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Abstract—Merkle tree is applied in diverse applications,
namely, Blockchain, smart grid, IoT, Biomedical, financial trans-
actions, etc., to verify authenticity and integrity. Also, the
Merkle tree is used in privacy-preserving computing. However,
the Merkle tree is a computationally costly data structure. It
uses cryptographic string hash functions to partially verify the
data integrity and authenticity of a data block. However, the
verification process creates unnecessary network traffic because
it requires partial hash values to verify a particular block.
Moreover, the performance of the Merkle tree also depends
on the network latency. Therefore, it is not feasible for most
of the applications. To address the above issue, we proposed
an alternative model to replace the Merkle tree, called HEX-
BLOOM, and it is implemented using hash, Exclusive-OR,
and Bloom Filter. Our proposed model does not depends on
network latency for verification of data block’s authenticity and
integrity. HEX-BLOOM uses an approximation model, Bloom
Filter. Moreover, it employs a deterministic model for final
verification of the correctness. In this article, we show that our
proposed model outperforms the state-of-the-art Merkle tree in
every aspect.

Index Terms—Merkle tree, Blockchain, Bitcoin, verification,
authentication, integrity, privacy, Hash, Security.

I. INTRODUCTION

MERKLE tree [1] is widely used nowadays due to
the diverse requirements of security. Recent devel-

opments suggest that Merkle tree is adapted in numerous
research domains including privacy-preserving computation
[2], Blockchain [3], [4], [5], [6], [7], [8], [2], [9], cryptography
[10], [11], agriculture [12], Healthcare [13], [14], financial
transactions [15], [16], [17], Smart Grid [18], [19], Cloud
Computing [20], [18], Big Data [21], and Wireless networking
[22]. Therefore, the Merkle tree is modified to enhances its
performance. Jakobsson et al. [23] presents fractal Merkle
tree to enhance the time and space. Similarly, M. Szydlo
[24] enhances Jakobsson’s fractal Merkle tree. Buchmann
et al. [25] improves the Merkle tree. Moreover, We have
already witnessed diverse variants of the Merkle tree [8], [20],
[22], [26], [27]. It shows that the Merkle tree is adapted
in diverse applications and modified Merkle tree as per the
requirements of the applications. Therefore, the Merkle tree
has met wider applications in the diverse domain, demanding
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an efficient alternative to the Merkle tree, which features low
space consumption, fewer network accesses, and low time
complexity.

Merkle tree is a time-consuming data structure that wastes
computational resources significantly. It is used to verify data
blocks’ authenticity and integrity. It allows verification of
the data block’s authenticity and integrity after successfully
downloading a particular data block using Merkle root. It
requires a few hash values, but it does not require the entire
Merkle tree. Moreover, the time complexity of the Merkle tree
is high. In addition, the Merkle tree (server) requires high
memory to store entire hash values; however, a user does not
require to store the whole Merkle tree. Each block requires a
few hash values, which require network access. This process
creates enormous network traffics cumulatively. Therefore, it
degrades the performance of the Merkle tree and increases the
network traffic. The Merkle tree’s performance depends not
only on the time complexity of the data structures but also on
the network latency and network traffic. Also, verification of
a particular block is costly due to network access. It impacts
the entire process to verify each block using the Merkle tree
from the network, by which the entire process is slowed down
dramatically.

Notably, the partial verification process of the Merkle tree
is a disadvantage, and it should be obviated. The verification
process of each block creates unnecessary network traffic,
which can easily be avoided. Also, the time complexity can
further be reduced. Therefore, we propose an alternative model
of the Merkle tree to address the above issue. Our proposed
model uses Hash, Exclusive-OR and Bloom Filter, HEX-
BLOOM for short. It is two-fold; first, LinkedHashX, and
second, Bloom Filter. We construct a deterministic model
called LinkedHashX to verify the entire process’s correctness.
LinkedHashX uses a cryptographic hash function and XOR
operation to provide an alternative model to the Merkle tree.
LinkedHashX performs a hash on all data blocks and merges
the data blocks’ hashes into a single data block using XOR
operation to create LinkedHashX root. User or creator of
LinkedHashX does not maintain the entire process; instead,
LinkedHashX root is maintained for future use. A user needs
to reconstruct the LinkedHashX root and compares it with
the original root. Secondly, we use Bloom Filter to verify
the block’s authenticity and integrity, an approximation data
structure. All data blocks are inserted into Bloom Filter
during the construction of the LinkedHashX. A user requires
LinkedHashX root and Bloom Filter to download to verify a
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data block’s authenticity and integrity.
Our key contributions are outlined below-
• HEX-BLOOM uses Bloom Filter to verify a data block’s

authenticity and integrity in $ (:) time complexity for :
distinct hash functions. In contrast, the Merkle tree takes
$ (;>6=) time complexity, = is the total number of nodes
of the Merkle tree, and : <� ;>6=.

