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Abstract

Cleve’s celebrated lower bound (STOC’86) showed that a de facto strong fairness notion is
impossible in 2-party coin toss, i.e., the corrupt party always has a strategy of biasing the honest
party’s outcome by a noticeable amount. Nonetheless, Blum’s famous coin-tossing protocol
(CRYPTO’81) achieves a strictly weaker “game-theoretic” notion of fairness — specifically, it
is a 2-party coin toss protocol in which neither party can bias the outcome towards its own
preference; and thus the honest protocol forms a Nash equilibrium in which neither party would
want to deviate. Surprisingly, an n-party analog of Blum’s famous coin toss protocol was not
studied till recently. The work by Chung et al. (TCC’18) was the first to explore the feasibility
of game-theoretically fair n-party coin toss in the presence of corrupt majority. We may assume
that each party has a publicly stated preference for either the bit 0 or 1, and if the outcome
agrees with the party’s preference, it obtains utility 1; else it obtains nothing.

A natural game-theoretic formulation is to require that the honest protocol form a coalition-
resistant Nash equilibrium, i.e., no coalition should have incentive to deviate from the honest
behavior. Chung et al. phrased this game-theoretic notion as “cooperative-strategy-proofness”
or “CSP-fairness” for short. Unfortunately, Chung et al. showed that under (n− 1)-sized coali-
tions, it is impossible to design such a CSP-fair coin toss protocol, unless all parties except one
prefer the same bit.

In this paper, we show that the impossibility of Chung et al. is in fact not as broad as it may
seem. When coalitions are majority but not n−1 in size, we can indeed get feasibility results in
some meaningful parameter regimes. We give a complete characterization of the regime in which
CSP-fair coin toss is possible, by providing a matching upper- and lower-bound. Our complete
characterization theorem also shows that the mathematical structure of game-theoretic fairness
is starkly different from the de facto strong fairness notion in the multi-party computation
literature.

∗The author ordering is randomized
†kew2@andrew.cmu.edu
‡gilad.asharov@biu.ac.il
§runting@gmail.com



Contents

1 Introduction 2
1.1 Our Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical Overview 5
2.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Definitions 13

4 Upper Bound 14
4.1 Our Final Protocol for Malicious Coalitions . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Maliciously Secure HalfTossb Sub-Protocol . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Final Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Lower Bound 19
5.1 Parameter Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Constraint System Implies the Lone-Wolf, Wolf-Minion, and T2-Equality Conditions 19
5.3 Minimizing t Subject to Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Complete Characterization of Maximin Fairness 22
6.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Visualization of the Resilience Parameter 28

B Preliminaries: Multi-Party Computation with Identifiable Abort 28

C Deferred Proofs for the Upper Bound (Section 4) 30
C.1 Properties of the HalfTossb Protocol (Protocol 4.1) . . . . . . . . . . . . . . . . . . . 30
C.2 Constraints (C1∗), (C2∗), and (C3∗) Imply CSP Fairness . . . . . . . . . . . . . . . . 31
C.3 Maximizing t Subject to the Constraint System . . . . . . . . . . . . . . . . . . . . . 32
C.4 Tolerating One More Corruption when n0 = n1 = odd . . . . . . . . . . . . . . . . . 34

D Deferred Proofs for the Lower Bound (Section 5) 34
D.1 Proof of Lemma 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
D.2 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E Deferred Proofs for Maximin Fairness (Section 6) 42
E.1 Formal Proof of Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
E.2 Formal Proof of Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



1 Introduction

Coin toss protocols, first proposed by Blum [Blu81], are at the heart of cryptography and distributed
computing. Imagine that Murphy and Mopey simultaneously solve the same long-standing open
problem in cryptography, and they both submit a paper with identical results to EUROCRYPT’22.
The program committee of EUROCRYPT’22 decide to recommend Murphy and Mopey to merge
their papers. Now, Murphy and Mopey want to toss a coin to elect one of them to present the
result at EUROCRYPT’22. How can Murphy and Mopey accomplish this task remotely? Clearly,
we can use Blum’s coin toss protocol. Murphy and Mopey each commit to a random bit, and
post the commitment to a public bulletin board (e.g., a blockchain). They then each open their
commitments. If the XOR of the two opened bits is 1, Murphy wins; else, Mopey wins. If either
player aborts any time during the protocol or does not provide a valid opening for its commit-
ment, it automatically forfeits and the other player wins. Although not explicitly stated in his
ground-breaking paper [Blu81], Blum’s protocol actually achieves a natural, game-theoretic notion
of fairness. Since both players want to get elected, we may assume that the winner obtains utility
1, and the loser obtains utility 0. Observe that a rational player who aims to maximize its utility
has no incentive to deviate from the honest protocol. Any deviation (including aborting or opening
the commitment wrongly) would cause it to lose.

Although this game-theoretic notion of fairness is very natural, it seems to have been overlooked
in the subsequent long line of work on multi-party computation (MPC) [Yao82, Yao86, GMW87].
Specifically, the MPC line of work instead switched to considering a strictly stronger notion of
fairness henceforth called unbiasability. Unbiasability requires that an adversary controlling a
corrupt coalition cannot bias the outcome of the coin toss whatsoever. Blum’s protocol actually
does not satisfy this strong, unbiasability notion: a player can indeed bias the outcome in Blum’s
protocol, although the bias would never be in its own favor. This unbiasability notion has been
thoroughly explored in the cryptography literature. It is well-known that in general, if the majority
of the players are honest, then unbiasability is indeed attainable [GMW87,BGW88,CCD88,RB89].
On the other hand, the celebrated lower bound of Cleve [Cle86] shows that if half or more of the
players are corrupt, unbiasability is impossible — in particular, this lower bound applies to the
two-party case where one party can be corrupt.

Despite Cleve’s lower bound, the fact that Blum’s protocol can achieve meaningful fairness in the
two-party case is thought provoking. A natural question arises: can we achieve game-theoretically
fair coin toss in the multi-party setting in the presence of a majority coalition? Somewhat surpris-
ingly, this question was not explored till the very recent work of Chung et al. [CGL+18].

Imagine that each player has a publicly stated preference for either the bit 0 or 1. If the coin
toss outcome agrees with the player’s preference, it obtains utility 1; else it obtains nothing. This
formulation can have interesting applications. For example, imagine that n parties in a blockchain
protocol want to jointly elect a random block proposer among two possible candidates, and users
have different preferences among the two depending on which one they are geographically closer
to. Another example is where n investors who have invested money into a crowd-funding smart
contract want to randomly choose a kick-starter to fund among two candidates, and each player
may have a different preference in mind.

In many applications, the preference profiles are public. For example, suppose some blockchain
community wants to randomly choose among two governance proposals. Here, the voters are
public figures/community leaders whose affiliations, opinions, and past forum posts are known. In
general, when the voters’ identities/reputations are publicly known and identities do not come for
free, voters’ preferences are usually public. Another example is games where players must put in
stake to play. For example, suppose n players play binary roulette on a blockchain. Here, their
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preferences are made explicit by their public bets which they cannot lie about.
Chung et al. suggested the following natural formulations of game theoretic fairness for multi-

party coin toss, both of which would equate to Blum’s notion in the 2-party special case:

• CSP-fairness: Cooperative-strategy-proofness (or “CSP-fairness” for short) requires that no
coalition can increase its own expected utility, no matter how it deviates from the prescribed
protocol. In this way, the honest protocol forms a coalition-resistant Nash equilibrium, and
no profit-seeking coalition of players would be incentivized to deviate from this equilibrium.

• Maximin fairness: Another natural notion is called maximin fairness, which requires that
no coalition can harm any honest party (no matter how the coalition deviates from the
prescribed protocol). More precisely, for any (computational) strategy adopted by a coalition
of players, the expected utility of any honest party is at most negligibly apart from its utility in
an all-honest execution. As motivated by Chung et al. [CGL+18], maximin fairness guarantees
that no coalition aiming to monopolize the eco-system by harming and driving away small
individual players has incentives to deviate; moreover, no defensive individual aiming to
protect itself in the worst-case scenario has incentives to deviate.

Unfortunately, Chung et al. [CGL+18] showed very broad lower bounds which seem to crush
our original hope of using game-theoretic fairness to circumvent Cleve’s impossibility [Cle86] in the
corrupt majority setting. Specifically, Chung et al. proved that unless all parties except a single
one all have the same preference, it would be impossible to realize either CSP-fair coin toss or
maximin-fair coin toss.

1.1 Our Results and Contributions

It may seem that Chung et al.’s results have put a pessimistic closure to this direction. However,
upon more careful examination, their lower bound proofs implicitly assume that all but one parties
can be corrupt and form a coalition. It is not immediately clear whether the impossibility would
still hold if majority but not n− 1 parties are corrupt. We therefore revisit the question originally
posed by Chung et al., i.e., whether one can rely on game-theoretic fairness to overcome Cleve’s
impossibility for coin toss protocols in the corrupt majority setting. Specifically, we focus on the
following refinement of the question:

Can we achieve game-theoretically fair coin toss under for majority but not necessarily (n− 1)-
sized coalitions?

In this paper, we give a complete characterization of the landscape of game-theoretically fair
coin toss, including for the CSP-fair and the maximin-fair notions. At a very high level, we show
the following results:

• For CSP-fairness, the pessimistic view of Chung et al. [CGL+18] poorly reflects the actual state
of affairs. In contrast, we show that under a broad range of parameter regimes, CSP-fairness is
possible in the presence of a majority coalition; moreover, we give a complete characterization
of the parameter regimes under which CSP-fairness is possible.

• For maximin-fairness, we show that the pessimistic view of Chung et al. indeed applies quite
broadly. Roughly speaking, we show that except for the cases when all parties but one prefer the
same outcome, or when exactly half of the players are corrupt, maximin-fairness is impossible
to attain. We fully characterize maximin fairness as well.
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Note that in cases when there is an honest individual with an opposite preference as the coalition,
maximin-fairness would directly imply CSP-fairness. This partly explains why maximin-fairness is
harder to attain than CSP-fairness.

Our work sheds new light on the intriguing mathematical structure of game-theoretic fairness,
which differs fundamentally from the mathematical structure of the de facto unbiasability notion
that is widely adopted in the cryptography literature. Since coin toss protocols [Blu81] have been
the cornerstone of the long line of work on multi-party computation protocols, we hope that our
work can inspire future work in the exciting space of “game theory meets multi-party protocols”
in general. We now give more formal statements of our results.

CSP fairness. For CSP fairness, we design a new protocol and explore for which range of pa-
rameters the upper bound holds. In addition, we generalize the lower bound proof of Chung et
al. [CGL+18], and give a precise range of parameters in which impossibility holds. Our upper- and
lower-bounds tightly match in their stated parameter regimes. Therefore, our two main results
jointly provide a complete characterization of CSP fairness. It is also worth noting that our upper
bound holds in the presence of a malicious coalition that may deviate from the prescribed protocol
arbitrarily to increase its own gain; whereas our lower bound holds for a fail-stop coalition whose
only possible deviation is to have some of its players abort from the protocol. This makes both the
upper- and lower-bound results stronger.

Our results can be summarized with the following theorem statements — below, let n0 be the
number of players that prefer 0 (also called 0-supporters), and let n1 be the number of players
that prefer 1 (also called 1-supporters). Throughout the paper, without loss of generality, we
may assume that n1 ≥ n0 ≥ 1 since the other direction is symmetric. Additionally, we assume
n0 + n1 > 2, since for 2-parties, we can just run Blum’s coin toss.

Theorem 1.1 (Upper bound). Assume the existence of Oblivious Transfer (OT), and without loss
of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2. There exists a CSP-fair coin toss protocol
which tolerates up to t-sized non-uniform p.p.t. coalitions where

t :=


n1 − b1

2n0c, if n1 ≥ 5
2n0;

b2
3n1 − 1

6n0c+ d1
2n0e+ 1 = n1 + 1, if n1 = n0 = odd;

b2
3n1 − 1

6n0c+ d1
2n0e, otherwise.

(1)

Our upper bound holds even when the coalition may deviate arbitrarily from the prescribed protocol
to increase its gain.

Theorem 1.2 (Lower bound). Without loss of generality, assume that n1 ≥ n0 ≥ 1 and n0+n1 > 2.
There does not exist a CSP-fair n-party coin toss which tolerates coalitions of size t+ 1 or greater
where t is same as Eq. (1).

Further, this lower bound holds even for fail-stop coalitions whose only possible deviations are
aborting from the honest protocol, and it holds even allowing computational hardness assumptions
and restricting the coalition to be computationally bounded.

Previously, the work of [CGL+18] shows possibility only for the case where where n0 = 1 or
n1 = 1 and t = n0 + n1 − 1. Moreover, it showed that it is impossible to tolerate n0 + n1 − 1
corruptions only for the case where both n0, n1 ≥ 2 (i.e., there are at least two parties among the
set of 0-supporters and at least two parties among the set of 1-supporters).

Observe that the optimal resilience parameter t (specified in Eq. (1)) is a function of n0 and n1.
Intriguingly, its dependence as a function of n0 and n1 changes when n1 = 5

2n0. This intriguing
phase transition partly suggests that the mathematical structure of game theoretic fairness is starkly
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different the classical notion of unbiasability. The reason for this phase transition is related to the
concrete techniques we adopt to prove our theorems. We will explain why this phase transition
occurs as we describe our protocol to help the reader gain intuition (see Remark 2.4 of Section 2.1
for more explanations). Note also that the transition has a continuous boundary, i.e., at exactly
n1 = 5

2n0, the two expressions n1 − b1
2n0c and b2

3n1 − 1
6n0c+ d1

2n0e are equal (to 2n0).

Maximin fairness. The work of [CGL+18] shows that maximin fairness is possible against t ≤
n−1 corruptions only when all but one of the parties are interested in the same outcome. We next
show that this is essentially the only interesting setting which does not behave as in the crypto
settings. We show that even when allowing a more liberate security threshold, we cannot push the
barriers much further than relying on an honest majority. We show the following possibility and
its complementary impossibility result:

Theorem 1.3. Without loss of generality, assume that the number of 1-supporters n1 is at least
the number of 0-supporters, n0, and assume that n0 + n1 > 2. Then:

• For n0 ≥ 2, there does not exist a maximin-fair n-party coin toss protocol which tolerates
more than d1

2(n0+n1)e number of fail-stop adversaries. Moreover, there exists a (statistically-
secure) maximin-fair n-party coin toss protocol which tolerates up to d1

2(n0+n1)e−1 malicious
corruptions.

• For the special case where n0 = 1, we show that there does not exist a maximin-fair n party
coin toss protocol which tolerates more than d1

2n1e + 1 number of (semi-malicious) players.
Assuming Oblivious Transfer, there exists a maximin fair-coin tossing protocol tolerating up
to d1

2n1e malicious corruptions.

Public verifiability. Our positive results are achieved in a model that allowed public verifiability.
In particular, the output of the protocol can be computed from messages that were sent over the
broadcast medium (e.g., a public blockchain), and therefore also external observers, i.e., parties
that do not take part of the computation, can also learn the output. Such public verifiability is
often needed in blockchain and decentralized smart contract applications.

2 Technical Overview

This technical overview focuses on the complete characterization of CSP-fairness. In Section 2.1
we discuss the underlying techniques of our upper bound, and in Section 2.2 we present ideas of
our lower bound. Intuition for Maximin fairness can be found in the body of the paper (Section 6).

2.1 Upper Bound

Glimpse of Hope. In light of the pessimistic view of Chung et al. [CGL+18], we start with a
relatively simple protocol that gives us a glimpse of hope. As a special case, consider the scenario
when n0 = n1 = 2 — recall that for b ∈ {0, 1}, nb denotes the number of players that prefer b (also
called b-supporters). In this case, the following protocol achieves CSP-fairness against any coalition
of at most 2 players. Imagine that we elect one 0-supporter and one 1-supporter arbitrarily as two
representatives each preferring 0 and 1, respectively. We now have the two representatives duel
with each other using Blum’s coin toss, where if the b-supporter aborts then the protocol outputs
1− b for b ∈ {0, 1}. A simple argument proves that this protocol satisfies CSP-fairness:
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• If a coalition controls only 1 player, it makes no sense to deviate whether or not the corrupt
player is elected representative.

