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Abstract

Revocable identity-based encryption (RIBE) is an extension of IBE that satisfies a key revo-
cation mechanism to manage a number of users dynamically and efficiently. To resist quantum
attacks, two adaptively secure lattice-based RIBE schemes are known in the (quantum) random
oracle model ((Q)ROM). Wang et al.’s scheme that is secure in the ROM has large secret keys
depending on the depth of a binary tree and its security reduction is not tight. Ma and Lin’s
scheme that is secure in the QROM has large ciphertexts depending on the length of identi-
ties and is not anonymous. In this paper, we propose an adaptively secure lattice-based RIBE
scheme that is secure in the QROM. Our scheme has compact parameters, where the ciphertext-
size is smaller than Wang et al.’s scheme and the secret key size is the same as Ma and Lin’s
scheme. Moreover, our scheme is anonymous and its security reduction is completely tight. We
design the proposed scheme by modifying Ma-Lin’s scheme instantiated by the Gentry-Peikert-
Vaikuntanathan (GPV) IBE. We can obtain the advantages of our scheme by making use of
Katsumata et al.’s proof technique of the GPV IBE in the QROM.
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1 Introduction

1.1 Background

Identity-based encryption (IBE) whose notion was introduced by Shamir [Sha84] is an advanced
form of public key encryption (PKE). As opposed to the traditional PKE, the common master
public key MPK can be used to encrypt a plaintext for arbitrary users. In particular, encryptors
take MPK and an arbitrary string ID such as user names, e-mail addresses, and so on, like a
public key for a user identified as ID. Due to the feature, an IBE system does not require a
public key infrastructure (PKI). Furthermore, if we consider a system in which numerous users
want to communicate with each other, PKE requires public keys whose number is the same as
that of users, while IBE requires only one MPK. Thanks to these benefits, IBE has been discussed
in the context of several practical applications such as Health care [TWZL08, TWZL09, PSK18],
IoT [MSW15, San16], delay tolerant network [AKGL07, SK05], wireless ad hoc network [ddAL08],
P2P network [BRTM09], private matching [ZC11], cloud computing [KBL13], and so on. The first
practical IBE scheme was proposed by Boneh and Franklin [BF01] over bilinear groups.

Due to the absence of PKI, an IBE system does not have a trivial way to revoke malicious
users dynamically as opposed to the traditional PKE. Therefore, the key revocation mechanism is
indispensable in a practical case. Boneh and Franklin [BF01] addressed the issue and claimed a
naive solution. Simply speaking, if the key generation center (KGC) of an IBE system sends each
non-revoked user ID a secret key of an identity ID∥T in every time period T, only revoked users
lose their decryption capabilities. Unfortunately, the solution is inefficient since the KGC has to
sends many secret keys in each time period if a large number of users participate in the system.

Boldyreva et al. [BGK08] proposed a novel solution to achieve efficient revocation called revo-
cable IBE (RIBE). A RIBE system has three types of keys, i.e., secret key, key update, decryption
key. A RIBE ciphertext depends on a receiver’s identity ID and a time period T as well as a plain-
text M. When a user ID joins the system, he/she receives a secret key skID depending on ID. In
every time period T, the KGC broadcasts a key update kuT depending on T. After receiving the
key update, each user ID combines their own secret key skID and the broadcast key update kuT and
derives a decryption key dkID,T depending on ID and T. Here, only non-revoked users can derive
well-formed decryption keys. In other words, revoked users ID cannot decrypt ciphertexts ctID,T if
they are revoked by a time period T. Compared with Boneh-Franklin’s naive solution, Boldyreva
et al.’s RIBE scheme is efficient since the size of a key update kuT is logarithmic in the number of
system users.

In this paper, we propose a RIBE scheme that has several attractive features. To illustrate the
advantages, we explain several factors to be considered in RIBE construction.

Adaptive Security. Adaptive security is desirable security of RIBE that ensures a ciphertext
of any identity ID does not reveal the information for a plaintext M. In contrast, the weaker
notion called selective security only ensures that a ciphertext of a fixed identity ID⋆ who is specified
before launching a RIBE system does not reveal the information for a plaintext M. In other words,
selective security does not ensure the security of the other users ID ̸= ID⋆.

Post-quantum Security. Since Shor’s quantum algorithm [Sho94] can compute factoring and
discrete logarithm in polynomial time, RIBE schemes based on factoring and Diffie-Hellman-like
assumptions [BGK08, ETW20, ETW21, GW19, HLCL18, LK21, LV09, SE13, Tak21, WES17]
are vulnerable against quantum attacks. Thus, we want a RIBE scheme satisfying post-quantum
security. So far, several RIBE schemes based on the learning with errors (LWE) assumptions [Reg05]
have been proposed [CLL+12, KMT19, Lee19, ML19, TW17, TW21, WZH+19]. Among them, Ma-
Lin’s scheme [ML19] and Wang et al.’s scheme [WZH+19] are the only known schemes with adaptive
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security proposed in 2019. To be precise, Ma and Lin [ML19] proposed a generic construction of
RIBE from any IBE. Throughout this paper, we use the Gentry-Peikert-Vaikuntanathan (GPV)
IBE [GPV08] to instantiate Ma-Lin’s scheme since the GPV IBE is more efficient than other
adaptively secure lattice-based IBE schemes [Boy10, Kat17, KY16, Yam16, Yam17]. Wang et al.’s
scheme [WZH+19] is a modification of the Agrawal-Boneh-Boyen HIBE [ABB10b].

Wang et al.’s RIBE scheme achieves adaptive security in the classical random oracle model
(ROM). In contrast, the security of Wang et al.’s scheme has not been discussed in the quantum
random oracle model (QROM) introduced by Boneh et al. [BDF+11]. If we want to ensure post-
quantum security, a scheme that is secure in the ROM based on the post-quantum computational
assumption is insufficient. Indeed, Yamakawa and Zhandry [YZ20] claimed that there is a natural
cryptographic scheme that is secure in the ROM; however, insecure in the QROM. Thus, Wang et
al.’s RIBE scheme is still insufficient to achieve post-quantum security. We note that there may be
a proof of Wang et al.’s RIBE scheme in the QROM since the Agrawal-Boneh-Boyen HIBE is secure
in the QROM proved by Zhandry [Zha12b]. In contrast, Zhandry [Zha12b] proved that the GPV
IBE is also secure in the QROM. Thus, Ma-Lin’s RIBE scheme achieves post-quantum security.

Tight Security. The efficiency of cryptographic schemes depends on the tightness of security
reduction. If the reduction is loose, we should set larger parameters to ensure the concrete security
of cryptographic schemes. Unfortunately, the security of Wang et al.’s RIBE scheme is loosely
reduced from the LWE assumption since the reduction loss depends on the number of secret key
queries made by an adversary and a lifetime of a RIBE system. In contrast, the security of Ma-Lin’s
scheme is almost tightly reduced from the GPV IBE since the reduction loss only depends on the
length of an identity. Moreover, Katsumata et al. [KYY18] proved that the security of the GPV
IBE is tightly reduced from the LWE assumption in the QROM. Thus, Ma-Lin’s RIBE scheme can
rely on the hardness of the weaker LWE problem than Wang et al.’s scheme. As we claimed above,
Wang et al.’s scheme may be secure in the QROM since the Agrawal-Boneh-Boyen HIBE is secure
in the QROM [Zha12b]. However, the reduction loss of the Agrawal-Boneh-Boyen HIBE in the
QROM is larger than that in the ROM. Thus, even if Wang et al.’s scheme is proven secure in the
QROM, it will suffer from a larger reduction loss.

Anonymity. Most lattice-based IBE schemes satisfy anonymity. The anonymity ensures that a
ciphertext ctID of anonymous IBE schemes do not reveal not only the information of a plaintext M
but also that of an identity ID. Thus, even if an adversary of an anonymous IBE system successfully
obtains a ciphertext ctID, it cannot guess not only the secret document encrypted as ctID but also
which user communicated with each other. Although Wang et al.’s RIBE scheme [WZH+19] does
not achieve anonymity, their scheme satisfies another security notion called decryption key exposure
resistance (DKER) [SE13] (that will be explained below). Moreover, we can easily modify Wang et
al.’s RIBE scheme to satisfy anonymity by sacrificing DKER. In contrast, although the GPV IBE
satisfies anonymity, Ma-Lin’s RIBE scheme does not satisfy anonymity.

(Bounded) Decryption Key Exposure Resistance. DKER is the security notion of RIBE
introduced by Seo and Emura [SE13]. As opposed to RIBE without DKER, RIBE with DKER
ensures that a RIBE scheme is secure even when an adversary obtains polynomially many decryption
keys of the target identity ID⋆. Although DKER is an important security notion, Katsumata et
al. [KMT19] showed that RIBE without DKER can become RIBE with DKER by combining with
2-level HIBE. Since there are adaptively secure lattice-based HIBE schemes [ABB10a, ABB10b,
CHKP12] in the QROM [Zha12b], constructing RIBE without DKER is sufficient for obtaining
RIBE with DKER.

All the currently known RIBE schemes with DKER do not satisfy anonymity. Thus, anonymity
and DKER does not seem to coexist. In contrast, Takayasu and Watanabe [TW17, TW21] proposed
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lattice/pairing-based RIBE schemes with bounded DKER, where an adversary can obtain a-priori
bounded number of decryption keys of ID⋆, that simultaneously satisfy anonymity. Therefore,
constructing an anonymous RIBE scheme without DKER and that with bounded DKER is sufficient
for obtaining all desirable RIBE schemes. Here, we note that Takayasu and Watanabe’s lattice-
based anonymous RIBE scheme with bounded DKER does not satisfy adaptive security.