• The total verification time complexity for data authen-
ticity and integrity is $ (:L) and L is the total number
of blocks whereas Merkle tree takes $ (L ;>6L) time
complexity and :L � L ;>6L.

• The construction cost of HEX-BLOOM is two-folded,
firstly, the construction cost of Bloom Filter, and sec-
ondly, the construction cost of LinkedHashX. The con-
struction cost of Bloom Filter and LinkedHashX are
$ (:L) and $ (L), respectively for L data blocks. The
Merkle tree takes $ (=) and :L � =.

• The extra space complexity of Bloom Filter is ` which
is derived in Equation (12). The extra space complexity
of LinkedHashX is $ (1). Therefore, the total extra space
complexity is $ (`), whereas the Merkle tree takes $ (=).

• The total communication cost of our proposed model is
$ (1) whereas a Merkle tree requires $ (L) communica-
tions for all blocks.

• Moreover, the time complexity of insertion and deletion
is $ (:) whereas the insertion or deletion time complexity
of Merkle tree is $ (;>6L) and : � ;>6L.

The article is organized as follows- Section II analyzes
the advantages and disadvantages of the Merkle tree. Section
IV demonstrates the architecture of Bloom Filter and also
analyzes the memory consumption and false positive proba-
bility. Section V presents the first part of the proposed system,
LinkedHashX, and elaborates its working principles. Section
VI combines LinkedHashX and Bloom Filter to provide partial
verification on data blocks. Finally, Section VIII concludes the
proposed system.

II. MERKLE TREE

Most of the Merkle tree implementation is binary; however,
we assume <-ary Merkle tree for generalization. Definitions
1 and 2 define the <-ary tree.

Definition 1. The <-ary or <-way tree is a tree of order <
where a) it is a rooted tree, b) each node can have at most
(< − 1) keys, c) each node can have at most < children, and
d) Keys are not in ordered.

Definition 2. An <-ary Merkle tree has leaf nodes, internal
node and Merkle root which are as follows- a) the direct hash
value of data blocks are known as leaf nodes in the Merkle
tree, b) the Merkle tree concatenates < hash values and hashes
the concatenated hash value to form a single value is called
a parent node or an internal node, and c) the Merkle root is
a root node of the tree that contains a hash value of its child
nodes.

Merkle tree is simple to construct but complex to maintain,
particularly insertion, deletion and update. There are many
issues in the Merkle tree, for instance, the insertion of a new

node. Also, it takes extra space complexity. Therefore, we
analyze the complexities with respect to the number of blocks.
Let L be the number of blocks. These blocks are hashed using
the SHA2 hash function, and these hash values are used to
build the Merkle tree. Therefore, there are L leaf nodes in
the tree. Theorem 1 shows that an <-ary Merkle tree has
I =

(L−1)
(<−1) internal nodes. It shows that there is an overhead

of I hash functions. Alternatively, Lemma 1 shows the total
cost in terms of the number of leaf nodes. The cryptographic
hash functions are slower than the non-cryptographic hash
functions. Its cryptographic hash functions impact the Merkle
tree’s performance, for instance, SHA2.

A. Construction

Fig. 1: Construction of the conventional binary Merkle Tree.

Figure 1 demonstrates the construction of the Merkle tree.
Initially, all blocks are hashed using cryptographic string hash
functions, for instance, SHA256. Then, the two consecutive
hash values are concatenated, and the concatenated hash value
is hashed using the same hash function to form their parents.
Again, the same procedure is applied to the subsequent consec-
utive blocks. This process is rerun repeatedly until it becomes
a single node, i.e., it repeats the process to get the Merkle
root. Finally, the Merkle root is published publicly and can be
distributed to peers. The creator of the Merkle tree maintains
the tree, and the peers do not require the entire Merkle tree.

B. Verification

Figure 2 shows the process of verifying a particular block.
Merkle tree verifies the authenticity of a specific block. For
instance, a user has downloaded a block and needs to verify
the block for its authenticity and integrity. In this case, the user
does not require the entire Merkle tree to verify the block. It
requires only a few hash values to verify the authenticity of
the block, as shown in the dashed circle for block 13 in Figure
2. Therefore, it features a partial verification process of a data
block.
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Fig. 2: Verification process of a particular block’s authenticity
in binary Merkle tree.

