp can be
untrusted but they need to be accepted by an RPK server. (Thus, one can
extract ltrap and td in the security proof.) On the other hand, [BBC+13]
assumes that lpar and the CRS are correctly distributed. Known TSPHFs
can be tweaked to be SZKHF in this sense but one still has the issue of the
subversion of both lpar and the rpk.

Non-blackbox ZK in the plain model: ZK is proven by non-blackbox tech-
niques in the plain model. Here, the SZKHF de�niton is related to
that of the subversion zero-knowledge (Sub-ZK) Sub-PAR smooth QA-
NIZKs [ALSZ20]. We show that auxiliary-string non-blackbox SZKHF in
the plain model is impossible for languages not in BPP, even if lpar was
honestly generated.

In all three cases, we will assume that there exist deterministic PPT al-
gorithms verpar and verhp, such that correctness holds even if lpar and hp
were maliciously constructed as long as verpar accepts lpar and verhp accepts
(lpar; hp, x). (Note that verhp takes the input x only when we have a GL-SPHF.)
We assume that verpar (resp., verhp) accepts all correctly generated language
parameters (resp., projection keys). The existence of verhp for SPHFs was �rst
postulated by Benhamouda et al. [BBC+13] who used it to obtain trapdoor
SPHFs. An analogous algorithm CV for NIZKs was (independently) postulated
for NIZKs in [ABLZ17] and played a key part in their de�nition of Sub-ZK NIZK
in the CRS model. We are not aware of any previous de�nition of verpar in the
case of SPHFs; in the case of QA-NIZKs, it was �rst done in [ALSZ20].

7 In the case of blackbox ZK in the plain model, we will give the de�nition only for
honestly generated lpar: since we will show that this de�nition is impossible to
achieve, this will make our result only stronger.

Smooth Zero-Knowledge Hash Functions 9

CompleteplainHF,A(λ) / CompleterpkHF,A(λ)

p← Pgen(1λ); lpar← setup.lpar(p) ; (lpar, ltrap)← setup.ltrap(p) ;

(rpk, td)← Krpk(lpar); (x, w)← A
(
lpar , ltrap; rpk

)
;

(hp, hk)← kgen
(
lpar , rpk ; x

)
;

if verpar(lpar) = 1 ∧ verhp
(
lpar , rpk ; hp, x

)
= 1∧(

(x, w) 6∈ Rlpar ∨ hash
(
lpar , rpk ; hk, x

)
= projhash(lpar , rpk ; hp, x, w)

)
then return 1; else return 0;fi

Fig. 1. Completeness experiments in De�nitions 1, 2 and 4. The dashed-box / dotted-
box part is only present in the dashed-boxed / dotted-boxed experiment.

In the rest of the paper, we only consider GL-SZKHFs: security de�nitions
in the case of GL-SZKHFs and KV-SZKHFs di�er in small technical details that
mostly just make it more di�cult to parse the de�nitions.

3.1 Blackbox SZKHF in the Plain Model

Next, we de�ne blackbox GL-SZKHF in the plain model. We prove that, even if
lpar was honestly generated, this de�nition can only be satis�ed for languages
in BPP. In De�nitions 1, 2 and 4, we postulate the existence of a deterministic
algorithm simhash, such that for any (x, w) ∈ Rlpar, projhash(lpar; hp, x, w) =
simhash(lpar; hp, x). Here, simhash does not get either the RPK trapdoor td or
hk (or even κ(hk), where κ is a possibly hard-to-invert bijection) as an input.

As in the case of TSPHFs [BBC+13], we assume only computational smooth-
ness. Moreover, in the de�nition of smoothness, we only consider honestly gen-
erated lpar, and consider security in the case when A does not have access to
ltrap (and thus the de�nition is not restricted to witness-sampleable languages).
All these changes only make our impossibility result stronger.

A GL-SZKHF in the plain model is a PHF together with new deterministic
algorithms verpar, verhp and simhash de�ned as follows:
� verhp(lpar; hp, x) outputs 1 if hp is a valid projection key and 0 otherwise.
� verpar(lpar): outputs 1 if lpar is well-formed and 0 otherwise.
� simhash(lpar; hp, x) returns the trapdoor hash value of x, given hp.

De�nition 1. A GL-SZKHF HF = (Pgen, setup.ltrap, hashkg, projkg, hash,
projhash, verhp, verpar, simhash) in the plain model satis�es the following prop-
erties, for the experiments depicted in Figs. 1 to 3.
Perfect completeness: for all λ, PPT A, Pr[CompleteplainHF,A(λ) = 1] = 1.

Computational (blackbox) smoothness: ∀ PPT A, Pr[Smoothbb-plainHF,A (λ) =

1] ≈λ 1
2 . SZKHF is statistically smooth if this holds for all unbounded A.

Composable (blackbox) ZK: ∀ PPT subverters Z, unbounded A,
Pr[ZKbb-plain

HF,Z,A(λ) = 1] ≈λ 1
2 .

10 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

Smoothbb-plainHF,A (λ) / Smoothbb-rpkHF,A (λ) / Smoothnbb-plainHF,A (λ)

p← Pgen(1λ); (lpar, ltrap)← setup.ltrap(p); (rpk, td)← Krpk(lpar);(
lpar, x

)
← A

(
p lpar , rpk

)
; (hp, hk)← kgen

(
lpar , rpk ; x

)
;

H0 ← hash
(
lpar , rpk ; hk, x

)
;H1 ←$HashSet; b←$ {0, 1}; b′ ← A(hp,Hb);

if verpar(lpar) = 1∧ b′ = b ∧ ¬(∃w : Rlpar(x, w) = 1)

then return 1; else return 0;fi

Fig. 2. Smoothness experiments in De�nitions 1, 2 and 4. The boxed / dashed-box /
dotted-box part is only present in the boxed / dashed-boxed / dotted-boxed experi-
ment.

ZKbb-plain
HF,Z,A(λ) / PZKbb-rpk

HF,Z,A(λ)

p← Pgen(1λ); lpar← setup.lpar(p);

(lpar, stZ)← Z(p); (rpk, td)← Kadv
rpk (lpar); (x, w)← A

(
lpar ; rpk; stZ

)
;

(hp, stZ)← Z(p, lpar; x);H0 ← projhash
(
lpar , rpk ; hp, x, w

)
;

H1 ← simhash
(
lpar , td ; hp, x

)
; b←$ {0, 1}; b′ ← A(p, stZ , hp,Hb);

if verpar(lpar) = 1∧ (x, w) ∈ Rlpar ∧ verhp(lpar; hp, x) = 1 ∧ b′ = b;

then return 1; else return 0;fi

ZKnbb-plain
HF,AUX,Z,ExtZ ,A(λ) / PZKnbb-plain

HF,AUX,Z,ExtZ ,A(λ)

p← Pgen(1λ); r←$RNDλ(Z);
(lpar, ltrap)← setup.ltrap(p); (lpar, stZ)← Z(p; r);

(x, w)← A
(
lpar; stZ

)
; aux← AUX(lpar, x);

(hp, stZ)← Z
(
p , lpar ; x, aux; r

)
; κ(hk)← ExtZ(p lpar ; x, aux; r);

H0 ← projhash(lpar; hp, x, w);H1 ← simhash(lpar , κ(hk) ; hp, x);
b←$ {0, 1}; b′ ← A(p, stZ , hp,Hb);
if verpar(lpar) = 1∧ (x, w) ∈ Rlpar ∧ verhp(lpar; hp, x) = 1 ∧ b′ = b;

then return 1; else return 0;fi

Fig. 3. (Persistent) zero-knowledge experiments in De�nitions 1, 2 and 4. The boxed /
dashed-box / dotted-box part is only present in boxed / dashed-boxed / dotted-boxed
experiments. Also, gray background marks di�erences compared to ZKbb-plain

HF,Z,A(λ).

(Recall that p is a deterministic function of λ.) Note that unbounded A creates
(x, w) and only x is passed to bounded subverter Z; this is necessary since in the
case of GL-SZKHF, hp can depend on x. We do not allow A to transmit any

Smooth Zero-Knowledge Hash Functions 11

other information. We consider A only to be successful if (x, w) ∈ Rlpar. Sadly,
it is easy to show that de�nition 1 can only be satis�ed for Llpar ∈ BPP.

Lemma 1. Let HF be a computationally smooth and composable ZK GL-SZKHF
in the plain model for Llpar under blackbox assumptions. Then Llpar ∈ BPP.

This lemma is a corollary of Theorem 1 from Section 3.2, but for the sake of
completeness, we will next give a direct proof. A simple modi�cation of the proof
also shows the impossibility of KV-SZKHFs in the plain model.

Proof. Let HF be a computationally-smooth and composable ZK GL-SZKHF in
the plain model for Llpar. We describe B, the BPP adversary for deciding Llpar
as follows:

B(lpar, x)

(hp, hk)← kgen(lpar; x); bA ←$ {0, 1};
H0 ← hash(lpar; hk, x);H1 ← simhash(lpar; hp, x);
if H0 = H1 then b′ ← 0; else b′ ← 1;fi

return b′;

The challenger C of the BPP-decision game samples p ← Pgen(1λ), lpar ←
setup.lpar(p), b←$ {0, 1}, x0←$Llpar, x1←$X \ Llpar. For x ← xb, C sends
(lpar; x) to B who returns b′.

The soundness of B follows directly from the computational-smoothness of
HF. For any xb 6∈ Llpar, B will output b′ = 1 with probability at least 1 − εsm.
Also, the Sub-ZK property of the HF guarantees the completeness of B. Thus:

Pr[b′ = b] = (Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]) /2

= Pr[H0 = H1|x = x0]/2 + Pr[H0 6= H1|x = x1]/2

≥ 1
2 + 1−εsm

2 = 1− εsm
2 .

