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Abstract

Luby and Rackoff used a Feistel cipher over bit strings to construct a pseudorandom
permutation from pseudorandom functions in 1988 and in 2002, Patel, Ramzan, and Sun-
daram generalized the construction to arbitrary abelian groups. They showed that the
3-round Feistel cipher is not superpseudorandom over abelian groups but left as an open
problem a proof for non-abelian groups. We give this proof.
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1 Introduction
In cryptography, perhaps the most important question is how to create randomness. The
best answer is to create something that looks random, which we call “pseudorandom”. One
way to create such pseudorandomness, is to start from one-way functions, functions that are
easy to compute but hard to reverse. From these one-way functions, Håstad et al [HILL99]
showed how to construct a generator of pseudorandomness, a so-called pseudorandom generator
(PRG). Using PRGs, Goldreich, Goldwasser, and Micali [GGM86] showed how to create a
pseudorandom function. Finally, Luby and Rackoff [LR88] showed how to turn pseudorandom
functions into pseudorandom permutations, using the Feistel cipher [Fei73].

In their seminal paper, Luby and Rackoff showed how to use pseudorandom functions as
round functions. What they showed was that depending on the amount of round functions used,
one could achieve different levels of pseudorandomness. For example, a single round has pseu-
dorandomness level 0 and so does a two-round Feistel cipher, but once we use three rounds, we
achieve a pseudorandom permutation, and using four rounds gives us a super(!)pseudorandom
permutation.

We will first give explicit definitions of pseudorandom permutations over arbitrary groups.
The definitions are not explicitly needed for our proofs but are added for completeness. Second,
we show that even for non-abelian groups, the one- and two-round Feistel ciphers are not
pseudorandom. Finally, we answer an open problem posed by Patel, Ramzan, and Sundaram
[PRS02] and show that for non-abelian groups, the three-round Feistel cipher is indeed not a
super pseudorandom permutation.

1.1 Prior Work
Many Feistel cipher variants exist, with different relaxations on the round functions, see for
example [NR99] and [PRS02], the latter of which considered Feistel ciphers over abelian
groups among others. Vaudenay [Vau98] considered Feistel ciphers over groups other than
the bit strings in order to protect them against differential analysis attacks by what he called
decorrelation.
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2 General Definitions
In the following, we work in the Random Oracle Model such that we may assume the existence
of a random permutation oracle on group elements. We let G be the family of all finite groups,
e.g. a group � ∈ G is a pair of the set � and operation · satisfying the group axioms.

On notation, we write G ∈' - for an element chosen uniformly at random from a set - .
In the following, we consider the positive integer _ to be the security parameter, specified
in unary per convention. We assume that for each _ there exists a uniquely specified group
� (_) = �_ ∈ G with size |�_ | ≥ 2_.

The following is taken ad verbum from [PRS02]. “The adversaryA is modeled as a program
for a Random Access Machine (RAM) that has black-box access to some number : of oracles,
each of which computes some specified function. The adversary A will have a one-bit output.
If ( 51, . . . , 5: ) is a :-tuple of functions, then � 51,..., 5: denotes a :-oracle adversary who is given
black-box oracle access to each of the functions 51, . . . , 5: . We define A’s “running time” to
be the number of time steps it takes plus the length of its description (to prevent one from
embedding arbitrarily large lookup tables in A’s description).” We define � 51,..., 5: (_) = 1 to
denote that an adversary having access to : oracles outputs 1 when given the security parameter
_.

We can now use this to define pseudorandomness in all its needed flavours.

Definition 1. Let �<,= : �_ ×�< → �=, for �<, �= ∈ G, be an efficient, keyed function. �<,=
is a pseudorandom function (PRF) if for all probabilistic distinguishers A, limited to only
polynomially many queries to the function-oracle, there exists a negligible function =4�; (·),
such that���� %A:∈'�_

[
A�<,= (:,·) (_) = 1

]
− %A
c∈'F�<→�=

[
Ac(·) (_) = 1

] ���� ≤ =4�; (_),
whereF�<→�= is the set of functions from �< to �=.

If � : � ×� → � is a pseudorandom function, we say that it is a pseudorandom function
on �.

Definition 2. Let % : �_ × � → � be an efficient, keyed permutation. % is a pseudorandom
permutation (PRP) if for all probabilistic distinguishersA, limited to only polynomially many
queries to the permutation-oracle, there exists a negligible function =4�; (·), such that���� %A:∈'�_

[
A%(:,·) (_) = 1

]
− %A
c∈'P�→�

[
Ac(·) (_) = 1

] ���� ≤ =4�; (_),
whereP�→� is the set of permutations on �.

Definition 3. Let % : �_ × � → � be an efficient, keyed permutation. % is said to be a super
pseudorandom permutation (SPRP) if for all probabilistic distinguishers A, limited to only
polynomially many queries to the permutation- and inverse permutation-oracles, there exists a
negligible function =4�; (·), such that���� %A:∈'�_

[
A%(:,·),%−1 (:,·) (_) = 1

]
− %A
c∈'P�→�

[
Ac(·),c−1 (·) (_) = 1

] ���� ≤ =4�; (_),
whereP�→� is the set of permutations on �.