C. Analysis

Merkle tree is a computationally costly process. In this anal-
ysis, we analyze its time and space complexity. For generality,
we assume an <-ary Merkle tree. Theorem 1 shows the total
number of internal nodes for L blocks of data. Moreover, it
shows the relation between the total number of leaf nodes and
the internal nodes.

Theorem 1. The total number of the internal nodes of <-ary
Merkle tree is I =

(L−1)
(<−1) .

Proof. The relation between the leaf nodes and internal nodes
is given in Equation (1).

L = (< − 1) ∗ I + 1 (1)

Therefore, the total number of internal nodes can be derived
from Equation (1). Thus, the total number of internal nodes is
(L−1)
(<−1) . �

Lemma 1. The total number of nodes for L leaf nodes is
= = L + (L−1)

(<−1) .

Proof. The total number nodes comprises of leaf nodes and
internal nodes. Thus, the total number nodes is = = L + I.
Substituting I using Theorem 1, we get = = L + (L−1)

(<−1) . �

Theorem 2. The <-ary Merkle tree has height ℎ = d;>6<=e
for = nodes.

Proof. The <-ary Merkle tree is a complete tree, i.e., all leaf
nodes are at the same level. Therefore, the total number of
nodes is given in Equation (2).

= =

ℎ∑
8=0

<8 =
(<ℎ+1 − 1)
(< − 1) (2)

By solving the Equation (2), we get the height of the <-ary
Merkle tree. The height is derived from the Equation (2) in

Equation (3).

(<ℎ+1 − 1)
(< − 1) = =

<ℎ+1 − 1 = (< − 1)=

<ℎ =
(< − 1)= + 1

< − 1

ℎ = ;>6< (
(< − 1)= + 1

< − 1
)

ℎ = ;>6< (< − 1) + ;>6<= + ;>6<1 − ;>6< (< − 1)
ℎ = ;>6<=

(3)

Thus, the height of the <-ary Merkle tree is ;>6<=. �

Theorem 2 shows the height of the Merkle tree in terms
of the total number of nodes in the tree. The total number
of nodes is shown in Lemma 1. Therefore, the total height is
;>6< (L + (L−1)

(<−1) ) in terms of total number number of leaf
nodes. Therefore, the height of the binary Merkle tree is
;>62 (2L − 1).

Theorem 3. The <-ary Merkle tree takes $ (;>6<=) time
complexity to insert a new node or delete a node.

Proof. The insertion or deletion process is similar to the heap
tree. The insertion process requires entire rehashing from
bottom to top on the insertion path of the tree. The height
of the <-ary tree is ;>6<=, and therefore, the <-ary Merkle
tree takes $ (;>6<=) time complexity to insert a new node or
delete a node. �

Theorem 4. The building time complexity of the <-ary Merkle
tree is $ (=).

Proof. In an <-ary Merkle tree, there are L hash function calls
in the blocks, i.e., there are L leaf nodes. From Theorem 1, the
total number of hash functions for the internal nodes is (L−1)

(<−1) .
It constitutes the total number of nodes where L + (L−1)

(<−1) = =.
Therefore, the total number of the hash function calls is =.
Thus, the total time complexity to build the <-ary Merkle
tree is $ (=). �

Theorem 5. The verification time complexity of a particular
block in <-ary Merkle tree is $ (;>6<=).

Proof. All Merkle tree is not required to verify a particular
block. A few hash values are needed to verify the correctness
of the specific block; however, the tree’s total height is the
minimum requirement of the hash number. Thus, the verifica-
tion time complexity of a particular block is $ (;>6<=), which
is the height of the tree. �

Theorem 6. The verification time complexity of the total
number of L blocks is $ (L ;>6<=)

Proof. In an <-way Merkle tree, there are L blocks, and
the total number of nodes in the tree is = as shown in
Lemma 1. Each block requires a verification time complexity
of $ (;>6<=). Therefore, it requires $ (L ;>6<=) time com-
plexity for L blocks to verify each blocks. The L ≈ =, thus,
the total time complexity to verify the authenticity of all blocks
are $ (= ;>6<=). �
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Theorem 7. The extra space complexity of <-ary Merkle tree
is $ (=).