Thus, B has non-negligible advantage in deciding Llpar. ut

3.2 Sub-ZK SZKHF in the Plain Model

In Appendix B, we de�ne SZKHF in the RPK model and give a construction of
computationally smooth blackbox SZKHF in this model. Now, we consider the
second direction of weakening De�nition 1, namely, that of using non-blackbox
techniques. To this end, we modify the Sub-ZK de�nition of QA-NIZKs by Ab-
dolmaleki et al. [ALSZ20] to the case of SPHFs. Di�erently from Appendix B,
to facilitate reading by readers who come from the SPHF background, we will
�rst motivate the security de�nition.

Brie�y, [ALSZ20] de�nes QA-NIZKs in the Bare Public Key (BPK) model,
assuming that the public key pk and possibly lpar are created by a malicious
subverter Z. They de�ne Sub-PAR soundness (soundness even if both lpar and

12 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

pk are maliciously created), Sub-ZK (ZK, even if pk is maliciously created), and
persistent Sub-ZK (ZK, even if both lpar and pk are maliciously created).

According to [BFS16], independently of how lpar was generated, one can-
not get at the same time Sub-SND (subversion-soundness, soundness if pk is
maliciously generated) and Sub-ZK. [ALSZ20] constructed a Sub-PAR sound
and persistent Sub-ZK QA-NIZK. Moreover, [ALSZ20] noted that Sub-ZK (QA-
)NIZK in the CRS model is the same as no-auxiliary-string non-blackbox (QA-
)NIZK in the weak BPK model. The Sub-ZK de�nition of [ALSZ20] is motivated
by the fact that auxiliary-string non-blackbox [GO94] NIZK in the BPK model
is impossible.

More precisely, a Sub-ZK QA-NIZK in the BPK model [ALSZ20] guarantees
that if a malicious subverter Z creates lpar and pk that are accepted by a
verpar (lpar-veri�cation) and PKV (public-key veri�cation), respectively, then
there exists a non-blackbox extractor ExtZ that extracts the secret key sk that
corresponds to pk. After that, sk can be used to run the original CRS-model
simulator Sim that works in the case pk is generated honestly. Hence, one obtains
non-blackbox ZK.

Next, we consider Sub-ZK SZKHFs in the plain model that are motivated by
QA-NIZKs in the BPK model. In the case of SZKHF, we have a hp instead of
the pk, hk instead of sk, verhp instead of PKV, projhash instead of the prover,
and simhash instead of the simulator. Intuitively, since in many applications,
hp is generated by the SZKHF veri�er (the party who checks that hash and
projhash results in the same values), a Sub-ZK SZKHF works in the plain model,
i.e., without any trust assumptions at all. This is a fundamental di�erence com-
pared to Sub-ZK SNARKs and QA-NIZKs where one has to rely on some trust
assumption due to the use of the BPK.

As in [ALSZ20], we de�ne an e�cient lpar-veri�cation algorithm verpar (de-
noted by PARV in [ALSZ20]) which checks whether lpar is well-formed. Follow-
ing the de�nition of SZKHFs in the RPK model (Appendix B), we allow one
to extract a function κ(hk) of hk instead of hk itself. In general, κ may be the
identity or a one-way function, e.g., κ(hk) = [hk]2. In the latter case, it may
not be possible to e�ciently recover hk from κ(hk). Due to this, we require that
simhash(lpar;κ(hk), hp, x) = hash(lpar; hk, x) for all lpar, hk, and x.

By analogy to [ALSZ20], we obtain De�nition 2. It is a variant of the def-
inition of Sub-ZK QA-NIZKs, with syntactic di�erences caused by di�erences
between SPHFs and NIZKs. On top of it, the de�nition is for GL-SZKHFs, which
means that in the de�nition of ZK, a subverted hp can depend on input x chosen
by the adversary before hp itself is chosen. In comparison, QA-NIZKs are re-
lated to KV-SZKHFs where x depends on hp. Sub-ZK NIZK is impossible in the
plain model, [BFS16]. On the other hand, as we will show in Section 4, Sub-ZK
SZKHFs are possible in the plain model. We de�ne separately auxiliary-string
and no-auxiliary-string non-blackbox ZK in the plain model; this is motivated
by Theorem 1 that states that the former is impossible for languages not in BPP.
In the case of auxiliary-string non-blackbox ZK, we allow the auxiliary input to

Smooth Zero-Knowledge Hash Functions 13

be generated by a PPT algorithm AUX called auxiliary string machine which
takes the language parameter lpar as input and returns aux.

De�nition 2. A (no-)auxiliary-string non-blackbox zero knowledge GL-SZKHF
HF = (Pgen, setup.ltrap, hashkg, projkg, hash, projhash) in the plain model satis-
�es the following properties for deterministic polynomial-time algorithms verpar,
verhp, simhash, κ, and the experiments depicted in Figs. 1 to 3.
Perfect completeness: for any λ, PPT A, Pr[CompleteplainHF,A(λ) = 1] = 1.
Computational Sub-PAR (non-blackbox) smoothness: for any PPT A,

Pr[Smoothnbb-plainHF,A (λ) = 1] ≈λ 1
2 . SZKHF is statistically Sub-PAR smooth if

the same holds for any unbounded A.
Composable κ-extractable (no-)auxiliary-string non-blackbox ZK:

For any PPT subverter Z, there exists a PPT extractor ExtZ ,
s.t. for any PPT auxiliary string machine AUX and unbounded A,
Pr[ZKnbb-plain

HF,AUX,Z,ExtZ ,A(λ) = 1] ≈λ 1
2 . In the no-auxiliary-string case, AUX

always outputs ε (the empty string).
Composable κ-extractable (no-)auxiliary-string non-blackbox persistent ZK:

For any PPT subverter Z, there exists a PPT extractor ExtZ ,
s.t. for any PPT auxiliary string machine AUX and unbounded A,
Pr[PZKnbb-plain

HF,AUX,Z,ExtZ ,A(λ) = 1] ≈λ 1
2 . In the no-auxiliary-string case, AUX

always outputs ε.

HF is extractable if κ is the identity function; then, for (x, w) ∈
Rlpar, simhash(lpar; hk, x) = projhash(lpar; hp, x, w). Di�erently from F -
extractability [BCKL08] that limits applications compared to just extractability,
we use κ-extractability only in the Sub-ZK proof and thus it has no negative
e�ect.

As explained in Appendix B, Abdolmaleki et al. [ALSZ20] (see also Ap-
pendix B) de�ned separately ZK and persistent ZK for QA-NIZK, and showed
that ZK does not follow from persistent ZK since in the latter one can use a
knowledge assumption to extract ltrap that is not available in the former. The
same problem holds in the case of SZKHFs, and thus in the security proofs, one
has to prove separately that a Sub-ZK SZKHF satis�es both ZK and persistent
ZK.

Motivated by applications in SNARKs, Abdolmaleki et al. [ALSZ20] de�ned
the notion of knowledge-soundness in the case Llpar = X is the trivial language.
One can similarly de�ne knowledge-smoothness when Llpar = X ; we decided not
to do it since we already have too many new de�nitions.

Impossibility of auxiliary-string SZKHF in the plain model. Goldreich
and Oren [GO94, Thm. 4.4] proved that two-round non-uniform auxiliary-string
computational zero-knowledge proof (and also argument) systems do not exist
for languages outside BPP. We modify Thm. 4.4 of [GO94] to prove a similar
result about GL-SZKHFs. Note that this result is strictly stronger than Lemma 1.

Motivated by this connection, we show in a parallel work that no-
auxiliary-string non-blackbox GL-SZKHFs and quasi-adaptive two-message zero-
knowledge (QA-2MZK) arguments are in one-to-one correspondence. A similar

14 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

result holds in the case of blackbox and no-auxiliary-string non-blackbox GL-
SZKHFs and QA-2MZK arguments. We omit further discussion.

Theorem 1. Let κ be a one-to-one map, HF be an auxiliary-string non-blackbox
ZK GL-SZKHF in the plain model for Llpar. Then Llpar ∈ BPP for all lpar.

We defer the proof to Appendix E.1.

4 Constructing SZKHF

In Section 3.1, we proved that blackbox SZKHFs in the plain model are restricted
to languages in BPP. Thus, one must either use a preprocessing model (as de-
�ned in [BBC+13]; see Appendix C) or rely on some non-blackbox technique (as
de�ned in Section 3.2). As we already mentioned, the use of the CRS model as
in [BBC+13] (or the weaker RPK model, as in Appendix B) is not completely
satisfactory since one essentially shifts the problem of protecting against a sub-
verted hp-generator to the problem of protecting against a subverted crs/pk-
generator. As always in cryptography, the end goal is not to have any trust at
all whenever possible.

We �rst recall the notion of DVS-based SPHF. Then, we construct a Sub-
ZK SZKHF in the plain model based on DVS-based SPHF. Lastly, we give a
constructions of computationally smooth blackbox SZKHF in the RPK model
based on DVS-based SPHFs in Appendix B. We also present a Sub-ZK SZKHF
in the plain model and a blackbox SZKHF in the RPK model, both based on
Benhamouda et al.'s TSPHFs [BBC+13] in Appendix C.