Compact Parameters. To achieve a key revocation mechanism, a RIBE scheme tends to sacrifice
the efficiency of the underlying IBE scheme. Let N be the maximum number of users in a RIBE
system. Roughly speaking, a secret key of Wang et al.’s RIBE scheme consists of logN secret keys
of the underlying Agrawal-Boneh-Boyen IBE scheme [ABB10b]. Thus, Wang et al.’s RIBE scheme
suffers from a large secret key. Let κID be the length of an identity. Roughly speaking, a ciphertext
of Ma-Lin’s RIBE scheme consists of (κID + 1) GPV ciphertexts [GPV08]. Thus, Ma-Lin’s RIBE
scheme suffers from a large ciphertext.

1.2 Our Contribution

In this paper, we propose a lattice-based RIBE scheme that enjoys several attractive features
simultaneously. At first, our proposed scheme achieves adaptive security in the quantum random
oracle model. Moreover, the adaptive security of our proposed RIBE scheme is tightly reduced
from the LWE assumption. Our proposed RIBE scheme also satisfies anonymity. Finally, a secret
key-size and a ciphertext-size of our proposed scheme are almost the same as those of the GPV
IBE. Moreover, we can modify our proposed scheme to achieve bounded DKER without sacrificing
anonymity.

Table 1: Security comparison among adaptively secure lattice-based RIBE schemes

Scheme reduction loss anonymity model

WZH+19 [WZH+19] O(QskTmax) Yes ROM

ML19 [ML19]+GPV08 [GPV08] O(κID) No QROM

Ours O(1) Yes QROM

Table 1 compares the security of our proposed RIBE scheme and those of the other adaptively
secure lattice-based RIBE schemes [ML19, WZH+19]. Here, Qsk, Tmax, and κID denote the number
of secret key queries made by an adversary, a lifetime of the system, and the length of an identity.
Wang et al.’s scheme suffers from a huge reduction loss depending on Qsk and Tmax. Although the
reduction loss of Ma-Lin’s scheme is not very large, it is strictly larger than ours. Furthermore,
Ma-Lin’s scheme does not satisfy anonymity and Wang et al.’s scheme was proved to be secure only
in the ROM, i.e., there has been no proof in the QROM.

Table 2 compares the efficiency of our proposed RIBE scheme and the other adaptively secure
lattice-based RIBE schemes [ML19, WZH+19]. Let |MPK|, |ct|, |sk|, |ku|, and |dk| denote the sizes
of the master public key, ciphertext, secret key, key update, and decryption key, respectively. Let
N , κID, and R denote the number of users in the system, the length of an identity, and the number
of revoked users, respectively. m, q, and σ are parameters depending on n although we do not
specify the values in detail. As illustrated in Table 1, our proposed scheme achieves tight security,
while the other schemes [ML19, WZH+19] suffer from reduction losses. In other words, we can use
shorter lattice parameters n in Table 2 than the other schemes [ML19, WZH+19]. Even when we
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Table 2: Efficiency comparison among adaptively secure lattice-based RIBE schemes

Scheme |MPK| |ct| |sk|

WZH+19 [WZH+19] n(2m+ 1) log q (2m+ 1) log q m log σ ·O(logN)
ML19 [ML19]+GPV08 [GPV08] nm log q (κID + 1)(m+ 1) log q m log σ

Ours nm log q (m+ κID + 1) log q m log σ

Scheme |ku| |dk|

WZH+19 [WZH+19] m log σ ·O(R(logN − logR)) 2m log σ
ML19 [ML19]+GPV08 [GPV08] m log σ ·O(R(κID − logR)) 2m log σ

Ours m log σ ·O(R(κID − logR)) m log σ

ignore the benefit, our scheme achieves the best efficiency. Since κID ≤ m holds, our scheme has the
shortest master public key, ciphertext, secret keys, and decryption keys. Since logN < κID holds,
our scheme has larger key updates than Wang et al.’s scheme. However, we can easily overcome
the drawback with a collision resistant hash function.

1.3 Technical Overview

Here, we briefly summarize the spirit of our construction. Our proposed scheme is a modification
of Ma-Lin’s scheme [ML19] instantiated by the GPV IBE [GPV08]. Thus, we start from Ma-Lin’s
scheme and modifies it to be our scheme via several changes.

GPV IBE. At first, we explain the non-revocable GPV IBE. A master public key is a uniformly
random matrixA ∈ Zn×m

q . A ciphertext for a plaintextM and an identity ID is ctID = (cID,0, cID,1) ∈
Zq × Zm

q , where s ∈ Zn
q is a uniformly random vector and

cID,0 = u⊤IDs+ noise+M · ⌊q/2⌋, cID,1 = A⊤s+ noise.

Here, a vector uID = H(ID) is computed by a hash function H(·) that is modeled as a random
oracle in a security proof. A secret key is a vector eID ∈ Zm sampled according to a discrete
Gaussian distribution subject to AeID = uID. A user ID can recover M ∈ {0, 1} by computing
c = c0 − e⊤IDc1 ∈ Zq and checking whether c ∈ Z is closer to 0 or q/2.

Katsumata et al. [KYY18] proved tight security of the GPV IBE in the QROM. For simplicity,
we explain an overview of the security proof in the ROM. To answer an adversary’s random oracle
queries on ID, the reduction algorithm samples eID from a discrete Gaussian distribution over Zm

and sets uID = AeID. Under the appropriate parameter setting, uID follows a uniform distribution
over Zn

q and eID follows a discrete Gaussian distribution subject to uID = AeID from an adversary’s
view as required. Thus, the reduction algorithm can answer an adversary’s all random oracle queries
and secret key queries. Let ID⋆ denote a target identity. Here, the reduction algorithm knows a
secret key eID⋆ . The reduction algorithm is given an LWE instance (A,b) ∈ Zn×m

q × Zm
q , where

b = A⊤s + noise holds or b is a uniformly random vector, and creates a challenge ciphertext by
computing1

c0 = e⊤ID⋆b+M · ⌊q/2⌋, c1 = b.

1Here, we ignore the distribution of noise for simplicity.
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If b = A⊤s+noise holds, the challenge ciphertext follows the same distribution as the real scheme.
Otherwise, the challenge ciphertext follows a uniform distribution over Zn×m

q ×Zm
q since an adver-

sary does not know eID⋆ . The uniformity ensures that the GPV IBE satisfies anonymity.

Ma-Lin’s RIBE Scheme. Ma-Lin’s RIBE scheme instantiated by the GPV IBE has the same
master public key A and secrete keys eID as the GPV IBE. In contrast, Ma-Lin’s ciphertext consists
of (κID + 1) GPV ciphertexts. Let M1 and M2 denote uniformly random elements in a plaintext
space subject to M1 +M2 = M. The first κID ciphertexts ctID[1]∥T, . . . , ctID[κID]∥T are encryptions of
M1 for identities ID[1]∥T, . . . , ID[κID]∥T;

cID[i]∥T,0 = u⊤ID[i]∥Tsi + noise+M1 · ⌊q/2⌋, cID[i]∥T,1 = A⊤si + noise,

where ID[i]∥T is a concatenation of the first i-bit of ID and T. The last ciphertext ctID is an
encryption of M2 for an identity ID;

cID,0 = u⊤IDsκID+1 + noise+M2 · ⌊q/2⌋, cID,1 = A⊤sκID+1 + noise.

Users ID can recover M2 with a secret key eID; however, cannot recover M1 by themselves. For
each time period, the KGC broadcast a key update. Then, all non-revoked users ID can obtain
eID[d]∥T for some unique d ∈ {1, 2, . . . , κID}, while all revoked users ID cannot obtain eID[d]∥T for any
d ∈ {1, 2, . . . , κID}.

When an adversary receives a secret key eID⋆ such that AeID⋆ = uID⋆ in a security proof, the
target user ID⋆ must be revoked by the challenge time period T⋆. In this case, an adversary does not
receive any key updates eID⋆[1]∥T⋆ , . . . , eID⋆[κID]∥T⋆ such that AeID⋆[i]∥T⋆ = uID⋆[i]∥T⋆ . Thus, by apply-
ing Katsumata et al.’s proof κID times, we can successfully change each ctID⋆[1]∥T⋆ , . . . , ctID⋆[κID]∥T⋆

to be a uniformly random element in Zn×m
q × Zm

q . Since the challenge ciphertext does not have
the information of M1 after the change, the information of M is completely hidden. On the other
hand, in this case, Ma-Lin’s scheme does not satisfy anonymity since there is no way for changing
(κID + 1)-th ciphertext element ctID⋆ to be a uniformly random element in Zn×m

q × Zm
q since an

adversary knows a secret key eID⋆ .
When an adversary does not receive a secret key eID⋆ such that AeID⋆ = uID⋆ in a security proof,

we can successfully change (κID +1)-th ciphertext element ctID⋆ to be a uniformly random element
in Zn×m

q × Zm
q by applying Katsumata et al.’s proof. Since the challenge ciphertext does not have

the information of M2, the information of M is completely hidden. On the other hand, the target
user ID⋆ may not be revoked by the challenge time period T⋆. In this case, an adversary receives a
key update eID⋆[d]∥T⋆ for some unique d ∈ {1, 2, . . . , κID} such that AeID⋆[d]∥T⋆ = uID⋆[d]∥T⋆ . Thus,
in this case, Ma-Lin’s scheme does not satisfy anonymity since there is no way for changing the
ciphertext elements ctID⋆[d]∥T⋆ to be a uniformly random element in Zn×m

q × Zm
q .

Modification for Short Ciphertexts and Tight Security. At first, we modify Ma-Lin’s RIBE
scheme to obtain short ciphertexts and achieve tight security that does not depend on the length
of an identity κID. To compress the ciphertext of Ma-Lin’s RIBE scheme, we use the structure
of multi-bit encryption schemes and obtain a single-bit RIBE scheme. As we explained above,
Ma-Lin’s ciphertext consists of (κID + 1) single-bit GPV ciphertexts whose first κID ciphertext is
an encryption of M1 and the last ciphertext is an encryption of M2. In contrast, our ciphertext is
a (κID + 1)-bit single GPV ciphertext whose first κID bits are encryptions of M1 and the last bit is
an encryption of M2. As the case of Ma-Lin’s RIBE scheme, the first κID-bit is encryptions of M1

and the last bit is an encryption of M2 as follows:

cID[i]∥T,0 = u⊤ID[i]∥Ts+ noise+M1 · ⌊q/2⌋ for i = 1, 2, . . . , κID,
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cID,0 = u⊤IDs+ noise+M2 · ⌊q/2⌋, cID,1 = A⊤s+ noise.

