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Abstract. In the era of cloud computing and machine learning, data
has become a highly valuable resource. Recent history has shown that the
benefits brought forth by this data driven culture come at a cost of poten-
tial data leakage. Such breaches have a devastating impact on individuals
and industry, and lead the community to seek privacy preserving solu-
tions. A promising approach is to utilize Fully Homomorphic Encryption
(FHE) to enable machine learning over encrypted data, thus providing re-
siliency against information leakage. However, computing over encrypted
data incurs a high computational overhead, thus requiring the redesign of
algorithms, in an “FHE-friendly” manner, to maintain their practicality.

In this work we focus on the ever-popular tree based methods (e.g., boost-
ing, random forests), and propose a new privacy-preserving solution to
training and prediction for trees. Our solution employs a low-degree ap-
proximation for the step-function together with a lightweight interactive
protocol, to replace components of the vanilla algorithm that are costly
over encrypted data. Our protocols for decision trees achieve practical
usability demonstrated on standard UCI datasets encrypted with fully
homomorphic encryption. In addition, the communication complexity of
our protocols is independent of the tree size and dataset size in prediction
and training, respectively, which significantly improves on prior works.
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1 Introduction

The ubiquity of data collected by products and services is often regarded
as the key to the so called AI revolution. User and usage information
is aggregated across individuals to drive smart products, personalized
experience, and automation. In order to achieve these goals, stored data is
accessed by multiple microservices each performing different calculations.
However, these benefits come at a cost of a threat on privacy.

The public is constantly being informed of data breaches, events which
impact privacy and safety of individuals and in turn have a large neg-
ative effect on the breached service providers. Whether the leakage is
passwords, private pictures and messages, or financial information, it is
becoming increasingly clear that drastic measures must be taken to safe-
guard data that is entrusted to corporations.

There are several approaches to safeguarding data and minimizing the
impact of potential breaches. Most fundamentally, encryption of data at
rest ensures that even if the entire database is stolen, the data is still
safe. While this may have sufficed in the past, the rise of microservice-
based architectures in the cloud resulted in a large number of applications
having access to the cleartext (i.e., unencrypted) information, making
the attack surface uncontrollably large. Ideally, we would like to allow all
these applications to operate without ever being exposed to the actual
information. Recent advances in the field of Homomorphic Encryption
provide some hope of achieving this level of privacy.

Fully Homomorphic Encryption (FHE) [34,17,6,5,16,10] is a type of
encryption that allows computation to be performed over encrypted data
(“homomorphic computation”), producing an encrypted version of the re-
sult. Concretely, FHE supports addition and multiplication over encrypted
data, and hence allows evaluating any polynomial. The downside of FHE
is the heavy cost of the multiplication operation, which imposes compu-
tational limitations on the degree of the evaluated polynomial and the
number of total multiplications.

Unfortunately, common computations are not “FHE-friendly” as their
polynomial representation is of high degree, which is a major obstacle to
the widespread deployment of computing over encrypted data in practice.
In particular, machine learning models require complex calculations to
train and predict, and adaptations must be made in order to make them
practical with FHE. Previous work on machine learning with FHE focused
mostly on training and evaluation of logistic regression models, e.g., [8,23],
and on more complex models such as shallow neural networks e.g., [18,30].



While these are two widely used classes of models, they are far from
encompassing the entire scope of broadly used machine learning methods.
In practice, tree based models remain some of the most popular methods,
ranging from single decision trees, to random forests and boosting.

A decision tree is a model used for prediction, i.e., mapping a feature
vector to a score or a label. The prediction is done by traversing a path
from root to leaf, where the path is determined by a sequence of com-
parison operations “xi > θ” between a feature value xi and a threshold θ
(continuing to right-child if satisfied, left otherwise). Training is the pro-
cess of producing a decision tree from a dataset of labeled examples, with
the goal of yielding accurate predictions on new unlabeled data instances.

Any solution for decision trees over encrypted data would need to
address how to perform the comparison operations over such data. For
prediction over encrypted data, Bost et al.[4] instantiated the comparison
component via an interactive protocol, yielding communication complex-
ity proportional to the tree size; subsequent work [7,2,42,11,38,21,25,39],
likewise, followed the interactive approach with communication complex-
ity proportional to the tree size or depth, imposing a significant burden on
the bandwidth. In the context of training, existing protocols [28,13,41,43]
[15,36,40,12,29] consider a multi-party setting where each party holds a
cleartext subset of the dataset to be trained on, in contrast to our setting
where the data is encrypted and no entity in the system holds in it the
clear. This leaves the question of training decision trees over encrypted
data together with non-interactive prediction as an open problem.

Elaborating on the above, this work is motivated by the enterprise
setting, with a primary goal of providing a privacy-preserving solution
compatible with the existing enterprise architecture. In this architecture,
data is stored encrypted in a centralized storage, called data lake, and used
by multiple microservices (referred to as server) that perform computa-
tions on cleartext data decrypted with a key provided by the enterprise
key-management service (KMS). The KMS is an entity holding enterprise
secrets and keys and providing crypto-services to authorized entities, and
thus must be safeguarded. As part of its safeguarding, the KMS is re-
stricted to a lightweight and predefined functionality, in particular, it is
prohibited from executing heavy or general purpose code. Our goal is to
completely eliminate the microservices access to cleartext data, and re-
place it with computation over encrypted data producing an encrypted
outcome (that may either be decrypted by the KMS or used in encrypted
form for subsequent computations). The KMS may be employed for com-



putation on cleartext data, provided it adheres to the aforementioned
restrictions on the KMS, in particular, in must be lightweight.

Our Contribution. In this work we present the first protocols for
privacy-preserving decision tree based training and prediction that at-
tain all the following desirable properties (see Figure 7-8 and Table 1 in
Section 5):

1. Prediction: a non-interactive protocol on encrypted data.
2. Training: a d-round protocol between a server computing on encrypted

data and the KMS, with communication complexity independent of
the dataset size, where d is the constructed tree depth.

3. Security: provable privacy guarantees against an adversary who fol-
lows the protocol specification but may try to learn more information
(semi-honest).

4. Practical usability: high accuracy comparable to the classical vanilla
decision tree, fast prediction (seconds) and practical training (minutes
to hours) demonstrated on standard UCI datasets encrypted with
FHE.

Our technique for comparison over encrypted data. We devise a low
degree polynomial approximation for step functions by using the least
squares method, and utilize our approximation for fast and accurate pre-
diction and training over encrypted data. To achieve better accuracy in
our algorithms and protocols, the approximation uses a weighting func-
tion that is zero in a window around the step and constant elsewhere. See
Section 3.1.

Further applications. Our training and prediction protocols can be em-
ployed in additional settings:
(a) Cross-entity: Our prediction protocol can trivially be used in settings
where one company holds an unlabeled example, with the goal of learning
the prediction result, and the other company holds a decision tree.
(b) Secure outsourcing: Both our protocols can be employed in settings
where the client is the owner of example and tree in prediction (respec-
tively, the dataset in training), and the server performs all computation
(besides the lightweight KMS tasks performed by the client), resulting in
protocols with lightweight client.

Terminology. Henceforth we use the more neutral “client” terminology
rather than “KMS”, in order to capture the aforementioned wider scope
of applications.



Prior work on privacy-preserving decision trees. For prediction,
prior works considered the cross-entity setting, presenting interactive pro-
tocols with communication complexity proportional to the tree size in
[7,2,4,42,11,38,21,25] or depth [39]. In contrast, our protocol is non-interactive.

For training, the prior works [28,13,41,43,15,36,40,12,29] considered
multi-party computation settings, where multiple parties communicate
to train a model on the union of their private individual datasets with
the goal of preventing leakage on their private dataset. In particular,
every example in the training dataset is visible in cleartext to at least one
participant. Moreover, their communication complexity is proportional
to the dataset size. In contrast, in our setting all data is encrypted and
there is no data owner who sees cleartext data examples; furthermore, the
communication complexity of our protocol is independent of the dataset
size.

The technique of employing low degree approximation to speedup com-
puting on encryption data was previously used for other functions, such
as ReLU , Sigmoid and Tanh, see [24,22,26,3,20,9].

2 Preliminaries

In this section we specify standard terminology and notations used through-
out this paper, as well as standard definitions for uniform convergence,
decision trees, CPA-security, fully homomorphic encryption and privacy-
preserving protocols.

2.1 Terminology and notations

We use the following standard notations and terminology. For n ∈ N,
let [n] denote the set {1, . . . , n}. A L-dimensional binary vector y =
(y1, . . . , yL) is called the 1-hot encoding of ` ∈ [L], if the `’th entry is
the only non-zero entry in y.

A function µ : N → R+ is negligible in n if for every positive polyno-
mial p(·) and all sufficiently large n it holds that µ(n) < 1/p(n). We use
neg(·) to denote a negligible function if we do not need to specify its name.
Unless otherwise indicated, “polynomial” and “negligible” are measured
with respect to a system parameter λ called the security parameter. We
use the shorthand notation PPT for probabilistic polynomial time in λ.