• If the coalition controls 2 players with opposing preferences, then the coalition is indifferent to
the outcome and has no incentive to deviate.

• Finally, if the coalition controls 2 players with the same preference, then one of the two will be
elected as representative, and the representative should not have incentive to deviate (whereas
the non-representative’s behavior has no influence to the outcome).

This very simple teaser already shows that Chung et al. [CGL+18]’s impossibility proof does
not hold when there is no (n−1)-sized coalition. Moreover, it also shows that this notion is weaker
than cryptographic fairness, as there is no honest majority and still there is a possibility result.
Therefore, the next natural question is to characterize the exact conditions under which we can
achieve feasibility.

Warmup Protocol for a Semi-Malicious Coalition

Unfortunately, the approach taken by the above teaser protocol for n0 = n1 = 2 does not easily
generalize to larger choices of n0 and n1. We next give a warmup protocol that is somewhat more
sophisticated, but it suggests a more general paradigm which inspires our final upper bound result.
Chung et al. [CGL+18] gave a protocol against a coalition of size up to n1 players for n0 = 1,
thus we only consider n0 ≥ 2 in our construction. For simplicity, we start with the semi-malicious
model [AJL+12], i.e., the coalition is restricted to the following two types of deviations:

1. It can abort from the protocol in some round, after looking at the honest messages of that round.
Moreover, once a player has aborted, it stops participating from that point on.

2. The coalition can choose its random coins to be used in each round after inspecting the honest
messages of that round.

Besides these two possible deviations, the coalition would otherwise follow the protocol faithfully.

The HalfToss sub-protocol. Consider the following sub-protocol called HalfTossb[k] where b ∈
{0, 1}, and k is a threshold parameter whose purpose will become clear shortly. At a very high
level, the sub-protocol chooses a random coin for the group of players that invoke this sub-protocol.
Later on, this HalfTossb protocol will be executed twice: first among the 0-supporters and all the
1-supporters act as silent observers; and then among the 1-supporters where the 0-supporters act
as silent observers. We use HalfToss0 and HalfToss1 to distinguish the two instances. Henceforth,
let Pb ⊂ [n] denote the set of b supporters for b ∈ {0, 1}.

The final coin would be the XOR of the coins of the two groups. Thus, the overall idea is
similar to the protocol of four parties described in the beginning of the section: Instead of having
two representatives (one for the 0-supporters and one for the 1-supporters) and run Blum’s protocol
among the two representatives, we let the 0-supporters to jointly choose a coin, the 1-supporters to
toss their own coin, and then compute the XOR of the two coins. Instead of using a commitment
scheme as in Blum protocol, the parties will use secret sharing. Yet, we will carefully define
parameters (such as the threshold of the secret sharing scheme) to implement the above idea, and
will analyze which parameters lead to optimal resilience.

Protocol 2.1: HalfTossb[k] sub-protocol (semi-malicious version)

Sharing phase.
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1. Each b-supporter i ∈ Pb chooses a random bit coini
$←{0, 1}. It then uses (k + 1)-out-of-

nb Shamir secret sharing1 to split the coin coini into nb shares, denoted {[coini]j}j∈Pb
,

respectively. Player i then sends [coini]j to each player j ∈ Pb over a private channel.

2. If a b-supporter has not aborted, post a heartbeat message to the broadcast channel. At
this moment, the active set Ob is defined to be the set of all b-supporters that indeed posted
a heartbeat to the broadcast channel. Each player i ∈ [Pb] computes si := ⊕j∈Ob

[coinj ]i
where [coinj ]i is the share player i has received from player j.

Reconstruction phase.

1. Every b-supporter i ∈ Pb posts the reconstruction message (i, si) to the broadcast channel.

2. If at least k + 1 number of b-supporters posted a reconstruction message, then reconstruct
the final secret s using Shamir secret sharing. Specifically, interpret each reconstruction
message of the form (j, sj) as jointly defining some polynomial f such that f(j) = sj and
the reconstructed secret s := f(0). Output s.

3. Else if fewer than k+ 1 number of b-supporters posted a reconstruction message, output ⊥.

Properties of the HalfToss sub-protocol. The HalfTossb[k] sub-protocol satisfies the following
properties:

• Binding. The sharing phase uniquely defines a secret s, such that the reconstruction phase either
succeeds and outputs s, or it fails and outputs ⊥.

• Knowledge threshold. If at least k + 1 number of b-supporters are corrupt, then the coalition
can control the outcome of the coin toss. Specifically, during the sharing phase, the coalition
will know the coini value for every honest i, and thus it can choose the coalition’s coin values
accordingly to program the outcome to its own liking.

On the other hand, if at most k number of b-supporters are corrupt, then the coin value s that
the sharing phase binds to is uniform and independent of the coalition’s view in the sharing
phase (i.e., the coalition is completely unaware of this random coin value).

• Liveness threshold. If the coalition controls at least n− k number of b-supporters, it can cause
the reconstruction to fail and output ⊥.

On the other hand, if the coalition controls fewer than n − k number of b-supporters, then the
reconstruction phase must succeed.

Our warmup protocol. Our warmup protocol makes use of two instances of the HalfTossb sub-
protocol among the 0-supporters and 1-supporters, respectively. The two instances are parametrized
with the thresholds k0 and k1 — we shall first describe the protocol leaving k0 and k1 unspecified,
we then explain how to choose k0 and k1 to get CSP fairness.

Protocol 2.2: Warmup protocol with semi-malicious security

Sharing phase.

1. (0-supporters participate, 1-supporters observe). Run the sharing phase of HalfToss0[k0].

2. (1-supporters participate, 0-supporters observe). Run the sharing phase of HalfToss1[k1].

1For concreteness, in (k + 1)-out-of-n secret sharing, a subset of k parties learn nothing about the secret while
each subset of k + 1 can reconstruct the secret.
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Reconstruction phase.

1. (0-supporters participate, 1-supporters observe). Run the reconstruction phase of
HalfToss0[k0], and let its outcome be s0 if reconstruction is successful. In case the re-
construction outputs ⊥, then let s0 := 0.

2. (1-supporters participate, 0-supporters observe). Run the reconstruction phase of
HalfToss1[k1]. If the reconstruction phase outputs ⊥, then output 0 as the final coin value.
Else let s1 be the reconstructed value, and output s0 + s1 as the final coin value.

Some intuition about the asymmetry. What is most intriguing about the above protocol is
the asymmetry between the 0-supporters and 1-supporters. In particular, if the reconstruction of
the 0-supporters’ coin s0 fails, we set s0 = 0, and as long as the 1-supporters’ coins successfully
reconstruct, the final outcome will be s0 ⊕ s1. However, if the reconstruction of the 1-supporters’
coin s1 fails, the entire protocol simply outputs 0. At a very high level, one helpful intuition is
the following: suppose that there are more 1-supporters than 0-supporters. Then, if the coalition
can fail the reconstruction of s1, it must control so many 1-supporters such that the coalition must
prefer 1 (see also condition C3 later). In other words, our protocol makes sure that a coalition who
have the capability to potentially abort the reconstruction of s1 should never have the incentive
to actually let it fail. This intuitive condition alone, however, is not enough to make the protocol
fully work — below we precisely charcterize the conditions that are necessary to make the protocol
work.

Choosing the thresholds k0 and k1. Suppose we want to have a CSP-fair protocol for coalitions
of size at most t. Let t0 and t1 denote the number of corrupted 0-supporters and 1-supporters,
respectively. Our idea is to choose the thresholds k0 and k1 in light of n0, n1, and t, such that
the following conditions are satisfied (and recall that we assume without loss of generality that
n1 ≥ n0):

(C1) The coalition cannot control both coin values s0 and s1. That is, for either b ∈ {0, 1}, if the
coalition controls at least kb + 1 number of b-supporters, then because it is subject to the
corruption budget t, the coalition must control at most k1−b number of (1 − b)-supporters,
such that the coin value s1−b is uniform and independent of the coalition’s view at the end
of the sharing phase.

(C2) If the coalition can control the s1 coin, i.e., it controls at least k1 + 1 number of 1-supporters,
then it cannot hamper the reconstruction of the coin s0 due to the corruption budget. That
is, the coalition must control at most n0 − k0 − 1 number of 0-supporters.

(C3) If the coalition controls at least n1 − k1 number of 1-supporters such that it can cause the
reconstruction of s1 to fail, then the coalition must prefer 1 or is indifferent to the outcome.
In other words, denoting by tb the number of corrupted b-supporters and letting t1 ≥ n1− k1

then we have two cases: (a) if n1 − k1 ≥ n0, then this implies that the coalition prefers 1
(since t0 ≤ n0 ≤ n1 − k1 ≤ t1) and there is no new constraint; otherwise (b) if n1 − k1 < n0,
then we simply require that t ≤ 2t1. This implies that t0 ≤ t1 (and the coalition prefers 1 or
is indifferent) since t = t0 + t1.

If parameters k0, k1, t satisfy the following constraints, then they satisfy the above conditions.
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Parameter Constraints 2.3 (semi-malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1

(C1) t ≤ k0 + k1 + 1,

(C2) t ≤ k1 + 1 + n0 − k0 − 1 = n0 + k1 − k0,

(C3) if n1 − k1 < n0, then t ≤ 2(n1 − k1).

Given the above constraints and the parameters n0, n1, and t, if a feasible solution for k0 and
k1 exists, the above warmup protocol (parametrized with the feasible solution k0 and k1) would be
CSP-fair against t-sized coalitions. The reasoning is as follows.

• First, due to condition (C3), it never makes sense for the coalition to prevent the reconstruction
of the s1 coin (in which case 0 would be the declared output). If the coalition controls enough
1-supporters such that it is capable of failing the reconstruction of s1, then it either prefers 1 or
is indifferent.

• Henceforth we may assume that s1 is successfully reconstructed. Now, due to condition (C1),
there are two cases: 1) either the value of s1 is uniform and independent of the coalition’s view
at the end of the sharing phase, or; 2) the coalition can control the value of s1.

In the former case, since the coin s1 is assumed to be successfully reconstructed, the final
outcome must be random. It is important that s1 is reconstructed at the very end, after s0

is reconstructed. Otherwise, this argument will not hold, since the coalition may examine the
reconstructed s1 value, and then decide whether to abort the reconstruction of s0. In the latter
case, due to conditions (C1) and (C2), it must be that s0 is uniform and independent of the
coalition’s view at the end of the sharing phase, and moreover, the coalition cannot hamper the
reconstruction of s0. In this case, the final outcome s0 ⊕ s1 must be random, too.

Optimal resilience for the warmup protocol. Given n0 and n1, we may ask what is the
optimal resilience for this warmup protocol? Solving for the optimal resilience is equivalent to
solving for the maximum t such that there exists a feasible solution for k0 and k1 given the above
constraints. It turns out that t is maximized under the following choices of k0 and k1, depending
on n0 and n1 where n1 ≥ n0 ≥ 1 (see proof in supplementary material C.3):

Case k0 k1 t

If n1 ≥ 5
2n0 bn0

2 c n1 − n0 n1 − b1
2n0c

Otherwise bn0
2 c b2

3n1 − 1
6n0c b2

3n1 − 1
6n0c+ dn0

2 e

Remark 2.4. The intuition for the phase transition at n1 = 5
2n0 follows from the implications of

the different constraints. In particular, when n1 ≥ 5
2n0, then to corrupt a coalition that prefers 0,

the adversary does not have to corrupt too many parties, and the conditions are easily satisfied. If
the coalition prefers 1, then Condition (C3) does not add any constraint. In that case t is maximized
subject to only the constraints corresponding to Condition (C1) and (C2). When n1 <

5
2n0, then it

is possible that a coalition corrupting majority parties prefers 0. Therefore, we need to maximize t
under the three constraints corresponding to Condition (C1), (C2) and (C3).

Visualizing the feasible region. In the supplementary material A, we visualize the choice of t as
a function of n0 and n1, to help understand the intriguing mathematical structure of game-theoretic
fairness in multi-party coin toss.
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Extension to malicious security. So far, our warmup protocol achieves only semi-malicious se-
curity. In Section 4 we also generalize the warmup protocol achieve malicious security. It is worth
mentioning that we cannot generically apply a semi-honest/semi-malicious to malicious compiler
such as [GMW87,AJL+12] since when faced with corrupt majority, classical compilers completely
give up upon anyone aborting, as this is sufficient to guarantee the classical notion of “secu-
rity with abort”. By contrast, our game theoretic setting requires us to deal with aborts more
carefully. We also want to avoid using a common reference string, and thus we cannot rely on
Non-Interactive Zero-Knowledge proofs (NIZKs) to get public verifiability, like in the compiler of
Asharov et al. [AJL+12]. Due to these technicalities, we need additional non-trivial techniques to
get the maliciously secure version. We defer to Section 4.1 the maliciously secure protocol and its
analysis, leading to Theorem 1.1.

2.2 Lower Bound

Our lower bound techniques are inspired by that of Chung et al. [CGL+18], who proved that there
is no CSP-fair n-party coin toss protocol for n ≥ 4 even against fail-stop coalitions, unless all parties
except one prefer the same bit (i.e., they assume there are at least two 0-supporters and at least
two 1-supporters). In the following, we may assume n1 ≥ n0 ≥ 2, since the corner cases where
n0 = 1 has already been treated by Chung et al. [CGL+18].

Three-party protocol. The crux of the lower bound of [CGL+18] shows that no three-party coin-
toss protocol among S1,S2,S3 can satisfy the following three conditions simultaneously, regardless
of the CSP-fairness property. Then, they show how CSP-fair protocol for n ≥ 4 parties (for
some proper values of n0, n1 and t) leads to a three party coin-tossing protocol that satisfies these
conditions simultaneously. The three conditions are:

(LBC1) Lone-wolf condition: a fail-stop adversary controlling S1 (or S3) alone adopting any non-
uniform p.p.t. strategy cannot bias the output towards either direction by a non-negligible
amount.

(LBC2) Wolf-minion condition: a fail-stop adversary controlling S1 and S2 (or S2 and S3), adopt-
ing any non-uniform p.p.t. strategy, cannot bias the output towards 1 by a non-negligible
amount.

(LBC3) T2-equity condition: for all but a negligible fraction of S2’s random coins T2, |f(T2) − 1
2 |

is negligible, where f(T2) is the expected coin outcome in an honest execution when S2’s
random coins are fixed to T2.

The following theorem is implicit in the lower bound of [CGL+18], which is proven by considering
a sequence of adversaries as the impossibility of Cleve [Cle86], and essentially reducing the three
party protocol into a two party coin-tossing protocol. We provide the proof of this theorem in
supplementary material D.2.

Theorem 2.5 (Generalized Theorem 21 of Chung et. al. [CGL+18]). There is no coin-tossing
protocol Π among three parties S1, S2 and S3 such that Π satisfies the above lone-wolf condi-
tion (LBC1), the wolf-minion condition (LBC2), and the T2-equity condition (LBC3) simultane-
ously.

CSP-fairness. We now show that an n-party protocols satisfying certain conditions can be trans-
lated into a three-party protocol that satisfy the above three conditions simultaneously. Analyzing
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when this transformation is possible would tell us how large a coalition can be tolerated by a
CSP-fair coin toss protocol.

Given an n-party protocol Π, the idea is to partition the players into three partitions denoted
S1, S2, and S3, respectively. We may assume that there is an ordering for the identities of all
parties and that the preferences are public. Then:

• S1 runs the code of the first α0 number of 0-supporters, and the first α1 number of 1-supporters.

• S2 runs the code of the next (n0− 2α0) number of 0-supporters and the next (n1− 2α1) number
of 1 supporters.

• S3 runs the code of the next (last) α0 number of 0-supporters and the last α1 number of 1-
supporters.

This means that each party Si internally emulates the execution of all parties it runs; all messages
that are sent between theses parties are dealt internally by Si and all messages that are sent between
parties that are controlled by different Si, Sj are sent as a message from Si to Sj (with a clear
labeling that states which message is intended to which internal party).