4.1 Preliminaries: DVS-Based SPHFs

Benhamouda et al. [BBC+13,Ben16] de�ned diverse vector spaces (DVSs). We
will not formally de�ne DVSs (see Appendix A.1), however, we need the following
construction of DVS-based GL-SPHFs from [BBC+13]. Essentially, a DVS-based
GL-SPHF is de�ned for any algebraic language (see Section 2) Llpar, where
lpar = (Γ ,θ,λ). Recall that in the case of GL-SPHFs, Γ and θ are a�ne
maps of x, with Γ (x) ∈ Zn×kp , n > k. In a DVS-based GL-SPHF for Llpar,
one �rst samples a hashing key hk = α←$Znp and then de�nes the projection

key as hp = [γ(x)]1 ← projkg(lpar; hk) = α>[Γ]1 ∈ G1×k
1 . For a witness w ∈

Zkp, the projection hash is pH ← projhash(lpar; hp, x, w) = [γ(x)]1 · λ(x, w) =

α>[Γ (x)]1λ(x, w) ∈ G1. For an input x = [θ]1 = [Γ (x)]1λ(x, w) ∈ Gn1 , the
hash is H ← hash(lpar; hk, x) = hk> · x = α>[Γ (x)]1λ(x, w) ∈ G1. Thus, if
x ∈ Llpar, then H = pH. See [BBC+13,Ben16] for the proof of (information-
theoretic) smoothness.

4.2 New DVS-Based SZKHF

Recall that a projection key hp is valid if there exists a hk such that hp =
projkg(lpar; hk). Consider a DVS-based SPHF HF with HashSet = G1 in the

Smooth Zero-Knowledge Hash Functions 15

setup.ltrap(p): return lpar←$HF.setup.lpar(p);
hashkg(lpar): return hk := α←$HF.hashkg(lpar);
projkg(lpar; hk, x): hp := [γ]1 ← HF.projkg(lpar; hk, x); τ ←$Z∗p; hpver ← [τ, τα>]2;

return hpf ← (hp, hpver); // hpver ∈ Gn+1
2 ;

verpar(lpar = [Γ (x)]1): check whether lpar is well-formed.
verhp(lpar = [Γ (x)]1; hpf = (hp, hpver), x): check that [τ]2 ∈ G2 \ {1G2} and [τα>]2 •

[Γ (x)]1 = [τ]2 • [γ]1.
hash(lpar; hk, x): return HF.hash(lpar; hk, x) • [1]2;
projhash(lpar; hpf = (hp, hpver), x, w): return HF.projhash(lpar; hp, x, w) • [1]2;
simhash(lpar;κ(hk) = κ(α), x = [θ]1): return χ(κ(α))> · [θ]1;

Fig. 4. The GL-SZKHF HFdvs. Here, HF is any DVS-based SPHF HF with HashSet =
G1. We denote the procedures of HF by prepending their names with HF as in
HF.hashkg. Moreover, χ(a) = [a]2 if κ = id and χ(a) = a if κ = [·]2.

plain model, as de�ned in Appendix A.1. Since Γ (x) ∈ Zn×kp with n > k, it means
that all hp-s are valid. Thus, we must add to the projection key an additional sub-
key hpver that corresponds to similar auxiliary data crsCV in [ABLZ17], such that
hpf = (hp, hpver) �xes uniquely the vector α ∈ Znp , such that hp = α>[Γ (x)]1,

and then make it possible to verify that hp = α>[Γ (x)]1.

One has to be careful in de�ning hpver. For example, a simple approach is to
set hpver = [α]2; after that one can verify hp by just checking that hp • [1]2 =
[α]>2 •[Γ (x)]1. Unfortunately, this breaks computational-smoothness, as anybody
can check whether H = pH by checking whether H • [1]2 = [α]>2 • [θ(x)]1 =
pH • [1]2 ∈ GT . The latter can be done given only lpar, (hp, hpver) and x. To
overcome this issue, we use the idea from [BBC+13] to mask [α]2 by multiplying
it with a random integer τ ∈ Z∗p. Intuitively, for the construction to be secure, τ
has to be chosen so that from

τ(α>Γ (x)− γ) = 01×k (2)

it follows α>Γ (x) = γ. This holds if τ 6= 0. Di�erently from [BBC+13], we
however add the corresponding elements to the projection key (chosen by a po-
tentially malicious veri�er) and not to the CRS (chosen by a universally trusted
authority).

Moreover, di�erently from [BBC+13], we allow lpar to be chosen maliciously.
Recall that for this, there must exist an e�cient verpar algorithm that veri�es
that lpar is well-formed. Such e�cient verpar exists only for certain distributions
Dp; see [ALSZ20] for discussion. In what follows, we assume that an e�cient
verpar exists.

The new Sub-ZK SZKHF HFdvs with HashSet = GT is depicted in Fig. 4.
Next, we de�ne the security assumptions needed to prove its security, and then
follow with the security proof. While the construction is inspired by [BBC+13],
the security assumptions and the proof are inspired by [ALSZ20].

16 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

4.3 New Security Assumptions

In [BBC+13], the DDH adversary B de�ned in the computational-smoothness
reduction for tsphf relies on the witness-sampleability of Dp to obtain
([Γ (x)]1,Γ (x)) sampled from D′p. Since we prove Sub-PAR smoothness (i.e.,
smoothness even in the case [Γ (x)]1 is maliciously generated), we cannot rely
on witness-sampleability. Thus, we need an alternative way to extract Γ (x).
We follow an idea of [ALSZ20]. Namely, in the proof of Sub-PAR smoothness,
B obtains [Γ (x)]1 ← A(p) and then uses a non-adaptive discrete logarithm
(DL) oracle to extract Γ (x). Hence, instead of the DDH assumption (together
with witness-sampleability) that was used in [BBC+13], we prove (non-blackbox)
Sub-PAR smoothness under the following new non-falsi�able, non-adaptive in-
teractive DDHdl assumption.

The DDHdl assumption is an non-adaptive XY -type interactive assumption,
where the assumption X is assumed to hold even if the adversary is given a
non-adaptive (i.e., before the challenge X is chosen), access to an oracle that
solves the assumption Y . Several XY assumptions are known in the litera-
ture, see, e.g., [Gjø06,Lip10,ALSZ20]. Some XY assumptions (e.g., the ones used
in [Lip10]) are falsi�able; however, DDHdl is non-falsi�able.

Let ι ∈ {1, 2}. The DDHdl
Gι assumption states that DDH in Gι remains in-

tractable even if the adversary is given a non-adaptive access to the DL oracle.
More precisely, the DDHdl

Gι assumption holds relative to Pgen, if ∀ PPT A,

Pr

[
p← Pgen(1λ); st← Adl(·)(p);x, y, z←$Zp;w0 ← xy;w1 ← z;

b←$ {0, 1}; b∗ ← A(p, st, [x, y, wb]ι) : b = b∗

]
≈λ 0 .

New knowledge assumptions. Let HF = HFdvs be the new SZKHF. To prove
ZK and persistent ZK properties in our construction, we need to rely on two
new assumptions X-SZKHF-KE, for X ∈ {Dp,SUBPAR}. We �rst de�ne these
assumptions. In Theorem 2, we prove their security in the AGM [FKL18]. The
knowledge assumptions are to postulate that given a valid hpf, one can e�ciently
extract td = κ(hk). More precisely, SUBPAR-SZKHF-KE (resp., Dp-SZKHF-KE)
assumption is the core of the persistent ZK proof (resp., the ZK proof) of the
DVS-based SZKHF construction in Theorem 3. There, we assume that if an
adversary A outputs a language parameter lpar accepted by verpar and a hpf
accepted by verhp, then there exists an extractor ExtA that by knowing the secret
coins of A, returns td = κ(hk) where hk was used to compute hpf.

Like KWKE [ALSZ20] is a tautological knowledge assumption for the Kiltz-
Wee QA-NIZK [KW15], X-SZKHF-KE is tautological knowledge assumption for
HFdvs. Nevertheless, KWKE has already found uses behind its original application
in [ALSZ20], and we hope the same will happen to X-SZKHF-KE.

De�nition 3. Let κ be a one-to-one map. Fix n > k ≥ 1 and a distribution
Dp. Let HF = HFdvs be the new GL-SZKHF. The X-SZKHF-KE assumption for
X ∈ {Dp,SUBPAR} holds relative to Pgen for any p ∈ im(Pgen(1λ)) and PPT
adversary A and PPT subverter Z, there exists a PPT extractor ExtZ , such that
Pr[ExpX-SZKHF-KE

HF,Z,ExtZ ,A(λ) = 1] ≈λ 0, where ExpX-SZKHF-KE
HF,Z,ExtZ ,A(λ) is depicted in Fig. 5.

Smooth Zero-Knowledge Hash Functions 17

Exp
Dp-SZKHF-KE

HF,Z,ExtZ ,A (λ) / ExpSUBPAR-SZKHF-KEHF,Z,ExtZ ,A (λ)

p← Pgen(1λ); r←$RNDλ(Z);
(lpar, ltrap)← setup.lpar(p); (lpar, stZ)← Z(p; r) ; (x, w)← A

(
lpar; stZ

)
;

(hpf, stZ)← Z
(
p, lpar; x, r

)
;κ(hk)← ExtZ

(
p, lpar ; x, r

)
;

if verpar(lpar) = 1∧ verhp(lpar; hpf, x) = 1 ∧ (x, w) ∈ Rlpar ∧
simhash(lpar; hpf, x, κ(hk)) 6= projhash(lpar; hpf, x, w);

then return 1; else return 0;fi

Fig. 5. SZKHF-KE experiments in De�nition 3. The dotted-boxed / dashed-box part
is only present in dotted-boxed / dashed-boxed experiments.

Theorem 2 (Security of X-SZKHF-KE). Let κ be a one-to-one map. Fix
n > k ≥ 1. Then SUBPAR-SZKHF-KE and Dp-SZKHF-KE hold relative to Pgen
in the AGM.

The proof of Theorem 2 is given in Appendix E.2. If κ(hk) = [hk]2 then it
su�ces to extract [hk]2. Then, one can rewrite the proof so that the algebraic
adversary only recovers the coe�cients of τ(Q2) but not of ∆(Q2). In that
case, one can prove persistent ZK and Sub-ZK (see Theorem 3) under standard
knowledge assumptions (instead relying on the AGM) by adding [yτ]2 to hpver,
where y←$Zp is a knowledge trapdoor (i.e., only adding one additional group
element to the projection key). Alternatively, one can de�ne new tautological
knowledge assumptions stating that given hpf as input, one can extract either
hk or κ(hk).