A random variable A is a function from a finite set S to the non-
negative reals with the property that

∑
s∈S A(s) = 1. A probability en-

semble X = {X(a, n)}a∈{0,1}∗,n∈N is an infinite sequence of random vari-
ables indexed by a ∈ {0, 1}∗ and n ∈ N. Two probability ensembles



X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N are said to be
computationally indistinguishable, denoted by X ≈c Y , if for every non-
uniform polynomial-time algorithm D there exists a negligible function
neg such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ neg(n).

2.2 Uniform Convergence

We use a standard notion for convergence of functions, as stated next.

Definition 1 (Uniform Convergence). Let E be a set and let (fn)n∈N
be a sequence of real-valued functions on E. We say that (fn)n∈N uni-
formly converges on E to a function f if for every ε > 0 there exists a
n0 ∈ N such that for all n ≥ n0 and x ∈ E it holds that |fn(x)−f(x)| < ε.

2.3 Decision Trees

A decision tree T is a binary tree where each internal node corresponds
to a partitioning of the input space along one dimension, and each leaf
is associated with a label from {1, . . . , L}. The decision tree induces a
mapping t : Rk → {1, . . . , L} as follows. A tree T is evaluated on an input
sample x ∈ Rk by traversing a path in the tree, from root to leaf, using
the partitioning rule at each node to decide how to continue; when a leaf
is reached, the label associated with it is returned.

The structure of a decision tree is typically learned in order to fit to
a given dataset (X ,Y) of n labeled examples for which we ideally want
to have: ∀x ∈ X : t(x) = yx, i.e., every x is mapped to its corresponding
label yx. The task of finding the optimal tree, that is the tree of a given
depth for which the maximal number of the aforementioned equalities
hold, is known to be NP-complete [27]. Heuristics used in practice to ob-
tain decision trees given a dataset rely on optimizing the local quality of
each partitioning (i.e. each node), by selecting the dimension and thresh-
old value that divide the data into partitions that are each “as pure as
possible”. The motivation behind this local criterion is that if all data
points that arrive to the same leaf have the same label, then by assign-
ing this label to the leaf we are able to categorize this region perfectly.
Several measures of purity are commonly used, and we describe the Gini
impurity measure in greater detail in Section 3, Figure 2.



2.4 CPA-Secure Public Key Encryption

A public key encryption scheme has the following syntax and correctness
requirement.

Definition 2 (Public-Key Encryption (PKE)). A public-key en-
cryption (PKE) scheme with message space M is a triple (Gen,Enc,Dec)
of PPT algorithms satisfying the following conditions:

– Gen (key generation) takes as input the security parameter 1λ, and
outputs a pair (pk, sk) consisting of a public key pk and a secret key
sk; denoted: (pk, sk)← Gen(1λ).

– Enc (encryption) takes as input a public key pk and a message m ∈M,
and outputs a ciphertext c; denoted: c← Encpk(m).

– Dec (decryption) takes as input a secret key sk and a ciphertext c,
and outputs a decrypted message m′; denoted: m′ ← Decsk(c).

Correctness. The scheme is correct if for every (pk, sk) in the range of
Gen(1λ) and every message m ∈M,

Pr[Decsk(Encpk(m)) = m] = 1.

where the probability is taken over the random coins of the encryption
algorithm.

A PKE E = (Gen,Enc,Dec) is CPA-secure if no PPT adversary A can
distinguish between the encryption of two equal length messages x0, x1 of
his choice. This is formally stated using the following experiment between
a challenger Chal and the adversary A.

The CPA indistinguishability experiment EXPcpaA,E(λ):

1. Gen(1λ) is run by Chal to obtain keys (pk, sk).
2. Chal provides the adversary A with pk as well as oracle access to

Encpk(·), and A sends to Chal two messages x0, x1 ∈M s.t. |x0| = |x1|.
3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ←

Encpk(xb) and sends c to A. We call c the challenge ciphertext. A
continues to have oracle access to Encpk(·).

4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 3 (CPA-security). A public key encryption scheme E =
(Gen,Enc,Dec) has indistinguishable encryptions under chosen-plaintext



attacks (or is CPA-secure) if for all PPT adversaries A there exists a
negligible function neg such that:

Pr[EXPcpaA,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

2.5 Fully Homomorphic Encryption

A fully homomorphic public-key encryption scheme (FHE) is a public-key
encryption scheme equipped with an additional PPT algorithm called
Eval that supports “homomorphic evaluations” on ciphertexts. For ex-
ample, given two ciphertexts c1 = Enc(m1) and c2 = Enc(m2) encrypt-
ing messages m1 and m2 respectively with FHE, it is possible to pro-
duce new ciphertexts c3 and c4 that decrypt to Dec(c3) = m1 + m2 and
Dec(c4) = m1×m2 respectively. The correctness requirement is extended
to hold with respect to any sequence of homomorphic evaluations per-
formed on ciphertexts encrypted under pk using Evalpk(·). A fully ho-
momorphic encryption scheme must satisfy an additional property called
compactness requiring that the size of the ciphertext does not grow with
the complexity of the sequence of homomorphic operations. The formal
definition follows.

Definition 4 (Public-key FHE scheme [6]). A homomorphic (public-
key) encryption scheme E = (Gen,Enc,Dec,Eval) with message space M
is a quadruple of PPT algorithms as follows:

– (Gen,Enc,Dec) is a PKE, as specified in Definition 2.
– Eval (homomorphic evaluation) takes as input the public key pk, a cir-

cuit C : M` →M, and ciphertexts c1, . . . , c`, and outputs a ciphertext
ĉ; denoted: ĉ← Evalpk(C, c1, . . . , c`).

Security. A homomorphic encryption scheme is said to be secure if it is
a CPA-secure PKE.

C-homomorphism. A homomorphic encryption scheme is C-homomorphic
for a circuit family C if for all C ∈ C and for any set of inputs x1, . . . , x`
to C, letting (pk, sk)← Gen(1λ) and ci ← Enc(pk, xi) it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , c`)) 6= C(x1, . . . , x`)] ≤ neg(λ)

where the probability is taken over all the randomness in the experiment.



Compactness. A homomorphic encryption scheme is compact if there
exists polynomial p(·) such that the decryption algorithm can be expressed
as a circuit of size p(λ).

Fully homomorphic. A homomorphic encryption scheme fully homomor-
phic, if it is both compact and C-homomorphic for the class C of all effi-
ciently computable circuits.

2.6 Privacy-Preserving Two-Party Protocols

Next we bring the security definition specifying when a client-server pro-
tocol is privacy-preserving against a semi-honest server. A semi-honest
server follows the protocol’s specifications, albeit it may try to learn ad-
ditional information.

Security definition. Informally, our protocols are privacy-preserving if the
server cannot learn any additional information from participating in the
protocol, beyond its output. In our protocols the server has no input
or output, so the server should learn nothing from participating in the
protocol. The requirement that the server learns nothing can be captured
by requiring that the view of the server (i.e., its internal state and received
messages during the protocol’s execution) in executions on varying (same
length) inputs is computationally indistinguishable. This is formalized
in [19] Definition 2.6.2 Part 2 for the case of malicious adversaries. We
bring their definition, adapted to semi-honest adversaries.

Formally, our protocols involve two-parties, client and server, denoted
by Clnt and Srv respectively, where the client has input x and the server
has no input (denoted as having input ⊥), and both have the security
parameter λ. The client and server interact in an interactive protocol
denoted by π = 〈Clnt,Srv〉. An execution of this protocol on client’s input
x, no server’s input, and security paramter λ is denoted by 〈Clnt(x), Srv〉.
The server’s view during the execution, capturing what the server has
learned, is the random variable denoted by viewπSrv(x,⊥, λ) and defined
by

viewπSrv(x,⊥, λ) = (r,m1, . . . ,mt)

where r is the random coins of Srv, and m1, . . . ,mt are the messages Srv
received during the protocol’s execution. The client’s output in this ex-
ecution is denoted by outπClnt(x,⊥, λ). The protocol is privacy-preserving
if the views of the server on (same length) inputs are computationally
indistinguishable:



Definition 5 (Privacy-preserving protocol). An interactive protocol
〈Clnt,Srv〉 is privacy-preserving for a function F : A→ B if Srv and Clnt
are PPT machines and there exists a negligible function neg(·) such that
for all λ ∈ N, the following holds:

Completeness: For all x ∈ A,

Pr[outπClnt(x,⊥, λ) = F (x)] = 1− neg(λ).

Privacy: For every PPT distinguisher D that chooses x0, x1 ∈ A such
that |x0| = |x1| it holds that:

|Pr[D(viewπSrv(x0,⊥, λ)) = 1]− Pr[D(viewπSrv(x1,⊥, λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv.