The idea of the lower bound is to show that as long as there exist α0, α1 and t satisfying
a set of conditions defined with respect to n0, n1, then for any n-party protocol Π achieving
CSP-fairness against any non-uniform fail-stop coalition of size t, its corresponding three-party
coin-toss protocol must satisfy the above defined properties, simultaneously, in contradiction to
Theorem 2.5. This tells us for which values of t with respect to n0 and n1 we cannot construct a
CSP-fair protocol. The only choice of parameters that is considered in the lower bound of [CGL+18]
is when α0 = α1 = bn0/2c and t = n− 1 = n0 + n1 − 1.

Using our parameterized partitioning, we derive a rather involved system of constraints (Sec-
tion 5.1) and show that when those constraints are satisfied, then the CSP-fairness of Π implies
that the corresponding three-party protocol satisfies lone-wolf, wolf-minion and the T2-equity con-
ditions (Section 5.2). What is most interesting is that the constraints for the lower bound are not
an immediate negation of the contraints we encountered for the upper bound, and yet the solution
of the feasible space exactly matches what the upper bound can attain. As an example of such
a constraint, recall that the lone-wolf condition states that S1 (resp. S3) cannot bias the output
alone. Since S1 controls α0 +α1 parties, we must have that α0 +α1 ≤ t to make sure that it cannot
bias the output alone.

To prove the lower bound, we need to find the minimal t as a function of n0 and n1, such that
there exist valid α0, α1 and t satisfying the system of constraints (Section 5.3). This leads to the
proof of Theorem 1.2, which matches our upper bound.

2.3 Related Work

We now review some additional related work.

Game theory meets cryptography. Although game theory [Nas51, J.A74] and multi-party
computation [GMW87,Yao82] originated from different academic communities, some recent efforts
have investigated the connections of the two areas (e.g., see the excellent surveys by Katz [Kat08]
and by Dodis and Rabin [DR07]). At a high level, this line of work focuses on two broad classes of
questions.

First, a line of works [HT04, KN08, ADGH06, OPRV09, AL11, ACH11] explored how to de-
fine game-theoretic notions of security (as opposed to cryptography-style security notions) for dis-
tributed computing tasks such as secret sharing and secure function evaluation. Earlier works
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in this space considered a different notion of utility than our work. Utility functions are often
defined with the following assumptions regarding players’ perference: players prefer to compute
the function correctly; they prefer to learn others’ secret data, and prefer that other players do
not learn their own secrets. In light of such utility functions, earlier works in this space explored
whether we can design protocols such that rational players will be incentivized to follow the hon-
est protocol. Inspired by this line of work, Garay et al. propose a new paradigm called Rational
Protocol Design (RPD) [GKM+13], and this paradigm was developed further in several subsequent
works [GKTZ15,GTZ15] (we will comment on the relationship of our notion and RPD shortly).

Second, another central question is how cryptography can help traditional game theory.
Classical works in game theory [Nas51, J.A74] assumed the existence of a trusted media-
tor. Therefore, recent works considered how to realize this trusted mediator using cryptogra-
phy [DHR00, IML05,GK12,BGKO11].

It is well-understood that the notion of Nash equilibrium may predict unstable outcomes since
it may rely on empty threats. Our CSP notion adopts the (coalition-resistant) Nash equilibrium
paradigm and therefore it does not eliminate the issue of empty threats. In other words, for a
CSP-fair protocol, it could be that a player threatens to deviate from the honest protocol (possibly
at a harm to itself), making other players reconsider their strategies too. A couple works proposed
new notions in the context of computationally bounded agents, aiming to eliminate empty threats.
Gradwohl, Livne and Rosen [GLR13] suggested a notion called computational threat-free Nash
equilibrium, which can be viewed as a relaxation of the classical notion of subgame perfect equilib-
rium for computationally bounded agents. This work does not consider coalition resistance. Pass
and shelat [PS11] suggest a new notion called renegotiation-safe equilibrium, which they show to be
incomparable to Nash equilibrium. Their work captures some notion of coalition resistance in the
sense that coalitions do not want to renegotiate to strategies that are themselves resilient to future
renegotiations. Our protocol is not a threat-free Nash/renegotiation safe under the same resilience
parameter — it is interesting to study what resilience parameters our protocol can tolerate under
these notions. In fact, Threat-Free Nash and Renegotiation Safety have not been explored in a
coalition setting before. For Renegotiation Safety, there may even be multiple parameters that
matter, including the size of the coalition who proposes the renegotiated strategy, and how many
non-negotiating players there are. It would also be an interesting future direction to explore the
(in)feasiblity of threat-free or renegotiation-safe notions in the context of multi-party coin toss.

Recent efforts. More recently, there has been renewed interest in the connection of game theory
and cryptography, partly due to the success of decentralized blockchains. Besides the work of Chung
et al. [CGL+18] which provided direct inspiration of our work, the recent work of Chung, Chan,
Wen, and Shi [CCWS21] suggested an alternative formulation of game-theoretically fair multi-party
coin toss. Specifically, they consider the task of electing a leader among n players, where everyone
is competing to get elected. Therefore, if a user gets elected, its utility is 1, else its utility is 0.
Their formulation can be viewed as tossing an n-way dice whereas our formulation and that of
Chung et al. consider a binary coin. Intriguingly, for the leader election formulation, it is indeed
possible to achieve CSP-fairness under any number of corruptions, and thus Chung et al. [CCWS21]
focus on understanding the round complexity of such protocols. Chung et al. also explore how to
define approximate notions of game-theoretic fairness in a distributed protocol context, and they
point out that further subtleties exist in defining an approximate notion, and thus they suggest
new notions called sequential CSP fairness and sequential maximin fairness. These technicalities
only pertain to approximate notions with non-negligible slack, and are not relevant for us since we
consider (1-negligible)-fairness.

Other recent works, also inspired by blockchain applications, consider a financial fairness no-
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tion through the use of collateral and penalities [BK14, KMS+16, ADMM16, KB14, KVV16]. In
comparison, the protocols in this paper can ensure game theoretic fairness even without the use of
collateral or penalties if applied in blockchain contexts.

Relationship to RPD. Chung, Chan, Wen, and Shi [CCWS21] also show a connection between
their approximate game-theoretic notion and the elegant RPD notion by Garay et al. [GKM+13,
GKTZ15, GTZ15]. The same connection also applies to our notion. More specifically, the RPD
framework models a meta-game, i.e., a Stackelberg game between the protocol designer and an
attacker: the designer first picks a protocol Π, then the attacker can decide which coalition to
corrupt and its strategy after examining this protocol Π. They want a solution concept that
achieves a subgame perfect equilibrium in this Stackelberg meta-game, but consider classical-style
utility functions related to breaking privacy or correctness. Essentially, Chung et al. [CCWS21]
showed that the CSP-fairness notion can be an equivalent interpretation in the RPD framework
if we alter their utility notion accordingly to match our notion. We refer the readers to Chung et
al. [CCWS21] for a detailed statement and proof of this equivalence.

Other related works. Finally, we can also circumvent Cleve’s impossibility of strongly fair (i.e.,
unbiasable) coin toss under corrupt majority by introducing a trusted setup, or introducing non-
standard cryptographic assumptions such as Verifiable Delay Functions [BBF18,BBBF18]. In this
paper, we focus on the plain model without trusted setup, without any common reference string
(CRS), and standard cryptographic hardness assumptions.

2.4 Organization

The rest of the paper is organized as follows. Section 3 introduces definitions and notations. In
Section 4 we present our upper bound result for CSP fairness. In Section 5 we give the CSP lower
bound. The complete characterization of maximin fairness is given in Section 6. The formal proofs
are deferred to the supplementary material.

3 Definitions

The model. In an n-party coin toss protocol, n players interact through pairwise private channels
as well as a public broadcast channel. We assume that all communication channels are authenti-
cated, i.e., messages always carry the true sender’s identity. Without loss of generality, we assume
the players are numbered 1, 2, . . . , n, respectively. We assume that the network is synchronous and
the protocol proceeds in rounds. Each player has a publicly stated preference for either the bit
0 or the bit 1. We call the vector of players’ preferences as the preference profile, denoted as P.
At the end of the protocol, the coin toss outcome is defined as a deterministic, polynomial-time
function over the set of public messages posted to the broadcast channel. The utility function that
we consider is defined as follows:

The utility function: If the outcome agrees with a player’s preference, the player
obtains utility 1; else it obtains 0.

The utility of a coalition A ⊂ [n] is the sum of the utilities of all coalition members.

The protocol execution is parametrized with a security parameter λ, and we may assume that n
is polynomially bounded in λ. We assume that the coalition A (also called the adversary) may
perform a rushing attack: in any round r, it can wait for honest players (i.e., those not in A) to
send messages, and then decide what round-r messages the corrupt players in A want to send.
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Correctness. We let σ∗ = (σ∗1, . . . , σ
∗
n) denote the strategy (the code) of the all honest execution.

That is, σ∗i can be viewed as the code that party Pi is supposed to run according to the protocol
specifications. We say that the protocol is correct if, unless all players have the same preference
(in which case we can simply output the preferred bit with probability 1), the coin toss outcome is
some fixed b ∈ {0, 1} with probability at most 1/2± negl(λ) for some negligible function negl(·).

Notations. For a coalition A ⊂ [n], we let UA denote the utility of the coalition. We let σ∗ =
(σ∗1, . . . , σ

∗
n) denote the strategy (the code) of the all honest execution. For a coalition A ⊂ [n], we

denote by UA(σA, σ
∗
−A) the expected utility of all members in A where the members of A follow some

σA and the members that are not in A follow the honest strategy σ∗−A. We denote by UA(σ∗A, σ
∗
−A)

the expected utility of all members in A where all parties follow the honest strategy. All executions
are considered with respect to some utility function and some public preference profile P.

CSP fairness. Recall that in CSP fairness we require that no coalition can increase its own
expected utility no matter how it deviates from the prescribed strategy. This is formalized as
follows:

Definition 3.1 (CSP-fairness [CGL+18]). We say that a coin toss protocol σ∗ satisfies cooperative-
strategy-proofness (or CSP-fairness) against any for t-sized coalitions with respect to a preference
profile P, iff for all A ⊆ [n] of cardinality at most t, any non-uniform probabilistic polynomial-time
(p.p.t.) strategy σ′A adopted by the coalition A, there is a negligible function negl(·), such that2

UA(σ′A, σ
∗
−A) ≤ UA(σ∗A, σ

∗
−A) + negl(λ) .

Note that in this definition, if the coalition controls the same number of 0-supporters and
1-supporters, then we allow it to bias the output arbitrarily since it has no preference.

Maximin fairness. Maximin fairness requires that no coalition can harm any honest party. This
is formalized as follows:

Definition 3.2. We say that a coin-toss protocol σ∗ satisfies maximin fairness for t-sized coalitions
with respect to a preference profile P, iff for any p.p.t. adversary A controlling at most t parties,
there exists a negligible function negl(·) such that, in an execution of the protocol involving the
adversary A, the expected utility of any honest party i is at least Ui(σ

∗)− negl(λ), where Ui(σ
∗) is

the expected utility of party i in an honest execution of the protocol with respect to P.

4 Upper Bound

Our starting point is the warmup protocol for semi-malicious adversary, as presented in Section 2.1,
which leads to the following optimal resilience:

Case k0 k1 t

If n1 ≥ 5
2n0 bn0

2 c n1 − n0 n1 − b1
2n0c

Otherwise bn0
2 c b2

3n1 − 1
6n0c b2

3n1 − 1
6n0c+ dn0

2 e

2Like earlier works [PS17, CGL+18, GKM+13, GKTZ15, GTZ15, HT04, KN08, ADGH06, OPRV09, AL11, ACH11],
our CSP-fair notion considers the deviation of a single coalition. Such a definitional approach is standard and
dominant in the game theory literature, and the philosophical motivation is that the honest protocol would then
become an equilibrium such that no coalition (of a certain size) would be incentivized deviate. In fact, many earlier
works (including the standard Nash equilibrium notion) would even consider deviation of a single individual rather
than a coalition.

14



A corner case of n0 = n1 = odd. It turns out that the above solution for t is optimal (even
for semi-malicious coalitions) in light of our lower bound in Section 5, except for the corner case
n0 = n1 = odd. This is because the above conditions (C1), (C2) and (C3) are slightly too stringent
— in cases when the adversary corrupts exactly the same number of 0-supporters and 1-supporters,
the coalition is actually indifferent (i.e., have no preference). In such cases, the coalition is allowed
to bias the coin towards either direction, and therefore we do not need the above conditions to
hold. We defer a detailed analysis of this corner case to supplementary material C.4. Taking this
corner case into account, we obtain that the number of corruptions that can be tolerated is:

Case k0 k1 t

If n1 ≥ 5
2n0 bn0

2 c n1 − n0 n1 − b1
2n0c

If n1 = n0 = odd bn0
2 c b1

2n1c n1 + 1
Otherwise bn0

2 c b2
3n1 − 1

6n0c b2
3n1 − 1

6n0c+ dn0
2 e

Due to our lower bound in Section 5, the above resilience parameter is optimal for CSP fairness,
even for semi-malicious corruptions.

4.1 Our Final Protocol for Malicious Coalitions

We now present our final construction ensures CSP-fairness against malicious coalitions that may
deviate arbitrarily from the prescribed protocol.

4.1.1 Maliciously Secure HalfTossb Sub-Protocol

To lift the warmup protocol to malicious security, the main challenge is how to realize a counterpart
of the HalfTossb protocol for the malicious corruption model. Recall that in the semi-malicious
model, we relied on the players themselves to send heartbeats to identify which players have aborted
(see supplementary material B for formal definitions). In this malicious model, we can no longer
rely on such self-identification because players can lie. In a corrupt majority model, we also cannot
easily take majority vote to determine who remains online and honest.

Our final solution relies on MPC with identifiable abort [GMW87,IOZ14] which can be accom-
plished assuming the existence of Oblivious Transfer (OT). Recall that in MPC with identifiable
abort, either the players successfully evaluate some ideal functionality, or if the protocol aborted,
then all honest players receive the identity of an offending player. The idea is that the honest
players can now kick out the offending player and retry, until the protocol succeeds in producing
output.

Specifically, we will replace our earlier HalfTossb[k] sub-protocol with the following maliciously
secure counterpart, in which the b-supporters participate and the (1− b)-supporters observe.

Protocol 4.1: HalfTossb[k] sub-protocol with malicious security

Sharing phase.

1. Initially, define the active set O := Pb. Repeat the following until success:

(a) The active set O use MPC with identifiable abort to securely compute the ideal func-

tionality Fb,Osharegen[k] to be described below (Functionality 4.2).

(b) If the protocol aborts, then every honest player obtains the identity of a corrupt player
j∗ ∈ O. Remove j∗ from O.
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2. At this moment, each player i ∈ O has obtained the tuple
(vk, [s]i, [r]i, [com]i, σi, σ

′
i) from Fb,Osharegen[k].

Vote phase.

1. Each player posts vk to the broadcast channel — henceforth this is also called a vote for
vk. Let vk′ be the verification key that has gained the most number of votes, breaking ties
arbitrarily.

2. If vk′ has not gained at least k+1 votes, declare that the vote phase failed and return. Else,
if vk′ = vk, then player i posts [com]i and σi to the broadcast channel.

3. Everyone gathers all ([com]j , σj) pairs posted to the broadcast channel such that σj is a
valid signature of [com]j under vk′. If there are at least k + 1 such tuples and all shares
[com]j reconstruct uniquely to the value com, then record the reconstructed commitment
com. Else we say that the vote phase failed.

Reconstruction phase.

1. If the vote phase failed, output the reconstructed value ⊥. Else, continue with the following.

2. For each player i ∈ O, if vk′ = vk, then post to the broadcast channel the tuple ([s]i, [r]i, σ
′
i).

3. Every player does the following: gather all tuples ([s]j , [r]j , σ
′
j) posted to the broadcast

channel such that σ′j is a valid signature for ([s]j , [r]j) under vk′. If all such ([s]j , [r]j) tuples
reconstruct to a unique value (s, r) and moreover, (s, r) is a valid opening of com, then
output the reconstructed value s. Else output ⊥ as the reconstructed value.