Here, the same secret key and key update as Ma-Lin’s scheme are sufficient for decrypting the
ciphertext.

As the case of Ma-Lin’s proof, when an adversary receives a secret key eID⋆ , we can successfully
change cID⋆[1]∥T⋆,0, . . . , cID⋆[κID]∥T⋆,0 and cID⋆,1 to be a uniformly random element in ZκID

q × Zm
q . As

opposed to Ma-Lin’s scheme, we can apply the change at once since all of them depend on the same
uniformly random vector s; hence, a single LWE instance is sufficient for the change. Similarly,
when an adversary does not receive a secret key eID⋆ , we can successfully change cID⋆,0 and cID⋆,1 to
be a uniformly random element in Zq×Zm

q . After these changes, the information of M is completely
hidden.

Modification for Anonymity. Our modification above does not still achieve anonymity. Indeed,
there is no way for changing cID⋆,0 to be a uniformly random element in Zq when an adversary
receives a secret key eID⋆ , while there is no way for changing cID⋆[d]∥T⋆,0 to be a uniformly random
element in Zq when an adversary does not receive a secret key eID⋆ but receives a key update
eID⋆[d]∥T⋆ for some unique d ∈ {1, 2, . . . , κID}.

To achieve anonymity, we aggregate each cID[1]∥T,0, . . . , cID[κID]∥T,0 and cID,0 as

cID[i]∥T,0 = (u⊤ID + u⊤ID[i]∥T)s+ noise+M · ⌊q/2⌋.

Non-revoked users can decrypt the ciphertext with a secret key eID such that AeID = uID and a
key update eID[d]∥T such that AeID[d]∥T = uID[d]∥T by computing c = cID[i]∥T,0− (e⊤ID+ e⊤ID[d]∥T)cID,1.

As in the previous discussion, when an adversary receives a secret key eID⋆ , we can successfully
change u⊤ID⋆[1]∥T⋆s+ noise, . . . ,u⊤ID⋆[κID]∥T⋆s+ noise and cID⋆,1 to be a uniformly random element in
ZκID
q × Zm

q . Thus, the challenge ciphertext is a uniformly random element in ZκID
q × Zm

q . When an
adversary does not receive a secret key eID⋆ but receives a key update eID⋆[d]∥T⋆ , we can successfully

change u⊤ID⋆[1]∥T⋆s+ noise, . . . ,u⊤ID⋆[κID]∥T⋆s+ noise only except u⊤ID⋆[d]∥T⋆s+ noise, u⊤ID⋆s+ noise, and
cID⋆,1 to be a uniformly random element in ZκID

q ×Zm
q . Thus, the challenge ciphertext is a uniformly

random element in ZκID
q × Zm

q . Therefore, the RIBE scheme satisfies anonymity.

1.4 Roadmap

In Section 2, we review lattice preliminaries. In Section 3, we review the definition of RIBE. In
Section 4, we propose our RIBE scheme without DKER. A proof of the scheme in the QROM may
be technically difficult to follow. Thus, in Section 5, we first show a security proof of our scheme in
the ROM. Then, in Section 6, we show a security proof of our scheme in the QROM. In Section 7,
we extend the scheme for achieving bounded DKER without sacrificing anonymity.

2 Preliminaries on Lattices

Notation. Let λ denote the security parameter throughout the paper. For integers a, b ∈ N such
that a ≤ b, let [a, b] := {a, a+ 1, . . . , b} and [a] := {1, 2, . . . , a}. For two binary strings a and b, let
a∥b denote their concatenation. For a finite set S, let s ←R S denote the operation of sampling
s from S uniformly at random. For a probability distribution S, let s ← S denote the operation
of sampling s according to S. For two random variables X and Y over S, the statistical distance
∆(X,Y ) between X and Y is defined as ∆(X,Y ) :=

∑
s∈S |Pr[X = s] − Pr[Y = s]|. We say that

the two distributions X and Y are statistically close when ∆(X,Y ) is negligible in the security
parameter. Throughout the paper, the base of the logarithm is 2. The min-entropy of a random
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variable X is defined as H∞ := − log(maxx Pr[X = x]). For two sets X and Y, let Func(X ,Y)
denote the set of all functions from X to Y.

We use a lowercase bold letter b and an uppercase bold letter B to denote a vector and matrix,
respectively. Let 0n denote an n-dimensional zero vector. Let Im denote an identity matrix of the
size m×m. For a matrix R ∈ Rn×n, let ∥R∥ denote the length of the longest column of R and let
∥R∥GS denote the longest column of the Gram-Schmidt orthogonalization of R.

Lattices. A (full-rank) m-dimensional integer lattice Λ ⊆ Zm is a set of m-dimensional integer
vectors with the form {

∑
i∈[m] xibi|xi ∈ Z}, where {b1, · · · ,bm} is called the basis of the lattice

Λ. For any positive integers n,m, and q ≥ 2, a matrix A ∈ Zn×m
q , and a vector u ∈ Zn

q , we define

Λ⊥q (A) := {z ∈ Zm|Az = 0n mod q} and Λu
q (A) := {z ∈ Zm|Az = u mod q}.

Gaussian Measures. Let DΛ,σ denote a discrete Gaussian distribution over Λ with a Gaussian
parameter σ. In the following, we review some basic properties of discrete Gaussian distributions.

Lemma 1 ([GPV08]). Let n,m, q be positive integers such that m ≥ 2n log q, where q is prime. Let
σ be any positive real number such that σ ≥

√
n+ logm. Then for A ←R Zn×m

q and e ← DZm,σ,

the distribution of u = Ae mod q is 2−Ω(n)-statistically close to uniform over Zn
q . Furthermore,

for a fixed u ∈ Zn
q , the conditional distribution of e← DZm,σ, given Ae = u mod q for a uniformly

random A in Zn×m
q is DΛu

q (A),σ.

Lemma 2 ([GPV08, MR07]). Let σ > 16
√
log 2m/π and u be any vector in Zn

q . Then, for all but
q−n fraction of A ∈ Zn×m

q , we have

Pr
x←D

Λ⊥
u (A),σ

[∥x∥ ≥ σ
√
m] ≤ 2−(m−1).

Lemma 3 ([GPV08, Pei07, PR06]). Let σ > 16
√

log 2m/π and u be any vector in Zn
q . Then, for

all but q−n fraction of A ∈ Zn×m
q , we have

H∞(DΛ⊥
u (A),σ) ≥ m− 1.

Lemma 4 (Noise Re-randomization, [KY16], Lemma 1). Let q, ℓ,m be positive integers and r a
positive real satisfying r > max{ω(

√
logm), ω(

√
log ℓ)}. Let b ∈ Zm

q be arbitrary and z chosen

from DZm,r. Then there exists a PPT algorithm ReRand such that for any V ∈ Zm×ℓ and positive
real σ > ∥V∥2, ReRand(V,b + z, r, σ) outputs b′⊤ = b⊤V + z′⊤ ∈ Zℓ

q where z′ is distributed

2−Ω(n)-statistically close to DZℓ,2rσ.

Sampling Algorithms. We review some of the algorithms for sampling short vectors from a given
lattice.

Lemma 5. Let n,m, q > 0 be positive integers with m ≥ 3n⌈log q⌉ and q a prime. Then, we have
the following polynomial time algorithms:

TrapGen(1n, 1m, q)→ (A,TA)([MP12, Ajt99, AP11]): a PPT algorithm that outputs a full rank
matrix A ∈ Zn×m

q and a basis TA ∈ Zm×m for Λ⊥q (A) such that A is 2−Ω(n)-statistically
close to uniform and ∥TA∥GS = O(

√
n log q).

SamplePre(A,TA,u, σ)→ e([ABB10a, MP12]): a PPT algorithm that is given a full rank matrix
A ∈ Zn×m

q , a basis TA ∈ Zm×m of a lattice Λ⊥q (A), a vector u ∈ Zn
q , and σ ≥ ∥TA∥GS ·

ω(
√
logm), and outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-statistically close

to DΛu
q (A),σ.
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SampleZ(σ): a PPT algorithm that is given σ > ω(
√
logm) and outputs a vector e ∈ Zm sampled

from a distribution 2−Ω(n)-statistically close to DZm,σ.

Learning with Errors Assumption. The security of our RIBE scheme is reduced to the learning
with errors (LWE) assumption introduced by Regev [Reg05].

Definition 1 (Learning with Errors). For integers n = n(λ),m = m(n), a prime q = q(n) > 2,
an error distribution χ = χ(n) over Z, and a quantum polynomial time algorithm A, the advantage
for the learning with errors problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣Pr [A(A,A⊤s+ z

)
= 1

]
− Pr

[
A
(
A,w + z

)
= 1

]∣∣∣
where A ←R Zn×m

q , s ←R Zn
q , w ←R Zm

q , z ← χm. We say that the LWE assumption holds if

Adv
LWEn,m,q,χ

A is negligible for all quantum polynomial time algorithm A.

Regev [Reg05] gave a quantum reduction from the worst-case hardness of lattice problems to
the average-case hardness of the LWEn,m,q,DZ,αq

for αq > 2
√
n.

3 Revocable Identity-Based Encryption

In this section, we review the definition of RIBE by following [KMT19]. In the following syntax, a
revocation list RLT of a time period T is a subset of an identity space ID such as RLT ⊆ ID. A
revoke algorithm of a RIBE scheme is just adding a set of newly revoked users to the revocation
list. Hence, the algorithm does not explicitly appear in the following syntax.