4.4 Security Proof

Theorem 3. Let {Llpar} be a family of algebraic languages, such that there
exists an e�cient verpar algorithm. Let HF be a DVS-based GL-SPHF for {Llpar}
and let HFdvs be the GL-SZKHF for {Llpar} depicted in Fig. 4.

(i) If DDHdl
G2

holds relative to Pgen, then HFdvs is a (non-blackbox) Sub-PAR
computationally-smooth GL-SZKHF in the plain model.

(ii) Let κ := a 7→ [a]2 or κ := id. The GL-SZKHF HFdvs is (a) auxiliary-
string non-blackbox persistent ZK under SUBPAR-SZKHF-KE, and (b) no-
auxiliary-string non-blackbox ZK under Dp-SZKHF-KE, in the plain model.

Proof. (i: Sub-PAR smoothness). First, recall that computational Sub-
PAR (non-blackbox) smoothness says that for all PPT adversaries A,
Pr[Smoothnbb-plainHF,A (λ) = 1] ≈λ 1/2, where the experiment Smoothnbb-plainHF,A (λ) is
depicted in Fig. 6. (Compared to Fig. 2 in Section 3, we just changed the gen-
eral procedures with their instantiations in Fig. 11.)

We �rst reduce the Sub-PAR smoothness to the following intermedi-
ate assumption: for all p ∈ im(Pgen(1λ)), and stateful PPT adversaries B,

18 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

Smoothnbb-plainHF,A (λ)

p← Pgen(1λ);
(lpar = [Γ]1, x)← A(p);
(hpf = (hp, hpver), hk = α)← kgen([Γ]1; x);

H0 ← hash([Γ]1;α, x);H1 ←$HashSet; b←$ {0, 1}; b′ ← A(hpf,Hb);
if verpar(lpar) = 1 ∧ b′ = b ∧ ¬(∃w : x = [Γ]1w)

then return 1; else return 0;fi

Fig. 6. Experiment Smoothnbb-plainHF,A (λ)

ExpintB (p)

[Γ]1 ← B(p);
α←$Znp ; // hk← HF.hashkg(lpar);

[γ]1 ← α>[Γ]1; // hp← HF.projkg(lpar; hk);

τ ←$Z∗p; hpver ← [τ, τα>]2; hpf ← (hp, hpver);
b←$ {0, 1};
if b = 0 then β ← α; else µ←$ coker(Γ);β ← α+ µ;

// β is either sk or sk+ random element of the cokernel

b′ ← B(hpf, [β]2);
return b = b′;

Fig. 7. Experiment ExpintB (p) for the proof of Sub-PAR smoothness in Theorem 5

Pr[ExpintB (p) = 1] ≈λ 1/2, where ExpintB (p) is depicted in Fig. 7. Intuitively, this
assumption states that for any PPT adversary (who is given the projection key
hpf), it is hard to distinguish [hk]2 from [hk]2 +µ, where µ is a random element
of the cokernel of [Γ]2. That is, hpf does not contain su�cient information to
decide which of the possible | coker(Γ)| secret keys was used by the challenger.
Note that since µ ∈ coker(Γ), (α+ µ)>Γ = α>Γ .

Let A be a Sub-PAR smoothness adversary. We construct an adversary B
against the intermediate problem that uses the help ofA. The idea is to let B play
the role of the challenger in the smoothness experiment and feed A with values
calculated based on the intermediate experiment. B(p) proceeds as follows:
1. ([Γ]1, x)← A(p).
2. Return [Γ]1 to the challenger.
3. The challenger creates (hpf, [β]2) as in Fig. 7, and sends it to B.
4. B computes Hb ← [β]>2 x.
5. b′ ← A(hpf,Hb).
6. Return b′.

Clearly, if b = 0 (i.e., β = α), then Hb = H(lpar; hk, x). Otherwise (i.e., if
b = 1), we have two cases:

Smooth Zero-Knowledge Hash Functions 19

� if x 6∈ Llpar, then Hb = [α+µ]>2 x = [α]>2 x+[µ]>2 x is uniformly random from
the viewpoint of the adversary. This is because in this case, x is not in the
column span of [Γ]1 and thus H = [α]>2 x is uniformly random.

� if x ∈ Llpar, then Hb = [β]>2 x = [α]>2 x = H(lpar; hk, x).
Now assume that A breaks the Sub-PAR smoothness with non-negligible advan-
tage. This means that with non-negligible probability, A outputs b = 0 in the
case of receiving a real hash and outputs b = 1 in the case of receiving a random
hash. Based on the above observation, this would be the same as the advantage
of B in succeeding in ExpintB (p).

We now show that the intermediate assumption can be reduced to the DDHdl
G2

problem. Let D be an adversary against the DDHdl
G2

problem. Without loss of
generality, we assume that the challenge given to D is of the form [x, xy, z]2,
where x, y, z ∈ Zp and z = y or random 8. D plays the role of the challenger

for B in the experiment ExpintB (p) in Fig. 7. Before describing the reduction, note
that for all [γ]1 ∈ {[γ′]1 ∈ G1×k

1 : ∃α ∈ Znp s.t. γ′ = α>Γ } ⊆ G1×k
1 , there exists

∆γ ∈ Zn×(m+1)
p , with m = n− k, such that

{α : γ = α>Γ } = {∆γ · s̃ : s̃ = (s1);∀s ∈ Zmp } .

In other words, the columns of ∆γ form a basis for the solutions of equation
γ = α>Γ with unknown α9. By having this, the adversary D plays the role of
the challenger for B as follows:
1. run B with input p and obtain [Γ]1.
2. call the DL oracle on input [Γ]1 and set st := Γ ∈ Zn×kp .
3. given a challenge C = [x, xy, z]2, generate m DDH challenges C =
{[x, rixy, riz]2}i∈[m] for ri←$Zp by using the self-randomizability of the
DDH problem. To simplify the notation, we write C = [x, xy, z]2.

4. call B with input ([τ,F ,G]2, [H]1) de�ned as τ = x, [F]2 = ∆γ · xỹ =
x(∆γ · ỹ), [G]2 = ∆γ · z̃ and [H]1 = [γ]1, where γ←$Zkp.

5. return B's output.
Note that when C = [x, xy, z]2 is a vector of DDH tuples, then z = y and B
is given ([τ, τα>,α]2,α

>[Γ]1) as input, where α = ∆γ · ỹ. Thus B is expected
to output b′ = 0. On the other hand, if C = [x, xy, z]2 is not a vector of DDH
tuples, then z is a random vector di�erent from y, but still such that∆γ ·z̃ ∈ {α :
γ = α>Γ }. This means that in this case, B is given ([τ, τα>,β]2,α

>[Γ]1) as
input, where α and β are random vectors that are solutions for {α : γ = α>Γ }.
This is B's input in Fig. 7 experiment for the case b = 1 and therefore, B is
expected to output b′ = 1. This completes the proof of Sub-PAR smoothness.

(ii-a: persistent ZK). Let Z be a subverter that breaks the Sub-ZK
property. First, Z(p; rZ) outputs ([Γ]1, auxhp). Let B be the adversary from
Fig. 8. Note that RNDλ(B) = RNDλ(Z). Under the SUBPAR-SZKHF-KE as-
sumption, there exists an extractor Ext2B, such that if verpar([Γ]1) = 1 and

8 Although this tuple is di�erent from the usual DDH challenge [x, y, z]2 where z = xy
or random, it is not hard to show they are two versions of the same hardness problem.

9 The existence of ∆γ comes from the parametric equations that describe all the
solutions of the underlying system of equations.

20 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

verhp([Γ]1, hpf) = 1 then Ext2B(p; rZ) outputs α, such that γ = α>Γ . We con-
struct a trivial extractor ExtZ(p; rZ) for Z, as depicted in Fig. 8. Clearly, ExtZ
returns hk = α, such that γ = α>Γ .

B(p; rZ)

([Γ]1, hpf, stZ)← Z(p; rZ); return hpf;

ExtZ(p; rZ)

return Ext2B(p; rZ);

Fig. 8. The extractor and the constructed adversary B from the persistent zero-
knowledge proof of Theorem 3.

Fix concrete values of λ and rZ ∈ RNDλ(Z). Let p ← Pgen(1λ), (lpar =
[Γ]1, stZ) ← Z(p; rZ), (x = [y]1, w = w) ← A(lpar; stZ), (hpf, stZ) ←
Z(p; x; rZ), and run ExtZ(p; rZ) to obtain α.

It clearly su�ces to show that if verpar(lpar) = 1, verhp(lpar; hpf, x) =
1 and (x, w) ∈ Rlpar, then projhash(lpar; hpf, x, w) = [γ]1w • [1]2 and
simhash(lpar, κ(hk) = κ(α); hp, x) = χ(κ(α))>x (for χ de�ned in Fig. 4) have
the same distribution. Really, from verhp(lpar; hpf, x) = 1 it follows γ = α>Γ
and from (x, w) ∈ Rlpar it follows x = Γw. Thus, projhash(lpar; hpf, x, w) =
[γ]1w • [1]2 = [α>Γw]1 • [1]2 = [α]>2 x = simhash(lpar, κ(hk). Hence, projhash
and simhash have the same distribution, and thus, HFdvs is persistent zero-
knowledge under SUBPAR-SZKHF-KE assumption.

(ii-b: ZK). The proof can directly be captured from the proof in (ii-a) when
[Γ]1 is picked honestly and Z gets it as an additional input. ut

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3�33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_
1.