Functionality 4.2: The Fb,Osharegen[k] ideal functionality

1. Sample (sk, vk) ← Sig.KeyGen(1λ) where Sig := (KeyGen,Sign,Vf) denotes a signature
scheme.

2. Sample s
$← {0, 1}, and randomness r ∈ {0, 1}λ, let com := Commit(s, r).

3. Use a (k+ 1)-out-of-|O| Shamir secret sharing scheme to split the terms (s, r) and com into
|O| shares, denoted {[s]i, [r]i, [com]i}i∈O, respectively. Let σi := Sig.Sign(sk, [com]i) and
σ′i := Sig.Sign(sk, ([s]i, [r]i)) for i ∈ O.

4. Each player in O receives the output (vk, [s]i, [r]i, [com]i, σi, σ
′
i).

The above maliciously secure HalfTossb[k] protocol satisfies the following properties:

• Binding. If the vote phase does not fail, then the messages on the broadcast channel in the
sharing and vote phases uniquely define a coin s 6= ⊥ such that reconstruction must either
output s or ⊥.

• Knowledge threshold. We now have a computationally secure version of the knowledge threshold
property.

– If at least k + 1 number of b-supporters are corrupt, then the coalition can bias coin values
s that the sharing and vote phases uniquely bind to (assuming that the voting phase did
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not fail). Specifically, if the coalition controls k + 1 number of b-supporters, it can decide

whether to abort Fb,Osharegen[k] after seeing the corrupt players’ shares {[s]j}j∈A where A ⊂ [n]
denotes the coalition. If it controls max(k + 1, nb/2) number of b-supporters, it can control
the verification key vk′ and thus alter the coin s the sharing and vote phases bind to as well.

– If fewer than k+1 number of b-supporters are corrupt, then the coalition’s view at the end of
the voting phase is computationally independent of the coin value s that the sharing and vote
phases bind to. More formally, either the vote phase fails, or there exists a p.p.t. simulator
Sim such that:

(s, viewA) ≈c (Uniform, Sim(1λ))

where s denotes the unique coin value that the sharing phase and vote phases bind to, viewA

denotes the coalition’s view at the end of the vote phase, Uniform denotes a random bit
sampled from {0, 1}, and ≈c denotes computational indistinguishability.

• Liveness threshold. If the coalition controls at least min(nb − k, nb/2) number of b-supporters,
it can cause the reconstruction to output ⊥. On the other hand, if the coalition controls fewer
than min(nb − k, nb/2) number of b-supporters, then the reconstruction phase must succeed.

In comparison with the earlier semi-malicious version, the knowledge threshold and liveness
threshold property now become weaker. One relaxation is the computational security relaxation in
the knowledge threshold property whereas previously in the semi-malicious version, the property
was information theoretic. Another relaxation is that the thresholds for the two properties have
changed. Now, the coalition may be able to control the coin value and hamper reconstruction with
a smaller threshold.

4.1.2 Final Protocol

Our final protocol is described as follows:

Protocol 4.3: Final protocol with malicious security

Sharing phase.

1. 0-supporters run the sharing phase of HalfToss0[k0].

2. 1-supporters run the sharing phase of HalfToss1[k1].

Vote phase. (The order of the two instances is important.)

1. 1-supporters run the vote phase of HalfToss1[k1].

2. 0-supporters run the vote phase of HalfToss0[k0].

Reconstruction phase. (The order of the two instances is important.)

1. 0-supporters run the reconstruction phase of HalfToss0[k0], and let its outcome be s0 if
reconstruction is successful. In case the reconstruction outputs ⊥, then let s0 := 0.

2. 1-supporters run the reconstruction phase of HalfToss1[k1]. If the reconstruction phase
outputs ⊥, then output 0 as the final coin value. Else let s1 be the reconstructed value, and
output s0 + s1 as the final coin value.
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In the above, the order of the two instances in the vote and reconstruction phases is important due
to a similar reason as in the semi-malicious version.

Setting aside the computational security issue for the time being (which can be formally dealt
with using a standard computational reduction argument), in light of the properties for our mali-
ciously secure HalfTossb sub-protocol, we can now rewrite the earlier (C1), (C2), (C3) conditions as
follows (recall that t0 and t1 are number of corrupted 0-supporters and 1-supporters, respectively):

(C1∗) The coalition cannot control both s0 and s1, i.e., the coin values the sharing and vote phases
of HalfToss0[k0] and HalfToss1[k1] bind to (assuming that it did not fail), respectively. This
means that if the coalition controls at least kb + 1 number of b-supporters, then it does not
have enough corruption budget to control k1−b + 1 number of (1− b)-supporters.

(C2∗) If the coalition controls the s1 coin, i.e., it controls at least k1 + 1 number of 1-supporters,
then it cannot hamper the reconstruction of the coin s0 due to the corruption budget. That
is, the coalition must control fewer than min(n0 − k0, n0/2) number of 0-supporters.

(C3∗) If the coalition controls at least min(n1 − k1, n1/2) number of 1-supporters such that it can
cause the reconstruction of s1 to fail, then the coalition must prefer 1 or is indifferent to the
outcome — in other words, either n0 ≤ t1 or t ≤ 2t1 (t0 ≤ t1 and so t = t0 + t1 ≤ 2t1).

These conditions can be rewritten as the following expressions:

Parameter Constraints 4.4 (malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1

(C1∗) t ≤ k0 + k1 + 1,

(C2∗) t < k1 + 1 + min(n0 − k0, n0/2),

(C3∗) if min(n1 − k1,
⌈
n1
2

⌉
) < n0, then t ≤ 2 ·min(n1 − k1,

⌈
n1
2

⌉
).

One can verify that any k0, k1, t that satisfy (C1∗), (C2∗), (C3∗) must also satisfy the earlier
conditions (C1), (C2) and (C3). This means that the new malicious version of the protocol cannot
tolerate more corruptions than the semi-malicious version. Intriguingly, it turns out that there
exists a choice of k0 and k1 that maximizes t for conditions (C1), (C2) and (C3), such that the
same (k0, k1, t) also satisfy (C1∗), (C2∗), and (C3∗). This means that our maliciously secure protocol
can achieve the same resilience parameter as the semi-malicious version.3 More specifically, there
exists a choice satisfying k0 = d(n0 − 1)/2e and k1 ≥ bn1/2c such that t is maximized for conditions
(C1), (C2) and (C3). One can then verify that that as long as k0 = d(n0 − 1)/2e and k1 ≥ bn1/2c,
a feasible solution (k0, k1, t) for conditions (C1), (C2) and (C3) would also be a feasible solution
for conditions (C1∗), (C2∗), and (C3∗).

Just like the earlier semi-malicious setting, the above constraints (C1∗), (C2∗), and (C3∗) are
in fact slightly too stringent; thus, for the special case n0 = n1 = odd, the resulting solution of t
would have a gap of 1 away from optimal. This gap can be bridged by observing that if the same
number of 0-supporters and 1-supporters are corrupt, the coalition would then be indifferent, and
it would be fine if the coalition could bias the coin towards either direction. We defer a detailed
analysis of the corner case n0 = n1 = odd to supplementary material C.4.

Formal proofs. In supplementary material C, we formally prove the following theorem (Theo-
rem 1.1 in the introduction):

3Note that since our lower bound holds even for fail-stop adversaries, only when the malicious version matches
the resilience of the semi-malicious version can it be tight.
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Theorem 4.5 (Upper bound). Assume the existence of Oblivious Transfer (OT), and without loss
of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2. Protocol 4.3 is CSP-fair coin toss protocol
which tolerates up to t-sized non-uniform p.p.t. malicious coalitions where

t :=


n1 − b1

2n0c, if n1 ≥ 5
2n0;

b2
3n1 − 1

6n0c+ d1
2n0e+ 1 = n1 + 1, if n1 = n0 = odd;

b2
3n1 − 1

6n0c+ d1
2n0e, otherwise.

5 Lower Bound

5.1 Parameter Constraints

We now show that, if the parameters α0, α1 and t satisfy the following constraints, then for any coin
toss protocol among n0 number of 0-supporters and n1 number of 1-supporters that achieves CSP
fairness against a coalition of size up to t,4 it’s corresponding three-party coin toss protocol (after
partition with respect to α0 and α1 as specified), must satisfy the lone-wolf condition (LBC1), the
wolf-minion condition (LBC2), as well as the T2 equity condition (LBC3) simultaneously.

Parameter Constraints 5.1 (Constraint system for lower bound proof).
Non-negative Lone-wolf Wolf-minion T2-equity

0 ≤ α0 ≤ 1
2n0 α1 + 1 ≤ n0 n0 − α0 < n1 − α1 1 ≤ α0

0 ≤ α1 ≤ 1
2n1 α0 + 1 ≤ n1 n0 + n1 − α0 − α1 ≤ t 1 ≤ α1

α0 + α1 ≤ t 3 ≤ t
2α0 + 1 ≤ t 1 ≤ n0 + n1 − 2α0 − 2α1 ≤ t
2α1 + 1 ≤ t

In the above set of conditions, the first set (i.e., non-negative) makes sure that the number of
0-supporters and 1-supporters in each partition is non-negative. The next three sets of conditions
are required to prove the corresponding three conditions, respectively. We show how the conditions
lead to this set of parameter constraints in Section 5.2. Then, given any fixed n0 and n1, it suffices
to solve for the best partition strategy (i.e., choice of α0 and α1) that minimizes t, and this minimal
choice of t gives rise to our lower bound in light of Theorem 2.5. We explore that in Section 5.3. It
turns out that the minimal t value satisfying the above constraint system coincides with our upper
bound, and in particular, with Eq. (1).

5.2 Constraint System Implies the Lone-Wolf, Wolf-Minion, and T2-Equality
Conditions

Below we focus on proving that the three lower bound conditions hold provided the constraint
system.

Lemma 5.2 (Generalized lone-wolf lemma). Let Π be a protocol that is CSP-fair against any non-
uniform p.p.t., fail-stop coalition of size t. If α0, α1 and t satisfy the non-negative and lone-wolf
constraints in Parameter Constraints 5.1, then Π satisfies the lone-wolf condition (LBC1).

4Our main lower bound theorem, i.e., Theorem 1.2, states the impossibility for coalitions of size t + 1 or greater.
For convenience, in this section, we switch the notation to t rather than t + 1.
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Proof. Suppose for the sake of contradiction that the long-wolf condition is violated, i.e., there
exists a non-uniform p.p.t. fail-stop adversary A corrupting only S1 (the same argument holds for
S3) that can bias the output towards b ∈ {0, 1} by a non-negligible amount. We show that then Π
is not CSP fair against t fail-stop adversaries. There are two cases:

• If αb > α1−b then S1 (resp. S3) prefers b. The number of parties in S1 is α0 + α1. According
to the lone-wolf constraints in Parameter Constraints 5.1 we have that α0 + α + 1 ≤ t and
thus this coalition is supposed to be tolerated.

• If αb ≤ α1−b, consider the following coalition in the CSP-fair protocol. The coalition corrupts
S1 and in addition α1−b + 1 − αb number of b-supporters outside S1. From the lone-wolf
constraint in Parameter Constraints 5.1, we have that nb ≥ α1−b + 1. This implies that
the number of b-supporters outside S1 is nb − αb ≥ α1−b + 1 − αb. Then, this coalition
consists of α1−b number of (1 − b)-supporters and α1−b + 1 number of b-supporters. From
the lone-wolf constraint in Parameter Constraints 5.1 we have that 2α1−b + 1 ≤ t. Then, this
coalition contains less than t parties and it prefers b. If there exists a fail-stop adversary in
the three-party protocol that controls S1 and can bias towards b, then this coalition in the
CSP-protocol can also bias towards b. Note that the additional parties in the coalition that
are outside of S1 act honestly and are used just to change the preference of the coalition, i.e.,
it is enough to consider the existence of a fail-stop adversary that corrupts only one party in
the corresponding three-party protocol.

Lemma 5.3 (Generalized wolf-minion lemma). Let Π be a protocol that is CSP-fair against any
non-uniform p.p.t., fail-stop coalition of size t. If α0, α1 and t satisfy the non-negative and
wolf-minion constraints in Parameter Constraints 5.1, then Π satisfies the wolf-minion condi-
tion (LBC2).

Proof. The non-negative constraints make sure that the number of parties in S1, S2 and S3 are non-
negative, as S2 contains (n0− 2α0) number of 0-supporters and (n1− 2α1) number of 1-supporters.
If the wolf-minion constrains hold, then the coalition of S1 and S2 (or S3 and S2) prefers 1 since
in total it contains n0 − α0 number of 0-supporters and n1 − α1 number of 1-supporters and
according to the constraints, n1−α1 > n0−α0. Moreover, the number of parties in this coalition is
n1 +n0−α0−α1, which is at most t according to the condition. Therefore, any fail-stop adversary
corrupting S1 and S2 (or S3 and S2) cannot bias the output towards 1 by a non-negligible amount,
according to the CSP fairness of Π against t fail-stop adversaries. This means that the protocol Π
satisfies the wolf-minion condition.

Lemma 5.4 (Generalized T2-equity lemma). Let Π be a protocol that is CSP-fair against any non-
uniform p.p.t., fail-stop coalition of size t. If α0, α1 and t satisfy the non-negative and the T2-equity
constraints in Parameter Constraints 5.1, then protocol Π satisfies the T2-equity condition (LBC3).
That is, for all but a negligible fraction of S2’s randomness T2, |f(T2)− 1

2 | is negligible.

Proof. By correctness of the protocol, ET2 [f(T2)] = 1
2 . Note that T2 consists of the randomness of

all players in S2, we can view T2 as a vector {tQ}Q∈S2 where tQ is player Q’s randomness. For any
fixed party Q in S2, consider a protocol ΠQ that is same with Π except that Q aborts at the very
beginning of the protocol and all other parties behave honestly. Let gQ(T2) be the expected output
of ΠQ conditioned on S2’s randomness T2.

Claim 5.5. For any Q ∈ S2, |ET2 [gQ(T2)]− 1
2 | is negligible.
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Proof. Suppose for the sake of contradiction that the claim is not true. Then this single aborting
party Q can bias the outcome of Π towards b ∈ {0, 1} by a non-negligible amount. This violates
the CSP-fairness of the n-party protocol: Consider a coalition that consists of the Q party and
two b-supporters. This coalition prefers the coin b, and can bias towards it by having Q abort at
the very beginning of the protocol Π. Note that according to T2-equity constraints in Parameter
Constraints 5.1, αb ≥ 1, which implies that there are at least two b-supporters outside S2. Moreover,
the size of the coalition is 3, and thus we require that t ≥ 3.

Claim 5.6. For any Q in S2, for all but a negligible fraction of T2, |gQ(T2)−f(T2)| is also negligible.

Proof. Note that for all but a negligible fraction of T2, |ET2 [gQ(T2) − f(T2)]| = |ET2 [gQ(T2)] −
ET2 [f(T2)]| = |ET2 [gQ(T2)] − 1

2 | is negligible. Suppose that there exists a non-negligible fraction
of T2 such that f(T2) − gQ(T2) is positive and non-negligible, then there must also exists a non-
negligible fraction of T2 such that gQ(T2)−f(T2) is positive and non-negligible. This indicates that
for a non-negligible fraction of T2, Q can bias the output of Π towards 1 (or 0) by a non-negligible
amount by aborting at the beginning of the protocol.

Suppose that S2 prefers 1 (the same argument holds if S2 prefers 0). Consider an adversary
A∗ that receives a polynomial p(·) as an advice where p(·) is chosen such that for a non-negligible
fraction of T2, gQ(T2)− f(T2) ≥ 1/p(λ). A∗ corrupts S2 and acts as follows:

• A∗ randomly samples a T2.