3 Decision Trees with Approximated Step Function

In this section we present our algorithms for training and prediction of
decision trees. The algorithms are tailored to being evaluated over en-
crypted data, in the sense of avoiding complexity bottlenecks of homo-
morphic evaluation.

The key component in our algorithms is a low degree polynomial ap-
proximation for the step function “x < θ” (aka, soft-step function); See
Section 3.1. The obtained low degree approximation is used to replace
the step function at each tree node in our new prediction and training
algorithms, presented in Sections 3.2-3.3 respectively.

3.1 Low Degree Approximation of a Step Function

We construct a low-degree polynomial approximating the step function.
Specifically, we consider the step function I0 : R → {0, 1} with threshold
zero, defined by: I0(x) = 1 if x ≥ 0 and I0(x) = 0 otherwise. We aim
to replace the step function with a soft-step function, i.e., a polynomial
approximation.

There are several convenient methods for replacing piece-wise contin-
uous functions with limited-degree polynomial approximation. One ap-
proach is to consider the appropriate space of functions as a metric space,
and then to find a polynomial of the desired degree that minimizes the
deviation from the target function in this metric. Natural choices of met-
rics are the uniform error, integral square error, and integral absolute



error. We opt for the mean square integral solution, that is, the soft-step
function would be the solution to the following optimization problem:

φ = min
p∈Pn

∫ 2

−2
(I0(x)− p(x))2 dx (1)

where Pn is the set of polynomial functions of degree at most n over the
reals. Setting the interval of the approximation to be [−2, 2] is sufficient
once we have pre-processed all data to be in the range [−1, 1]. A soft-step
at θ ∈ [−1, 1] is of the form φ(x− θ), and thus x− θ ∈ [−2, 2].

However, in many cases the sensitivity to error in the approximation is
not uniform over the domain. Errors at an interval around the threshold
may harm the overall result of the algorithm less, compared to errors
away from the threshold value. Adding an importance-weighting of the
approximation interval leads to the following optimization problem:

φ = min
p∈Pn

∫ 2

−2
(I0(x)− p(x))2 w(x) dx (2)

with a weighting function w(x) ≥ 0 ∀x ∈ [−2, 2] and
∫ 2
−2w(x) dx = 1.

We note that the unique solution to this problem is obtained by the
projection of I0 onto Pn, in the w-weighted norm (see Chapter II in [35]),
or alternatively by applying polynomial regression (minimizing MSE) on
a discrete set of points sampled proportionally to w.

Experiments with polynomials which are solutions to Equation 2 with
various weight functions and degrees show that by neglecting an interval
around the threshold we are able to obtain tighter approximations to the
linear phases of the step function. More specifically, by using weighting
functions that are zero in a window around the step and constant oth-
erwise, a trade-off is obtained between the slope of the transition and
tightness of approximation at the edges of the interval (Figure 1). For
larger slopes (smaller neglected windows) the approximation polynomial
reaches the 0− 1 plateau faster, but at the price of overshooting and os-
cillations around the linear parts of the step function. While this can be
remedied by choosing very high degree polynomial, computational consid-
erations (especially with FHE arithmetic) lead us to favor smaller degree
polynomials.

Approximating in L∞-norm. The problem of polynomial approximation
in L∞-norm is of great importance in signal processing. The standard
way of solving such problems is by applying the Remez Algorithm [33].
In our case, this approach required higher degree polynomials to obtain



Fig. 1. Polynomial approximations of I0 in [−2, 2], with varying polynomial degrees
(rows) and width of neglected window around the transition (columns)

the same level of accuracy when integrated in our decision tree algorithms,
and therefore we chose the L2 optimization (i.e. the MSE).

3.2 Prediction by Decision Trees with Soft-Step Function

We present our algorithm for decision trees based prediction (see Algo-
rithm 1), which is tailored to achieve efficiency in prediction over en-
crypted data. Our algorithm is similar to the standard prediction algo-
rithm [32], but where the step function in each node of the decision tree
is replaced by its soft-step function counterpart.

In more detail, both our algorithm and the standard prediction al-
gorithm are similar in the sense that each node v in a decision tree T
is associated with a threshold v.θ ∈ R and a feature v.feature ∈ [k],
and the prediction is a label ` ∈ {1, . . . , L}. The difference between the
algorithms is specified next.

In the standard prediction algorithm, each new sample x ∈ Rk is
associated with a single path from root to leaf, where the path continues
to the right-child if the step function Iv.θ(x[v.feature]) evaluates to 1 and
to the left-child otherwise. We denote by Tx the path in T associated with
x. The prediction for x is the label associated with the leaf in Tx.

In our prediction algorithm (see Algorithm 1), we replace the step
function Iv.θ(x[v.feature]) by the soft-step function φ

(
x[v.feature]−v.θ

)
,

where φ is obtained via Equation 2. Note that by using a soft-step function
we no longer traverse a single path in the tree. Instead, our algorithm
traverses all paths in the tree and computes a weighted combination of
all the leaves values, where each leaf value is the 1-hot encoding of the
label associated with the leaf. The output is a length L vector assigning a



likelihood score to each label, which is in turn interpreted as outputting
the label with the highest score.

We make a few remarks regarding extensions of Algorithm 1. a) The
algorithm straightforwardly extends to the case where each leaf is asso-
ciated with a vector of labels’ likelihoods leaf value ∈ RL (rather than
a 1-hot encoding of a label). b) The algorithm naturally extends to eval-
uation of base-classifiers for random forests and tree boosting, hence our
method supports these common tree-based machine learning methods as
well. c) Finally we note that the algorithm can also be viewed as a “recipe”
for converting an existing tree model to a polynomial form of low degree,
which may be of independent interest.

Algorithm 1 Tree Prediction
Let T be a decision tree, where each node v is a data structure containing the fol-
lowing fields: v.feature and v.θ holding the feature and threshold associated with v;
v.leaf value holding the 1-hot encoding of the label associated with v in case v is a leaf;
and v.right and v.left for the right and left children of v, respectively. The variable v
is initialized to be the root of T.
We denote by φ the soft-step function from Equation 2 in Section 3.1.
Input: x ∈ [−1, 1]k, where k is the number of features.

function Tree Predict(v, x)
if v is a leaf then

return v.leaf value
else

return φ
(
x[v.feature]− v.θ

)
· Tree Predict(v.right, x) +

φ
(
v.θ − x[v.feature]

)
· Tree Predict(v.left, x)

end if
end function

We next show that Algorithm 1 outputs the same prediction as the
standard algorithm (aka, it is correct), whenever φ is sufficiently close to
I0. Elaborating on the above, essentially we show that if (φn)n∈N uni-
formly converges to the step function I0, then for all sufficiently large n,
Algorithm 1, when executed with φn as the soft-step function, assigns
more than half the weight to the leaf associated with path that is cho-
sen by the standard algorithm, and so the outputted label is identical to
the label in the standard algorithm. This is a bit over simplified though:
I0 has a discontinuity point at 0 implying that no family of polynomi-
als can uniformly converge to I0 on an interval containing 0, say, [−2, 2].
Nonetheless, for every δ > 0, there exists a family of polynomials (φn)n∈N
that uniformly converges to I0 on the punctured interval [−2, 2] \ (−δ, δ);
in particular this holds for the polynomials computed by Remez Algo-



rithm.5 Employing such polynomials we guarantee correctness (i.e., the
output of Algorithm 1 and the standard algorithm are the same) for all
samples that are δ-far from the discontinuity point.

Theorem 1 (Correctness). Let δ > 0 and let (φn)n∈N be a sequence
of functions that uniformly converges to I0 on [−2, 2] \ (−δ, δ). For every
tree T of depth d, there exists n0 = n0(d) such that for all n ≥ n0, the
following holds. Algorithm 1, instantiated with φn and T, is correct on all
samples x that satisfy minv∈T |x[v.feature]− v.θ| > δ.

Proof. Let δ > 0, and let (φn)n∈N be a sequence of functions that uni-
formly converges to I0 on [−2, 2] \ (−δ, δ). Fix a tree T, and let d denote
its depth and L denote the labels associated with T. For a sample x we
denote by Tx = (v∗0, . . . , v

∗
d) the path in T traversed by the standard al-

gorithm on input x, and denote by `∗ the label outputted by it (i.e., the
label associated with the leaf of Tx). We show that for all sufficiently
large n (that depend only on d), Algorithm 1 instantiated with φn and
T, outputs `∗ on all samples x with minv∈T |x[v.feature]− v.θ| > δ.