Syntax. A RIBE scheme Π consists of the following six algorithms (Setup,Enc,GenSK,KeyUp,
GenDK,Dec):

Setup(1λ)→ (MPK,MSK) : This is the setup algorithm that takes the security parameter 1λ as
input, and outputs the master public key MPK and master secret key MSK.
We assume that the plaintext space M, the time period space T := {1, 2, . . . ,Tmax}, where
Tmax is polynomial in λ, and the identity space ID, are determined only by the security
parameter λ, and their descriptions are contained in MPK.

Enc(MPK, ID,T,M)→ ctID,T : This is the encryption algorithm that takes a master public key
MPK, an identity ID ∈ ID, time period T ∈ T , and plaintext M ∈ M as input, and outputs
a ciphertext ctID,T.

GenSK(MPK,MSK, ID)→ skID : This is the secret key generation algorithm that takes the master
pubic key MPK, master secret key MSK, and identity ID ∈ ID as input, and outputs a secret
key skID for the identity ID.

KeyUp(MPK,T,MSK,RLT)→ kuT : This is the key update information generation algorithm that
takes the master pubic key MPK, time period T ∈ T , master secret key MSK, and revocation
list RLT ⊆ ID as input, and outputs a key update kuT for a time period T ∈ T .

GenDK(MPK, skID, kuT)→ dkID,T or ⊥ : This is the decryption key generation algorithm that takes
the master public key MPK, secret key skID of a user ID ∈ ID, and key update kuT as input,
and outputs a decryption key dkID,T for a time period T ∈ T or the spacial symbol⊥ indicating
that ID has been revoked.

Dec(MPK, dkID,T, ctID,T)→ M : This is the decryption algorithm that takes the master public key
MPK, decryption key dkID,T, and ciphertext ctID,T as input, and outputs the decryption result
M.
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Correctness. We require a ciphertext corresponding with (ID,T) to be properly decrypted by a
decryption key dkID,T of the same (ID,T) if the user is not revoked by T. To fully capture this,
we consider all the possible scenarios of creating the secret key for user ID. Namely, for all n ∈ N,
(MPK,MSK)← Setup(1n), ID ∈ ID, T ∈ T , M ∈M, RLT ⊆ ID, if ID ̸∈ RLT holds, then we require
M′ = M to hold after executing the following:

• skID ← GenSK(MPK,MSK, ID),

• kuT ← KeyUp(MPK,T,MSK,RLT),

• dkID,T ← GenDK(MPK, skID, kuT),

• ctID,T ← Enc(MPK, ID,T,M), and

• M′ ← Dec(MPK, dkID,T, ctID,T).

Security Definition. Let Π be a RIBE scheme. The adaptive-identity anonymity is defined via
a game between an adversary A and the challenger C parameterized by the security parameter 1λ.
The game has the global counter Tcu initialized with 1 to denote the “current time period” and the
subscript “ct” stands for current. C’s responses to A’s queries are controlled by Tcu. The game
proceeds as follows:
C first runs (MPK,MSK)← Setup(1λ), and prepares SKList and into which identity/secret key

pairs (ID, skID) generated during the game will be stored. Whenever a new secret key is generated
for an identity ID ∈ ID due to the execution of GenSK, C will store (ID, skID) in SKList, and we will
not explicitly mention this addition. Then, C executes ku1 ← KeyUp(MPK,Tcu = 1,MSK,RL1 = ∅)
for generating a key update for the initial time period Tcu = 1, and gives MPK and ku1 to A.

Then, A may adaptively make the following four types of queries to C:

Secret Key Generation Query: Upon a query ID ∈ ID from A, C checks if (ID, ∗) /∈ SKList,
and returns⊥ toA if this is not the case. Otherwise, C executes skID ← GenSK(MPK,MSK, ID)
and returns nothing to A.

Secret Key Reveal Query: Until the challenge query, upon a query ID ∈ ID from A, C finds
skID from SKList, and returns it to A. After the challenge query, C checks

– If Tcu ≥ T⋆ and ID /∈ RL⋆T, then ID ̸= ID⋆.

If the condition is not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from SKList,
and returns it to A.

Revoke & Key Update Query: Until the challenge query, upon a query RL ⊆ ID (which de-
notes the set of identities that are going to be revoked in the next time period) from A, C
checks if the following condition is satisfied:

– RLTcu ⊆ RL.2

After the challenge query, C also checks

– If Tcu = T⋆− 1 and skID⋆ has already been revealed by the secret key reveal query, then
ID⋆ ∈ RL.

If the conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by Tcu ← Tcu+1, and executes RLTcu ← RL,
kuTcu ← KeyUp(MPK,Tcu,MSK,RLTcu). Finally, C returns kuTcu to A.

Challenge Query: A is allowed to make this query only once. Upon a query (ID⋆,T⋆,M⋆) from
A, C checks if the following condition is satisfied:

– If T⋆ ≤ Tcu and skID⋆ has been revealed to A, then ID ∈ RLT⋆ .

2This check ensures that the identities that have already been revoked will remain revoked in the next time period.
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C picks coin ←R {0, 1}. If coin = 0, C runs ct⋆ ← Enc(MPK, ID⋆,T⋆,M⋆). Otherwise, C
samples ct⋆ from a ciphertext space uniformly at random. Finally, C returns the challenge
ciphertext ct⋆ to A.

At some point, A outputs ĉoin ∈ {0, 1} as its guess for coin and terminates.

The above completes the description of the game. In this game, A’s adaptive-identity anonymity
advantage is defined by AdvRIBEΠ,A (λ) := 2 · |Pr[ĉoin = coin]− 1/2|.

Definition 2. We say that a RIBE scheme Π satisfies adaptive-identity anonymity, if the advan-
tage AdvRIBEΠ,A (λ) is negligible for all PPT adversaries A.

4 Construction

In this section, we propose a RIBE scheme. Let n,m, q be positive integers, where q is prime. Let
σ, α, α′ be positive real numbers that will serve as discrete Gaussian parameters. Let a plaintext
space be M := {0, 1}. An identity space is a set of (κID + 1)-bit binary strings whose first bit is
always 0. Thus, |ID| = 2κID holds. A time period space is a set of κT-bit binary string without
0. Let H : {0, 1}(κID+κT+1) → Zn

q be a hash function that will be modeled as a (quantum) random
oracle in a security proof.

Binary Tree Data Structure. We use a binary tree BT with 2κID leaves to realize a scalable
revocation. Each node θ ∈ BT is labeled by a binary string of an appropriate length. Specifically,
the root node is labeled as 0 and other nodes of depth d are labeled as (d + 1)-bit binary strings
whose first bit are always 0. For a node with a label θ ∈ BT, its left and right children are labeled
as θ∥0 and θ∥1, respectively. Note that all leaf nodes are labeled by some binary strings ID ∈ ID.
For an identity ID of a (κID + 1)-bit binary string, we use ID[i] to denote the first (i+ 1)-bit of ID.
By definition, ID[i] denotes a depth-i ancestor of a leaf node ID in BT. Furthermore, a set of nodes
{ID[0] = 0, ID[1], . . . , ID[κID] = ID} denotes all nodes in a path from the root to the leaf ID. It is
known that KUNode algorithm [NNL01] takes a description of a binary tree BT and a set of its
leaves RLT = {ID1, . . . , IDR} as input, then outputs a set of nodes KUT := {θ1, . . . , θr} such that

• If ID /∈ RLT, there is a unique node ID[d] ∈ KUT for some d ∈ [0, κID].

• If ID ∈ RLT, there is no node ID[d] ∈ KUT for all d ∈ [0, κID].

In particular, |KUT| = O(|RLT|(κID − log |RLT|)) holds.
Construction. We show our RIBE scheme.

Setup(1λ)→ (MPK,MSK): Run (A,TA)← TrapGen(1n, 1m, q) and output MPK := A and MSK :=
TA.

Enc(MPK, ID,T,M)→ ctID,T: Sample a uniformly random vector s ←R Zn
q . Sample a random

vector x ← DZm,α′q and random integers xi ← DZ,α′q for i ∈ [0, κID] from discrete Gaussian
distributions. Set uID := H(ID∥0) and uID[i],T := H(ID[i]∥T) for all i ∈ [0, κID]. Compute

c = A⊤s+ x, ci = (u⊤ID + u⊤ID[i],T)s+ xi +M
⌊q
2

⌋
for i ∈ [0, κID]

and output ctID,T := (c, (ci)i∈[0,κID]) ∈ Zm
q × ZκID+1

q .
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GenSK(MPK,MSK, ID)→ skID: Run

eID ← SamplePre(A,uID,TA, σ)

and output skID := eID.

KeyUp(MPK,T,MSK,RLT)→ kuT: Run the KUNode algorithm to obtain a set of nodes KUT. For
every θj ∈ KUT, run

eθj ,T ← SamplePre(A,uθj ,T,TA, σ)

and outputs kuT := (eθj ,T)θj∈KUT
.

GenDK(MPK, skID, kuT)→ dkID,T or ⊥: Find a node ID[d] ∈ KUT for some d ∈ [0, κID]. If it does
not exist, output ⊥. Otherwise, output dkID,T := dID,T := eID + eID[d],T.

Dec(MPK, dkID,T, ctID,T)→ M: Let d ∈ [0, κID] be a number such that ID[d] ∈ KUT. Compute
c′ = cd − c⊤dID,T ∈ Zq and output 0 if c′ is closer to 0 than ⌊ q2⌋. Otherwise, output 1.

Correctness. Thanks to the property of the KUNode algorithm, a non-revoked user can derive a
valid decryption key dID,T = eID + eID[d],T. Observe that

c′ = cd − c⊤dID,T

= (u⊤ID + u⊤ID[d],T)s+ xd +M
⌊q
2

⌋
− (A⊤s+ x)⊤(eID + eID[d],T)

= M
⌊q
2

⌋
+ xd − x⊤(eID + eID[d],T)︸ ︷︷ ︸

error term

.