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions
for hash proof systems: New constructions and applications. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 69�100. Springer, Heidelberg, April 2015. doi:10.

1007/978-3-662-46803-6_3.
ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On

QA-NIZK in the BPK model. In PKC 2020, Part I, LNCS, pages 590�620.
Springer, Heidelberg, 2020. doi:10.1007/978-3-030-45374-9_20.

APV05. Joël Alwen, Giuseppe Persiano, and Ivan Visconti. Impossibility and feasi-
bility results for zero knowledge with public keys. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 135�151. Springer, Heidel-
berg, August 2005. doi:10.1007/11535218_9.

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. New techniques for SPHFs and e�cient one-
round PAKE protocols. In Ran Canetti and Juan A. Garay, editors,

http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-030-45374-9_20
http://dx.doi.org/10.1007/11535218_9

Smooth Zero-Knowledge Hash Functions 21

CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449�475. Springer,
Heidelberg, August 2013. doi:10.1007/978-3-642-40041-4_25.

BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 356�374. Springer, Heidel-
berg, March 2008. doi:10.1007/978-3-540-78524-8_20.

BCNP04. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Uni-
versally composable protocols with relaxed set-up assumptions. In 45th

FOCS, pages 186�195. IEEE Computer Society Press, October 2004. doi:
10.1109/FOCS.2004.71.

Ben16. Fabrice Ben Hamouda-Guichoux. Diverse Modules and Zero-Knowledge.
PhD thesis, PSL Research University, 2016.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103�112. ACM Press, May 1988. doi:10.1145/62212.62222.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777�804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

CGGM00. Ran Canetti, Oded Goldreich, Sha� Goldwasser, and Silvio Micali. Re-
settable zero-knowledge (extended abstract). In 32nd ACM STOC, pages
235�244. ACM Press, May 2000. doi:10.1145/335305.335334.

CH20. Geo�roy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. LNCS, pages 768�
798. Springer, Heidelberg, 2020. doi:10.1007/978-3-030-56877-1_27.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45�64.
Springer, Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_4.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-
lar. An algebraic framework for Di�e-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129�147. Springer, Heidelberg, August 2013. doi:

10.1007/978-3-642-40084-1_8.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. LNCS, pages 33�62. Springer, Heidelberg, 2018. doi:
10.1007/978-3-319-96881-0_2.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315�347. Springer, Heidelberg, March 2018. doi:10.1007/

978-3-319-76578-5_11.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467�476. ACM Press, June
2013. doi:10.1145/2488608.2488667.

Gjø06. Kristian Gjøsteen. A new security proof for damgård's ElGamal. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 150�158.
Springer, Heidelberg, February 2006. doi:10.1007/11605805_10.

http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/978-3-540-78524-8_20
http://dx.doi.org/10.1109/FOCS.2004.71
http://dx.doi.org/10.1109/FOCS.2004.71
http://dx.doi.org/10.1145/62212.62222
http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1145/335305.335334
http://dx.doi.org/10.1007/978-3-030-56877-1_27
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-319-96881-0_2
http://dx.doi.org/10.1007/978-3-319-96881-0_2
http://dx.doi.org/10.1007/978-3-319-76578-5_11
http://dx.doi.org/10.1007/978-3-319-76578-5_11
http://dx.doi.org/10.1145/2488608.2488667
http://dx.doi.org/10.1007/11605805_10

22 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

GL03. Rosario Gennaro and Yehuda Lindell. A framework for password-based au-
thenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, vol-
ume 2656 of LNCS, pages 524�543. Springer, Heidelberg, May 2003. http:
//eprint.iacr.org/2003/032.ps.gz. doi:10.1007/3-540-39200-9_33.

GO94. Oded Goldreich and Yair Oren. De�nitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1�32, December 1994.
doi:10.1007/BF00195207.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
Cryptographers. Discrete Applied Mathematics, 156(16):3113�3121, 2008.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1�20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based
authenticated key exchange. In Yuval Ishai, editor, TCC 2011, volume
6597 of LNCS, pages 293�310. Springer, Heidelberg, March 2011. doi:

10.1007/978-3-642-19571-6_18.
KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-

spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 101�128. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_4.

Lip10. Helger Lipmaa. On the CCA1-Security of Elgamal and Damgård's
Elgamal. In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, In-

scrypt 2010, volume 6584 of LNCS, pages 18�35, Shanghai, China, Oc-
tober 20�23, 2010. Springer, Heidelberg. doi:https://doi.org/10.1007/

978-3-642-21518-6_2.
Lip19. Helger Lipmaa. Simulation-Extractable ZK-SNARKs Revisited. Technical

Report 2019/612, IACR, May 31, 2019. https://eprint.iacr.org/2019/
612, updated on 8 Feb 2020.

MR01. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 542�565.
Springer, Heidelberg, August 2001. doi:10.1007/3-540-44647-8_32.

Wee07. Hoeteck Wee. Lower bounds for non-interactive zero-knowledge. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 103�117. Springer,
Heidelberg, February 2007. doi:10.1007/978-3-540-70936-7_6.

http://eprint.iacr.org/2003/032.ps.gz
http://eprint.iacr.org/2003/032.ps.gz
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/BF00195207
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/https://doi.org/10.1007/978-3-642-21518-6_2
http://dx.doi.org/https://doi.org/10.1007/978-3-642-21518-6_2
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2019/612
http://dx.doi.org/10.1007/3-540-44647-8_32
http://dx.doi.org/10.1007/978-3-540-70936-7_6

Smooth Zero-Knowledge Hash Functions 23

A Additional Preliminaries

A.1 Diverse Vector Space (DVS).

A DVS [BBC+13,ABP15,Ben16] is essentially a representation of a language L ⊆
X as a subspace L̂ of some vector space. LetRL = {(x, w)} be a relation with L =
{x : ∃w, (x, w) ∈ RL}. Let p be system parameters, including say the description
of a bilinear group. Let Γ lpar(x) be an n× k matrix, θlpar(x) an n-dimensional
vector, and λlpar(x, w) a k-dimensional vector. A (pairing-based) DVS V is equal
to V = (p,X ,L,RL, n, k,Γ ,θ,λ). The matrix Γ lpar(x) can depend on x (in
this case, we say that we have a GL-DVS) or not (KV-DVS). Moreover, di�erent
coe�cients of θlpar(x), Γ lpar(x), and λlpar(x, w) can belong to di�erent algebraic
structures (most commonly, given a bilinear group p = (p,G1,G2,GT , ê), either
to Zp, G1, G2, or GT) as long as the equation θlpar(x) = Γ lpar(x) · λlpar(x, w)

is �well-typed�. That is, an equation like
(

[θ1]T
[θ2]1

)
=
(

[Γ11]T [Γ12]2
[Γ21]1 Γ22

)(
λ1

[λ2]1

)
holds.

Note that Llpar = {x : ∃λ,θlpar(x) = Γ lpar(x) · λ}. We omit the subscript lpar
if it is clear from the context.

A DVS V satis�es the following properties [Ben16]: (i) coordinate-
independence of groups: the group in which each coordinate of θ(x) lies is inde-
pendent of x. (ii) perfect completeness: for any (x, w) ∈ RL, θ(x) = Γ (x) ·λ(x, w).
(iii) statistical ε-soundness: ∀x ∈ Xlpar \ Llpar, Pr[θ(x) ∈ colspace(Γ (x))] ≤ ε.
Construction of SPHF from DVS. Given a GL/KV-DVS for L, one can
construct an e�cient GL/KV-SPHF for x′ ∈ L, where w = λ(x′, w′) and x =
[θ(x′)]ι = [Γ (x′)]ιλ(x

′, w′) [BBC+13], see Fig. 9. Here, the only possible nonlinear
operation is the dependency of θ and Γ on the actual input x′. It is known that
if V is a 0-sound GL-DVS/KV-DVS, then the PHF in Fig. 9 is a 0-smooth
GL-SPHF/KV-SPHF, see Theorem 3.1.11 in [Ben16].

Example 1. Let L := 〈[v]1〉 where [v]1 ∈ G2×1
1 . Since L is a subspace, L = L̂.

Thus, [θ(x)]1 = x ∈ G2
1 (thus x = x′) and [Γ (x)]1 = [v]1 ∈ G2×1

1 . Clearly,
[θ(x)]1 ∈ 〈[v]1〉 i� [θ(x)]1 = [Γ (x)]1 · λ(x, w) = [v]1λ for some λ = λ(x, w) ∈ Zp.
Now, hk = (α1, α2)

>←$Z2
p, hp = α1[v1]1 + α2[v2]1, pH = hp · λ = λ · (α1[v1]1 +

α2[v2]1) = hk · [θ(x)]1 = H.

One can construct a DVS for any subspace language L by letting θ(x) = x

to be the identity map and Γ = Γ (x) to be the basis matrix of L.

hashkg(lpar): sample α←$Znp , and output hk← α;
projkg(lpar; hk, x = [θ(x′)]ι): [γ]>ι ← α>[Γ (x′)]ι ∈ G1×k

ι ; return hp← [γ]ι;
hash(lpar; hk, x): return H← α>[θ(x′)]ι;
projhash(lpar; hp, x, w = λ(x′, w′)): return pH← [γ]>ι λ(x

′, w′);

Fig. 9. DVS-based SPHF. Here, lpar = [Γ (x′)]ι, hk = α, hp = [γ]ι, and x = [θ(x′)]ι.

24 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

A.2 Algebraic Group Model (AGM)

AGM is a new model [FKL18] used to prove the security of a cryptographic
assumption, protocol, or a primitive. Essentially, in the AGM, one assumes that
each PPT algorithm A is algebraic in the following sense. Assume A's input
includes [xι]ι and no other elements from the group Gι. Moreover, assume A
has an access to an oracle O, such that O(ι) samples and outputs a random
element [qιk]ι from Gι, ι ∈ {1, 2}. The oracle access models the ability of A to
create random group elements. We assume that if A outputs group elements
[yι]ι, then A knows matrices N ι, such that yι =N ι(

xι
qι).