A (super) pseudorandom permutation % : �×� → � is said to be a (super) pseudorandom
permutation on �.
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3 Feistel Ciphers
We now consider the Feistel cipher over arbitrary groups, which we will call the Group Feistel
cipher. The following is a compliment to [PRS02] who treat the Group Feistel cipher con-
struction with great detail. Our main accomplishment in this section is the settling of the open
problem posed by them.

3.1 Definitions
We define a Feistel cipher over a group (�, ·) as a series of round functions on elements of
� × � = �2.

Definition 4. Given an efficiently computable but not necessarily invertible function 5 : � → �,
called a round function, we define the 1-round Group Feistel cipher F5 to be

F5 : � × � −→ � × �,
(G, ~) ↦−→ (~, G · 5 (~)).

In the case where we have multiple rounds, we index the round functions as 58, and denote the
A-round Group Feistel cipher by F51,..., 5A . We concurrently denote the input to the 8’th round by
(!8−1, '8−1) and having the output (!8, '8) = ('8−1, !8−1 · 58 ('8−1)), where !8 and '8 respectively
denote the left and right parts of the 8’th output.

Note that if (!8, '8) is the 8’th round output, wemay invert the 8’th round by setting '8−1 := !8
and then computing !8−1 := '8 · ( 58 ('8−1))−1 to get (!8−1, '8−1). As this holds for all rounds,
regardless of the invertibility of the round functions, we get that an A-round Feistel cipher is
invertible for all A.

Let � : �_ × � → � be a pseudorandom function. We define the keyed permutation � (A)
as

�
(A)
:1,...,:A

(G, ~) def
= F�:1 ,...,�:A (G, ~).

We sometimes index the keys as 1, 2, . . . , A, or omit the key index entirely.

3.2 Results
For completeness, we show some of the preliminary results for Group Feistel ciphers, not
considered in [PRS02].

We first note that � (1) is not a pseudorandom permutation as

�
(1)
:1
(!0, '0) = (!1, '1) = ('0, !0 · �:1 ('0)),

such that any distinguisher A need only compare '0 to !1.
Also � (2) is not a pseudorandom permutation: Consider a pseudorandom function � on

�. Pick :1, :2 ∈' �_. Distinguisher A sets (!0, '0) = (1, �) for some � ∈ �, where 1 is the
identity element of �, then queries (!0, '0) to its oracle and receives,

!2 = !0 · �:1 ('0) = �:1 (�) and '2 = '0 · �:2 (!0 · �:1 ('0)) = � · �:2 (�:1 (�)).

On its second query, the distinguisherA lets !′
0
∈ � \ {1} but '′

0
= � = '0, such that it receives
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Figure 1: 3-round Group Feistel cipher.

!′
2
= !′

0
· �:1 ('0) = !′0 · �:1 (�) and '

′
2
= � · �:2 (!′0 · �:1 (�)).

As A may find the inverse to elements in �, A acquires !−1
2

= (�:1 (�))−1, and by so doing,
may compute !′

2
· (�:1 (�))−1 = !′

0
. If � (2) were random, this would only occur negligibly

many times, while A may query its permutation-oracle polynomially many times such that if
!0 is retrieved non-negligibly many times out of the queries, A is able to distinguish between
a random permutation and � (2) with non-negligible probability.

As one would expect, the 3-round Group Feistel cipher (see Figure 1) is indeed a pseudo-
random permutation.

Theorem 5. If � is a pseudorandom function on �, then � (3) is a pseudorandom permutation
on �.

The proof of this proposition can be generalized from the proof given in Katz and Lindell
[KL15] of the analogous result over bit-strings with XOR, with no difficulties. We therefore
omit it here.

Among the considerations in [PRS02], they showed that the 3-round Feistel cipher over
abelian groups was not super pseudorandom, but left as an open problem a proof over non-
abelian groups. We present such a proof now.

Proposition 6. The 3-round Group Feistel cipher is not super pseudorandom.

Proof. The proof is a counter-example using the following procedure:

1. Choose two oracle-query pairs in � × �: (!0, '0) and (!′0, '0) where !0 ≠ !′
0
.

2. Query the encryption oracle to get (!3, '3) and (!′3, '
′
3
).

3. Query (!′′
3
, '′′

3
) = (!′

3
, !0 · (!′0)

−1 · '′
3
) to the decryption oracle.

4. If '′′
0
= !′

3
· (!3)−1 · '0, guess that the oracle is � (3) , else guess random.

For � (3) , this algorithm succeeds with probability 1. For a random permutation, this algorithm
succeeds negligibly often. � �
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For super pseudorandomness of the 4-round Group Feistel cipher, we refer the reader to
[PRS02]. In the paper, they show a strong result using certain hash functions as round functions,
from which the following is a corollary.

Corollary 7. Let � be a group, with characteristic other than 2, and let 5 , � : �_ × � → �

be pseudorandom functions. Then, for any adversary A with polynomially many queries to
its �/�-oracles, the family P of permutations on � × � consisting of permutations of the
form � (4) = F�, 5 , 5 ,� are indistinguishable from random, i.e. super pseudorandom permutations
(SPRPs).

4 Conclusion
We generalized the Feistel cipher to work over arbitrary groups and proved that classical results
pertain to non-abelian groups.
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