Here, we use the fact that

AeID = uID and AeID[d],T = uID[d],T

hold since eID ∈ Λ⊥uID
(A) and eθj ,T ∈ Λ⊥uID[d],T

(A) hold by construction. The decryption succeeds

if the absolute value of the error term xd − x⊤(eID + eID[d],T) is smaller than q/4. By Lemma 5,

the distributions of eID and eID[d],T sampled by the SamplePre algorithm are 2−Ω(n)-statistically
close to DΛ⊥

uID
(A),σ and DΛ⊥

uID[d],T
(A),σ, respectively. Therefore, by Lemma 2, ∥eID∥ ≤ σ

√
m and

∥eID[d],T∥ ≤ σ
√
m hold. Similarly, by Lemma 2, |xd| ≤ α′q and ∥x∥ ≤ α′q

√
m also hold. Thus, the

absolute value of the error term is bounded by

|xd − x⊤(eID + eID[d],T)| ≤ |xd|+ ∥x∥ · (∥eID∥+ ∥eID[d],T∥)
≤ 3α′qσm.

We will set the parameters as specified below so that the upper bound is less than q/4.

Parameter Selection. We set the parameters of the scheme to satisfy the following conditions:

• The absolute value of the error term is less than q/4 (i.e., 3α′qσm < q/4).

• TrapGen works correctly (i.e., m > 3n log q).

• SamplePre and SampleZ(σ) works correctly (i.e., σ > ∥TA∥GS ·
√

log(2m+ 4)/π =
O(
√
n logm log q)).
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• σ is sufficiently large to apply Lemmas 1–3 (i.e., σ >
√
n+ logm, 16

√
log 2m/π).

• ReRand works correctly (i.e., α′/2α >
√
n(σ2m+ 1)).

• LWE is hard (i.e., αq ≥ 2
√
n).

To satisfy all the requirements, we can set the parameters as follows:

m = n1+δ, q = 10n3.5+4δ, σ = n0.5+δ,

α′q = n2+2δ, αq = 2
√
n,

where δ > 0 can be set an arbitrarily small constant.

5 Security in the Random Oracle Model

In this section, we prove the following theorem.

Theorem 1. If the LWEn,m,q,DZ,αq
assumption holds, our proposed RIBE scheme in Section 4

achieves adaptive-identity anonymity security in the random oracle model. In particular, for any
classical PPT adversary A making at most QH random oracle queries to H and QID secret key
generation queries, there exists a classical PPT reduction algorithm B such that

AdvRIBEΠ,A (λ) ≤ Adv
LWEn,m,q,DZ,αq

B + (QH +QID +
∑
T∈T

#kuT) · 2−Ω(λ)

and

Time(B) = Time(A) + (QH +QID +
∑
T∈T

#kuT) · poly(λ),

where
∑

T∈T #kuT denotes the number of key update vectors eθj ,T created during the security game.

Proof of Theorem 1. The proof proceeds with a sequence of games.

Game-0. This is adaptive-identity anonymity security game. Specifically, the challenger C behaves
as follows:

• Upon an adversary A’s random oracle query on (ID∥0), C returns uID = H(ID∥0). Similarly,
upon A’s random oracle query on (ID[i]∥T), C returns uID[i],T = H(ID[i]∥T).

• Upon A’s secret key generation query on ID, C runs eID ← SamplePre(A,uID,TA, σ).

• Upon A’s revoke & key update query on T, to create eθj ,T, C runs eθj ,T ←
SamplePre(A,uθj ,T,TA, σ).

• Upon A’s challenge query, C returns ct⋆ ← Enc(MPK, ID⋆,T⋆,M⋆) if coin = 0 and a uniformly
random element in Zm+κID+1

q if coin = 1.
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Throughout the proof, we use Advj(λ) to denote A’s advantage in Game-j.

Game-1. This is the same as Game-0 except the way C answers the random oracle queries. Upon A’s
random oracle query on (ID, 0) in Game-1, C first samples ēID ← SampleZ(σ) and sets uID = AēID.
Similarly, upon A’s random oracle query on (θj ,T), C first samples ēθj ,T ← SampleZ(σ) and sets
uθj ,T = Aēθj ,T. Then, C returns uID and uθj ,T to A. Whenever C answers the random oracle
queries, it stores (ID, 0,uID, ēID) and (θj ,T,uθj ,T, ēθj ,T).

Based on our choice of parameters, we can apply Lemma 1 which ensures that all uID and
uID[i],T are statistically close to uniform as in Game-0. Thus, the change of A’s advantage between

Game-0 and Game-1 is negligible. In particular, |Adv0(λ)− Adv1(λ)| ≤ QH · 2−Ω(n) holds.

Game-2. This is the same as Game-1 except the way C creates secret key vectors eID and key
update vectors eθj ,T. In particular, C does not use a master secret key TA to create them. When
C creates eID, it does not run the SamplePre algorithm but sets eID = ēID which was created upon
A’s random oracle queries on (ID, 0). Similarly, when C creates eθj ,T, it does not run the SamplePre
algorithm but sets eθj ,T = ēθj ,T which was created upon A’s random oracle queries on (θj ,T).

Based on our choice of parameters, we can apply Lemma 5 which ensures that eID and
eθj ,T in Game-1 sampled by the SamplePre algorithm distribute statistically close to DΛ

uID
q (A),σ

and D
Λ
uθj ,T
q (A),σ

, respectively. In contrast, based on our choice of parameters, we can apply

Lemma 1 which ensures that eID and eθj ,T in Game-2 distribute statistically close to DΛ
uID
q (A),σ and

D
Λ
uθj ,T
q (A),σ

conditioned on uID and uθj ,T, respectively. Thus, the change of A’s advantage between

Game-1 and Game-2 is negligible. In particular, |Adv1(λ)−Adv2(λ)| ≤ (QID+
∑

T∈T #kuT) · 2−Ω(n)

holds.

Game-3. This is the same as Game-2 except the way C creates a master public key A. In Game-3,
C does not run the TrapGen algorithm but samples a uniformly random matrix A←R Zn×m

q . Since
C did not use a master secret key TA to answer A’s queries in Game-2, it can answer all A’s queries
in the same way.

Based on our choice of parameters, we can apply Lemma 5 which ensures that A in Game-2
distributes statistically close to uniform in Zn×m

q . Thus, the change of A’s advantage between

Game-2 and Game-3 is negligible. In particular, |Adv2(λ)− Adv3(λ)| ≤ 2−Ω(n) holds.

Game-4. This is the same as Game-3 except the way C creates a challenge ciphertext ct⋆ when
coin = 0. In Game-3, C samples s ←R Zn

q , x ← DZm,α′q, and xi ← DZ,α′q for i ∈ [0, κID], then
computes

c = A⊤s+ x, ci = (u⊤ID⋆ + u⊤ID⋆[i],T⋆)s+ xi +M⋆
⌊q
2

⌋
.

In Game-4, C samples s←R Zn
q , x̄← DZm,αq and computes

c̄ = A⊤s+ x̄. (1)

Then, C finds (ID⋆, 0,uID⋆ , ēID⋆) and (ID⋆[i],T⋆,uID⋆[i],T⋆ , ēID⋆[i],T⋆) for i ∈ [0, κID] that are stored
locally. C applies the noise rerandomization algorithm in Lemma 4 to obtain

[c∥c̄0∥ · · · ∥c̄κID
]← ReRand([Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ], c̄, αq,

α′

αq
). (2)

C sets

ci = c̄i +M⋆
⌊q
2

⌋
(3)
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for i ∈ [0, κID] and outputs ct⋆ = (c, (ci)i∈[0,κID]).

Based on our choice of parameters, C can run the noise re-randomization algorithm in Lemma 4
which ensures thats

[c∥c̄0∥ · · · ∥c̄κID
] = [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤(A⊤s) + x̄′ (4)

= (A · [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ])⊤s+ x̄′

= [A|uID⋆ + uID⋆[0],T⋆ | · · · |uID⋆ + uID⋆[κID],T⋆ ]⊤s+ x̄′

holds, where x̄′ distributes statistically close to DZm+κID+1,α′q as in Game-3. Thus, the change of A’s
advantage between Game-3 and Game-4 is negligible. In particular, |Adv3(λ) − Adv4(λ)| ≤ 2−Ω(n)

holds.

Game-5. This is the same as Game-4 except the way C creates c̄ of the equation (1) when coin = 0.
In Game-5, C sets c̄ = v + x, where v←R Zm

q and x← DZm,αq.

The LWEn,m,q,DZ,αq
assumption ensures that Game-4 and Game-5 are computationally indis-

tinguishable. In particular, for any classical PPT adversary A, there exists a classical reduction

algorithm B such that |Adv4(λ)− Adv5(λ)| ≤ Adv
LWEn,m,q,DZ,αq

B .

Reduction from LWE. Given the LWEn,m,q,DZ,αq
instance (A,b), where b = A⊤s+x or b = v+x

and s←R Zn, x← DZm,αq, v←R Zm, the reduction algorithm B gives MPK = A to A. Here, MPK
distributes in the same way as that in Game-4. B behaves in the same way as C in Game-4 upon A’s
random oracle queries, secret key generation queries, secret key reveal queries, and revoke & key
update queries. Upon A’s challenge query, B behaves in the same way as C in Game-4 if coin = 1.
If coin = 0, B sets

c̄ = b

in place of (1). The remaining procedures for computing ct⋆ = (c, (ci)i∈[0,κID]) are unchanged. After

B receives ĉoin from A, it outputs ĉoin.
If b = A⊤s+ x, where s←R Zn, x← DZm,αq, c̄ = A⊤s+ x follows the same distribution as in

Game-4. Otherwise, c̄ = v + x follows the same distribution as in Game-5. Thus, we complete the
reduction.