• A∗ repeats the following for p2(λ) times: A∗ samples T1 and T3 for S1 and S3 and simulates
an honest execution with the randomness T1, T2, T3. A∗ also simulates an execution in which
Q always aborts at the beginning of the protocol. Then A∗ gets estimates of g̃Q(T2) and
f̃(T2).

• If g̃Q(T2) > f̃(T2), A∗ instructs Q to abort at the very beginning of the protocol. Otherwise
it follows the honest execution.

Note that for any T2 such that gQ(T2) − f(T2) ≥ 1
p(λ) , by the Chernoff bound, except with

a negligible probability, it must be that g̃Q(T2) > f̃(T2). Therefore, A∗ can bias the output of
Π towards 1 by a non-negligible amount. This breaks the CSP fairness of Π since, according to
the T2-equity constraint in Parameter Constraints 5.1, S2, which contains n0 + n1 − 2α0 − 2α1

contains parties which is at most t, and it prefers 1. Therefore, for all but a negligible fraction of
T2, |gQ(T2)− f(T2)| is negligible.

For any fixed Q ∈ S2, for any pair of T2 and T ′2 that only differ in Q’s randomness, it must be
that gQ(T2) = gQ(T ′2). Let ` denote the length of T2, we have:

Claim 5.7. For any fixed i ∈ [`], for all but a negligible fraction of T2, |f(T2)−f(T̃ i2)| is negligible,

where T̃ i2 is same as T2 except with the i-th bit flipped.

Proof of Claim 5.7. Suppose that the i-th bit is contributed by party Q ∈ S2. For any polynomial
p(·), define badp1 to be the event |f(T2)−gQ(T2)| ≥ 1

p(λ) , and badp2 to be the event |f(T̃ i2)−gQ(T̃ i2)| ≥
1

p(λ) . Since for all but a negligible fraction of T2, |f(T2)− gQ(T2)| is negligible, the probability that

badp1 happens is negligible. The probability that badp2 happens is also negligible. Thus by a union
bound, the probability that both badp1 and badp2 do not happen is 1 − negl(λ) for some negligible

function negl(·). This indicates that for any polynomial p(·), |f(T2)− f(T̃i)| ≤ |f(T2)− gQ(T2)|+
|f(T̃ i2)− gQ(T̃ i2)| ≤ 2

p(λ) with probability 1− negl(λ). The claim thus follows.

21



Claim 5.8. Pick a random T2 and a random T ′2. Then except with a negligible probability over the
random choice of T2 and T ′2, |f(T2)− f(T ′2)| is negligible.

Proof. Pick a random T2 and a random T ′2, we define hybrids T i, i = 0, . . . , `+ 1 as follows:

T i = {t1, . . . , ti, t′i+1, . . . , t
′
`},

where ti is the i-th bit of T2 and t′i is the i-th bit of T ′2. Then, T 0 = T ′2 and T ` = T2. For any fixed
polynomial p(·), define badpi to be the event that |f(T i)− f(T i+1)| ≥ 1

p(λ) . Note that the marginal

distribution of T i is uniform, for any polynomial p(·), the probability that badpi happens is negligible
over the choice of T2 and T ′2, according to Claim 5.7. Therefore, for any p(·), by the union bound,
the probability that none of badpi happens is 1−negl(λ) for some negligible function negl(·). Observe
that for any fixed polynomial p(·), if none of the events badpi happen, then |f(T2) − f(T ′2)| ≤ `+1

p(λ)

by triangle inequality. Hence, for any random T2 and any random T ′2, |f(T2)− f(T ′2)| is negligible
except with a negligible probability over the random choices over T2 and T ′2.

Together with the fact that ET2 [f(T2)] = 1
2 , we have that for all but a negligible fraction

of T2, |f(T2) − 1
2 | is negligible. Otherwise if for some polynomial p(·), q(·), there exists 1/p(λ)

fraction of T2 such that f(T2) − 1
2 ≥ 1/q(λ), then there must exist 1/p′(λ) fraction of T2 such

that 1
2 − f(T2) ≥ 1/q′(λ) for some polynomial p′(·), q′(·). Then for any random T2 and T ′2, with a

non-negligible probability, |f(T2)− f(T ′2)| ≥ 1/q(λ) + 1/q′(λ), which violates the above conclusion.
To conclude, for all but a negligible fraction of T2, |f(T2)− 1

2 | is negligible.

5.3 Minimizing t Subject to Constraints

We prove the following Lemma in supplementary material D.1.

Lemma 5.9 (Solving the constraint system and minimizing t). For Parameter Constraint 5.1, the
parameter t is minimized when α0 and α1 are chosen as follows, and the corresponding t is:

Case α0 α1 t

n1 ≥ 5
2n0, n0 ≥ 2 b1

2n0c n0 − 1 n1 − b1
2n0c+ 1

2 ≤ n0 < n1 <
5
2n0 b1

2n0c d1
3n1 + 1

6n0e − 1 d1
2n0e+ b2

3n1 − 1
6n0c+ 1

2 ≤ n0 = n1 b1
2n0c b1

2n0c − 1 2d1
2n0e+ 1

Note that for the case t = 2d1
2n0e + 1, this expression is equal to b2

3n1 − 1
6n0c + d1

2n0e + 1 when
n0 = n1 is even, and is equal to n0 + 2 when when n0 = n1 is odd.

6 Complete Characterization of Maximin Fairness

In this section we give a complete characterization of the maximin fairness defined by Chung et
al. [CGL+18]. Intuitionally, maximin fairness requires that a corrupted coalition cannot harm
the expected reward of any honest party, compared to an all-honest execution. This definition is
formalized in Definition 3.2.
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6.1 Lower Bound

Unlike CSP-fairness, maximin-fairness is impossible under a broad range of parameters. More
specifically, we prove the following theorem, which says that unless n0 = 1 and n1 = odd, for
maximin fairness, we cannot tolerate fail-stop coalitions of half of the parties or more. The special
case n0 = 1 and n1 = odd is slightly more subtle. Chung et al. [CGL+18] showed that for the
special case n0 = 1, it is indeed possible to achieve maximin fairness against all but one fail-stop
corruptions. We prove that for n0 = 1, we cannot tolerate semi-malicious coalitions that are
majority in size.

Theorem 6.1 (Lower bound for maximin fairness). Without loss of generality, assume that n1 ≥
n0 ≥ 1 and n0 +n1 > 2. Then there does not exist a maximmin-fair n-party coin toss protocol that
can:

tolerate fail-stop coalition of size t ≥ d1
2(n0 + n1)e for n0 ≥ 2

tolerate semi-malicious coalition of size t ≥ d1
2n1e+ 1 for n0 = 1

Proof sketch. For the case where n0 ≥ 2, we show that if there exists a coin toss protocol that
achieves maximin-fairness against d1

2(n0 + n1)e fail-stop adversaries, then we can construct a two-
party protocol that violates Cleve’s lower bound [Cle86]. Consider any preference profile that
contains at least two 0-supporters and in which n1 ≥ n0. Then, we partition the 0-supporters
and 1-supporters as evenly as possible into two partitions, and the two party protocol is simply
an emulation of the n-party protocol with respect to this preference profile. Each party internally
emulates the execution of all parties it runs in the outer protocol, in a similar manner as in
Section 5. Since n1 ≥ n0 ≥ 2, each partition must contain at least one 0-supporter and at least one
1-supporter. By maximin fairness, if either partition is controlled by a non uniform p.p.t. adversary
A, it should not be able to bias the outcome towards either 0 or 1 by a non-negligible amount —
otherwise if A was able to bias the coin towards b ∈ {0, 1}, it would be able to harm an individual
b-support in the other partition. Now, if we view the coin toss protocol as a two-party coin toss
protocol between the two partitions, the above requirement would contradicts Cleve’s impossibility
result [Cle86].

For the case where n0 = 1, the proof is similar to that of the CSP-fairness. We partition the
players into three partitions: S1 and S3 each contains half of 1-supporters and S2 contains the
single 0-supporter. We can show that if a coin toss protocol is maximin-fair against d1

2n1e+ 1 fail-
stop adversaries, then it should satisfy the wolf-minion condition, the lone-wolf condition and the
T2-equity condition simultaneously. The full proof is deferred to supplementary material E.1.

6.2 Upper Bound

As mentioned, except for the special case n0 = 1 and n1 = odd, for maximin fairness, we cannot
hope to tolerate half or more fail-stop corruptions. However, if majority are honest, we can simply
run honest-majority MPC with guaranteed output delivery [GMW87,RB89].

Therefore, the only non-trivial case is when n0 = 1 and n1 = odd. Chung et al. [CGL+18]
showed that for n0 = 1, there exists a coin toss protocol that achieves maximin-fairness against
up to (n − 1) fail-stop adversaries. Here, we construct a maximin-fair coin toss protocol tolerates
exactly half or fewer malicious corruptions.

In our protocol, first, the single 0-supporter commits to a random coin, and moreover, the
1-supporters jointly toss a coin s1 such that the outcome is secret shared among the 1-supporters.
Only if dn1/2e number of 1-supporters get together, can they learn s1, influence the value of s1,
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or hamper its reconstruction later. Next, the 1-supporters reconstruct the secret-shared coin s1.
If the reconstruction fails, the reconstructed value is set to a canonical value s1 := 0. Finally, the
single 0-supporter opens its commitment and let the opening be s0. If the single 0-supporter aborts
any time during the protocol, the outcome is declared to be 1. Else, the outcome is declared to be
s0 + s1. More formally, the protocol is as below.

Protocol 6.2: Protocol for maximin-fairness: special case when n0 = 1 and n1 = odd

1. The single 0-supporter randomly choose s0
$←{0, 1} and compute the commitment com =

Commit(s0, r) with some randomness r ∈ {0, 1}λ. It then sends the commitment com to
the broadcast channel. If the 0-supporter fails to send the commitment, set s0 = ⊥.

2. The 1-supporters run an honest-majority MPC with guaranteed output delivery to toss
a coin s1. Each player i ∈ P1 (the set of 1-supporters) receives s̃i as the output of the
MPC.

3. Every 1-supporter i ∈ P1 posts the output s̃i it receives to the broadcast channel. Let s1

be the majority vote. If no coin gains majority vote, set s1 = 0.

4. The 0-supporter opens its coin s0. If it fails to open the coin correctly, set s0 = ⊥.

5. If s0 = ⊥, output 1. Otherwise, output s0 ⊕ s1.

Observe that if the single 0-supporter is honest, then we need to make sure that the coalition
cannot bias the coin towards either direction; however, in this case, since the 0-supporter is guar-
anteed to choose a random coin and open it at the end, this can be ensured. If, on the other hand,
the single 0-supporter is corrupt, then we only need to ensure that the coalition cannot bias the
coin towards 0. We may therefore assume that the single 0-supporter does not abort because oth-
erwise the outcome is just declared to be 1. Further, in this case, the coalition only has budget to
corrupt bn1/2c number of 1-supporters, which means that we have honest majority in 1-supporters.
Therefore, if the 0-supporter does not abort, then the outcome will be a uniformly random coin.

This gives rise to the following theorem, which we prove in supplementary material E.2.

Theorem 6.3 (Upper bound for maximin fairness). Assume the existence of Oblivious Transfer.
Without loss of generality, assume that n1 ≥ n0 ≥ 1 and n0 + n1 > 2. There exists a maximin-
fair n-party coin toss protocol among n0 players who prefer 0 and n1 players who prefer 1, which
tolerates up to t malicious adversaries where

t :=

{
d1

2(n0 + n1)e − 1, if n0 ≥ 2,

d1
2n1e, if n0 = 1.

(2)
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Supplementary Material

A Visualization of the Resilience Parameter

In Figure 1, we visualize the choice of t as a function of n0 and n1, to help understand the intriguing
mathematical structure of game-theoretic fairness in multi-party coin toss.
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Figure 1: Visualization of the maximum t as a function of n0 and n1 in comparison to
1
2(n0 + n1). For simplicity we ignore the rounding in the plot. The blue plane is 1

2(n0 + n1), while
the red plane with the dashes boundary is 2

3n1 + 1
3n0 when n1 <

5
2n0, and the red plane with the

solid boundary is n1 − 1
2n0 when n1 ≥ 5

2n0.

B Preliminaries: Multi-Party Computation with Identifiable
Abort

We define security of protocols that achieve security with identifiable abort. Since we use only
functionalities where the parties do not have any inputs, we consider only functionalities with no
inputs.

We consider a real world protocol π that securely emulated a functionality (y1, . . . , yn) = F(1λ).
Security is defined via the simulation paradigm, by comparing between the “real world” execution
and the “ideal world” as defined next.

The real world execution. Consider a real world protocol for parties P1, . . . , Pn in the real
model, which consists of specifications of next message functions. Each party Pi is executed with
some randomness ri, and is equipped with n authenticated private channels, where sending a
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message on the jth channel delivers a message to Pj , and a broadcast channel, in which each
message broadcasted is delivered to all parties. The protocol specifies algorithms for computing
the next message to deliver as a function of the messages received so far, the private input and the
randomness of the party. At the end of the interaction, the party outputs some output yi.

Let A be an adversary that initially corrupts some of the parties in {P1, . . . , Pn}. We denote the
set of corrupted parties by I ⊆ [n]. When a party is corrupted, the adversary A gets its input, and
the messages it sends are controlled by the adversary. We let realπ,A(z)(λ) be a random variable
consisting of the view of the adversary and the output of the honest parties, following an execution
of π where Pi begins holding the security parameter λ.

The ideal world execution. The parties are P1, . . . , Pn and the adversary S controls a subset
I ⊂ [n]. The idea execution of the functionality F proceeds as follows:

• Inputs: Each party Pi holds its input the security parameter λ. The adversary S also receives
an auxiliary input z.

• Trusted party sends outputs: The trusted party chooses a random r uniformly at random
and computes (y1, . . . , yn) = F(1λ; r).

Let yI = {yi}i∈I . The trusted party sends yI to the adversary S.

• The adversary decided whether to abort: Upon receiving yI the adversary can reply
the trusted party with ok, or it must reply with aborti for some i ∈ I.

• Trusted party send outputs to honest parties: If the adversary sends ok then the
trusted party sends to each honest party Pj with j 6∈ I its output yj . Otherwise, if it sends
aborti to each honest party Pj .

• Outputs: The honest parties output whatever they were sent by the trusted party, the
corrupted parties output nothing, and S outputs an arbitrary function of its view.

We let idealF ,S(z)(λ) be the random variable consisting of the output of the adversary and the
output of the honest parties following an execution in the ideal model described above.

Definition B.1. Let F be a functionality with no inputs, and let π be a protocol for computing
F . The protocol π is said to securely compute F with identifiable abort if for every probabilistic
polynomial-time adversary A in the real model, there exists a probabilistic polynomial-time adversary
S in the ideal model such that{

idealF ,S(z)(λ)
}
z∈{0,1}∗,λ∈N≈c

{
realπ,A(z)(λ)

}
z∈{0,1}∗,λ∈N

The following theorem is based on [GMW87,Gol04, IOZ14]:

Theorem B.2. Assuming oblivious transfer, for any n-party functionality with no inputs F there
exists a protocol π that securely computes F with identifiable abort.

We remark that the theorem holds also for functionalities that do have inputs, but we focus on
use security with identifiable abort only for functionalities with no inputs.
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C Deferred Proofs for the Upper Bound (Section 4)

C.1 Properties of the HalfTossb Protocol (Protocol 4.1)

Lemma C.1 (Properties of the maliciously secure HalfToss sub-protocol). Suppose that the non-

interactive commitment scheme employed by Fb,Osharegen[k] is perfectly binding and computationally
hiding, and that the signature scheme Sig satisfies existential unforgeability under chosen-message
attack. Then, our maliciously secure, Fb,Osharegen[k]-hybrid HalfTossb[k] sub-protocol (Protocol 4.1)
satisfies the following properties:

• Binding. If the vote phase does not fail, then the messages on the broadcast channel in the
sharing and vote phases uniquely define a coin s 6= ⊥ such that reconstruction must either
output s or ⊥.