Proof. There are = nodes in the <-ary Merkle tree for L
blocks. Therefore, the Merkle tree requires $ (=) extra spaces
to construct the tree for the given set of blocks. The relation
between blocks and nodes is given in Lemma 1. The tree
node contains a hash value that is generated by the SHA2
hash function. Therefore, it consumes a large amount of extra
memory. �

III. ISSUES OF MERKLE TREE

Merkle tree is not a searched tree; it’s a simple <-ary or <-
way tree which is balanced tree. Definition 1 and 2 defines the
<-ary tree. Merkle tree construction cost is given in Lemma
1, and Theorem 4. The total cost is given by Lemma 1 and
Theorem 4. There are several issues in the Merkle tree, which
are outlined below-
• Let us assume that the set of blocks L consists of millions

of blocks. Then, it is not feasible for a conventional
computer to construct the Merkle tree. Therefore, the
Merkle tree wastes not only energy but also computational
resources.

• Merkle tree construction requires $ (= ;>6=) hash func-
tion calls which is time-consuming. As a result, it is not
feasible for a large set of blocks.

• Merkle tree cannot be constructed by BTree, B+Tree,
AVL Tree, or any other search tree; otherwise, it violates
the definition of Merkle tree.

• Merkle tree uses secure hash functions; for example,
SHA2. However, these secure hash functions are costly,
and a single operation also costs significantly, which
cannot be neglected.

• Merkle tree requires extra spaces of $ (=), and it is
costly due to large-sized memory requirements per node.
It requires a mammoth-sized RAM for millions of data
blocks.

• Merkle tree creates massive network traffics. Each block
requires network access in the Merkle tree for verification,
then = blocks require = network access. Let us assume
that there are g such Merkle trees. If g and g are
large enough, it unnecessarily creates enormous network
traffic (totaling g= network accesses). For instance, g =

1, 000, 000, = = 10, 000, and [ = 1, 000, 000 users, then
total network accesses are 1016 which is enormous for
the underlying network.

A. Communication costs

The computation is much faster than the communication.
Communication involves many issues; for instance, it requires
network access, increases network traffic and latency. There-
fore, the Merkle tree can reduce its cost if the Merkle tree
can reduce network access. However, it is hard to reduce the
total number of network accesses in the Merkle tree structure.
Merkle tree requires L network accesses to verify all data
blocks, and it is the biggest drawback of the Merkle tree. For
example, there are [ users downloading the same file, and each

user is verifying the data blocks, then it creates huge network
accesses, which is exactly [L. Therefore, the overall verifica-
tion cost of a single Merkle tree is $ ([L ;>6<=). If there are
g such Merkle trees, then its total cost is $ (g[L ;>6<=).

IV. BLOOM FILTER

Bloom Filter is an approximate membership filter with `

bit array, initially filled with zeros [28], [29]. The insertion
process inserts 1 into : slots in the Bloom Filter by :

independent hash functions. Query process checks whether all
: slots are having 1 or not. If all slots contain 1, then it returns
true; false otherwise. The deletion process resets all 1 by 0 in
: slots in the bit array by the : independent hash functions.

Definition 3. A Bloom Filter is a approximate membership
filter that can answer “YES” or “NO” with a probability. Let
U be the universe, S = {G1, G2, G3, . . . , G=} be the set where
S ⊂ U, and B be the bloom filter of ` bit array initially
filled with 0. Let ℎ = {ℎ1, ℎ2, ℎ3, . . . , ℎ: } be the : independent
hash functions. Let S inserted into the Bloom Filter B where
S ∈ B using : independent hash functions. Let G8 be a random
query and maps it to the Bloom Filter B using 5 : ℎ(G8) ↦→
{0, 1}∗. The true positive, false positive, true negative, and
false positive are defined below [30]-

• True positive: If G8 ∈ S and G8 ∈ B, then the result of
Bloom Filter is a true positive.

• False positive: If G8 ∉ S and G8 ∈ B, then the result of
Bloom Filter is a false positive.

• True Negative: If G8 ∉ S and G8 ∉ B, then the result of
Bloom Filter is a true negative.

• False negative: If G8 ∈ S and G8 ∉ B, then the result of
Bloom Filter is a false negative.

0 1    2    3    4    5    

0 1 1 1 1 1 1 10 0 0

Fig. 3: Bloom Filter: Insertion and Query operations.

The ` is the number of bits in the bit array, the probability
of a particular slot is not set to 1 by a specific hash function
is (1 − 1

`
). The probability of that particular slot is not set to

1 by : hash functions is given by Equation (4) [31].

(1 − 1
`
): (4)

We know that

4−1 = lim
∞
(1 − 1

`
)` (5)

Substituting Equation (4) by Equation (5), we get Equation
(6).

(1 − 1
`): = ((1 − 1

`
)`):/` ≈ 4−:/`

(6)
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If we insert = items into the bit array, then probability of that
particular bit is still not set to 1 is given by Equation (7).