Game-6. This is the same as Game-5 except the way C computes [c∥c̄0∥ · · · ∥c̄κID
] of (2) when

coin = 0. In Game-6, C does not apply the noise re-randomization algorithm in Lemma 4 but
samples c̄←R Zm

q , x′ ← DZm+κID+1,α′q and computes

[c∥c̄0∥ · · · ∥c̄κID
] = [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤c̄+ x̄′. (5)

Based on our choice of parameters, C can run the noise re-randomization algorithm in Lemma 4
which ensures that [c∥c̄0∥ · · · ∥c̄κID

] in Game-5 distributes statistically close to (5). Thus, the change
of A’s advantage between Game-5 and Game-6 is negligible. In particular, |Adv5(λ) − Adv6(λ)| ≤
2−Ω(n) holds.

Game-7. This is the same as Game-6 except the way C computes the challenge ciphertext ct⋆ =
(c, (ci)i∈[0,κID]) when coin = 0. In Game-7, regardless of the value coin ←R {0, 1}, C samples
ct⋆ = (c, (ci)i∈[0,κID])←R Zm

q ×ZκID+1
q . Thus, A’s advantage in Game-7 is exactly zero. In particular,

Adv7(λ) = 0 holds.
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We show that Game-6 and Game-7 are statistically indistinguishable by proving that [Im|ēID⋆ +
ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤c̄ in the right hand side of (5) distributes statistically close to the
uniform distribution on Zm+κID+1

q .
At first, we consider the case when ID⋆ is revoked by T⋆. In this case, Amay receive ēID⋆ but does

not receive ēID⋆[0],T⋆ , . . . , ēID⋆[κID],T⋆ that distribute according to D
Λ
uID⋆[0]
q (A),σ

, . . . ,D
Λ
uID⋆[κID]
q (A),σ

,

respectively. Based on our choice of parameters, Lemma 3 ensures that H∞(DΛ⊥
uID⋆[i]

(A),σ) ≥

m − 1 for all but 2−Ω(n) fraction of A. Then, we apply the leftover hash lemma to conclude that
[Im|ēID⋆[0],T⋆ | · · · |ēID⋆[κID],T⋆ ]⊤c̄ distributes (κID + 1)

√
q/2m−1-close to the uniform distribution on

Zm+κID+1
q . Thus, [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤c̄ in the right hand side of (5) also

distributes (κID + 1)
√
q/2m−1-close to the uniform distribution on Zm+κID+1

q .
Next, we consider the case when ID⋆ is not revoked by T⋆. In this case, A does not receive

ēID⋆ but receives ēID⋆[j],T⋆ for only one i ∈ [0, κID]. By following the same discussion as above,

Lemma 3 ensures that [Im|ēID⋆ |ēID⋆[0],T⋆ | · · · |ēID⋆[j−1],T⋆ |ēID⋆[j+1],T⋆ | · · · |ēID⋆[κID],T⋆ ]⊤c̄ is distributed

uniformly at random in Zm+κID+1
q . Thus, [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤c̄ in the right

hand side of (5) also distributes (κID + 1)
√
q/2m−1-close to the uniform distribution on Zm+κID+1

q .

To summarize the above discussion, we have |Adv6(λ)−Adv7(λ)| ≤ 2−Ω(n)+(κID+1)
√
q/2m−1 ≤

2−Ω(n).

6 Security in the Quantum Random Oracle Model

In this section, we prove the security of our proposed RIBE scheme in the quantum random oracle
model (QROM). In advance, we review the basic of the quantum random oracle model in Section 6.1
and prove the security in Section 6.2.

6.1 Preliminaries on Quantum Random Oracle Model

Quantum Computation. Let |0⟩ := (1, 0)⊤ and |1⟩ := (0, 1)⊤ denote the state of 1 qubit. Let
|ψ⟩ =

∑
x∈{0,1}n αx|x⟩ ∈ C2n denote the state of n qubits, where αx ∈ C satisfying

∑
x∈{0,1}n |αx|2 =

1 and |x⟩ = |x1x2 · · ·xn⟩ = |x1⟩⊗ |x2⟩⊗ · · ·⊗ |xn⟩ for x1, x2, . . . , xn ∈ {0, 1} is an orthonormal basis
on C2n called the computational basis. If we measure the state |ψ⟩ in the computational basis, the
classical bit x ∈ {0, 1}n is observed with probability |αx|2 and the state becomes |x⟩.

An arbitrary evolution of quantum state from |ψ⟩ to |ψ′⟩ is described by a unitary matrix U ,
where |ψ′⟩ = U |ψ⟩. In short, a quantum algorithm is described by quantum evolutions that consist
of evolutions with unitary matrices and measurements. The running time Time(A) of a quantum
algorithm A is defined to be the number of universal gates and measurements required for running
A. If A is a quantum oracle algorithm, we assume that A runs in a unit time. Any efficient classical
computation can be achieved by a quantum computation efficiently. In particular, for any function
f that is classically computable, there exists a unitary matrix Uf such that Uf |x, y⟩ = |x, f(x)⊕y⟩,
and the number of universal gates to express Uf is linear in the size of a classical circuit that
computes f .

Quantum random oracle model. The notion of the QROM was introduced by Boneh et al.
[BDF+11] as an extension of the (classical) random oracle model (ROM) in a quantum world. As
the case of the ROM, the QROM is an idealized model, where a hash function is idealized to be
an oracle that simulates a random function. On the other hand, as opposed to the ROM, the hash
function in the QROM is a quantumly accessible oracle. In security proofs in the QROM, a random
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function H : X → Y is uniformly chosen at the beginning, and an adversary can make queries on a
quantum state

∑
x,y αx,y|x⟩|y⟩ to the oracle and receive

∑
x,y αx,y|x⟩|H(x)⊕ y⟩.

Let A|H⟩ denote a quantum algorithm that can quantumly access to the oracle |H⟩. Boneh et
al. [BDF+11] proved the following useful lemma to simulate the quantum random oracle.

Lemma 6. ([BDF+11].) Let A be a quantum algorithm that makes at most Q oracle queries, and X
and Y be arbitrary sets. Let H be a distribution over Func(X ,Y) such that when we take H←R H,
for each x ∈ X , H(x) is identically and independently distributed according to a distribution D
whose statistical distance is within ϵ from uniform. Then for any input z, we have

∆(A|RF⟩(z),A|H⟩(z)) ≤ 4Q2√ϵ

where RF←R Func(X ,Y) and H←R H.

Quantum-accessible Pseudorandom Function. We review the definition of quantum-
accessible pseudorandom functions (PRFs) [BDF+11].

Definition 3 (Quantum-accessible PRF). We say that a function F : K × X → Y is a quantum-
accessible pseudorandom function if for all quantum polynomial time adversaries A, its advantage
defined below is negligible:

AdvPRFA,F (λ) :=
∣∣∣Pr [A|RF⟩(1λ) = 1

]
− Pr

[
A|F (K,·)⟩(1λ) = 1

]∣∣∣
where RF←R Func(X ,Y) and K ←R K.

Zhandry [Zha12a] showed that there are some known constructions for quantum-accessible
PRFs [BPR12, GGM86]. On the other hand, their reductions are non-tight. In other words, if
we rely on the constructions, we cannot achieve tight security. In turn, we use the following lemma
which states that we can use a quantum random oracle as a PRF similarly to the classical case.

Lemma 7. ([SXY18, Lem. 2.2]) Let ℓ be an integer. Let H : {0, 1}ℓ × X → Y and H′ : X → Y be
two independent random functions. If an unbounded time quantum adversary A makes queries to
H at most QH times, then we have∣∣∣Pr[A|H⟩,|H(K,·)⟩(1λ) = 1 | K ← {0, 1}ℓ]− Pr[A|H⟩,|H′⟩(1λ) = 1]

∣∣∣ ≤ QH · 2
−ℓ+1

2 .

LWE Assumption relative to the QROM. We review the LWE assumption against adversaries
that can access to a quantum random oracle defined in [KYY18].

Definition 4 (Learning with Errors relative to the QROM). Let n, m, q and χ be the same as
in Definition 1, a and b be some positive integers. For a quantum polynomial time algorithm A,
the advantage for the learning with errors problem LWEn,m,q,χ of A relative to a quantum random
oracle is defined as follows:

Adv
LWEn,m,q,χ

A,QROa,b
(λ) :=

∣∣∣Pr [A|H⟩(A,A⊤s+ z
)
= 1

]
− Pr

[
A|H⟩

(
A,w + z

)
= 1

]∣∣∣
where A ←R Zn×m

q , s ←R Zn
q , w ←R Zm

q , z ← χm, H ←R Func({0, 1}a, {0, 1}b). We say that the

LWE assumption relative to an (a, b)-quantum random oracle holds if Adv
LWEn,m,q,χ

A,QROa,b
(λ) is negligible

for all quantum polynomial time algorithm A.
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If we assume the existence of a quantum-accessible PRF, the LWE assumption relative to the
QROM in Definition 4 is tightly reduced from the LWE assumption in Definition 1 as follows.

Lemma 8. Let F : K × {0, 1}a → {0, 1}b be a quantum-accessible PRF. For any n, m, q, χ, a, b
and a quantum polynomial time algorithm A making at most Q oracle queries, there exists quantum
polynomial time algorithms B and C such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) ≤ Adv

LWEn,m,q,χ

B (λ) + AdvPRFC,F (λ)

and Time(B) ≈ Time(A) +Q · TF and Time(C) ≈ Time(A), where TF denotes the time to evaluate
F .

6.2 Security

In this subsection, we prove the following theorem.

Theorem 2. If the LWEn,m,q,DZ,αq
assumption holds, our proposed RIBE scheme in Section 4

achieves adaptive-identity anonymity security in the quantum random oracle model. In particular,
for any quantum polynomial time adversary A making at most QH random oracle queries to |H⟩
and QID secret key generation queries, there exists a quantum polynomial time reduction algorithm
B making QH +QID +

∑
T∈T #kuT quantum random oracle queries such that

AdvRIBEΠ,A (λ) ≤ Adv
LWEn,m,q,DZ,αq

B,QROκID+κT+1,ℓ
+ (Q2

H +QID +
∑
T∈T

#kuT) · 2−Ω(λ)

and

Time(B) = Time(A) + (QH +QID +
∑
T∈T

#kuT) · poly(λ),

where ℓ denotes the length of randomness for SampleZ and
∑

T∈T #kuT denotes the number of key
update vectors eθj ,T created during the security game.