• Knowledge threshold. For every non-uniform p.p.t. coalition controlling at most k number of
b-supporters, there exists a p.p.t. simulator Sim such that either the vote phase fails, or

(s, viewA) ≈c (Uniform,Sim(1λ))

where s denotes the unique coin value that the sharing and vote phases bind to, viewA denotes
the coalition’s view at the end of the vote phase, Uniform denotes a random bit sampled from
{0, 1}, and ≈c denotes computational indistinguishability.

• Liveness threshold. If the coalition controls fewer than min(nb−k, nb/2) number of b-supporters,
then the reconstruction phase must succeed and output a valid bit.

Proof. We prove each of the properties one by one.

Binding. In our protocol, the vote phase either outputs a valid com or fails. If the vote phase fails,
then reconstruction outputs ⊥. If the vote phase outputs a valid com, the reconstruction outputs
either a valid opening of com or it outputs ⊥. Therefore, the binding property follows from the
perfect binding property of the commitment scheme.

Knowledge threshold. If at most k number of b-supporters are corrupt, then, the vote phase
must either fail, or output the vk that everyone receives from the Fb,Osharegen[k] ideal functionality at
the end of the sharing phase. Due to the security of the signature scheme, except with negliglible
probability, if the vote phase does not fail, it must output the com value chosen by Fb,Osharegen[k] ideal
functionality at the end of the sharing phase. This com uniquely determines any non-⊥ value that
can be reconstructed later.

To show the simulation statement, consider a hybrid experiment which is almost the same as
running the sharing and vote phases of the Fb,Osharegen[k]-hybrid HalfTossb[k] sub-protocol, except
with the following modifications:

• Every Fb,Osharegen[kb] instance replaces Commit(s, r) with Commit(0, r′) for some freshly sampled
r′ instead.

• Further, when it needs to compute ([s]i, [r]i) for some corrupt b-supporter i, it simply replaces
shares with random field elements from the field of the Shamir secret sharing scheme — the
replaced shares received by the adversary are identically distributed as honestly computed shares.
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Due to the computational hiding property of the commitment scheme, it follows that the
(sfinal, viewA) pair in the hybrid experiment is computationally indistinguishable from the same

pair in the sharing and vote phases of the Fb,Osharegen[k]-hybrid, where we use sfinal to denote the coin

chosen by the successful instance of Fb,Osharegen[k] that concludes the sharing phase. In the hybrid

experiment, observe that viewA does not depend on the s values chosen by the Fb,Osharegen[k] func-
tionality, so we can equivalently imagine that a simulator Sim is sampling viewA. In the hybrid
experiment, although the coalition can make Fb,Osharegen[k] abort and retry a few times, it must make
this decision without any information about s. Therefore, sfinal is uniformly distributed.

Liveness threshold. Suppose that the adversary controls fewer than (nb − k, nb/2) number of
b-supporters. First, there are at least k+ 1 number of honest b-supporters who will vote for the vk
output by the concluding Fb,Osharegen[k] instance at the end of the sharing phase. This means that vk′

cannot be ⊥. Should this vk be chosen as the vk′ value, these k + 1 number of honest b-supporters
will also open their respective [com]j shares during the vote phase, and thus vote phase will succeed.
Moreover, during the reconstruction phase, these k+1 number of honest b-supporters will correctly
open their respective ([s]j , [r]j) shares attached with a valid signature under vk′ = vk. Thus, final
reconstruction will be successful.

Therefore, the only way for the adversary to prevent reconstruction is to cause vk′ to be a non-⊥
value different from vk. However, if the adversary has fewer than nb/2 number of b-supporters, it
cannot succeed in doing so.

C.2 Constraints (C1∗), (C2∗), and (C3∗) Imply CSP Fairness

Lemma C.2 (CSP fairness of our final protocol). Suppose that the parameters k0, k1, and t are
chosen such that conditions (C1∗), (C2∗), and (C3∗) are satisfied. Then, our final protocol in
Section 4.1.2 satisfies CSP fairness against any non-uniform p.p.t. coalition of size at most t.

Proof. Due to condition (C3∗), any coalition that causes the reconstruction of s1 to output ⊥ cannot
benefit itself. Therefore, it suffices to consider coalition strategies that always let the reconstruction
of s1 to output a valid bit.

It suffices to show that for any non-uniform p.p.t. coalition that lets s1 successfully reconstruct
to a valid bit, the final outcome must be computationally indistinguishable from uniform at random.
We now consider the following cases where tb denotes the number of corrupted b-supporters.

Case 1: t1 ≤ k1. We argue that the final outcome s0 + s1 output at the end is computationally
indistinguishable from random. We consider the following sequence of hybrids. For convenience,
for the HalfTossb[kb] sub-protocol, henceforth we call its 6 sequential steps Share0, Share1, Vote1,
Vote0, Recons0, Recons1, respectively.

• Real: Execute the Fb,Osharegen[kb]-hybrid HalfTossb[kb] sub-protocol for the steps Share0, Share1,

Vote1, Vote0, and Recons0. Note that at this moment, both s0 and s1 are well-defined bits.
Output the s0 + s1 value.

• Hyb: Below, we use A to denote the non-uniform p.p.t. adversary controlling a coalition A ⊂ [n].
Consider an experiment in which a reduction R interacts with A as follows:

– Share0: the reduction R acts on behalf of the honest parties and the F0,O
sharegen[k0] functionality

in the HalfToss0[k0] instance and interacts with the adversary A. Let st be the adversary’s
state at this point.
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– Share1, Vote1: Sample a coin s1
$← {0, 1} uniformly at random. Run the simulator SimA(st)

of Lemma C.1. Reset A’s state to the outcome of the simulator.

– Recons0: R continues to act on behalf of the honest parties in the HalfToss0[k0] instance and
interact with the adversary A. This steps defines an s0 ∈ {0, 1}.

– Output s0 + s1.

Due to the knowledge threshold property of Lemma C.1, if t1 ≤ k1, Real is computationally
indistinguishable from Hyb. Observe that in Hyb, the outcome is uniform at random.

Remark C.3. Interestingly, note that had we reversed the order of Vote1 and Vote0 or reversed
the order of Recons0 and Recons1 in the final protocol, the above claim and proof would not hold.

Case 2: t1 ≥ k1 + 1. Due to condition (C2∗), the s0 reconstruction must output a valid bit.
Therefore, the final coin value s0 +s1 is determined at the end of the voting phase. Due to condition
(C1∗), it must be that t0 ≤ k0. Now, the HalfToss0[k0] instance must satisfy the knowledge threshold
property of Lemma C.1. Therefore, we can use a proof almost the same as the proof of Case 1 (but
executing only the steps Share0, Share1, Vote1, and Vote0 which fully determines s0 + s1), to show
that the final coin s0 + s1 is computationally indistinguishable from random.

C.3 Maximizing t Subject to the Constraint System

Lemma C.4 (Solving the constraint system and maximizing t). Assuming n1 ≥ n0 ≥ 1. For the
constraint system specified by (C1), (C2), and (C3), t is maximized when k0 and k1 are chosen as
follows:

• if n1 ≥ 5
2n0: in this case t is maximized when k0 = bn0

2 c and k1 = n1 − n0, and the maximum t
is t = n1 − b1

2n0c.

• if n1 < 5
2n0: in this case t is maximized when k0 = bn0

2 c and k1 = b2
3n1 − 1

6n0c, and the
maximum t is t = b2

3n1 − 1
6n0c+ dn0

2 e.

Proof. For completeness, we write again the constraints that are implied by (C1), (C2), and (C3):
(Parameter Constraints 2.3), while recall that we assume that 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1:

(C1): t ≤ k0 + k1 + 1,

(C2): t ≤ k1 + 1 + n0 − k0 − 1 = n0 + k1 − k0,

(C3): if n1 − k1 < n0, then t ≤ 2(n1 − k1).

Note that k0 only appears in the conditions (C1) and (C2). For any fixed k1, the feasible region
of t and k0 is depicted in Figure 2.

Therefore, for any fixed k1, we need to pick k0 such that k0 +k1 + 1 = n0 +k1−k0 to maximize
t. After rounding we have that k0 = b1

2n0c.
Plugging k0 = b1

2n0c back, the problem now boils down to finding k1 that maximizes t such
that

• t ≤ k1 + d1
2n0e.

• if k1 > n1 − n0 then t ≤ 2(n1 − k1).
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(b) The case: k1 > n1 − n0.

Figure 3: Feasible region (red) defined by t ≤ k1 + d1
2n0e, t ≤ 2n1 − 2k1.

There are two cases to consider:

If n1 ≥ 5
2n0: We have two sub-cases here:

1. If k1 ≤ n1 − n0, then we only need to maximize t ≤ k1 + d1
2n0e given that k1 ≤ n1 − n0. It is

clear that picking k1 = n1 − n0 maximizes t. In this case t = k1 + d1
2n0e = n1 − b1

2n0c.

2. If k1 > n1 − n0, then the feasible region is depicted in Figure 3a. Note that the two lines
t = k1 + d1

2n0e and t = 2n1 − 2k1 intersect at k̃1 = 2
3n1 − 1

3d
1
2n0e. Since n1 ≥ 5

2n0,

n1 − n0 ≥ k̃1, and t is maximized when picking k1 = n1 − n0 + 1. In this case t = 2n0 − 2.

When n1 ≥ 5
2n0, we have that n1−b1

2n0c ≥ 2n0−2. Therefore, t is maximized in the first sub-case
among the two sub-cases we just considered, that is, we pick k0 = bn0

2 c, k1 = n1 − n0, and then
the maximum t is n1 − b1

2n0c.

If n1 <
5
2n0: We have two sub-cases here.

1. If k1 ≤ n1 − n0, t is maximized when k1 = n1 − n0. In this case t = n1 − b1
2n0c.
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2. If k1 > n1 − n0, then the feasible region is depicted in Figure 3b. Since n1 < 5
2n0, then

n1 − n0 < k̃1, and t is maximized when picking k1 = b2
3n1 − 1

6n0c. In this case the maximum
t = b2

3n1 − 1
6n0c+ d1

2n0e.

When n1 <
5
2n0, we have that b2

3n1 − 1
6n0c+ d1

2n0e ≥ n1 − b1
2n0c. In this case, t is maximized

in the second sub-cases among the two we have just considered, that is, when k0 = bn0
2 c, k1 =

b2
3n1 − 1

6n0c, and the maximum t is t = b2
3n1 − 1

6n0c+ d1
2n0e.

Corollary C.5. Assuming n1 ≥ n0 ≥ 1. For the constraint system specified by (C1∗), (C2∗), and
(C3∗), t is maximized when k0 and k1 are chosen as in Lemma C.4

• if n1 ≥ 5
2n0: in this case t is maximized when k0 = bn0

2 c and k1 = n1 − n0, and the maximum t
is t = n1 − b1

2n0c.

• if n1 < 5
2n0: in this case t is maximized when k0 = bn0

2 c and k1 = b2
3n1 − 1

6n0c, and the
maximum t is t = b2

3n1 − 1
6n0c+ dn0

2 e.

Proof. As we mentioned in Section 4.1.1, if the optimal solution for (C1), (C2), and (C3) satisfies
that k0 = b1

2n0c = d1
2(n0− 1)e and k1 ≥ b1

2n1c, then this solution is also optimal for the constraint
system specified by (C1∗), (C2∗), and (C3∗). The optimal solution stated in Lemma C.4 does
satisfy these properties.

C.4 Tolerating One More Corruption when n0 = n1 = odd

When n0 = n1 = odd, our algorithm can actually tolerate one more corruption. That is, when
n1 = n0 = odd, we set k0 = b1

2n0c and k1 = b2
3n1 − 1

6n0c = b1
2n1c. The final protocol described in

Section 4.1.2 is CSP fair against a coalition of size up to t = b2
3n1 − 1

6n0c+ d1
2n0e+ 1 = n0 + 1.

We use t0 and t1 to denote the number of corrupted 0-supporters and 1-supporters, respectively.
Then we have the following cases:

If t0 = k0 + 1 = d1
2n0e: In this case, t1 = t− t0 = d1

2n0e = t0. This indicates that the coalition has
no preference and they can bias the output arbitrarily.

If t0 ≤ k0 = b1
2n0c: Then the coalition cannot control coin s0, nor can it hamper the reconstruction

of s0. Moreover, if the coalition can fail the reconstruction of s1, then it must corrupt more
1-supporters than 0-supporters. This means that the conditions (C1∗), (C2∗) and (C3∗) are all
satisfied. According to Lemma C.2, the protocol achieves CSP fairness.

If t0 > k0 + 1 = d1
2n0e: In this case, t1 < d1

2n0e. The coalition cannot control coin s1, nor can it
hamper the reconstruction of s1. Therefore, the conditions (C1∗), (C2∗) and (C3∗) are all satisfied.
According to Lemma C.2, the protocol achieves CSP fairness.

To summarize, when n0 = n1 = odd, we can tolerate t = b2
3n1 − 1

6n0c + d1
2n0e + 1 = n0 + 1

number of corruptions by picking k0 = b1
2n0c and k1 = b2

3n1 − 1
6n0c = b1

2n1c.

D Deferred Proofs for the Lower Bound (Section 5)

D.1 Proof of Lemma 5.9

Lemma D.1 (Lemma 5.9, restated: Solving the constraint system and minimizing t). For Param-
eter Constraint 5.1, the parameter t is minimized when α0 and α1 are chosen as follows, and the
corresponding t is:
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Case α0 α1 t

n1 ≥ 5
2n0, n0 ≥ 2 b1

2n0c n0 − 1 n1 − b1
2n0c+ 1

2 ≤ n0 < n1 <
5
2n0 b1

2n0c d1
3n1 + 1

6n0e − 1 d1
2n0e+ b2

3n1 − 1
6n0c+ 1

2 ≤ n0 = n1 b1
2n0c b1

2n0c − 1 2d1
2n0e+ 1

Note that for the case t = 2d1
2n0e + 1, this expression is equal to b2

3n1 − 1
6n0c + d1

2n0e + 1 when
n0 = n1 is even, and is equal to n0 + 2 when when n0 = n1 is odd.

Proof. We first prove the case where n1 > n0 ≥ 2. We start by reviewing all constraints as in
Parameter Constraints 5.1:

Non-negative Lone-wolf Wolf-minion T2-equity

(1) 0 ≤ α0 ≤ 1
2n0 α1 + 1 ≤ n0 n0 − α0 < n1 − α1 1 ≤ α0

(2) 0 ≤ α1 ≤ 1
2n1 α0 + 1 ≤ n1 n0 + n1 − α0 − α1 ≤ t 1 ≤ α1

(3) α0 + α1 ≤ t 3 ≤ t
(4) 2α0 + 1 ≤ t 1 ≤ n0 + n1 − 2α0 − 2α1 ≤ t
(5) 2α1 + 1 ≤ t

We start by cleaning up the constraints since some of the constraints can be implied from other
constraints. We obtain the following set of constraints, and we will next showed why they all imply
the previous set of constraints:

Parameter Constraints D.2 (Simplified Constraint System for Lower Bound).

1. 1 ≤ α0 ≤ 1
2n0;

2. 1 ≤ α1 ≤ min(1
2n1, n0 − 1, 1

2(t− 1));

3. n1 − α1 > n0 − α0;

4. t ≥ n0 + n1 − α0 − α1.

1. The first constraint in Parameter Constraints D.2 implies constraint (1) of non-negative con-
dition and constraint (1) of T2-equity condition. It also implies constraint (2) of lone-wolf
condition: recall that we assume 2 ≤ n0 < n1. Thus, α0 ≤ 1

2n0 < n0 ≤ n1 − 1.

2. The second constraint in Parameter Constraints D.2 implies constraint (2) of non-negative
condition, constraint (1) and (5) of lone-wolf condition, and constraint (2) of T2-equity con-
dition.