(1 − 1
`
)=: ≈ 4−:=/` (7)

The probability of that particular bit is set to 1 is given by
Equation (8).

(1 − (1 − 1
`
)=: ) ≈ 1 − 4−:=/` (8)

The probability of all slots of ` bit array to be 1 is given in
the Equation (9).

Y = (1 − 4−:=/`): (9)

Equation (9) gives us the false positive probability. However,
the value of : must be optimal for a certain number of inputs
=; for instance, a large value of : increases the false positive
probability, and also, a small value of : increases the false
positive probability. Therefore, the value of : must be optimal
to reduce the false positive probability.

: =
`

=
;= 2 (10)

Equation (10) gives optimal false positive probability for given
` bits array and = input items [32]. Now, the value of : is
replaced in Equation (9), we get Equation (11).

Y =

(
1 − 4−(

`

=
;=2) =

`

) `

=
;=2

(11)

Taking ;= both side of Equation (11), we get Equation (12).

;= Y = − `
=
(;= 2)2

` = − = ;= Y
(;= 2)2

(12)

Equation (12) gives us the required memory size in bits
for a given number input items and a desired false positive
probability.

Property 1. The time complexity of insertion, query and
deletion in Bloom Filter is $ (:) ≈ $ (1) where : is the total
number of hash functions.

Equation (10) gives the total number of hash function
requirements. However, it is a pretty small number for large
input items as shown in Property 1; for instance, it requires
: = 10 hash functions for 10M inputs in standard Bloom Filter
[33]. However, it takes : = 5 for the exact requirements in 2D
Bloom Filter [34].

Property 2. The extra space complexity of Bloom Filter is
` = − = ;=Y

(;= 2)2 bits.

Property 2 shows the relations among the required memory,
error rate, and input items. It consumes ` = 17.14"8� for
10M input items and 0.001 false positive probability standard
Bloom Filter [33]; however, it takes : = 2"� for the same
settings in 2D Bloom Filter [35], [36]. Thus, Bloom Filter
uses a tiny amount of memory. There are also diverse fast
approximation filters, namely, Morton filters [37], and XOR
Filters [38]. Recent research suggests that Bloom Filters can
be constructed with false positive free zone [39], [40].

TABLE I: Comparison between Merkle tree and Bloom Filter.
The $ (:) ≈ $ (1) because the value of : is nearly constant.

Features Merkle tree Bloom Filters
Building cost $ (=) $ (:L)
Insertion cost $ (;>6<=) $ (:)
Deletion cost $ (;>6<=) $ (:)
Updating cost $ (;>6<=) $ (:)
Verification of a block $ (;>6<=) $ (:)
Extra spaces $ (=) `

Type Deterministic Approximations

A. Comparison

Table I demonstrates the comparison between Merkle tree
and Bloom Filter. Bloom Filters are faster than Merkle tree.
Bloom Filter uses a non-cryptographic string hash function,
while Merkle tree uses a cryptographic string hash function.
Therefore, the Merkle tree is much slower than Bloom Filter.
Patgiri et al. compares the performance of between the non-
cryptographic string hash function and cryptographic string
hash function [32]. Moreover, the construction cost of Bloom
Filter is faster than Merkle tree. Similarly, verification of a
particular block in Bloom Filter is also faster than Merkle
tree. In short, Bloom Filter is much faster in all operations than
Merkle tree. However, the Bloom Filter is an approximation
data structure, while the Merkle tree is a deterministic data
structure. Therefore, Bloom Filter cannot replace the Merkle
tree due to its false positive probability.

V. LINKEDHASHX

We propose a new variant of Merkle Tree using hash and
XOR operations, LinkedHashX for short, which is used to
replace Merkle tree. LinkedHashX maintains its root. Unlike
Merkle tree, it does not maintains the entire data structures.

Property 3. If two same keys are XORed, then it produce zero
output, i.e., X1 ⊕ X1 = 0.

Definition 4. Let ℎ? , ℎ1 , and ℎ3 be the previous hash value,
the current hash value of a particular block, and the desired
hash value, respectively. Then, LinkedHashX can be defined
as given in Equation (13).

ℎ3 = ℎ? ⊕ ℎ1 (13)

A. Construction

The construction of LinkedHashX is straightforward and
simple. Equation (14) shows the construction process of L
blocks. The last hash value of Equation (14) is the root of
LinkedHashX.