Proof of Theorem 2. The proof proceeds with a sequence of games.

Game-0. This is adaptive-identity anonymity security game. Specifically, the challenger C behaves
as follows:

• At the beginning of the game, C chooses a random function H : {0, 1}κID+κT+1 → Zn
q .

• Upon an adversary A’s quantum random oracle query on a state
∑

ID∥T,y αID∥T,y|(ID∥T)⟩|y⟩,
C returns

∑
ID∥T,y αID∥T,y|(ID∥T)⟩|H(ID∥T)⊕ y⟩.

• Upon A’s secret key generation query on ID, C runs eID ← SamplePre(A,uID,TA, σ).

• Upon A’s revoke & key update query on T, to create eθj ,T, C runs eθj ,T ←
SamplePre(A,uθj ,T,TA, σ).

• Upon A’s challenge query, C returns ct⋆ ← Enc(MPK, ID⋆,T⋆,M⋆) if coin = 0 and a uniformly
random element in Zm+κID+1

q if coin = 1.
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Throughout the proof, we use Advj(λ) to denote A’s advantage in Game-j.

Game-1. This is the same as Game-0 except the way C answers the quantum random ora-
cle queries. C first chooses a random function Ĥ ←R Func({0, 1}κID+κT+1, {0, 1}ℓ) and define
H : {0, 1}κID+κT+1 → Zn

q by H(ID∥T) := AēID,T, where ēID,T := SampleZ(σ; Ĥ(ID∥T)). Here,

SampleZ(σ; Ĥ(ID∥T)) denotes running SampleZ(σ) algorithm with a random coin Ĥ(ID∥T). If T = 0,
we may simply write uID and ēID.

By following the same argument in Game-1 of the proof of Theorem 1, uID and uID[i],T are
statistically close to uniform as in Game-0. Thus, Lemma 6 ensures that |Adv0(λ) − Adv1(λ)| ≤
2−Ω(n) + 4Q2

H ·
√
2−Ω(n) = Q2

H · 2−Ω(n).

Game-2. This is the same as Game-1 except the way C creates secret key vectors eID and key
update vectors eθj ,T. In particular, C does not use the master secret key TA to create them. When

C creates eID, it does not run the SamplePre algorithm but sets eID = ēID = SampleZ(σ; Ĥ(ID∥0))
which was created upon A’s quantum random oracle queries on (ID∥0). Similarly, when C creates
eθj ,T, it does not run the SamplePre algorithm but sets eθj ,T = ēθj ,T = SampleZ(σ; Ĥ(θj∥T)) which
was created upon A’s quantum random oracle queries on (θj∥T).

By following the same argument in Game-2 of the proof of Theorem 1, we have |Adv1(λ) −
Adv2(λ)| ≤ (QID +

∑
T∈T #kuT) · 2−Ω(n).

Game-3. This is the same as Game-2 except the way C creates a master public key A. In Game-3,
C does not run the TrapGen algorithm but samples a uniformly random matrix A←R Zn×m

q . Since
C did not use a master secret key TA to answer A’s queries in Game-2, it can answer all A’s queries
in the same way.

By following the same argument in Game-3 of the proof of Theorem 1, we have |Adv2(λ) −
Adv3(λ)| ≤ 2−Ω(n).

Game-4. This is the same as Game-3 except the way C creates a challenge ciphertext ct⋆ when
coin = 0. In Game-3, C samples s ←R Zn

q , x ← DZm,α′q, and xi ← DZ,α′q for i ∈ [0, κID], then
computes

c = A⊤s+ x, ci = (u⊤ID⋆ + u⊤ID⋆[i],T⋆)s+ xi +M⋆
⌊q
2

⌋
.

In Game-4, C samples s←R Zn
q , x̄← DZm,αq and computes

c̄ = A⊤s+ x̄. (6)

Then, C computes ēID⋆ = SampleZ(σ; Ĥ(ID⋆∥0)) and ēID⋆[i],T⋆ = SampleZ(σ; Ĥ(ID⋆[i]∥T⋆)) for i ∈
[0, κID]. C applies the noise rerandomization algorithm in Lemma 4 to obtain

[c∥c̄0∥ · · · ∥c̄κID
]← ReRand([Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ], c̄, αq,

α′

αq
). (7)

C sets

ci = c̄i +M⋆
⌊q
2

⌋
(8)

for i ∈ [0, κID] and outputs ct⋆ = (c, (ci)i∈[0,κID]).

By following the same argument in Game-2 of the proof of Theorem 1, we have |Adv3(λ) −
Adv4(λ)| ≤ 2−Ω(n).
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Game-5. This is the same as Game-4 except the way C creates c̄ of the equation (6) when coin = 0.
In Game-5, C sets c̄ = v + x, where v←R Zm

q and x← DZm,αq.

The LWEn,m,q,DZ,αq
assumption relative to a quantum random oracle Ĥ : {0, 1}κID+κT+1 → {0, 1}ℓ

ensures that Game-4 and Game-5 are computationally indistinguishable. In particular, for any
quantum PPT adversary A, there exists a quantum reduction algorithm B such that |Adv4(λ) −
Adv5(λ)| ≤ Adv

LWEn,m,q,DZ,αq

B .

Reduction from LWE. Given the LWEn,m,q,DZ,αq
instance (A,b), where b = A⊤s+x or b = v+x

and s ← Zn, x ← DZm,αq, v ← Zm, the reduction algorithm B gives MPK = A to A. Here, MPK
distributes in the same way as that in Game-4. To answer A’s quantum random oracle queries on
a state

∑
ID∥T,y αID∥T,y|(ID∥T)⟩|y⟩, B can answer A’s quantum random oracle queries to compute

H(ID∥T) = AēID,T, where ēID,T = SampleZ(σ; Ĥ(ID∥T)), by accessing their own quantum random

oracle Ĥ : {0, 1}κID+κT+1 → {0, 1}ℓ. B behaves in the same way as C in Game-4 upon A’s secret key
generation queries, secret key reveal queries, and revoke & key update queries. Upon A’s challenge
query, B behaves in the same way as C in Game-4 if coin = 1. If coin = 0, B sets

c̄ = b

in place of (1). The remaining procedures for computing ct⋆ = (c, (ci)i∈[0,κID]) are unchanged. After

B receives ĉoin from A, it outputs ĉoin.
If b = A⊤s+ x, where s←R Zn

q , x← DZm,αq, c̄ = A⊤s+ x follows the same distribution as in
Game-4. Otherwise, c̄ = v + x follows the same distribution as in Game-5. Thus, we complete the
reduction.

Game-6. This is the same as Game-5 except the way C computes [c∥c̄0∥ · · · ∥c̄κID
] of (7) when

coin = 0. In Game-6, C does not apply the noise re-randomization algorithm in Lemma 4 but
samples c̄←R Zm

q , x′ ← DZm+κID+1,α′q and computes

[c∥c̄0∥ · · · ∥c̄κID
] = [Im|ēID⋆ + ēID⋆[0],T⋆ | · · · |ēID⋆ + ēID⋆[κID],T⋆ ]⊤c̄+ x̄′. (9)

By following the same argument in Game-6 of the proof of Theorem 1, we have |Adv5(λ) −
Adv6(λ)| ≤ 2−Ω(n) holds.

Game-7. This is the same as Game-6 except the way C computes the challenge ciphertext ct⋆ =
(c, (ci)i∈[0,κID]) when coin = 0. In Game-7, regardless of the value coin ←R {0, 1}, C samples
ct⋆ = (c, (ci)i∈[0,κID])←R Zm

q ×ZκID+1
q . Thus, A’s advantage in Game-7 is exactly zero. In particular,

Adv7(λ) = 0 holds.

By following the same argument in Game-7 of the proof of Theorem 1, we have |Adv6(λ) −
Adv7(λ)| ≤ 2−Ω(n) + (κID + 1)

√
q/2m−1 ≤ 2−Ω(n).

7 Achieving (Bounded) Decryption Key Exposure Resistance

In this section, we briefly summarize the modification of our RIBE scheme for achieving the stronger
security requirement called (bounded) decryption key exposure resistance (DKER).
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7.1 RIBE with DKER

Seo and Emura [SE13] introduced a security notion called DKER. Compared with the security
definition in Section 3, RIBE with DKER has the following decryption key reveal queries:

Decryption Key Reveal Query: Until the challenge query, upon a query (ID,T) ∈ ID×T from
A, C checks

– If T ≤ Tcu holds.

– If ID /∈ RLT holds.

After the challenge query, C also checks

– If (ID,T) ̸= (ID⋆,T⋆) holds.

If the conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from SKList,
runs dkID,T ← GenDK(MPK, skID, kuT), and returns dkID,T to A.

To capture the additional queries, upon A’s challenge query, C also checks

• If T⋆ ≤ Tcu, A has not submitted (ID⋆,T⋆) as a decryption key reveal query.

The security of RIBE with DKER is strictly stronger than RIBE without DKER. Indeed, our
RIBE scheme in Section 4 has a concrete attack in the security model of RIBE with DKER. If
an adversary A does not revoke ID⋆ at a time period T⋆ and receives a key update eθd,T and a
decryption key dkID⋆,T = eID⋆ + eθd,T for the same T, it can retrieve ID⋆’s secret key by computing
dkID⋆,T − eθd,T = eID⋆ . Then, an adversary can compute a decryption key dkID⋆,T⋆ = eID⋆ + eθd,T⋆

by using the retrieved secret key eID⋆ and the broadcast key update eθd,T⋆ .
Nevertheless, we can transform our RIBE scheme to satisfy DKER. Katsumata et al. [KMT19]

proved that we can obtain RIBE with DKER by combining RIBE without DKER and 2-level
HIBE scheme. Thus, we can obtain a RIBE scheme with DKER by combining our RIBE scheme
in Section 4 and adaptively secure lattice-based HIBE schemes in the QROM [ABB10a, ABB10b,
Zha12b]. A point to note is that this transformation sacrifices two benefits of our RIBE scheme.
At first, the transformation sacrifices anonymity. However, the fact is not very pessimistic since
all known RIBE schemes with DKER do not satisfy anonymity. Next, since all known adaptively
secure lattice-based HIBE schemes in the QROM [ABB10a, ABB10b, Zha12b] suffer from loose
reduction, we have to sacrifice the tight reduction.