3. The third constraint in Parameter Constraints D.2 is exactly constraint (1) in wolf-minion
condition.

4. The forth constraint in Parameter Constraints D.2 is exactly constraint (2) in wolf-minion
condition.

5. The combination of the first, second, and forth constraints in Parameter Constraints D.2
implies the third constraint of lone-wolf. From the first constraint, we have that α0 ≤ 1

2n0

and so 2α0 ≤ n0. Similarly, from the second constraint we get that 2α1 ≤ n1. Putting into
the forth constraint:

t ≥ n0 + n1 − α0 − α1 ≥ α0 + α1 ,

which is exactly the third constraint of lone-wolf.
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6. the forth constraint of lone-wolf is implied by the other constraints (which are implied by
Parameter Constraints D.2). Specifically, t ≥ n0 + n1 − α0 − α1. We know that α0 + α1 ≤ t
(the third constraint of lone-wolf), and thus 2t ≥ n0+n1. Since n1 ≥ α0+1 (second constraint
of lone-wolf), we obtain that 2t ≥ n0 + α0 + 1. Moreover, we know that α0 ≤ n0, and thus
2t ≥ 2α0 + 1.

Moreover, since α0 ≤ 1
2n0, α1 ≤ 1

2n1, we only need to consider the constraint n1 + n0 − 2α0 −
2α1 ≥ 1 (the forth constraint of T2-equity) when both α0 = 1

2n0 and α1 = 1
2n1. Also, we only need

to consider t ≥ 3 after we find the minimum t and check whether the minimized value satisfies that
t ≥ 3 (the third condition of T2-equity.

The feasible region of α0 and α1 in Parameter Constraints D.2 is depicted in Figure 4. Note
that red lines are moving lines—namely, there intersection with α1 and α0 axes are changed with
respect to different values of t. In any case, if there is a feasible solution, then the minimum t is
obtained at the black dot which is the intersection of the green vertical line and the red horizontal
lines. In that case, α0 = b1

2n0c and α1 = min(n0 − 1, 1
2n1,

1
2(t− 1)).

0

α1

α0

min(n0 − 1, 1
2n1,

1
2(t− 1))

n1 + n0 − t

n1 − n0

b1
2n0c

α1 = n1 + n0 − t− α0

α1 = n1 − n0 + α0

Figure 4: The feasible region defined by simplified constraint system. In this diagram, each of the constraints in
Parameter Constrains D.2 is depicted with a corresponding line. For instance, Constraint 4 is depicted with the red

decreasing line, and the feasible region must be above it.

We now find the minimal t given α0, α1. We have the following three cases:

If n0 < n1 <
5
2n0: In this case,

• If min(n0− 1, 1
2n1,

1
2(t− 1)) = n0− 1: Putting α0 = b1

2n0c and α1 = n0− 1 into Constraint 4
in the simplified parameter constraints, t ≥ n1 + n0 − α0 − α1, we obtain that t ≥ n1 + n0 −
b1

2n0c − n0 + 1 = n1 − b1
2n0c+ 1.

Moreover, since min(n0−1, 1
2n1,

1
2(t−1)) = n0−1, we can conclude that n0−1 ≤ 1

2(t−1) and
so t ≥ 2n0−1. Putting together we have that the minimum t = max(2n0−1, n1−b1

2n0c+1).

• If min(n0 − 1, 1
2n1,

1
2(t − 1)) = 1

2n1, then we actually have α1 = b1
2n1c (we add the floor to

guarantee that α1 is an integer). Recall that we omitted the constraint n0+n1−2α0−2α1 ≥ 1
and mentioned that it should be considered only when α0 = 1

2n0 and α1 = 1
2n1. When

α0 = b1
2n0c and α1 = b1

2n1c, it holds that n0 + n1 − 2α0 − 2α1 < 1 only when both n0 and
n1 are even. In this case, we take a step back and pick α1 = b1

2n1c − 1.

In any case, t ≥ n1 +n0−b1
2n1c− b1

2n0c+ 1, and t ≥ n1 + 1 since 1
2(t− 1) ≥ 1

2n1. Therefore,
the minimum possible is obtained when t = n1 + 1.
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• If min(n0 − 1, 1
2n1,

1
2(t − 1)) = 1

2(t − 1): Then we have t ≥ n1 + n0 − 1
2n0 − 1

2(t − 1). This
means that t ≥ 2

3n1 + 1
3n0 + 1

3 and 1
2(t − 1) ≥ 1

3n1 + 1
6n0 + 1

6 . After rounding we have
α0 = b1

2n0c, α1 = d1
3n1 + 1

6n0e−1, and the minimum t = n1 +n0−b1
2n0c−d1

3n1 + 1
6n0e+1 =

d1
2n0e+ b2

3n1 − 1
6n0c+ 1.

We obtained three different possible values of t. The minimal k is then obtained as (recall,
n1 <

5
2n0):

min(d1
2
n0e+ b2

3
n1 −

1

6
n0c+ 1,max(2n0 − 1, n1 − b

1

2
n0c+ 1), n1 + 1) = d1

2
n0e+ b2

3
n1 −

1

6
n0c+ 1.

Let ∆ = d1
2n0e+ b2

3n1 − 1
6n0c+ 1. To see that:

• ∆ ≤ n1 + 1, note that

∆ =

{
b2

3n1 − 1
6n0 + 1

2n0c+ 1 ≤ n1 + 1, if n0 is even

b2
3n1 − 1

6n0 + 1
2n0 + 1

2c+ 1 ≤ d2
3n1 + 1

3n0e+ 1 ≤ n1 + 1, if n0 is odd

• ∆ ≤ max(2n0−1, n1−b1
2n0c+1), we first note that max(2n0−1, n1−b1

2n0c+1) = n1−b1
2n0c+1

only when b5
2n0c − 2 < n1. Hence, for n1 ≤ b5

2n0c − 2:

∆ =

{
b2

3n1 − 1
6n0 + 1

2n0c+ 1 ≤ b5
3n0 − 4

3 + 1
3n0c+ 1 = 2n0 − 1, if n0 is even

b2
3n1 − 1

6n0 + 1
2n0 + 1

2c+ 1 ≤ b2
3(5

2n0 − 5
2) + 1

3n0 + 1
2c+ 1 = 2n0 − 1, if n0 is odd

On the other hand, for b5
2n0c− 2 < n1 <

5
2n0, i.e., for n1 = b5

2n0c (if n0 is odd) or b5
2n0c− 1,

max(2n0 − 1, n1 − b1
2n0c+ 1) = n1 − b1

2n0c+ 1. When n1 = b5
2n0c,

d1
2
n0e+ b2

3
n1 −

1

6
n0c+ 1 ≤ d1

2
n0e+ b5

3
n0 −

1

6
n0c+ 1 = 2n0 + 1 ≤ n1 − b

1

2
n0c+ 1.

Similarly, when n1 = b5
2n0c − 1,

d1
2
n0e+ b2

3
n1 −

1

6
n0c+ 1 ≤ d1

2
n0e+ b5

3
n0 −

2

3
− 1

6
n0c+ 1 = 2n0 ≤ n1 − b

1

2
n0c+ 1.

Therefore, when n1 <
5
2n0, t is minimized when picking α0 = b1

2n0c and α1 = d1
3n0 + 1

6n0e−1.
Under this parameter choice t is minimized as t = d1

2n0e+b2
3n1− 1

6n0c+1, and this minimum
value satisfies that t ≥ 3 when n1 > n0 ≥ 2.

To conclude, the case of 2 ≤ n0 < n1 <
5
2n0 boils down to picking α0 = b1

2n0c, α1 = d1
3n1 +

1
6n0e − 1, and then t is minimized for t = d1

2n0e+ b2
3n1 − 1

6n0c+ 1.

If n1 ≥ 5
2n0: In this case,

• If min(n0− 1, 1
2n1,

1
2(t− 1)) = n0− 1: Putting α0 = b1

2n0c and α1 = n0− 1 into Constraint 4
in the simplified parameter constraints, t ≥ n1 + n0 − α0 − α1, we obtain that t ≥ n1 + n0 −
b1

2n0c − n0 + 1 = n1 − b1
2n0c+ 1.

Moreover, since min(n0−1, 1
2n1,

1
2(t−1)) = n0−1, we can conclude that n0−1 ≤ 1

2(t−1) and
so t ≥ 2n0−1. Putting together we have that the minimum t = max(2n0−1, n1−b1

2n0c+1) =
n1 − b1

2n0c+ 1 since n1 ≥ 5
2n0.
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• If min(n0 − 1, 1
2n1,

1
2(t− 1)) = 1

2n1: This will not happen since 1
2n1 ≥ 5

4n0 > n0 − 1.

• If min(n0 − 1, 1
2n1,

1
2(t − 1)) = 1

2(t − 1): Then we have t ≥ n1 + n0 − 1
2n0 − 1

2(t − 1). This
means that t ≥ 2

3n1 + 1
3n0 + 1

3 and 1
2(t − 1) ≥ 1

3n1 + 1
6n0 + 1

6 . After rounding we have
α0 = b1

2n0c, α1 = d1
3n1 + 1

6n0e−1, and the minimum t = n1 +n0−b1
2n0c−d1

3n1 + 1
6n0e+1 =

d1
2n0e+ b2

3n1 − 1
6n0c+ 1.

However, d1
2n0e + b2

3n1 − 1
6n0c + 1 ≥ 2n0 − 1. That is, the minimum possible t ≥ 2n0 − 1,

indicating that 1
2(t− 1) ≥ n0− 1. Therefore, 1

2(t− 1) cannot be the minimum value min(n0−
1, 1

2n1,
1
2(t− 1)). In this case there is no feasible solution.

Therefore, when n1 ≥ 5
2n0, t is minimized when picking α0 = b1

2n0c and α1 = n0 − 1. Under this
parameter choice t is minimized as t = n1−b1

2n0c+ 1, and this minimum value satisfies that t ≥ 3
when n1 > n0 ≥ 2.

The case where n1 = n0. In this case, we start with Parameter Constraints D.2, and apply
n0 = n1:

1. 1 ≤ α0 ≤ 1
2n0;

2. 1 ≤ α1 ≤ min(1
2n1, n0 − 1, 1

2(t − 1)) = min(1
2n0, n0 − 1, 1

2(t − 1)) = min(1
2n0,

1
2(t − 1)) for

n0 ≥ 2;

3. n1 − α1 > n0 − α0, which implies that α0 > α1 when n0 = n1;

4. t ≥ n0 + n1 − α0 − α1 = 2n0 − α0 − α1.

Recall that in Parameter Constraints D.2, we used the assumption that n0 < n1 only to show
that the second constraint of lone-wolf is implied by the system, and therefore, apparently, this
constraint is not implied when n0 = n1. However, when n0 = n1, this constraints boils down to
requiring that α0 + 1 ≤ n0, which is implied by our simplified constraints since:

α0 < α1 ≤ n1 = n0

and so α0 + 1 ≤ n0.
To conclude, we obtain the following simplified constraints:

Parameter Constraints D.3 (Simplified Constraint System for Lower Bound when
n1 = n0).

• 1 ≤ α1 < α0 ≤ min(1
2n0,

1
2(t− 1));

• t ≥ 2n0 − α0 − α1.

Similarly, t is minimized when α0 = min(1
2n0,

1
2(t−1)), and α1 = α0−1. We have the following

cases:

• If 1
2n0 ≤ 1

2(t − 1), then we pick α0 = b1
2n0c, α1 = b1

2n0c − 1. Then t ≥ 2n0 − α0 −
α1 = 2d1

2n0e + 1. Moreover, since 1
2n0 ≤ 1

2(t − 1), t ≥ n0 + 1. Therefore, the minimum
t = max(2d1

2n0e+ 1, n0 + 1) = 2d1
2n0e+ 1.

• If 1
2n0 >

1
2(t−1). Letting α0 = 1

2 t−1 and α1 = α0−1, In this case t ≥ 2n0−1
2(t−1)−1

2(t−1)+1,
indicating that t ≥ n0 + 1. However, this indicates that 1

2n0 ≤ 1
2(t − 1), which contradicts

with our assumption. Therefore, there is no feasible solution in this case.

To conclude, when n0 = n1, t is minimized when α0 = b1
2n0c, α1 = b1

2n0c − 1, and the minimum
t = 2d1

2n0e + 1. Note that for even n0 = n1, t = 2d1
2n0e + 1 = d1

2n0e + b2
3n1 − 1

6n0c + 1; for odd
n0 = n1, t = 2d1

2n0e+ 1 = n0 + 2.

38



D.2 Proof of Theorem 2.5

For completeness, we give an explicit proof of Theorem 2.5, which is implicit in the work by Chung
et. al. [CGL+18].

Theorem D.4 (Theorem 2.5, restated (Generalized Theorem 21 of Chung et. al. [CGL+18])).
There is no protocol Π among three super nodes S1, S2 and S3 such that Π satisfies the above
wolf-minion condition, the lone-wolf condition and the T2-equity condition simultaneously.

Proof. For the sake of contradiction, let Π be an R = R(λ, n0, n1)-round protocol among three super
nodes S1, S2 and S3. Moreover, the protocol Π satisfies the lone-wolf condition, the wolf-minion
condition and the T2-equity condition.

Without loss of generality, we assume that the message schedule of the protocol proceeds in R
rounds and satisfies the following assumptions:

• In the first round, only S1 sends messages;

• In round 2, . . . , R− 1, S1, S2 and S3 all send messages;

• In round R, only S3 sends messages.

It is easy to see that any protocol among three super nodes can be transformed into a three-party
protocol that satisfy the above message schedule conditions with only O(1) additional rounds: one
can always send a filler message if a party does not want to send a message in that round.

Now we define a sequence of adversaries as in [Cle86], but conditioned on any fixed choice of
S2’s randomness T2:

• Abi(1λ, T2) corrupts S1 and S2 and wants to bias the output towards b ∈ {0, 1}: Abi uses T2

as the randomness for party S2. It chooses the randomness for party S1 honestly. Then it
executes the protocol honestly till the moment right before S1 is going to broadcast its i-th
message.

Then it computes αi, the output of S1 and S2 imagining that S3 aborts right after sending
its (i− 1)-th message, i.e., S3’s message in i-th round.

If αi = b, then S1 aborts after sending the i-th message. Otherwise S1 aborts without sending
the i-th message.

• Bbi (1λ, T2) corrupts S3 and S2 and wants to bias the output of S1 towards b ∈ {0, 1}: Bbi uses
T2 as the randomness for party S2. It chooses the randomness for party S3 honestly. Then it
executes the protocol honestly till the moment right before S3 is going to broadcast its i-th
message.

Then it computes βi, the output of S3 and S2 imagining that S1 aborts right after sending
its (i− 1)-th message.

If βi = b, then S3 aborts after sending the i-th message. Otherwise S3 aborts without sending
the i-th message.

• A0(1λ, T2) corrupts S1 and S2 and wants to bias the output of S3 towards either direction.
It runs S2 with randomness T2 and has S1 abort at the very beginning of the protocol.

By definition, in the above sequences of adversaries {Abi(1λ, T2),Bbi (1λ, T2) for i ∈ [R], b ∈ {0, 1}}
and A0(1λ, T2), each adversary corrupts two parties, either S1 and S2, or S3 and S2. And they all
run S2 as a silent corrupted party that never aborts.
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Fixing any T2, the three-party protocol Π with R rounds can be viewed as a residual two-party
protocol between S1 and S3 with R rounds. In this residual protocol, T2 is hardwired in S1 and
S3’s programs so they can simulate the behavior of S2. We denote the two-party residual protocol
as Πres. The above sequence of adversaries in Π can thus be viewed as a sequence of adversaries in
the residual two-party protocol Πres. Now {Abi(1λ, T2)}i∈[R],b∈{0,1} and A0(1λ, T2) corrupts S1 and

that {Bbi (1λ, T2)}i∈[R],b∈{0,1} corrupts S3.
According to the T2-equity condition, for all but a negligible fraction of T2, the expected outcome

of an honest execution of Πres is negligibly different from 1
2 . Since Cleve [Cle86] shows that one of

the above adversaries can bias the outcome by a non-negligible amount if in an honest execution of
the 2-party protocol, the output is negligibly apart from an unbiased coin and there is an agreement
of the outcome, we have

Lemma D.5. For any fixed T2, in the residual two party protocol Πres, at least one of the following
happens:

1. either one of {A0
i (1

λ, T2)}i∈[R], {B0
i (1

λ, T2)}i∈[R],A0(1λ, T2) can bias the outcome of Πres to-

wards 0 by 1
2(4R+1) ;

2. or one of {A1
i (1

λ, T2)}i∈[R], {B1
i (1

λ, T2)}i∈[R] can bias the outcome of Πres towards 1 by 1
2(4R+1) .