ℎ12 = ℎ1 ⊕ ℎ2

ℎ123 = ℎ12 ⊕ ℎ3

ℎ1234 = ℎ123 ⊕ ℎ4

ℎ12345 = ℎ1234 ⊕ ℎ5

ℎ123456 = ℎ123456 ⊕ ℎ6

ℎ12345...L = ℎ12345... ⊕ ℎL
ℎA = ℎ12345...L

(14)
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ℎ′12 = ℎ′1 ⊕ ℎ
′
2

ℎ′123 = ℎ′12 ⊕ ℎ
′
3

ℎ′1234 = ℎ′123 ⊕ ℎ
′
4

ℎ′12345 = ℎ′1234 ⊕ ℎ
′
5

ℎ′123456 = ℎ′123456 ⊕ ℎ6

ℎ′12345...L = ℎ′12345... ⊕ ℎ
′
L

ℎ′A = ℎ
′
12345...L

(15)

Let, ℎ and ℎ′ be the two distinct hash functions of 256 bits
each. Total hash functions calls are exactly 2L and the total
number of XOR operations are 2(L − 1). Therefore, the total
construction cost is (4L − 2). The XOR operations are much
faster than the hash operations. However, conventional Merkle
tree requires (2L) hash functions calls and 2(L − 1) XOR
operations for binary tree structure. LinkedHashX publishes
the two roots ℎA>>C = ℎ(ℎA ), and ℎ′A>>C = ℎ

′(ℎ′A ) publicly and
LinkedHashX keeps the two other roots ℎA , and ℎ′A private. If
security requirement is high, then more than two LinkedHashX
roots are created to avoid further collision. For low-powered
computing devices, two LinkedHashX roots are ideal to save
the power, energy and time.

B. Insertion operation

Insertion, deletion, and update operations can be exclusively
restricted to the creator of the LinkedHashX. To insert a new
node, a new hash value of a transaction is XORed with root
of Equation (14).

ℎ123456788L = ℎ123456788L ⊕ ℎ8
ℎA = ℎ123456788L

ℎ′123456788L = ℎ′123456788L ⊕ ℎ
′
8

ℎ′A = ℎ
′
123456788L

ℎA>>C = ℎ(ℎA )
ℎ′A>>C = ℎ

′(ℎ′A )

(16)

Equation (16) gives the the insertion operations. Therefore, it
requires a single hash function call and an XOR operation. The
total number of operations is 4, and hence, the time complexity
is $ (1).

C. Delete operation

Delete operation is straightforward and straightforward by
using Property 3. For instance, we would like to delete ℎ5, then
perform XOR operation ℎ5 with the root of Equation (14).

ℎ1234678L = ℎ1234678L ⊕ ℎ5

ℎA = ℎ1234678L

ℎ′1234678L = ℎ′1234678L ⊕ ℎ
′
5

ℎ′A = ℎ
′
1234678L

ℎA>>C = ℎ(ℎA )
ℎ′A>>C = ℎ

′(ℎ′A )

(17)

Equation (17) shows the deletion process. It requires a single
operation which is the XOR operation. The hash value ℎ5
is already calculated for LinkedHashX. Therefore, its time
complexity is $ (1).

D. Update operation

Let us assume that the ℎ1 is to be updated to the new hash
value ℎD .

ℎ2345678L = ℎ12345678L ⊕ ℎ1

ℎ2345678DL = ℎ2345678L ⊕ ℎD
ℎA = ℎ2345678DL

ℎ′2345678L = ℎ′12345678L ⊕ ℎ
′
1

ℎ′2345678DL = ℎ′2345678L ⊕ ℎ
′
D

ℎ′A = ℎ
′
2345678DL

ℎA>>C = ℎ(ℎA )
ℎ′A>>C = ℎ

′(ℎ′A )

(18)

Equation (18) demonstrates the update operation. It requires
deleting the existing hash value ℎ1 by performing an XOR
operation with the root of LinkedHashX. The new hash value
ℎD can be inserted into the root of LinkedHashX for the
update. The two XOR operations and a hash function call
are required to update a particular node. Therefore, its time
complexity becomes $ (1).

E. Space complexity

LinkedHashX does not use any extra spaces, and therefore,
its space complexity is $ (1). LinkedHashX maintains its root
only; thus, there is no additional space requirement. On the
contrary, most of the Merkle tree implementation uses at least
$ (=) space complexity where = is the number of nodes.

F. Verification

One of the most significant disadvantages of LinkedHashX
is its verification. Suppose a user downloads a block of a
file. But it cannot verify partially in LinkedHashX, but the
Merkle tree offers verification of the authenticity of a particular
block. In LinkedHashX, it requires complete downloading of
all blocks to verify the authenticity and integrity. Therefore,
LinkedHashX cannot replace the Merkle tree due to the un-
availability of partial verification of authenticity and integrity.