For this purpose first observe that for every sample x, the weight
assigned by Algorithm 1 to each path P = (v0, . . . , vd) from root to leaf
in T, denoted by w(P), is the product of the weights assigned by the
algorithm to each internal node vi on the path, where the weight of each
node vi is equal to φn (x[vi.feature]− vi.θ) if the path continues from vi
to its right child, and it is φn (vi.θ − x[vi.feature]) otherwise. That is,

w(P) =

d−1∏
i=0

φn ((x[vi.feature]− vi.θ) · isRC(vi, vi+1)) . (3)

where isRC(vi, vi+1) = 1 if vi+1 is a right-child of vi, and −1 otherwise.
Next we analyze the weight w(P) assigned by Algorithm 1 to each

path P from root to leaf. In Lemma 1 we show that for all sufficiently
large n = n(d), and all x ∈ Rk s.t. minv∈T |x[v.feature]− v.θ| > δ, it
holds that most of the weight is assigned to the path Tx, that is,

w(Tx) >
∑

P=(v0,...,vd)6=Tx

w(P). (4)

5 In our implementation and evaluation of Algorithm 1, rather than using the poly-
nomials computed by Remez Algorithm, we use the solution to the weighted mean
square error (weighted MSE) optimization problem specified in Eq 2. We use the
latter because our experiments indicate that it achieves a better accuracy vs. degree
tradeoff; that is, for comparable accuracy the weighted MSE solution required in our
experiments a lower degree than the polynomial produced by Remez Algorithm.



Finally we derive from Eq 4 the desired conclusion that Algorithm 1
is correct by showing that it assigns the highest score to the label `∗

outputted by the standard algorithm. For this purpose first recall that
leaf values are the 1-hot encoding of the label associated with the leaf. In
particular, for the leaf v∗d in the path Tx, the associated label is `∗ and
therefore:

v∗d.leaf value[`
∗] = 1.

Next observe that the score assigned to the label `∗ by Algorithm 1 is the
sum of weights over all paths terminating in leaves associated with this
label. In particular, this score is at least as large as the weight w(Tx).
That is, ∑

P=(v0,...,vd)∈T

w(P) · vd.leaf value[`∗]

≥ w(Tx) · v∗d.leaf value[`∗]
= w(Tx)

(5)

Moreover, for every label ` ∈ [L] such that ` 6= `∗ it holds that

w(Tx) · v∗d.leaf value[`] = 0.

Therefore, the score assigned to ` by Algorithm 1 is upper bounded by
the sum of weights over all paths other than Tx. That is, the score of ` is
upper bounded by: ∑

P=(v0,...,vd)∈T

w(P) · vd.leaf value[`]

=
∑

P=(v0,...,vd)∈T s.t. P 6=Tx

w(P) · vd.leaf value[`]

≤
∑

P=(v0,...,vd)∈T s.t. P 6=Tx

w(P)

< w(Tx)

(6)

(where the inequality before last follows from vd.leaf value[`] being in
{0, 1}, and the last inequality follows from Equation 4). We conclude
that the score assigned by Algorithm 1 to `∗ is strictly larger than the
score Algorithm 1 assigns to any other label `, which implies that

`∗ = arg max
`∈[L]

∑
P=(v0,...,vd)∈T

w(P) · vd.leaf value[`] (7)

as desired. ut



Lemma 1. Let δ > 0 and let (φn)n∈N be a sequence of functions that
uniformly converges to I0 on [−2, 2] \ (−δ, δ). For every tree T of depth
d, there exists n0 = n0(d) such that for all n ≥ n0, the following holds.
Algorithm 1, when instantiated with φn and T, satisfies that

w(Tx) >
∑

P=(v0,...,vd)6=Tx

w(P)

for all samples x s.t. minv∈T |x[v.feature]− v.θ| > δ.

Proof. The proof idea is as follows. If we were using in Algorithm 1 the
step-function I0, rather than φn, then we would get that the weight w(Tx)
is one whereas the weight w(P) is zero for any path P 6= Tx from root to
leaf. Now, by taking sufficiently large n, we can ensure that φn(z) is as
close as we’d like to I0(z) on all z /∈ (−δ, δ). In particular, we can enforce
w(Tx) > 1/2 and

∑
P6=Tx

w(P) < 1/2 as long as |x[v.feature]− v.θ| > δ
for all v ∈ T. In this case indeed w(Tx) >

∑
P 6=Tx

w(P). We proceed with
the formal details.

Fix δ > 0 and let T be a tree of depth d. Set ε = ε(d) = min{1 −
2−1/d, 2−2d}. The premise of uniform convergence means that there exists
n0 = n0(ε) = n0(d) such that for all n > n0, the following holds:

|φn(z)− I0(z)| < ε for all z ∈ [−2, 2] \ (−δ, δ).

Since minv∈T |x[v.feature]− v.θ| > δ, the above implies that for all v ∈ T,

|φn (x[v.feature]− v.θ)− I0 (x[v.feature]− v.θ) | < ε (8)

and likewise |φn (v.θ − x[v.feature])− I0 (v.θ − x[v.feature]) | < ε.
We first lower bound the weight of the path Tx = (v∗0, . . . , v

∗
d) tra-

versed by the standard algorithm. For all nodes v∗i ∈ Tx, it holds by
the definition of Tx that I0

(
(x[v∗i .feature]− v∗i .θ) · isRC(v∗i , v

∗
i+1)

)
= 1,

implying by Eq 8 that the weight assigned to Tx by Algorithm 1 is at
least:

w(Tx) =
d−1∏
i=0

φn
(
(x[v∗i .feature]− v∗i .θ) · isRC(v∗i , v

∗
i+1)

)
> (1− ε)d.

Assigning ε ≤ 1− 2−1/d we get that:

w(Tx) > 1/2. (9)

We next upper bound the sum of weights over all paths other than Tx.
Let P = (v0, . . . , vd) be a path from root to leaf in T such that P 6= Tx.



Let i ∈ {1, . . . , d} be the first index where vi 6= v∗i . Namely, in vi−1 P
proceeds to a different child than Tx implying that:

I0 ((x[vi−1.feature]− vi−1.θ) · isRC(vi−1, vi)) = 0.

By Equation 8, the above implies that:

φn ((x[vi−1.feature]− vi−1.θ) · isRC(vi−1, vi)) < ε.

Furthermore, for any other internal node vj ∈ P (j 6= i − 1), since I0 is
upper bounded by 1, then by Equation 8 it holds that:

φn ((x[vj .feature]− vj .θ) · isRC(vj , vj+1)) < 1 + ε.

Put together, the product of all these values is upper bounded by:

w(P) < ε · (1 + ε)d−1.

The total weight of all paths in T besides Tx is therefore upper bounded
by: ∑

P6=Tx

w(P) < (2d − 1) · ε · (1 + ε)d−1 < 22d−1 · ε ≤ 1/2 (10)

where the last two inequalities hold since ε < 1 and ε ≤ 2−2d respectively.
This concludes the proof, as desired. ut

3.3 Training Decision Trees with Soft-Step Function

The standard training procedure considers splits that partition the train-
ing dataset X and builds a tree according to local objectives based on
the number of examples of each label that flow to each side at a chosen,
per node, split. In the training procedure, at each node, impurity scores
are calculated for each potential split, then the feature and threshold are
chosen in order to minimize some impurity measure, e.g., the weighted
Gini impurity (see Figure 2).

Traditionally, the training procedure associates with each node a set
of indicators W = {wx}x∈X , so that wx is a bit indicating if example x is
participating in the training of a sub-tree rooted at this node, and W is
updated for the children nodes as follows: for the chosen feature i∗, and
threshold θ∗, the right sub-tree (respectively, left sub-tree)

∀x ∈ X : wright
x = wx · Iθ∗(x[i∗]) (resp. wleft

x = wx · (1− Iθ∗(x[i∗])) )
(11)



Algorithm 2 Tree Training
We denote by (X ,Y) the input dataset, and by W = {wx}x∈X a set of real valued
weights initialized to 1, associating a weight wx with each example x ∈ [−1, 1]k in X
at each node of the tree. We denote by k and L the number of features and labels in
the associated problem, respectively. We denote by S the set of considered thresholds.
The parameter maximal depth is the depth of the trained tree, the variable depth is
initialized to 0. We denote by φ the soft-step function from Equation 2. The function
Gini(·) in Figure 2 computes the weighted Gini impurity and returns the best threshold
and feature.
Input: A set X of n examples and the set Y of corresponding labels, where each
example x ∈ X is in [−1, 1]k and the corresponding yx ∈ Y is a 1-hot encoding of the
label of x.
Output: A full binary tree T = (V,E) of depth maximal depth, where each internal
node v ∈ V is a data structure containing the following fields: v.feature and v.θ holding
the feature and threshold associated with v; v.leaf value holding the label associated
with v in 1-hot encoding in case v is a leaf; and v.right and v.left for the right and
left children of v, respectively. The variable v is initialized to be the root of T.