For all but a negligible fraction of T2, none of these adversaries in Πres can cause a non-negligible
bias towards 1. Otherwise we can construct an adversary A∗ that breaks the wolf-minion condition
of Π. Formally,

Lemma D.6. For all but a negligible fraction of T2,

1. at least one of {A0
i (1

λ, T2)}i∈[R], {B0
i (1

λ, T2)}i∈[R],A0(1λ, T2) can bias the outcome of Πres

towards 0 by 1
2(4R+1) ;

2. none of {Abi(1λ, T2)}i∈[R], {Bbi (1λ, T2)}i∈[R] bias the outcome of Πres towards 1 by a non-
negligible amount for b ∈ {0, 1}.

Proof of Lemma D.6. Suppose that the second claim is not true. Then there exist some polyno-
mials p(·) and q(·) such that, for 1/p(λ) fraction of T2, either one of {Abi(1λ, ·)}i∈[R] or one of

{Bbi (1λ, ·)}i∈[R] must be able to bias the outcome of Πres towards 1 by 1/q(λ) amount. Assume that

it is one of {Abi(1λ, ·)}i∈[R] that can bias the output (the same argument works for {Bbi (1λ, ·)}i∈[R]).

Consider a fail-stop adversary Ã in the three-party protocol Π that acts as follows.
Ã takes q(·) as an advice and corrupts S2 and S1. It randomly chooses a T2 for S2 and checks

whether this is a “good” T2 as the following. For each i ∈ [R], Ã repeats the following for q2(λ)
times: it samples a random T1 and T3 and simulates an execution of the protocol Πres involving
Abi(1λ, T2). If there exists an i ∈ R such that the outcome is 1 for more than 1

2 + 1
2q(λ) fraction of

the time, then we say T2 is “good” for Abi(1λ, ·). If T2 is “good” for Abi(1λ, ·), Ã follows the strategy
of Abi(1λ, ·); otherwise it follows the honest execution of the protocol.

By the Chernoff bound, except with a negligible probability, for any T2 such that there exists
one Abi(1λ, ·) that can bias the outcome of Πres towards 1 by 1

q(λ) amount, T2 will be determined as

“good” for Abi(1λ, ·). This means that Ã can cause a non-negligible bias towards 1, which breaks
the wolf-minion condition. Therefore for all but a negligible fraction of T2, none of {A1

i (1
λ, T2)}i∈[R]

can bias the outcome of Πres towards 1 by a non-negligible amount. By a similar argument, for all
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but a negligible fraction of T2, none of {B1
i (1

λ, T2)}i∈[R] can bias the outcome of Πres towards 1 by
a non-negligible amount.

Combining with Lemma D.5, at least one of {A0
i (1

λ, T2)}i∈[R], {B0
i (1

λ, T2)}i∈[R], A0(1λ, T2) must

be able to bias the outcome of Πres towards 0 by 1
2(4R+1) .

Now define adversaries Ābi(1λ), B̄bi (1λ) and Ā0(1λ) in Π as follows:

• Ābi(1λ) corrupts S1 and S2. It randomly picks a T2 and follows the strategy of Abi(1λ, T2), for
b ∈ {0, 1}, i ∈ [R];

• B̄bi (1λ) corrupts S3 and S2. It randomly picks a T2 and follows the strategy of Bbi (1λ, T2), for
b ∈ {0, 1}, i ∈ [R].

• Ā0(1λ) corrupts corrupts S1 and S2. It randomly picks a T2 and follows the strategy of
A0(1λ, T2).

By Lemma D.6 and the definition above, for almost all T2, at least one of {Ā0
i (1

λ)}i∈[R],

{B̄0
i (1

λ)}i∈[R], Ā0(1λ, T2) can bias the output towards 0 by a non-negligible amount. However,

in an execution where Π interacting with Ā0(1λ), it is same as in an execution of Π where S2 is
honest and S1 always aborts at the beginning of the protocol. According to the lone-wolf condition,
Ā0(1λ) cannot bias the output of Π towards 0 by a non-negligible amount. Therefore, at least one
of {Ā0

i (1
λ)}i∈[R], {B̄0

i (1
λ)}i∈[R] can bias the outcome of Πres towards 0 by a non-negligible amount.

Now we show that if Ā0
i (1

λ) can bias the outcome of Π towards 0 by a non-negligible amount,
then Ā1

i (1
λ) is also able to bias the outcome of Π towards 1 by a non-negligible amount. If this

is true, then one of {Ā1
i (1

λ)}i, {B̄1
i (1

λ)}i can bias the outcome of Π towards 1 by a non-negligible
amount. Consider the following two fail-stop adversaries X̄ (1λ) and Ȳ(1λ):
X̄ (1λ) randomly pick an i from [R] and run Ā1

i (1
λ); Ȳ(1λ) randomly pick an i from [R] and run

B̄1
i (1

λ).
Then either X̄ (1λ) can cause a non-negligible bias towards 1 or Ȳ(1λ) can cause a non-negligible

bias towards 1 in Π. This breaks the wolf-minion condition and the theorem thus follows. So what
remains to be shown is that

Lemma D.7. If Ā0
i ((1

λ)) can cause µ-bias towards 0, then Ā1
i ((1

λ)) can cause at least (µ−negl(λ))-
bias towards 1.

Proof of Lemma D.7. The randomness of the three parties T1, T2 and T3 together define a sample
path. Let S denote the set of sample paths for which Ā1

i (1
λ) decides to abort before sending the i-th

message. And S̄ denote the set of sample paths for which Ā1
i (1

λ) decides to abort after sending the
i-th message. Then by definition of the adversaries, Ā0

i will abort after sending the i-th message
on S and abort before sending the i-th message on S̄.

Now we define a partition of S and S̄. Let U
〈b〉
0 be the set of sample paths in S on which S3’s

output is 0 when playing with Ābi(1λ), and U
〈b〉
1 be the set of sample paths in S on which S3’s output

is 1 when playing with Ābi(1λ). Then S = U
〈b〉
0 ∪U

〈b〉
1 . Similarly, let Ū

〈b〉
0 be the set of sample paths

in S̄ on which S3’s output is 0 when playing with Ābi(1λ), and Ū
〈b〉
1 be the set of sample paths in S̄

on which S3’s output is 1 when playing with Ābi . Then S̄ = Ū
〈b〉
0 ∪ Ū 〈b〉1 .

Now consider a hybrid adversary, that takes Ā1
i ’s decisions on S and Ā0

i ’s decisions on S̄, i.e., it
always makes S1 abort before sending the i-th message. Since this adversary chooses T2 honestly,
an execution with this hybrid adversary is same as an execution in which S1 is the only corrupted
party and always aborts before sending the i-th message. Then by the lone-wolf condition, S3’s
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outcome should not be biased towards either direction, except by a negligible amount. Therefore
we must have

|U 〈1〉0 |+ |Ū
〈0〉
0 | − (|U 〈1〉1 |+ |Ū

〈0〉
1 |) ≤ negl(λ)

By a symmetric argument, consider a hybrid adversary that always makes S1 abort after sending
the i-th message, we have that

|U 〈0〉0 |+ |Ū
〈1〉
0 | − (|U 〈0〉1 |+ |Ū

〈1〉
1 |) ≤ negl(λ)

We can conclude that

[|U 〈0〉0 |+ |Ū
〈0〉
0 | − (|U 〈0〉1 |+ |Ū

〈0〉
1 |)]− [|U 〈1〉1 |+ |Ū

〈1〉
1 | − (|U 〈1〉0 |+ |Ū

〈1〉
0 |)] ≤ negl(λ)

This indicates that Ā0
i ’s ability to bias the output towards 0 is negligibly different from Ā1

i ’s ability
to bias the output towards 1, which concludes the lemma.

E Deferred Proofs for Maximin Fairness (Section 6)

E.1 Formal Proof of Lower Bound

We provide a full proof of the following Theorem:

Theorem E.1 (Theorem 6.1, restated: Lower bound for maximin fairness). Without loss of gen-
erality, assume that n1 ≥ n0 ≥ 1 and n0 + n1 > 2. Then there does not exist a maximmin-fair
n-party coin toss protocol which tolerates:

For n0 ≥ 2 tolerating t ≥ d1
2(n0 + n1)e number of fail-stop is impossible

For n0 = 1 tolerating t ≥ d1
2n1e+ 1 number of semi-malicious is impossible

Proof. We show the two cases.

Case I: n1 ≥ n0 ≥ 2: Suppose that there exists a protocol Π that achieves maximin fairness
among n0 number of 0-supporters and n1 number of 1-supporters against t = d1

2(n0 + n1)e fail-
stop adversaries. Consider the following partition. S1 contains d1

2n0e number of 0-supporters and
b1

2n1c number of 1-supporters. S2 contains b1
2n0c number of 0-supporters and d1

2n1e number of 1-
supporters. Then Π can be viewed as a two-party coin toss protocol between S1 and S2. Moreover,
in an all-honest execution, the expected output is 1

2 due to the correctness.
Since n1 ≥ n0 ≥ 2, there is at least one 0-supporter and one 1-supporter in S2. Consider a

fail-stop adversary A corrupting S1, which consists of d1
2n0e+ b1

2n1c ≤ t number of players. Then
A cannot bias the output of Π towards b ∈ {0, 1} by a non-negligible amount. Otherwise it reduces
the utility of the honest (1 − b)-supporters in S2 by a non-negligible amount, which breaks the
maximin fairness of Π. Similarly, S2 cannot bias the output of Π towards either direction by a
non-negligible amount. However, this contradicts with Cleve’s lower bound.

Case II: n0 = 1: Chung et al. [CGL+18] proved the impossibility of having a maximin-fair
protocol against semi-malicious coalitions of size up to n− 1. Our proof is similar to Chung et al.,
but we generalize their proof and characterize the number of corruptions needed more carefully.
Suppose that there exists a protocol Π that achieves maximin fairness among one 0-supporter
and n1 number of 1-supporters against d1

2n1e semi-malicious adversaries. Consider the following
partition. S1 contains b1

2n1c number of 1-supporters, S3 contains d1
2n1e number of 1-supporters
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and S2 contains the single 0-supporter. Then Π can be viewed as a three-party coin toss protocol
between S1, S2 and S3.

One can easily verify that, due to the maximin fairness, Π should satisfy the lone-wolf condi-
tion (LBC1) and the wolf-minion condition (LBC2)

• For the lone-wolf condition (LBC1): A single corrupted S1 (or S3) with at most d1
2n1e players

cannot bias the output towards 1 by a non-negligible amount, otherwise it harms the benefit
of S2. Also, it cannot bias towards 0 by a non-negligible amount, otherwise it harms the
benefit of S3 (or S1).

• For the wolf-minion condition (LBC2): A coalition of S1 and S2 (or S3 and S2) with at
most d1

2n1e + 1 players cannot bias the output towards 0 by a non-negligible amount, since
otherwise this will harm the remaining honest 1-supporters.

If we can further show that Π should also satisfy the T2-equity condition (LBC3) where T2 is the
single 0-supporter’s randomness, then by Theorem D.4 we have a contradiction and thus there is
no protocol that achieves maximin fairness among one 0-supporter and n1 number of 1-supporters
against d1

2n1e semi-malicious adversaries.
Now we show that indeed, Π should satisfy the T2-equity condition. Let f(T2) denote the

expected output of an honest execution of Π conditioned on S2’s randomness T2. Recall that λ
denotes the security parameter. We have the following — we stress that the proof of following
Lemma E.2 needs to make use of a semi-malicious attack. This is the only place where semi-
malicious corruption is needed in the proof of Theorem 6.1 for the case n0 = 1 (c.f. Chung et
al. [CGL+18] showed that it is possible to tolerate all but one fail-stop corruptions for the case of
maximin fairness and n0 = 1).

Lemma E.2. For any T2, it must be that f(T2) ≥ 1
2 −

1
p(λ) for any polynomial function p(·).

Proof. The proof was given in Chung et al. [CGL+18]. For completeness, we describe their proof
below, and observing that the attack here only needs to corrupt S2, and the corrupted S2 must be
allowed to choose its coin T2 to its advantage (note that this is a semi-malicious attack).

For the sake of contradiction, suppose that there exists a T ∗2 and a polynomial q(·) such that
f(T ∗2 ) < 1

2 − 1/q(λ), then a semi-malicious adversary corrupting only S2 can always choose T ∗2 as
its randomness and can bias the output of Π towards 0 by a non-negligible amount. This breaks
the maximin fairness of Π.

Note that by the correctness of Π, in an all-honest execution, we have that ET2 [f(T2)] = 1
2 .

Suppose for the sake of contradiction that Π does not satisfy T2-equity. That is, there exist
polynomials p(·) and q(·) such that for 1

p(λ) fraction of T2, |f(T2) − 1
2 | >

1
q(λ) . By Lemma E.2,

there must exists a polynomial p′(·) such that for 1
p′(λ) fraction of T2, f(T2) > 1

2 + 1
q(λ) . Otherwise

|f(T2)− 1
2 | ≤

1
q(λ) for almost all T2. Again by Lemma E.2, we have that, for any polynomial q′(·),

ET2 [f(T2)] ≥ 1

p′(λ)

(
1

2
+

1

q(λ)

)
+

(
1− 1

p′(λ)

)(
1

2
− 1

q′(λ)

)
=

1

2
+

1

p′(λ)q(λ)
− 1

q′(λ)

(
1− 1

p′(λ)

)
,

which is greater than 1
2 for sufficiently large polynomial q′(·). This contradicts the fact that

ET2 [f(T2)] = 1
2 . Therefore, Π must satisfy T2-equity.
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E.2 Formal Proof of Upper Bound

Theorem E.3 (Theorem 6.3, restated: Upper bound for maximin fairness). Without loss of gen-
erality, assume that n1 ≥ n0 ≥ 1 and n0 + n1 > 2. There exists a maximin-fair n-party coin
toss protocol among n0 players who prefer 0 and n1 players who prefer 1, which tolerates up to t
malicious adversaries where

t :=

{
d1

2(n0 + n1)e − 1, if n0 ≥ 2,

d1
2n1e, if n0 = 1.

(3)

Proof. Note that except for the special case n0 = 1 and n1 = odd, we can simply run honest-majority
MPC with guaranteed output delivery [GMW87, RB89]. For the special case where n0 = 1 and
n1 = odd, we have the following result:

Lemma E.4. Assume that n0 = 1 and n1 is odd. Protocol 6.2 satisfies maximin fairness against
any non-uniform p.p.t. coalition of size up to d1

2n1e.

Proof. According to the protocol, if the single 0-supporter is corrupted and fails to open s0 correctly,
then the protocol outputs 1, which will not harm any honest player. Hence, we only consider the
case in which s0 is successfully opened. We use t0 and t1 to denote the number of corrupted
0-supporters and 1-supporters respectively.

Case 1: t1 = d1
2n1e. Then the single 0-supporter is honest. Due to the hiding property of the

commitment scheme, the corrupted coalition’s view is computationally independent from s0 before
the 0-supporter opens s0. Therefore, the final output s0 ⊕ s1 is computationally indistinguishable
from a uniform coin.

Case 2: t1 < d1
2n1e. Then we have honest majority among the 1-supporters. The output of the

honest majority MPC will be a uniformly random coin and the honest 1-supporters will win the
majority vote. Thus s1 is a uniformly random coin. Moreover, note that the single 0-supporter
commit to s0 before the honest-majority MPC, and it has to open the coin s0 correctly, s0 and s1

are statistically independent. Therefore, the final output s0 ⊕ s1 is a uniform coin.
Combining the above cases, Protocol 6.2 satisfies maximin fairness against any non-uniform

p.p.t. coalition of size up to d1
2n1e.
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