G. Comparison

TABLE II: Comparison between Merkle tree and Linked-
HashX.

Complexity Merkle tree LinkedHashX
Building cost $ (=) $ (L)
Insertion cost $ (;>6<=) $ (1)
Deletion cost $ (;>6<=) $ (1)
Updating cost $ (;>6<=) $ (1)

Verification of a block $ (;>6<=) Doesn’t support
Verification of all blocks $ (= ;>6<=) $ (L)

Extra spaces $ (=) $ (1)

Table II compares the conventional Merkle tree and Linked-
HashX. Merkle tree invokes = hash functions while Linked-
HashX invokes L in the time of constructions. Therefore,
LinkedHashX is much faster than Merkle tree. However,
LinkedHashX does not permit partial verification of a block’s
authenticity and integrity. Therefore, LinkedHashX cannot
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be used directly in peer-to-peer networking. The insertion,
deletion, and updating operations do not require in most
applications.

VI. HEX-BLOOM: THE REPLACEMENT OF THE MERKLE
TREE

Merkle tree is costly in terms of time/space complexity and
network access. Therefore, it requires replacing the Merkle
tree with new design philosophy. Our proposed system com-
bines both LinkedHashX and Bloom Filter. However, Bloom
Filter can be replaced with other approximation filters like
Cuckoo Filter [41], Morton filters [37], and XOR Filters [38].

A. Construction

In the construction process, it requires to construct Linked-
HashX as well as Bloom Filter. All hash values are inserted
into Bloom Filter. Similarly, the construction of LinkedHashX
requires $ (L) cryptographic hash functions and $ (L) XOR
operations. Bloom Filter requires $ (L) insertion operation
with $ (: ×L) non-cryptographic string hash functions. How-
ever, the non-cryptographic string hash function is much faster
than the cryptographic string hash function [32]. The Bloom
Filter and the root of LinkedHashX are maintained for future
use.

B. Verification

The verification process requires the LinkedHashX root
and Bloom Filter, which are downloaded from the trusted
node or server. The LinkedHashX root contains the XOR
value of all the hash values and the hash of the final results,
i.e., ℎA>>C and ℎ′A>>C . The partial verification process requires
Bloom Filter because LinkedHashX does not support partial
verification of a block’s authenticity and integrity. A block is
verified in Bloom Filter for its authenticity after completely
downloaded the block, and at the same time, the user needs
to construct the LinkedHashX. Thus, the Bloom Filter gives
approximate verification of a block’s authenticity and integrity.
LinkedHashX is constructed by the user while downloading
the data blocks. When all processes are completed, the con-
structed LinkedHashX root is compared with the downloaded
LinkedHashX root.

VII. ANALYSIS

Bloom Filter results true or false depending on approxima-
tion. The true result of the Bloom Filter does not guarantee
the existence of the item in the Bloom Filter. However, the
false result of the Bloom Filter guarantees that the item is not
a member of the Bloom Filter.

A. Communication cost

The Conventional Merkle tree process creates enormous
network traffic. A set of data blocks L creates L network
access for a single user. Suppose there are [ users, and these
users are interested in the same data, then network accessing
cost becomes $ ([L). It creates unnecessary network traffic
in verifying each block and transmitting the required hash

values to verify each block’s authenticity and integrity. In
our proposed solution, a user downloads the LinkedHashX
root and Bloom Filter only once. Then, the user verifies
each block’s authenticity and integrity in Bloom Filter. The
complete proof can be done after the completion of data
downloading. Also, it provides deterministic proof for the
correctness of the downloaded data using LinkedHashX root.
Thus, it reduces the communication cost significantly which
increases the performance drastically.

B. Comparison

TABLE III: Comparison between Merkle tree and our pro-
posed model.

Features Merkle tree Our solution
Building cost $ (=) $ (:L)
Extra spaces $ (=) `

Verification of a block $ (;>6<=) $ (:)
Verification of all blocks
of a Merkle tree

$ (= ;>6<=) $ (:L)

Network access for single
Merkle tree

$ (L) $ (1)

Network access for g

Merkle tree
$ (gL) $ (g)

Network access for g

Merkle tree by [ users
$ (g[L) $ (g[)