1: function Tree Train((X ,Y),W, depth, v)
2: if reached maximal depth then . leaf node
3: v.leaf value← arg max

`∈[L]

∑
x∈X

wx · yx (in 1-hot encoding)

4: else . search best split for this node
5: for each feature i and each threshold θ do
6: right[i, θ]←

∑
x∈X wx · φ(x[i]− θ) · yx

7: left[i, θ]←
∑
x∈X wx · φ(θ − x[i]) · yx

8: end for
9: (v.feature, v.θ)← Gini({right[i, θ], left[i, θ]}i∈[k],θ∈S)

10: . See Figure 2
11: ∀x ∈ X : wright

x ← wx · φ(x[i∗]− θ∗)
12: Tree Train((X ,Y), {wright

x }x∈X , depth+ 1, v.right)
13: . build right-side sub-tree
14: ∀x ∈ X : wleft

x ← wx · φ(θ∗ − x[i∗])
15: Tree Train((X ,Y), {wleft

x }x∈X , depth+ 1, v.left)
16: . build left-side sub-tree
17: end if
18: end function

In our approach, to avoid the comparison operation that is expensive
over encrypted data, we replace the step function I0 by the low-degree
polynomial approximation φ obtained via Equation 2.

Notice that our approximated version of Equation 11 has real valued
weights instead of Boolean indicators. This means that every example
reaches every node, and is evaluated at all nodes. This results in a soft
partition of the data, where the two children nodes get each data point,
weighted differently, rather than hard split of the data. In order to effi-
ciently keep track of the weight of each data example at each node, we



Procedure: Gini impurity computation.
We denote by k and L the number of features and labels in the associated problem,
respectively. We denote by S the set of considered thresholds. The function computes
the weighted Gini impurity and returns the best threshold and feature.

Given a set of L-dimensional vectors {right[i, θ], left[i, θ]}i∈[k],θ∈S proceed as follows:

1. For each threshold θ ∈ S, each feature i ∈ [k], and side ∈ {right, left} compute

total side[i, θ]←
∑
`∈L

side[i, θ][`]

ĨG[i, θ] =
∑

side∈{right,left}

(
1−

∑
`∈L

[
side[i, θ][`]

total side[i, θ]

]2)
· total side[i, θ]

2. Return the selected feature and threshold (i∗, θ∗)← arg mini,θ ĨG[i, θ]

Fig. 2. The weighted Gini impurity computation

keep a weights set W while constructing the tree during training. All
weights are initialized to 1, and recursively multiplied by the polyno-
mial approximation at the current node before passing on to the children
nodes. The details of the training algorithm are presented in Algorithm 2.

Looking ahead, we carefully divide the operations in Algorithm 2 to
those where homomorphic evaluation on encrypted data is “efficient” vs.
“costly”. Concretely, addition, multiplication and evaluating the low de-
gree polynomial φ are efficient, whereas computing the Gini Impurity
(Figure 2) involves the costly division and argmin operations.

4 Prediction and Training on Encrypted Data

In this section we present our secure protocols for prediction and training
of tree based models where both the training dataset and the data for
prediction are encrypted with FHE. The protocols are an adaptation of
Algorithms 1–2 in Section 3 to interactive settings and where data is
encrypted throughout the computation. See our protocol for prediction
over encrypted data in Figures 3–4 in Section 4.1, and our protocol for
training over an encrypted dataset in Figures 5–6 in Section 4.2.

4.1 Decision-Tree based Prediction on Encrypted Data

We present our privacy preserving protocol for decision tree based predic-
tion. The protocol is between a client holding a data sample and a server



holding a tree, and consists of the following steps: the client encrypts the
data sample and sends the encrypted sample to the server; the server ho-
momorphically evaluates Algorithm 1 on the encrypted sample and sends
the encrypted outcome to the client; the client decrypts to obtain the
prediction. The protocol is privacy preserving for Algorithm 1; see Defi-
nition 5 and Theorem 2. The client’s and communication complexity are
proportional to the size of the encrypted input and output, while being
independent of the tree size and depth; the server’s complexity is linear
in the tree size and the number of labels and polynomial in the security
parameter.

Our protocol can be executed on any tree based model such as Ran-
dom Forest or Boosted Tree algorithms. Our protocol extends to the case
where both the sample and the decision tree are encrypted, providing
secrecy for both the data sample and the tree.

See the detail of our protocol on encrypted sample and cleartext trees
in Figures 3–4; the extension to encrypted trees below; and the privacy
and complexity analysis in Theorem 2.

Shared parameters: An FHE encryption scheme E = (Gen,Enc,Dec,Eval); a se-
curity parameter λ; a soft-step function φ obtained via Equation 2; the numbers of
features k and labels L, and a decision tree T.
In the tree T, each internal node v is a data structure containing four fields: v.feature
and v.θ denoting the feature and threshold associated with v, and v.right and v.left
denoting its right and left children; each leaf v consists of the field v.leaf value ∈ RL
holding the 1-hot encoding of the label associated with v.

Client’s input: A normalized data sample x ∈ [−1, 1]k.

Client’s output: A label ` ∈ L.

Server’s input and output: The server has no input and receives no output.

The protocol PP = 〈ClntPP, SrvPP〉 proceeds as follows:

1. Input outsourcing phase:
(a) ClntPP runs Gen(1λ) to obtain a public and secret key pair (pk, sk).
(b) ClntPP encrypts each entry in x to obtain a vector of ciphertexts cx, and

sends cx together with pk to SrvPP.
2. Computation phase: SrvPP recursively computes the subroutine

Enc Predict(v, cx) in Figure 4 starting from the root node. Let res be the
recursion result, i.e., a L-dimensional vector of ciphertexts returned at the root.

3. Output phase: SrvPP sends res to ClntPP, who decrypts it and outputs label←
arg max`∈L p res`, where p res is the decryption of res.

Fig. 3. The prediction protocol PP = 〈ClntPP,SrvPP〉 for decision trees. The sever ho-
momorphically evaluates a weighted sum of the leaf values to obtain an encrypted
vector of labels’ scores. The client decrypts and outputs the label with highest score.



Subroutine Enc Predict(v, cx) where v is a node in T, and cx is a vector of L
ciphertexts.

1. If v is not a leaf, homomorphically evaluate the following formula (using Evalpk)
and return the resulting ciphertext:

φ
(
cx[v.feature]− v.θ

)
· Enc Predict(v.right, cx) +

φ
(
v.θ − cx[v.feature]

)
· Enc Predict(v.left, cx)

2. Otherwise return v.leaf value .

Fig. 4. The subroutine Enc Predict(·, ·) operates recursively on a node and ciphertext
pair. The subroutine is an adjustment of Algorithm 1 to operate over encrypted data.

Extension to prediction on encrypted data and encrypted tree.
For certain applications it is required that the tree used for prediction
remains hidden from the server. Minor modification to the protocol in
Figure 3 transform it to a protocol that keeps both the data sample and
the tree private. Essentially, the tree will be transmitted encrypted to
the server (not necessarily by the client), and the protocol in Figure 3 is
modified to be executed on encrypted sample and encrypted tree.

In detail, the tree T is encrypted as follows. For each node v in T, the
field v.feature is first transformed into a 1-hot encoding (i.e., a binary
vector of dimension k with a single non-zero entry at the index specified
by the feature). Then the fields v.feature (in the 1-hot encoding), v.θ and
v.leaf value are encrypted with the FHE using the public key pk (gener-
ated in Figure 3, Step 1a); denote the resulting ciphertexts by ṽ.feature,
ṽ.θ and ṽ.leaf value respectively. The fields v.right and v.left are not en-
crypted as they are not secret. The protocol is modified as follows. In
Figure 4, Step 1, instead of using v.feature to directly access the desired
entry in cx, we use the encrypted 1-hot encoding ṽ.feature; specifically,
we replace in the homomorphically evaluated formula each cx[v.feature]
by
∑

i∈[k] cx[i] · ṽ.feature[i]. Finally, in Figure 4, Step 2, instead of re-
turning the cleartext value v.leaf value we return the encrypted value
ṽ.leaf value.

This extension preserves privacy of both the sample x and the tree
T. Moreover, the complexity is similar to the original protocol: the server
only computes k additional multiplications and additions per node, for
k the number of features, and the overall multiplicative depth of the
homomorphic evaluation grows only by 1.



Theorem 2 (Privacy-preserving prediction). PP = 〈ClntPP,SrvPP〉
(Figure 3) is a privacy-preserving protocol for Algorithm 1 provided that
the underlying encryption scheme E is CPA-secure. Moreover, the compu-
tation phase (Figure 3 Step 2) is non-interactive; the complexity of SrvPP
is O(m · L) · poly(λ), where m denote the number of decision tree nodes,
L the number of labels, and λ is the security parameter; the complexity of
ClntPP is proportional to encrypting the input and decrypting the output.

Proof (of Theorem 2). Let E = (Gen,Enc,Dec,Eval) denote the FHE en-
cryption scheme used in the protocol PP = 〈ClntPP,SrvPP〉, and suppose E
is CPA-secure. To prove that the protocol is privacy-preserving we prove
it is PPT, complete and private. Furthermore, we analyze its complexity.