More precisely, a PPT algorithm A is (Pgen-)algebraic if there exists
an e�cient extractor ExtA, s.t. for any PPT sampleable distribution D,
AdvagmPgen,D,A,ExtA(λ) :=

Pr

p←$Pgen(1λ); x = ([x1]1, [x2]2)←$D; r←$RNDλ(A);
([y1]1, [y2]2)←$AO(x; r); (N1,N2)← ExtA(x; r) :

(y1 6=N1(
x1
q1) ∨ y2 6=N2(

x2
q2))

 = negl(λ) .

O is an oracle, that given ι ∈ {1, 2} as an input, samples and returns a random
element from Gι, and [qι]ι is the list of all elements output by O(ι). The AGM
states that AdvagmPgen,D,A,ExtA(λ) = negl(λ) for any PPT sampleable D and PPT
A.

A.3 Bare Public Key Model

In the Bare Public Key (BPK) model [CGGM00,MR01], parties have access to
a public �le F , a polynomial-size collection of records (id, pkid), where id is a
string identifying a party (e.g., a veri�er), and pkid is her (alleged) public key.
In a typical zero-knowledge protocol in the BPK model, a key-owning party Pid
works in two stages. In stage one (the key-generation stage), on input a security
parameter 1λ and randomizer r, Pid outputs a public key pkid and stores the
corresponding secret key skid. We assume the no-auxiliary-string BPK model
where from this it follows that Pid actually created pkid. After that, F will
include (id, pkid). In stage two, each party has access to F , while Pid has possibly
access to skid (however, the latter is not required by us). It is commonly assumed
that only the veri�er of a NIZK argument system in the BPK model has a public
key [MR01].

A.4 Registered Public Key Model.

In the registered public key (RPK, [BCNP04]) model, each party Pid trusts
some key-registration authority Rid and has registered her key with Rid. The
same Rid can be used by several parties, or each party can choose to trust a
separate authority. If Pid is honest, then the secret key sk exists and the public
key pk comes from correct distribution (in this case, the public key is said to

Smooth Zero-Knowledge Hash Functions 25

be �safe�). If Pid is dishonest, sk still exists and pk has been computed from
it honestly, but there is no guarantee about its distribution (in this case, pk is
said to be �well-formed�). Di�erent variants (most importantly, the �traditional
proof-of-knowledge� version where sk and the public key are generated by Pid
who then sends pk to Rid and proves the knowledge of sk to Rid by using a
stand-alone zero-knowledge proof) of the RPK model are known. Each party
knows the identities of all other parties and their key-registration authorities,
see [BCNP04] for discussion. We describe the bare public key (BPK) model in
Appendix A.3. The RPK model is signi�cantly weaker than the CRS model but
it can be interpreted as the CRS model in the special case when the RPK creator
is universally trusted. The BPK model is even weaker than the RPK model.

B Blackbox SZKHF in the RPK Model

Since blackbox SZKHFs are impossible in the plain model, we will next con-
sider blackbox SZKHFs in the RPK model [BCNP04]. The following de�ni-
tion combines the security de�nitions of Sub-PAR QA-NIZKs in the BPK
model [ALSZ20] with these of TSPHFs [BBC+13]. We will �rst give the new
de�nition and then explain the di�erence between the new de�nition and the
de�nitions of [ALSZ20] and [BBC+13].

A SZKHF in the RPK model is de�ned together with new algorithms Krpk,
verpar, verhp and simhash as follows.
� Pgen, setup.ltrap are as before, except that setup.ltrap obeys the rules of

the RPK model. (See the description of Krpk below.)
� verpar(lpar): outputs 1 if lpar is well-formed and 0 otherwise.
� Krpk(lpar): takes an input lpar generated by setup.ltrap and outputs a

public key rpk together with a secret key sk. Krpk can either generate sk
herself or can, alternatively, verify that the owner of sk knows the secret key
corresponding to rpk, [BCNP04]. In the latter case, Krpk can be implemented
as a stand-alone interactive zero-knowledge protocol where a party registers
her public key rpk with an authority by additionally proving the knowledge
of td := sk. In a security proof, td is then extracted by using (say) rewinding.
If the creator of rpk is untrusted, rpk is well-formed and its underlying sk is
returned; however, there is no guarantee about the distribution of rpk or sk.
The setup.ltrap algorithm works similarly, but with rpk being replaced
with lpar and sk being replaced with ltrap. Thus, if the creator of lpar is
untrusted, lpar is well-formed and its underlying ltrap is returned; however,
there is no guarantee about the distribution of lpar or ltrap.

� hashkg, projkg, hash, and projhash are as usual but also take rpk as an in-
put. To shorten notation, we will denote �hk ← hashkg(lpar, rpk); hp ←
projkg(lpar, rpk; hk, x)� by �(hp, hk)← kgen(lpar, rpk; x)�.

� verhp(lpar, rpk; hp, x): outputs 1 if hp is a valid projection key and 0 other-
wise.

� simhash(lpar; td, hp, x): returns the simulated (trapdoor) hash value of x,
given an RPK trapdoor td and hp.

26 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

In applications where Krpk is not trusted (like the de�nition of zero-knowledge
in the RPK model), we denote the untrusted Krpk as K

adv
rpk . As above, the output

of Kadv
rpk will be well-formed (in particular, it will return a correct sk) but there will

be no assumption about the distribution of rpk and Kadv
rpk may leak information

about sk to other adversaries.

De�nition 4. A blackbox GL-SZKHF HF = (Pgen, setup.ltrap, hashkg, projkg,
hash, projhash) in the RPK model must satisfy the following properties for some
PPT Krpk, deterministic polynomial-time verpar, verhp and simhash, and the ex-
periments depicted in Figs. 1 to 3.

Perfect completeness: for any λ and PPT A, Pr[CompleterpkHF,A(λ) = 1] = 1.

Computational (blackbox) smoothness: for any PPT Kadv
rpk and A,

Pr[Smoothbb-rpkHF,A (λ) = 1] ≈λ 1
2 . SZKHF is statistically smooth if the same

holds for all unbounded adversaries.
Composable (blackbox) persistent ZK in the RPK model: For any

PPT Z and unbounded A, Pr[PZKbb-rpk
HF,Z,A(λ) = 1] ≈λ 1

2 .

Comparison with previous work. Di�erently from [ALSZ20], the de�nitions
are for SPHFs and not for QA-NIZKs. Our de�nition is in the RPK model for a
trusted public key, without a non-blackbox extractor of the secret key.

Moreover, since we want to avoid non-blackbox techniques, in the de�nition of
smoothness, we assume that also lpar is generated according to the rules of the
RPK model (that is, setup.ltrap returns lpar with a corresponding ltrap). This
is motivated by the fact that existing TSPHF constructions [BBC+13] are given
for witness-sampleable distributions, where ltrap is used in the smoothness
proofs explicitly. We modify the way the witness-sampleable distribution is used
according to the model. In the RPK model, the RPK-model setup algorithm
returns ltrap. In the non-blackbox plain model of Section 3.2, we will assume
the existence of an extractor that can extract ltrap. In both cases, ltrap will be
used in the smoothness and persistent ZK security proofs, and we do not assume
that ltrap is correctly distributed. As in [ALSZ20], persistent zero-knowledge
means zero-knowledge in the case when lpar is maliciously constructed.

On the other hand, [BBC+13] de�ned TSPHFs in the CRS model (where
there exists a universally trusted third party that creates a CRS), while we use
the signi�cantly weaker RPK model. More importantly, we consider the case of
maliciously created lpar; this seems to be a �rst in the existing SPHF literature.
More precisely, we assume that both lpar and rpk are constructed according
to the rules of the RPK model. We only considered honest lpar in De�nition 1
since there we gave an impossibility result. In the RPK model, we are interested
in a possibility result; thus, following [ALSZ20], we consider persistent ZK.10

We also use a language that immediately guarantees composability of SZKHFs.

10 We emphasize that proving ZK in the case of subverted lpar and hp is paramount
in applications where both lpar and hp are generated by the veri�er (the party who
checks that the values of hash and projhash are equal).

Smooth Zero-Knowledge Hash Functions 27

Finally, [BBC+13] used di�erent terminology: what we call zero-knowledge was
called soundness in [BBC+13]; however, it was called zero-knowledge in [Ben16].

Abdolmaleki et al. [ALSZ20] showed that in the case of QA-NIZKs, while
ZK (with honestly chosen lpar) sounds to be a weaker de�nition than per-
sistent ZK (with maliciously chosen lpar), this is actually not the case. More
precisely, they constructed a contrived QA-NIZK argument system Πleaky where
one need ltrap to be able to simulate. In the case of persistent ZK, one can use a
knowledge extractor (the use of which is explicitly allowed by their de�nition of
persistent ZK) to obtain ltrap and then use ltrap to simulate. However, Πleaky

does not achieve ZK since a simulator does not have access to ltrap. In our def-
inition of persistent ZK in the RPK model, there is no extractor and thus ZK
follows from the persistent ZK. However, we will use an extractor in Section 3.2
and thus there we will de�ne ZK and persistent ZK separately.

Finally, we emphasize that persistent ZK holds in the case the RPK is hon-
estly created (and thus simhash has access to the secret key td) but lpar and
hp are subverted. Thus, like TSPHFs, SZKHFs in the RPK model provide only
partial answer to the problem of subversion. To solve the latter, in Section 3.2,
we de�ne Sub-ZK SZKHF (in the plain model).