7.2 Anonymous RIBE with Bounded DKER

Takayasu and Watanabe [TW17] formalized bounded DKER which is a weaker security notion than
the above full DKER. The main difference between the security definition with bounded DKER
and full DKER is that there is a-priori bounded number Q and an adversary A is allowed to make
decryption key queries at most Q times on ID⋆. Compared with the security definition in Section 3,
RIBE with bounded DKER has the following decryption key reveal queries:

Decryption Key Reveal Query: Until the challenge query, upon a query (ID,T) ∈ ID×T from
A, C checks

– If T ≤ Tcu holds.

– If ID /∈ RLT holds.

After the challenge query, C also checks

– If (ID,T) ̸= (ID⋆,T⋆) holds.

– If Tcu ≥ T⋆ and dkID⋆,T has been revealed to A Q times by the decryption key reveal
queries, ID ̸= ID⋆.
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If the conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from SKList,
runs dkID,T ← GenDK(MPK, skID, kuT), and returns dkID,T to A.

To capture the additional queries, there are two modifications. At first, upon A’s revoke & key
update query, after the challenge query C also checks that

• If Tcu = T⋆ − 1 and dkID⋆,T has been revealed to A Q times by the decryption key reveal
queries, then ID⋆ ∈ RL.

Next, upon A’s challenge query, C also checks that

• If T⋆ ≤ Tcu, A has not submitted (ID⋆,T⋆) as a decryption key reveal query.

• If T⋆ ≤ Tcu and dkID⋆,T has been revealed to A more than Q times, then ID⋆ ∈ RLT⋆ .

As we discussed above, bounded DKER itself is a weaker security notion than full DKER. In
contrast, the benefit of bounded DKER is that there are anonymous RIBE schemes with bounded
DKER [TW17, TW21] although there are no anonymous RIBE schemes with full DKER. The
constructions [TW17, TW21] make use of cover free families (CFF) [TW17, TW21]. Thus, we also
apply CFF to our RIBE scheme in Section 4 and transform the scheme to satisfy bounded DKER
without sacrificing anonymity. Although Takayasu and Watanabe’s anonymous RIBE scheme with
bounded DKER under the LWE assumption does not satisfy adaptive security, our scheme in the
QROM achieves adaptive security.

Cover Free Family. We use the following result of CFF in our construction.

Definition 5 (Cover Free Families [EFF85]). Let a, t,Q be positive integers, and F := {Fµ}µ∈[a] be
a family of subsets of [t], where |Fµ| = w for all µ ∈ [a]. F is said to be w-uniform Q-cover-free if

it holds that
⋃Q

j=1Fij ̸⊃ FiQ+1 for any Fi1 ,Fi2 , . . . ,FiQ+1 ∈ F such that Fik ̸= Fiℓ for any distinct
k, ℓ ∈ [Q+ 1].

Lemma 9 ([KRS99]). There is a deterministic polynomial time algorithm CFF.Gen that, on input
of positive integers a and Q, returns d ∈ N and a family F = {Fµ}µ∈[a], such that F is Q-cover
free over [d] and w-uniform, where t ≤ 16Q2 log a and w = d/4Q.

Construction. Let H : {0, 1}(κID+log t+κT+1) → Zn
q be a hash function that will be modeled as a

quantum random oracle.

Setup(1n)→ (MPK,MSK): Run (A,TA)← TrapGen(1n, 1m, q) and output MPK := A and MSK :=
TA.

Enc(MPK, ID,T,M)→ ctID,T: Sample a uniformly random vector s ←R Zn
q . Sample a random

vector x ← DZm,α′q and random integers xi ← DZ,α′q for i ∈ [0, κID] from discrete Gaussian
distributions. Set uID,k := H(ID∥k∥0) for k ∈ FT and uID[i],T := H(ID[i]∥0∥T) for all i ∈
[0, κID]. Compute

c = A⊤s+ x, ci =

∑
k∈FT

u⊤ID,k + u⊤ID[i],T

 s+ xi +M
⌊q
2

⌋
for i ∈ [0, κID]

and output ctID,T := (c, (ci)i∈[0,κID]) ∈ Zm
q × ZκID+1

q .

GenSK(MPK,MSK, ID)→ skID: Run

eID,k ← SamplePre(A,uID,k,TA, σ) for k ∈ [t]

and output skID := (eID,k)k∈[t].
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KeyUp(MPK,T, skID,RLT)→ kuT: Run the KUNode algorithm to obtain a set of nodes KUT. For
every θj ∈ KUT, run

eθj ,T ← SamplePre(A,uθj ,T,TA, σ)

and outputs kuT := (eθj ,T)θj∈KUT
.

GenDK(MPK, skID, kuT)→ dkID,T or ⊥: Find a node ID[d] ∈ KUT for some d ∈ [0, κID]. If it does
not exist, output ⊥. Otherwise, output dkID,T := dID,T :=

∑
k∈FT

eID,k + eID[d],T.

Dec(MPK, dkID,T, ctID,T)→ M: Let d ∈ [0, κID] be a number such that ID[d] ∈ KUT. Compute
c′ = cd − c⊤dID,T ∈ Zq and output 0 if c′ is closer to 0 than ⌊ q2⌋. Otherwise, output 1.

Correctness. Thanks to the property of the KUNode algorithm, a non-revoked user can derive a
valid decryption key dID,T =

∑
k∈FT

eID,k + eID[d],T. Observe that

c′ = cd − c⊤dID,T

=

∑
k∈FT

u⊤ID,k + u⊤ID[d],T

 s+ xd +M
⌊q
2

⌋
− (A⊤s+ x)⊤

∑
k∈FT

eID,k + eID[d],T


= M

⌊q
2

⌋
+ xd − x⊤

∑
k∈FT

eID,k + eID[d],T


︸ ︷︷ ︸

error term

.

Here, we use the fact that

AeID,k = uID,k and AeID[d],T = uID[d],T

hold since eID,k ∈ Λ⊥uID,k
(A) and eθj ,T ∈ Λ⊥uID[d],T

(A) hold by construction. The decryption succeeds

if the absolute value of the error term xd − x⊤
(∑

k∈FT
eID,k + eID[d],T

)
is smaller than q/4. By

Lemma 5, the distributions of eID,k and eID[d],T sampled by the SamplePre algorithm are 2−Ω(n)-
statistically close to DΛ⊥

uID,k
(A),σ and DΛ⊥

uID[d],T
(A),σ, respectively. Therefore, by Lemma 2, ∥eID,k∥ ≤

σ
√
m and ∥eID[d],T∥ ≤ σ

√
m hold. Similarly, by Lemma 2, |xd| ≤ α′q and ∥x∥ ≤ α′q

√
m also hold.

Thus, the absolute value of the error term is bounded by

|xd − x⊤(
∑
k∈FT

eID,k + eID[d],T)| ≤ |xd|+ ∥x∥ · (
∑
k∈FT

∥eID,k∥+ ∥eID[d],T∥)

≤ (w + 2)α′qσm.

We will set the parameters as specified below so that the upper bound is less than q/4.

Parameter Selection. We set the parameters of the scheme to satisfy the following conditions:

• The absolute value of the error term is less than q/4 (i.e., (w + 2)α′qσm < q/4).

• TrapGen works correctly (i.e., m > 3n log q).

• SamplePre and SampleZ(σ) works correctly (i.e., σ > ∥TA∥GS ·
√

log(2m+ 4)/π =
O(
√
n logm log q)).
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• σ is sufficiently large to apply Lemmas 1–3 (i.e., σ >
√
n+ logm, 16

√
log 2m/π).

• ReRand works correctly (i.e., α′/2α >
√
n(σ2m+ 1)).

• LWE is hard (i.e., αq ≥ 2
√
n).

To satisfy all the requirements, we can set the parameters as follows:

m = n1+δ, q = 10wn3.5+4δ, σ = n0.5+δ,

α′q = n2+2δ, αq = 2
√
n,

where δ > 0 can be set an arbitrarily small constant.

Security. A proof of the security is almost the same as those of Theorems 1 and 2. The only
difference is the analysis of Game-7 since the equation (5) is replaced by

[c∥c̄0∥ · · · ∥c̄κID
] = [Im|

∑
k∈FT

ēID⋆,k + ēID⋆[0],T⋆ | · · · |
∑
k∈FT

ēID⋆,k + ēID⋆[κID],T⋆ ]⊤c̄+ x̄′.

Even when an adversary A obtains at most Q decryption keys dkID⋆,T for T ̸= T⋆, CFF en-
sure that there is at least one index k⋆ ∈ [t], where ēID⋆,k⋆ is not revealed to A. Thus,
as [Im|ēID⋆ |ēID⋆[0],T⋆ | · · · |ēID⋆[j−1],T⋆ |ēID⋆[j+1],T⋆ | · · · |ēID⋆[κID],T⋆ ]⊤c̄ is distributed uniformly at ran-
dom in Zm+κID+1 in the proofs of Theorems 1 and 2, [Im|

∑
k∈FT

ēID⋆,k|ēID⋆[0],T⋆ | · · · |ēID⋆[j−1],T⋆ |
ēID⋆[j+1],T⋆ | · · · |ēID⋆[κID],T⋆ ]⊤c̄ is distributed uniformly at random in Zm+κID+1.
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[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory
Comput. Syst., 48(3):535–553, 2011.

25
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