We first analyze the complexity of PP and prove it is PPT. ClntPP
given input x ∈ [−1, 1]k performs the following operations: a single execu-
tion of Gen, k executions of Enc (one for each features in x), L executions
of Dec (one for each label weight in the output result p res), and comput-
ing the maximum of the resulting L values. Since Gen,Enc,Dec all have
complexity poly(λ), we conclude that ClntPP is PPT and its complexity
is proportional to encrypting the input and decrypting the output. Our
SrvPP performs a constant number of basic homomorphic operations (i.e.
additions and multiplications) for each internal node, and O(L) for each
leaf, where each basic homomorphic operation has complexity poly(λ).
We conclude that SrvPP is PPT with complexity O(m · L) · poly(λ).

We next prove that PP = 〈ClntPP,SrvPP〉 is complete. Observe that
PP homomorphically evaluates the same function as computed in Algo-
rithm 1, and hence completeness follows immediately from the correctness
of E .

Finally, we prove that PP satisfies the privacy condition of Definition
5. Assume by contradiction that privacy does not hold for PP. That is,
there exists a PPT distinguisher D that chooses x0, x1 ∈ A with |x0| =
|x1|, and a polynomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewPP
SrvPP

(x1,⊥, λ)) = 1]− Pr[D(viewPP
SrvPP

(x0,⊥, λ)) = 1] ≥ p(λ)

(12)

We show that given D we can construct an adversary A that violate the
CPA security of E . The adversary A participates in EXPcpaA,E as follows:

1. Upon receiving pk output x0, x1.

2. Upon receiving cx ← Encpk(xb) behave exactly as SrvPP behaves while
executing PP upon receiving (cx, pk) from ClntPP.



3. Run the distinguisher D on viewPP
SrvPP

(SrvPP’s view in A during step
2) and output whatever D outputs.

The adversary A is PPT due to x0, x1 being efficiently samplable and
SrvPP and D being PPT. We denote by viewEXPcpa

SrvPP
(xb∗ ,⊥, λ) the view

of SrvPP, simulated by A, in the execution of EXPcpaA,E with bit b∗ being
selected by the challenger. Since A behaves exactly as SrvPP in PP, it
holds that for every b∗ ∈ {0, 1},

Pr[D(viewPP
SrvPP

(xb∗ ,⊥, λ)) = 1] = Pr[D(viewEXPcpa

SrvPP
(xb∗ ,⊥, λ)) = 1] (13)

From Equations 12 and 13 it follows that:

Pr[D(viewEXPcpa

SrvPP
(x1,⊥, λ)) = 1]− Pr[D(viewEXPcpa

SrvPP
(x0,⊥, λ)) = 1] ≥ p(λ)

(14)

Therefore, we obtain that:

Pr[EXPcpaA,E(λ) = 1]

=
1

2
·
(

Pr[EXPcpaA,E(λ) = 1|b = 1] + Pr[EXPcpaA,E(λ) = 1|b = 0]
)

=
1

2
· Pr[D(viewEXPcpa

SrvPP
(x1,⊥, λ)) = 1] +

1

2
· Pr[D(viewEXPcpa

SrvPP
(x0,⊥, λ)) = 0]

=
1

2
+

1

2
· Pr[D(viewEXPcpa

SrvPP
(x1,⊥, λ)) = 1]− 1

2
· Pr[D(viewEXPcpa

SrvPP
(x0,⊥, λ)) = 1]

≥ 1

2
+

1

2
· p(λ)

where the last inequality follows from Equation 14. Combining this with
A being PPT we derive a contradiction to E being CPA secure. This
concludes the proof. ut

4.2 Decision-Tree Training on Encrypted Data

In this section we present our privacy-preserving protocol for training
decision trees and Random Forests. Our protocol is a careful adaptation
of Algorithm 2 to the client-server setting in a way that the computational
burden is almost fully on the server: the computation phase (Figure 5 Step
2) attains client and communication complexity that are independent of



the training dataset size, whereas only the server’s complexity grows with
the training dataset size. The only dependence of the client in the dataset
size is when the data is encrypted and uploaded to the sever (Figure 5
Step 1). See Figures 5-6 and Theorem 3.

The computation phase of our protocol (Figure 5 Step 2) is an ho-
momorphic evaluation of Algorithm 2 but with client’s aid for few and
lightweight computations. Concretely, we replace all operations on cleart-
ext data with their corresponding homomorphic operations on encrypted
data, except for computing the impurity score (Line 9 in Algorithm 2)
that is done with the aid of the client. To compute the impurity score,
the server first homomorphically aggregates encrypted data samples from
the training set into |S| · k · L ciphertexts and sends these encrypted ag-
gregates to the client (where |S| is the number of considered thresholds, k
the number of features, and L the number of labels). Next, the client de-
crypts these aggregates and computes the impurity score on the resulting
cleartext values (Figure 2) to obtain the chosen threshold and feature.
The client then encrypts the chosen threshold and feature and sends the
ciphertexts to the server. This procedure attains the desired complexity
and privacy: the client’s complexity is independent of the dataset size,
and the server is exposed only to encrypted values; See Theorem 3.

We remark that although the protocol in Figure 5 is presented with
respect to the Gini impurity measure, it can be instantiated with other
standard impurity measures, such as entropy. Furthermore, the leaves of
T can be post-processed by the client to associate a single label with each
leaf instead of a likelihood score vector.

Theorem 3 (Privacy-preserving training). TP = 〈ClntTP,SrvTP〉 (Fig-
ure 5) is a privacy-preserving protocol for Algorithm 2 provided that the
underlying encryption scheme E is CPA-secure. Moreover, the computa-
tion phase (Figure 5 Step 2) is a d-round protocol for depth d trees, with
ClntTP and communications complexity O(m · k · |S| · L) · poly(λ), and
SrvTP complexity O(n ·m · |S| · k ·L) · poly(λ), where n is the training set
size, k, L,m, |S| denote the number of features, labels, decision tree nodes
and considered thresholds, respectively, and λ is the security parameter.

Proof (of Theorem 3). Let E = (Gen,Enc,Dec,Eval) denote the FHE en-
cryption scheme used in the protocol TP = 〈ClntTP,SrvTP〉, and suppose E
is CPA-secure. To prove that the protocol is privacy-preserving we prove
it is PPT, complete and private. Furthermore, we analyze its complexity.

We first analyze the complexity of TP and prove it is PPT. We de-
note, as in the protocol, by k, L,m, |S| the number of features, labels,



Shared parameters: An FHE encryption scheme E = (Gen,Enc,Dec,Eval); a secu-
rity parameter λ; a soft-step function φ obtained via Equation 2; the numbers of fea-
tures k and labels L, the set of considered thresholds S, and the depth maximal depth
of the decision tree to be constructed.

Client’s input: A set of n examples X and the corresponding labels Y, where each
example x ∈ X is in [−1, 1]k and the corresponding yx ∈ Y is a 1-hot encoding of the
label of x.

Client’s output: A tree T = (V,E), where each node v ∈ V is a data structure
containing the following fields: v.feature ∈ [k] and v.θ ∈ S denoting the feature and
threshold associated with the node, and v.leaf value that is a L-dimension vector of
values in R if v is a leaf. In addition, each node has v.right and v.left that denote
the right and left children of v, respectively.

Server’s input and output: The server has no input and receives no output.

The protocol TP = 〈ClntTP, SrvTP〉 proceeds as follows (denoting encrypted values
within J·K):

1. Input outsourcing phase:
(a) ClntTP runs Gen(1λ) to obtain a public and secret key pair (pk, sk).
(b) ClntTP encrypts each example x ∈ X and the corresponding label yx ∈ Y,

entry-by-entry, to obtain vectors cx and cyx of ciphertexts for x and yx
respectively. ClntTP sends the set of ciphertexts CTXT = {cx, cyx}x∈X ,yx∈Y
together with pk to SrvTP.

2. Computation phase: For each node v we denote by Wv = {JwxK}x∈X a set of
encrypted weights associated with v. We initialize all JwxK ∈ Wroot to Encpk(1);
and initialize a variable d indicating the currently constructed tree depth to 0.
For each depth d = 1, . . . ,maximal depth and for each node v at depth d, SrvTP
constructs v by invoking the sub-protocol Enc Train (Figure 6), executed with
SrvTP holding (pk,CTXT,Wv, d, v) and ClntTP holding sk, to obtain encrypted
values for v.feature, v.θ, Wv.right and Wv.left (v.leaf value when v is a leaf).

3. Output phase: SrvTP sends to ClntTP the trained tree in encrypted form, ClntTP
decrypts and outputs the cleartext tree.