Constructions. We give a construction of computationally-smooth blackbox
SZKHF in the RPK model from HFdvs in Fig. 4, by de�ning rpk = [τ]2 and
hpf = (hp, hpver) for hpver = [τα>]2, such that the Eq. (2) holds. Similar to
Sub-ZK SZKHF, in the blackbox SZKHF we need τ 6= 0 for the computational-
smoothness and persistent ZK properties.

Theorem 4. (i) If τ ∈ Z∗p, [Γ]1 is witness-sampleable, and DDH holds relative
to Pgen, then HFdvs is computationally smooth in the RPK model.

(ii) Let κ := a 7→ [a]2 or κ := id. Assuming τ ∈ Z∗p, HFdvs is persistent ZK in
the RPK model.

Proof. (i: computational smoothness). Similar to the proof of computational
smoothness in Theorem 3, except that instead of using the DL oracle, we now
use witness-sampleability to recover Γ .

(ii: persistent ZK). The subverter Z gets public parameters p as input,
and outputs a language parameter lpar = [Γ]1 and auxiliary state stZ . Then
given [Γ]1, the (malicious) Kadv

rpk algorithm generates (rpk = [τ]2, td = τ). Due
to the properties of the RPK model, rpk is a valid public key correspond-
ing to the secret key sk. Let A be an adversary against persistent ZK and
given auxiliary state stZ and rpk, outputs a word x. The subverter Z(p, x, rpk)
outputs hpf = (hp = α>[Γ]1, hpver = [τα>]2) and some auxiliary state stZ .
Then (blackbox) persistent ZK follows directly from the fact that one can run
simhash([Γ]1, τ ; hpf, x) and simulate H with following: (i) by using τ , extract
[α>]2 form [τα>]2 and (ii) compute H← [α>]2x. ut

We also give another construction of computationally-smooth blackbox
SZKHF in the RPK model based on TSPHF [BBC+13] in Appendix C). Note
that both constructions are computationally-smooth SZKHF under the DDH
assumption for witness-sampleable languages.

28 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

C SZKHF Constructions based of TSPHF

In this section, we show how to construct a Sub-ZK SZKHF in the plain
model (resp. (blackbox) SZKHF in the RPK model) from TSPHF construction
of [BBC+13] (see Appendix C), where all hp, crs and the language parameter
lpar can be created by the hp generator in the plain model (resp. both hp and
lpar in the RPK model). We �rst recall the de�nition of TSPHF.

TSPHF construction of [BBC+13]. Benhamouda et al. [BBC+13] pro-
posed the following trapdoor SPHF (TSPHF) tsphf, based on any SPHF with
HashSet = G1. See Fig. 10. Note that H∗ = td−1 · x>[ζ]2 = td−1x>[α · td]2 =
x>[α]2 = α> · x • [1]2 = H ∈ GT . If verhp(lpar, crs; hpf, x) accepts then
hp = [Γ]>1 (td

−1 · ζ) = [Γ]>1 α
′ for hk′ = α′ := td−1 · ζ and thus hp =

HF.projkg(lpar; hk′, x).

setup.lpar(p): return HF.setup.lpar(p);
Kcrs(lpar): td←$Z∗p; crs← [td]2; return (crs, td);
hashkg(lpar): return hk := α← HF.hashkg(lpar); // hk ∈ Znp
projkg(lpar, crs; hk, x): hp← HF.projkg(lpar; hk, x); [ζ]2 ← α·[td]2 ∈ Gn2 ; return

hpf = (hp, [ζ]2);
hash(lpar; hk, x): return HF.hash(lpar; hk, x) • [1]2;
projhash(lpar, crs; hp, x, w): return HF.projhash(lpar; hp, x, w) • [1]2;
simhash(lpar, td; hp, x): return H∗ ← td−1 · x>[ζ]2.
verhp(lpar = [Γ]1, crs = [td]2; hpf = (hp, [ζ]2), x): checks whether crs 6= [0]2,

[ζ]2 ∈ Gn2 , and hp • [td]2 = [Γ]>1 • [ζ]2(∈ GkT).

Fig. 10. The Benhamouda et al.TSPHF tsphf [BBC+13]. Here, HF is any DVS-based
SPHF HF. We denote the procedures of HF by prepending their names with HF as in
HF.hashkg.

For this TSPHF construction to work, HF must not use pairings and lpar,
x, and hp must belong to source groups; this is since one needs to pair x and
[ζ]2, hp and [td]2, and [Γ]1 and [ζ]2. Benhamouda et al. [BBC+13] proved that
tsphf is computationally-smooth under the DDH assumption in G2. tsphf was
de�ned in the CRS model, but it is easy to see that it stays secure also in the
RPK model, given a honestly generated lpar.

TSPHF ⇒ Sub-ZK SZKHF. One can see the DVS-based SZKHF construc-
tion in 4.2 as the TSPHF of Benhamouda-Pointcheval. But (i) in the former, the
language parameter lpar can be subverted, and (ii) in the latter, crs contains
[τ]2 for τ ←$Z∗p while in Sub-ZK SZKHFs in plain model, [τ]2 is constructed as
part of the projection key. In Fig. 11, we give a generic conversion from TSPHF
to Sub-ZK SZKHF in the plain model.

In Theorem 5, we prove HFtsphf in Fig. 11 is computationally Sub-PAR

smooth under the DDHdl assumption and persistent ZK and ZK under the
SUBPAR-SZKHF-KE and Dp-SZKHF-KE assumptions respectively.

Smooth Zero-Knowledge Hash Functions 29

setup(p): return tsphf.setup(p);
hashkg(lpar): return tsphf.hashkg(lpar);
projkg(lpar; hk, x): (crs, td)←$ tsphf.Kcrs(lpar); (hp, hpver) ← tsphf.projkg(lpar,

crs; hk, x); hpver
∗ ← (crs, hpver); return hpf ← (hp, hpver

∗);
verpar(lpar = [Γ]1): checks whether lpar is well-formed.
verhp(lpar = [Γ]1; hpf, x): checks whether hpf = (hp, hpver

∗), such that
tsphf.verhp(lpar; hpf, x) = 1.
// [ζ]2 ∈ Gn2 , crs 6= 0,

// and hp[td]2 = [Γ]>1 [ζ]2(∈ GkT).
hash(lpar; hk, x): return tsphf.hash(lpar; hk, x);
projhash(lpar; hpf, x, w): write hpf = (crs, hpver, hp); return

tsphf.projhash(lpar; hpf, x, w);
simhash(lpar; hpf, td, x): return tsphf.hash(lpar; hpf, td, x);

Fig. 11. HFtsphf

Theorem 5. Let κ := a 7→ [a]2 or κ := id. Then HFtsphf in Fig. 11 is (i) compu-

tationally Sub-PAR smooth under the DDHdl assumption, and (ii) κ-extractable
(ii-a) persistent-ZK under SUBPAR-SZKHF-KE assumption, and (ii-b) ZK under
Dp-SZKHF-KE assumption in the plain model.

Proof. (i: Sub-PAR smoothness). The proof is similar to the smoothness
proof of Theorem 3.

(ii-a: persistent ZK). The proof can be captured from the persistent ZK
proof of Theorem 3. Given r←$RNDλ(Z), the subverter Z �rst pick lpar to-
gether with some auxiliary information stZ . Then after receiving x← A(stZ), the
subverter Z with input the word x and the random tape r, outputs hpf and some
auxiliary state stZ . Let RNDλ(A) = RNDλ(Z). Under the SUBPAR-SZKHF-KE
assumption, there exists an extractor ExtZ , such that if verhp(lpar; hpf, x) = 1
and verpar(lpar) = 1 then ExtZ(p; x, r) outputs κ(hk).

Fix (x, w) ∈ Rlpar, λ, p ∈ im(Pgen(1λ)), r ∈ RNDλ(Z), and run ExtZ(p; x, r)
to obtain κ(hk). It clearly su�ces to show that if verhp(lpar; hpf, x) = 1 and
(x, w) 6∈ Rlpar then

O0(x, w) =projhash(lpar; hpf, x, w) = pH ,

O1(x, w) =simhash(lpar; hpf, x, κ(hk)) = sH

have the same distribution. This holds since from verhp(lpar; hpf, x) = 1 it
follows O0(x, w) = pH = sH = O1(x, w). Hence, O0 and O1 have the same distri-
bution.

(ii-b: ZK). The proof can be captured from the ZK proof of Theorem 4. The
subverter Z gets as an input the language parameter lpar and a random tape
r, and outputs hpf and some auxiliary state stZ . Let RNDλ(A) = RNDλ(Z).
Under the Dp-SZKHF-KE assumption, there exists an extractor ExtZ , such that
if verhp(lpar; hpf, x) = 1 then ExtZ(p, lpar, x; r) outputs κ(hk).

Fix lpar←$Dp, (x, w) ∈ Rlpar, r ∈ RNDλ(Z), and run ExtZ(p, lpar; x, r)
to obtain κ(hk). It clearly su�ces to show that if verhp(lpar; hpf, x) = 1 and

30 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

(x, w) 6∈ Rlpar then

O0(x, w) =projhash(lpar; hpf, x, w) = pH ,

O1(x, w) =simhash(lpar; hpf, x, κ(hk)) = sH

have the same distribution. This holds since from verhp(lpar; hpf, x) = 1 it
follows O0(x, w) = pH = sH = O1(x, w). Hence, O0 and O1 have the same distri-
bution.

TSPHF⇒ (blackbox) SZKHF in the RPK model. The generic conversion
from TSPHF construction of [BBC+13] to (blackbox) SZKHF in the RPK model
is straight forward by setting rpk := [τ]2 and τ ←$Zp \ {0}. In Theorem 6, we
prove the TSPHF-based construction of (blackbox) SZKHF is computationally
smooth under the DDH assumption and persistent ZK in the RPK model.