Total non-cryptographic
hash functions

NA :L

Total cryptographic hash
functions

= L

Type Deterministic Approximations and
deterministic

HEX-BLOOM is much faster than the existing state-of-
the-art Merkle tree solution which demonstrated in Table
III. The total construction cost of our proposed model is
$ (:L), whereas the Merkle tree takes $ (=) time complexity.
Here, the : is the number of non-cryptographic string hash
function calls, and it can be ignored due to a small-sized
value. Therefore, the Merkle tree is slower than our proposed
system in construction. Furthermore, the verification of a block
requires network access, and its performance depends on the
latency. Also, it requires $ (;>6<=) time complexity which
consists of all cryptographic string hash functions. Besides,
it requires L times network accesses to verify all block’s
authenticity. Therefore, HEX-BLOOM is significantly faster
than the existing state-of-the-art Merkle tree because our pro-
posed model does not require network access for verification.
The state-of-the-art Merkle tree consumes = × V where V is
the bit size of the hash value. On the contrary, our proposed
model consumes ` memory for Bloom Filter and 2V bits for
LinkedHashX root. Overall, HEX-BLOOM is a better choice
than the Merkle tree in every aspect.

C. Collision probability

Collision occurs when two hash values of two different
input strings become the same. The birthday paradox hash
is a collision probability in 2

V

2 hash functions for V bits hash
functions. If \ items are hashed to find a collision, the collision
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probability is given using birthday paradox in Equation (19)
[42].

d = 1 − 2V!
2\V (2V − [)! (19)

Solving Equation (19), we get Equation (20).

d = 1 − 4−
\2

2V+1

1 − d = 4
− \2

2V+1

;=(1 − d) = − \2

2V+1
\2 = −2V+1 ;=(1 − d)

\ = 2
V+1

2
√
−;=(1 − d)

(20)

In Equation (20), we approximate ;=(1 − d) = −d, then we
get Equation (21).

\ = 2
V+1

2
√
d (21)

Equation (21) gives us the probability of collision of any
secure hash function. The \ becomes enormous for 256-bits
and onward. Equation (21) shows the collision probability of
ℎA>>C . Notably, LinkedHashX uses two such hash functions:
ℎA>>C and ℎ′A>>C . It makes more harder for collision attacks.
Moreover, the Bloom Filter is the first layer of defense in such
kind of attacks. Therefore, it is practically extremely hard to
perform collision attack or in any other kinds of attacks in
Bloom Filter. In addition, the ℎA>>C and ℎ′A>>C difficult to be
reproduced by the adversaries.

D. Drawback

Case 1. There is a false positive in Bloom Filter if the
constructed LinkedHashX roots do not match with downloaded
LinkedHashX roots.

Case 1 states that Bloom Filter can return a false positive.
The downloaded LinkedHashX root and constructed Linked-
HashX root mismatches due to the false positive probability.
A few blocks are corrupted or altered, and hence, Bloom
Filter returns true for the corrupted or altered blocks. It leads
to a complete download of the data blocks and found the
mismatch between the downloaded LinkedHashX root and
constructed LinkedHashX root. Then, there is an error, and
therefore, the entire process has to be redone. In Case 1, it is
not possible to diagnose the error and unable to find which
block causes the error. However, it is improbable for the more
extensive set of blocks. If the Bloom filter returns negative,
the process is terminated. Recent progress on Bloom Filter
suggests that the false positive probability is negligible [2],
[35], [36]. Moreover, Kiss et al. presents false-positive free
zone Bloom Filter [40]. Therefore, false positive probability
of Bloom Filter is negligible.

Moreover, there is also collision probability in Linked-
HashX roots due to repeatedly XORing the hash values. To
avoid the collision probability, a total of ;>6L LinkedHashX
roots are created to provide the highest level of security for
which a ;>6L distinct hash functions are required. Linked-
HashX roots are stored in additional arrays, and therefore, it
requires $ (;>6L) extra space complexity. In addition to the

Birthday paradox, the collision probability of LinkedHashX
is 1

2logL which guarantees the collision-free LinkedHashX
roots. Moreover, LinkedHashX roots are adjustable as per the
requirements of the applications.

VIII. CONCLUSION

In this article, we unearth the drawback of the Merkle tree
and propose a new model to solve the issue of the Merkle
tree, called HEX-BLOOM. HEX-BLOOM is significantly
faster than the state-of-the-art Merkle tree. Moreover, it also
consumes less memory than the state-of-the-art Merkle tree.
We have demonstrated that the Merkle tree creates unnecessary
network traffic, which is addressed in our proposed model.
State-of-the-art Merkle tree requires network access to verify a
block, and therefore, it is time-consuming, and its performance
depends on the network latency. On the contrary, HEX-
BLOOM depends on Bloom Filter to verify each block’s
authenticity. Therefore, it does not require network access in
the verification process of each block. Overall, HEX-BLOOM
outperforms the state-of-the-art Merkle tree in every aspect.
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