Fig. 5. The training protocol TP = 〈ClntTP, SrvTP〉, constructing a decision tree T in
BFS manner. The computation phase (Step 2) is an adaptation of Algorithm 2 to a
protocol that operates over encrypted data (denoting encrypted values by placing them
within J·K). The protocol can be executed in parallel to train a Random Forest.

decision tree nodes and considered thresholds, respectively, and by λ the
security parameter. First we analyze SrvTP. SrvTP performs in the pro-
tocol n · L homomorphic multiplications and n homomorphic additions
for each leaf (Step 1, Figure 6) as well as for each internal node and
each threshold and feature (Step 2a, Figure 6), plus another k homomor-
phic multiplications and additions to process the response from ClntTP
(Step 2d, Figure 6). Each homomorphic operation is polynomial in the
security parameter λ. Therefore, SrvTP is PPT and with overall complex-



Sub-protocol Enc Train executed with SrvTP holding (pk,CTXT,Wv, d, v), ClntTP
holding sk, and shared parameters as in Figure 5, where CTXT = {cx, cyx}x∈X ,yx∈Y
is a set of encrypted examples and labels, Wv = {JwxK}x∈X is a set of encrypted
weights for the node v, and d is the depth of v, where v is the node to be constructed.

The sub-protocol proceeds as follows (denoting encrypted values within J·K):

1. If d is the maximal depth, SrvTP homomorphically evaluates (using Evalpk):

v.leaf value =
∑
x∈X

JwxK · cyx .

2. Otherwise, the protocol proceeds as follows:
(a) For each feature i ∈ [k] and each threshold θ ∈ S, SrvTP homomorphically

evaluates (using Evalpk):

Jright[i, θ]K←
∑
x∈X

JwxK · φ
(
cx[i]− θ

)
· cyx

Jleft[i, θ]K←
∑
x∈X

JwxK · φ
(
θ − cx[i]

)
· cyx

and sends to ClntTP the resulting L-dimensional vectors of ciphertexts:

{Jright[i, θ]K, Jleft[i, θ]K}i∈[k],θ∈S

(b) ClntTP decrypts (using Decsk(·)) to obtain right[i, θ] and left[i, θ], for all i ∈ [k]
and θ ∈ S, and computes the Gini impurity (Figure 2) on these cleartext
values to obtain the feature i∗ and threshold θ∗ for the constructed node v:

(i∗, θ∗)← Gini
(
{right[i, θ], left[i, θ]}i∈[k],θ∈S

)
(c) ClntTP encrypts i∗ in 1-hot encoding and θ∗ (using Encpk(·)) and sends the

resulting ciphertexts Ji∗K and Jθ∗K to SrvTP. (In case any error occurs during
the decryption or calculation, then ClntTP encrypts and sends to SrvTP an
encryption of an arbitrary feature and threshold of the appropriate length.)

(d) SrvTP sets the encrypted values for v.feature and v.θ to be Ji∗K and Jθ∗K
respectively; for each x ∈ X , homomorphically evaluates (using Evalpk):

Jwright
x K← JwxK · φ

(( ∑
j∈[k]

cx[j] · Ji∗K[j]
)
− Jθ∗K

)
Jwleft

x K← JwxK · φ
(
Jθ∗K−

( ∑
j∈[k]

cx[j] · Ji∗K[j]
))

and sets Wv.right = {Jwright
x K}x∈X and Wv.left = {Jwleft

x K}x∈X .

Fig. 6. The sub-protocol Enc Train constructs the node v from the encrypted examples,
labels and their weights at v. The outcome is encrypted values for v.feature, v.θ,
Wv.right and Wv.left when v is an internal node (v.leaf value when v is a leaf).

ity of O(n ·m · |S| ·k ·L) ·poly(λ). Next we analyze ClntTP. ClntTP performs



in the computation phase (Figure 5 Step 2) O(k · |S| · L) operations of
Dec (Step 2b, Figure 6) and O(k) operations of Enc (Step 2c, Figure 6)
and computes Gini on cleartext. The time to compute each Enc and Dec
is polynomial in the security parameter λ, and the time to compute Gini
on cleartext is O(k · |S| · L) (Figure 2). So the complexity of ClntTP in
the computation phase (Figure 5 Step 2) is O(m · k · |S| · L) · poly(λ).
Moreover, the entire computation of ClntTP (including generating keys,
encrypting the input and decrypting the output in Figure 5, Steps 1 and
Step 3) is polynomial in its input and the security parameter, so ClntTP
is PPT. Finally we analyze the communication complexity. At each node
O(k · |S| · L) ciphertexts are transmitted, and hence the communication
complexity is O(m · k · |S| · L) · poly(λ).

Next we prove that TP = 〈ClntTP, SrvTP〉 is complete. Observe that
〈ClntTP, SrvTP〉 homomorphically evaluates the same function as com-
puted in Algorithm 2. So completeness follows immediately from the cor-
rectness of E .

Finally, we prove that TP satisfies the privacy condition of Definition
5. Assume by contradiction that privacy does not hold for TP. That is,
there exists a PPT distinguisher D that chooses (X0,Y0), (X1,Y1) ∈ A
with |X0| = |X1|, and |Y0| = |Y1|, and a polynomial p(·) such that for
infinitely many λ ∈ N:

Pr[D(viewTP
SrvTP

((X1,Y1),⊥, λ)) = 1]

−Pr[D(viewTP
SrvTP

((X0,Y0),⊥, λ)) = 1] ≥ p(λ)
(15)

We show below that given D we can construct an adversary A that violate
the CPA security of E .

The adversary A participates in EXPcpaA,E as follows:

1. Upon receiving pk output (X0,Y0), (X1,Y1).
2. Upon receiving CTXT ← Encpk(Xb,Yb) behave exactly as SrvTP be-

haves while executing TP upon receiving CTXT = {cx, cyx} and pk
from ClntTP, except that every message Jright[i, θ]K, Jleft[i, θ]Ki∈[k],θ∈S
sent from SrvTP to ClntTP is answered by A as follows: A samples
uniformly at random i ← [k] and θ ← S, computes Encpk(i, θ), and
sends this ciphertext to SrvTP as if it were the response from ClntTP.

3. Run the distinguisher D on viewSrvTP (SrvTP’s view in A during step
2) and output whatever D outputs.

The adversary A is PPT due to (X0,Y0), (X1,Y1) being efficiently
samplable and SrvTP and D being PPT. Note that TP is almost perfectly
simulated except that the queries to ClntTP are simulated using encryption



of randomly sampled elements. Let TP′ denote this variant of TP that is
simulated by A, namely TP′ is a protocol identical to TP except that each
query to ClntTP is answered by the encryption of a randomly sampled pair
(i, θ)← [k]×S. We denote by viewEXPcpa

SrvTP
((Xb,Yb),⊥, λ) the view of SrvTP,

simulated by A, in the execution of EXPcpaA,E with bit b being selected by

the challenger. By definition of TP′ it holds that for every b ∈ {0, 1},

Pr[D(viewTP′

SrvTP
((Xb,Yb),⊥, λ)) = 1]

= Pr[D(viewEXPcpa

SrvTP
((Xb,Yb),⊥, λ)) = 1]

(16)

Furthermore, the CPA security of E guarantees that the server’s view in
TP and TP′ is computationally indistinguishable (see Lemma 2). Putting
together Lemma 2 and Equation 15 it follows that

Pr[D(viewTP′

SrvTP
((X1,Y1),⊥, λ)) = 1]

−Pr[D(viewTP′

SrvTP
((X0,Y0),⊥, λ)) = 1] ≥ p(λ)− neg(λ) .

(17)

Next, from Equations 16 and 17 it follows that:

Pr[D(viewEXPcpa

SrvTP
((X1,Y1),⊥, λ)) = 1]

−Pr[D(viewEXPcpa

SrvTP
((X0,Y0),⊥, λ)) = 1] ≥ p(λ)− neg(λ).

(18)

Therefore, we obtain that:

Pr[EXPcpaA,E(λ) = 1]

=
1

2
·
(

Pr[EXPcpaA,E(λ) = 1|b = 1] + Pr[EXPcpaA,E(λ) = 1|b = 0]
)

=
1

2
· Pr[D(viewEXPcpa

SrvTP
((X1,Y1),⊥, λ)) = 1]

+
1

2
· Pr[D(viewEXPcpa

SrvTP
((X0,Y0),⊥, λ)) = 0]

=
1

2
+

1

2
· Pr[D(viewEXPcpa

SrvTP
((X1,Y1),⊥, λ)) = 1]

− 1

2
· Pr[D(viewEXPcpa

SrvTP
((X0,Y0),⊥, λ)) = 1]

≥ 1

2
+

1

2
· p(λ)− neg(λ)



where the last inequality follows from Equation 18. Combining this with
A being PPT we derive a contradiction to E being CPA secure. This
concludes the proof. ut

Let TP′ = 〈Clnt′TP, SrvTP〉 be as defined in the proof of Theorem 3, i.e.,
is identical to TP = 〈ClntTP, SrvTP〉 except that Clnt′TP samples (i, θ) ←
[k] × S at random instead of executing step 2b, Figure 6. We show that
the server is indifferent to the correctness of answers it receives from the
client in the sense that its view is in TP and TP′ is indistinguishable.