Theorem 6. (i) If τ ∈ Zp \ {0}, [Γ]1 is witness-sampleable, and DDH holds
relative to Pgen, then the TSPHF-based construction of (blackbox) SZKHF
is computationally smooth in the RPK model.

(ii) Let κ := a 7→ [a]2 or κ := id. Assuming τ ∈ Zp \ {0}, the TSPHF-based
construction of (blackbox) SZKHF is persistent ZK in the RPK model.

Proof. (i: Smoothness). The proof is similar to the smoothness proof of The-
orem 4.

(ii: persistent ZK). As in the RPK model, the trapdoor τ is honestly
generated by a trusted party so the proof is similar to the persistent ZK of
Theorem 5. ut

D Sub-ZK NIZKs

We recall the de�nition of (Sub-ZK) NIZKs in the BPK model
from [ABLZ17,Fuc18,ALSZ20]. A Sub-ZK NIZK system Π for a relation
R consists of �ve PPT algorithms in the BPK model:

Kbpk(p): given p outputs a trapdoor td and a public key bpk. Otherwise, it
outputs ⊥.

PKV(bpk): given a public key bpk, returns either 0 (reject) or 1 (accept) if it is
well-formed.

P(bpk, x, w): given a public key bpk, a statement x, and a witness w, outputs an
argument π if (x, w) ∈ R. Otherwise, it outputs ⊥.

V(bpk, π, x): given a public key bpk, a statement x, and a proof π� returns either
0 (reject) or 1 (accept).

Sim(bpk, x, td): given a public key bpk, a statement x, and a trapdoor td outputs
an argument π. Otherwise, it outputs ⊥.

Here, Kbpk is the public key generation algorithm, PKV is the public-key
veri�cation algorithm, P is the prover, V is the veri�er, and Sim is the simulator

Smooth Zero-Knowledge Hash Functions 31

CompletebpkΠ,A(λ)

p← Pgen(1λ); (bpk, td)← Kbpk(p); (x, w)← A(p, bpk);
if PKV(bpk) = 1 ∧

(
(x, w) 6∈ R ∨ V(bpk, π, x)

)
then return 1; else return 0;fi

Fig. 12. Completeness experiment in De�nition 5.

ZKbpk
Π,Z,A(λ)

p← Pgen(1λ); r←$RNDλ(Z); (bpk, stZ)← Z(p; r); (x, w)← A(bpk; stZ);
td← ExtZ(p; r);π0 ← P(bpk, x, w);π1 ← Sim(bpk, x, td);

b←$ {0, 1}; b′ ← A(p, stZ , bpk, πb); if (x, w) ∈ R ∧ PKV(bpk) = 1 ∧ b′ = b;

then return 1; else return 0;fi

Fig. 13. Sub-ZK experiment in De�nition 5.

SndbpkΠ,A(λ)

p← Pgen(1λ); (bpk, td)← Kbpk(p); (π, x)← A(p, bpk);
if V(bpk, x, π) = 1 ∧ ¬(∃w : R(x, w) = 1)

then return 1; else return 0;fi

Fig. 14. Soundness experiment in De�nition 5.

32 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

De�nition 5. A tuple of PPT algorithms Π = (Kbpk,PKV,P,V,Sim) is a zero
knowledge (Sub-ZK) NIZK argument system in the BPK model if satis�es the
following properties, for the experiments depicted in Figs. 12 to 14.
Perfect completeness: for all λ, PPT A, Pr[CompletebpkΠ,A(λ) = 1] = 1.

Sub-ZK: ∀ PPT subverters Z, unbounded A, Pr[ZKbpk
Π,Z,A(λ) = 1] ≈λ 1

2 .

Computational soundness: ∀ PPT A, Pr[SndbpkΠ,A(λ) = 1] ≈λ 1
2 . Π is statis-

tically sound if this holds for all unbounded A.

E Omitted Proofs

E.1 Proof of Theorem 1

Proof. Let HF be a computationally-smooth κ-extractable auxiliary-string non-
blackbox GL-SZKHF in the plain model for Llpar. The execution of HF can
be seen as a question hp from the veri�er, who has access to the randomness
hk, and an answer pH ← projhash(lpar; w, hp, x) by the prover. The prover's
ability to provide an answer pH such that pH = hash(lpar; hk, x) is seen as
a su�cient evidence that x ∈ Llpar. The perfect completeness property of HF
ensures that if x ∈ Llpar then the prover will be able to output pH for any
hp← projkg(lpar; hk, x). The computational-smoothness guarantees that if x 6∈
Llpar then given only hp ← projkg(lpar; hk, x), no PPT prover can distinguish
H← hash(lpar; hk, x) from random for any but a negligible fraction of the hk's.

The idea of the proof is to run the simhash algorithm as a means of gener-
ating pH. To be able to do it so that we could still rely on the computational-
smoothness, it is essential to hide from the extractor ExtZ the randomness used
by the subverter Z when generating hp. This can be achieved by using the aux-
iliary string of the subverter as follows. Consider a subverter Z∗ that, given a
correctly generated projection key hpf as its auxiliary string, sets hp← hpf and
outputs hp. Provided that the length of hpf is polynomial in the length of x, Z∗
is clearly a PPT machine. Thus, by the ZK property, there exists an extractor
ExtZ∗ that, given as input x and an auxiliary string hpf, outputs κ(hk) without
knowing the randomness of hpf. Using ExtZ∗ , we build a PPT adversary B that
decides Llpar. On input xb, B works as follows:

B(lpar; xb) // b = 0 if x ∈ Llpar and b = 1 if x 6∈ Llpar

hk← hashkg(lpar); hpf ← projkg(lpar; hk, xb);
r←$RNDλ(Z∗); (hpf, stZ)← Z∗(ltrap; xb, aux = hpf; r);
κ(hk)← ExtZ∗(ltrap; xb, aux; r);
H← hash(lpar; hk, xb);H

′ ← simhash(lpar, κ(hk); hpf, xb);
if H = H′ then b′ ← 0; else b′ ← 1;fi

return b′;

The soundness of B follows directly from the computational-smoothness of HF:
if xb 6∈ Llpar and simhash is able to generate, with non-negligible probability,
a hash value H′ such that H = H′, then a PPT adversary A using ExtZ∗ can

Smooth Zero-Knowledge Hash Functions 33

trivially break the computational-smoothness property. Thus, for any xb 6∈ Llpar,
B will output b′ = 1 with high probability 1− εsm. Also, the ZK property of the
HF guarantees the completeness of B. Thus:

Pr[b = b′] = (Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1])/2 = 1
2 + 1−εsm

2 = 1− εsm
2 .

Thus, B has non-negligible advantage in deciding Llpar. ut

E.2 Proof of Theorem 2

We refer to Appendix A.2 for a brief overview of the algebraic group model
(AGM).

Proof. (1: SUBPAR-SZKHF-KE.) The proof is inspired by that of the KWKE
assumption in [ALSZ20]. However, the assumption itself is di�erent. Moreover,
we prove it in the standard AGM of [FKL18] instead of the HAK assumptions
introduced in [Lip19]. This enables us to simplify the proof signi�cantly.

Let A is a SUBPAR-SZKHF-KE adversary that, given public parameters
p, and randomness r←$RNDλ(A) as input, outputs lpar = [Γ (x)]1 and hpf,
s.t. with probability εA, verhp(lpar; hpf, x) = 1 and verpar(lpar) = 1. Denote
∆ := τα> ∈ Z1×n

p . Let verhp(lpar; hpf, x) = 1, i.e., [∆]2 • [Γ (x)]1 = [τ]2 • [γ]1 ∈
G1×k
T . Let ExtagmA be the extractor, existence of which is guaranteed by the AGM.

Fig. 15 depicts the extractor ExtA, who also emulates the oracle answers [qιi]ι
for i > 0 to A in Gι. ExtagmA extracts N ι, such that[

vect(Γ)
γ

]
1
=N1

[
1
q1

]
1
∈ Gnk+k1 ,

[τ
vect(∆)

]
2
=N2

[
1
q2

]
2
∈ Gn+1

2 .

Thus, e.g., τ =
∑|q2|+1
t≥0 N2,1,tq2t. Given N1, N2, q1, and q2, one can e�ciently

compute Γ ∈ Zn×kp , γ ∈ Z1×k
p , τ ∈ Zp and ∆ ∈ Z1×n

p .

ExtA(p; r)

q1 ← ∅; q2 ← ∅; ξ1 ← 0; ξ2 ← 0;

([Γ]1, hpf)← A(p; r);
if verpar(lpar) = 0 ∨ verhp(lpar; hpf, x) = 0 then return ⊥;fi ;

(N1,N2)← ExtagmA (p; r); Abort if this fails;
Compute τ , ∆ from N1, N2, q1, q2;

return α← τ−1∆;

O(ι)

ξι ← ξι + 1; qιξι ←$Zp; return [qιξι]ι;

Fig. 15. Extractors ExtA(p; r) in the proof of Theorem 3

We will now show that ExtA satis�es the requirements of the extractor in
Eq. (2). Assume that A(p; r) was successful. We execute ExtA(p; r) and obtain

34 Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Helger Lipmaa

either α or ⊥. From the fact that [∆]2 • [Γ]1 = [τ]2 • [γ]1, we get ∆Γ = τγ ∈
Z1×k
p . Since τ 6= 0, γ = τ−1∆Γ ∈ Z1×k

p . Clearly, α := τ−1∆ ∈ Znp is a valid hk

since α>Γ = τ−1∆Γ = γ and in particular [γ]1 = α>[Γ]1.
(2: Dp-SZKHF-KE.) The proof is almost similar to the SUBPAR-SZKHF-KE

proof with the di�erence that lpar = [Γ]1 is honestly generated and so A is
given [Γ]1 as additional input. ut

	Smooth Zero-Knowledge Hash Functions