Lemma 2. For every efficiently samplable (X ,Y) ∈ A, and all λ ∈ N the
following holds:

viewTP′

SrvTP
((X ,Y),⊥, λ) ≈c viewTP

SrvTP
((X ,Y),⊥, λ)

Proof. Assume by contradiction that Lemma 2 does not hold. That is,
there exists a PPT distinguisher D that chooses (X ,Y) ∈ A and a poly-
nomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewTP′

SrvTP
((X ,Y),⊥, λ)) = 1]

−Pr[D(viewTP
SrvTP

((X ,Y),⊥, λ)) = 1] ≥ p(λ) .
(19)

We define a series of hybrid executions that gradually move between
TP = 〈ClntTP, SrvTP〉 execution (where Gini impurity is used) to TP′ =
〈Clnt′TP,SrvTP〉 execution (where random i and θ are used). Let q denote
the number of queries made to ClntTP in Figure 5 (SrvTP makes a single
query to ClntTP per constructed node in T). We define q + 1 hybrids as
follows:

Hybrid H0 is defined as the execution of 〈ClntTP, SrvTP〉.
Hybrid Hj (j = 1, . . . , q) is similar to H0 except that the last j queries

to ClntTP are answered by sampling uniformly random (i, θ)← [k]×S
and responding with Encpk(i, θ) (instead of executing 2b in Figure 6).

Note that in each pair of adjacent hybrids Hj−1 and Hj for j ∈ [q]
the difference is that in Hj the (q + 1 − j)’th query is answered using
random (i, θ) instead of those maximizing the Gini impurity. Denote by

view
Hj
SrvTP

((X ,Y),⊥, λ) the view of SrvTP in the hybrid Hj .
By the hybrid argument it follows from Equation 19 there exists j ∈ [q]

such that:

Pr[D(view
Hj
SrvTP

((X ,Y),⊥, λ)) = 1]

−Pr[D(view
Hj−1

SrvTP
((X ,Y),⊥, λ)) = 1] ≥ p(λ)

q

(20)



We show that Equation 20 contradicts E being CPA secure. That is, we
construct an adversary A that communicates with the challenger Chal in
the CPA indistinguishability experiment EXPcpaA,E and forces the output to
be 1 with a non-negligible advantage over half. Concretely, A participates
in EXPcpaA,E as follows:

1. A executes Algorithm 2 on (X ,Y) to compute for each v ∈ T, the
associated feature v.feature and threshold v.θ.

2. Upon receiving pk from Chal, A computes CTXT← Encpk(X ,Y) and
executes SrvTP on (CTXT, pk) while answering each query that SrvTP
as follows:
(a) For the q−j first queries of SrvTP, A encrypts under pk the feature

v.feature and threshold v.θ associated with the queried node v,
and sends the resulting ciphertexts to SrvTP.

(b) For the (q − j + 1)’th query of SrvTP, A proceeds as follows:
i. Denote by (i0, θ0) the feature and threshold associated with the

queried node. A samples uniformly random (i1, θ1)← [k]× S,
and sends (i0, θ0) and (i1, θ1) to Chal.

ii. Upon receiving from Chal the challenge ciphertext c← Encpk(ib, θb)
for uniformly random b← {0, 1}, A forwards this ciphertext c
to SrvTP.

(c) For the rest of the queries, A samples uniformly random (i, θ) ←
[k]× S, and sends Encpk(i, θ) to SrvTP.

3. A executes the distinguisher D on the view of SrvTP during the ex-
ecution of Step 2 above, denoted viewSrvTP , and outputs whatever D
outputs.

We note that if b = 0, then the challenge ciphertext c is the encryption
of (v.feaure, v.θ) and viewSrvTP is exactly as in Hj−1 and otherwise as in
Hj . Therefore, we obtain that

Pr[EXPcpaA,E(λ) = 1]

=
1

2
·
(

Pr[EXPcpaA,E(λ) = 1|b = 1] + Pr[EXPcpaA,E(λ) = 1|b = 0]
)

=
1

2
· (Pr[D(view

Hj
SrvTP

((X ,Y),⊥, λ)) = 1]

1− Pr[D(view
Hj−1

SrvTP
((X ,Y),⊥, λ)) = 1]) ≥ 1

2
+

1

2
· p(λ)

q

(21)

which concludes the proof. ut



5 Implementation Details and Experimental Results

We empirically evaluated our decision trees algorithms and protocols for
both accuracy and run-time performance on encrypted data (see Sec-
tions 5.1-5.2, respectively). Our evaluations were done with respect to
a single decision tree, and can naturally be extended to random forests
where trees are trained/evaluated in parallel. The soft-step function we
employed is a polynomial of degree 15, constructed via Equation 2 with
a weighting function w : [−2, 2]→ [0, 1] defined to be zero in the interval
[−0.2, 0.2] and a constant positive value elsewhere. For training, we used
thresholds on a 0.05 grid in the [−1, 1] interval. We used standard UCI
repository datasets [14] in our evaluation, ranging in size from very small
(iris with 4 features and 150 examples) to the moderate size common
in real-world applications (forest cover with 54 features and over half a
million examples).

5.1 Accuracy of our Decision-Tree Algorithms

The accuracy of our Algorithms 1-2 was evaluated in comparison to stan-
dard trees, on the benchmark datasets. We used a 3-fold cross-validation
procedure, where each dataset was randomly partitioned into three equal-
size parts, and each of the three parts serves as a test-set for a classifier
trained on the remaining two. The overall accuracy is calculated as the
percentage of correct classification on test examples (each example in
the data is taken exactly once, so the accuracy reported is simply the
percentage of examples that were correctly classified).

We compared all four possible combinations of training and prediction
according to our algorithms vs. the standard algorithms; see Figure 7. We
trained trees up to depth 5, as customary when using random forests.

The results show an overall comparable accuracy, indicating that our
Algorithms 1-2 are a valid replacement for standard decision trees in terms
of accuracy.

5.2 Running-Time on Encrypted Data

We implemented our training and prediction protocols over data en-
crypted with CKKS homomorphic encryption scheme [10] in Microsoft
SEAL v3.2.2 [37]. We set SEAL parameters to security-level 80 bits and
irreducible polynomial degree 8192. We ran experiments with depth 4
trees.



Fig. 7. Accuracy of ours vs. scikit-learn [31] algorithms on four UCI datasets and
tree depth 0–5 (depth 0 is the majority-class baseline), in four execution modes: our
training and prediction (red), our training and scikit-learn prediction (green), scikit-
learn training and our prediction (orange), scikit-learn training and prediction (blue).

Training over encrypted datasets. Our experiments were executed on
AWS x1.16xlarge as the server. The input examples are encrypted feature-
by-feature, while packing 4096 values in each ciphertext; the associated
labels (in 1-hot encoding) are likewise encrypted in a packed form.

The server run-time on encrypted UCI datasets (subs-sampled) ranged
from minutes on small datasets to hours on medium ones; see Table 1.
Executions on encrypted synthetic datasets containing up to 131, 000 en-
crypted samples and (features,labels,splits)=(8, 2, 21) exhibited a server
run-time of under a day.

dataset name # training examples # features # labels Server training time (minutes)

iris 100 4 3 19
wine 119 13 3 59
cancer 381 30 2 107
digits 1,203 64 10 665
cover 10,000 54 7 1220
Table 1. Server run-time for training depth 4 decision trees on encrypted UCI datasets

The client (e.g., KMS) run-time in all experiments ranged from sec-
onds to under three minutes. The communication complexity is inde-
pendent of the dataset size. See Figure 8 for the number of transmitted
ciphertexts. The ciphertext size is roughly 0.25MB after compression.

Prediction over encrypted data was performed on encrypted examples
and cleartext trees, and executed on a personal Intel Core i7-4790 CPU
16GB memory computer (using a single core). The average run-time was
1.15 second.



Fig. 8. Total number of transmitted ciphertexts vs. the training set size, when training
a full tree of depth 4 on various (features,labels,splits) settings

6 Conclusions

In this work we present FHE-friendly algorithms and protocols for decision
tree based prediction and training over encrypted data that are the first
to attain all the following desired properties: non-interactive prediction,
lightweight client and communication in training, and rigorous privacy
guarantee. We ran extensive experiments on standard UCI and synthetic
datasets, all encrypted with fully homomorphic encryption, demonstrat-
ing high accuracy comparable to standard algorithms on cleartext data,
fast prediction (1.15 seconds), and feasible training (minutes to hours).
Our protocols support real-life enterprise use-cases, and are well suited
for offline execution, e.g. in nightly batched prediction.

As a central technique we devised a soft-step function yielding a low-
degree weighted approximation for the step function. This may have fur-
ther applications, beyond tree-based models, including neural networks
based prediction utilizing our soft-step function to replace sigmoid or
sign activation to gain speedup.
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