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Abstract. HMAC and NMAC are the most basic and important con-
structions to convert Merkle-Damg̊ard hash functions into message au-
thentication codes (MACs) or pseudorandom functions (PRFs). In the
quantum setting, at CRYPTO 2017, Song and Yun showed that HMAC
and NMAC are quantum pseudorandom functions (qPRFs) under the
standard assumption that the underlying compression function is a qPRF.
Their proof guarantees security up toO(2n/5) orO(2n/8) quantum queries
when the output length of HMAC and NMAC is n bits. However, there
is a gap between the provable security bound and a simple distinguishing
attack that uses O(2n/3) quantum queries. This paper settles the problem
of closing the gap. We show that the tight bound of the number of quan-
tum queries to distinguish HMAC or NMAC from a random function is
Θ(2n/3) in the quantum random oracle model, where compression func-
tions are modeled as quantum random oracles. To give the tight quantum
bound, based on an alternative formalization of Zhandry’s compressed
oracle technique, we introduce a new proof technique focusing on the
symmetry of quantum query records.

Keywords: symmetric-key cryptography · post-quantum cryptography
· provable security · quantum security · compressed oracle technique ·
HMAC · NMAC.

1 Introduction

In recent years, post-quantum cryptography is one of the most active research
areas in cryptography. NIST is holding the standardization process for post-
quantum public-key schemes such as public-key encryption, key-establishment al-
gorithms, and signatures [27], and it is anticipated that currently used public-key
schemes (such as RSA-based schemes) will be replaced with post-quantum ones
in a near future. In the post-quantum era, it is desirable that we have some math-
ematical evidence that symmetric-key schemes also have post-quantum security.
Studying post-quantum security of typical symmetric-key schemes is also an in-
teresting problem from the view point of cryptographic theories, and there have
been a significant number of recent papers that focus on this topic [31,20,18,14].



There exist two post-quantum security notions for cryptographic schemes:
standard security and quantum security [32]. If a scheme S is proven to be
secure in the setting where adversaries have quantum computers but they make
only classical queries to keyed oracles, S is said to have standard security. If S is
proven to be secure even if adversaries are allowed to make quantum superposed
queries to keyed oracles, S is said to have quantum security. Quantum security
is the ultimate security since, if S has quantum security, S satisfies arbitrary
intermediate security notions between standard security and quantum security3.

Message authentication codes (MACs) are the most important symmetric-
key schemes to achieve data integrity. Some of them including block cipher based
MACs such as CBC-MAC [5,7,21] and PMAC [8] do not have quantum security,
since there exist polynomial time attacks on them [22]. However, they have
standard security since their classical security proofs remain valid if adversaries
are allowed to make only classical queries to keyed oracles and the underlying
block ciphers are post-quantum secure.

On the other hand, classical security proofs are not necessarily applicable to
the (post-quantum) standard security for hash based MACs where the proofs
use idealized models such as the random oracle model (when underlying hash
functions are built on the Merkle-Damg̊ard construction, e.g., SHA-2 [25]) or the
ideal permutation model (when underlying hash functions are built on the sponge
construction, e.g., SHA-3 [26]). Since adversaries can implement compression
functions and permutations used in the hash functions on their own quantum
computers to make quantum queries, the security of hash based MACs should
be proven in the corresponding idealized quantum models such as the quantum
random oracle model (QROM) [9] or quantum ideal permutation model [2,20].

The main focus of this paper is to study the tight quantum pseudorandom
function security (qPRF security) of HMAC and its variant NMAC [4], which
are the most basic and important constructions to convert Merkle-Damg̊ard hash
functions into pseudorandom functions (PRFs) or MACs, in the QROM where
compression functions are modeled as quantum random oracles (QROs).

HMAC and NMAC. For a compression function h : {0, 1}m+n → {0, 1}n,
the Merkle-Damg̊ard construction MDh is defined as follows4: Let IV ∈ {0, 1}n
be a fixed public initialization vector. For each input message M ∈ {0, 1}∗, the
construction pads M (with a fixed padding function) and splits it into m-bit
message blocks M [1], . . . ,M [`]. The state is first set as S0 := IV , and iteratively
updated as Si+1 := h(M [i+1]||Si), and S` becomes the final output. We assume
m ≥ n, which is the case for usual concrete hash functions such as SHA-2.

For a key length k ≤ m, HMAC is defined to be the keyed function HMACh :
{0, 1}k × {0, 1}n × {0, 1}∗ → {0, 1}n such that HMACh(K, IV,M) := MDh(IV,

3 Please do not confuse the notions of standard/quantum security with the standard
model or the quantum random oracle model. The two notions are independent of
the models, and it is possible that a scheme has quantum security in the standard
model or standard security in the quantum random oracle model.

4 n is the length of chaining values, and m is the length of message blocks.
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Kout||MDh(IV,Kin||M)). Here, Kin := (K||0m−k)⊕ ipad, Kout := (K||0m−k)⊕
opad, and ipad, opad ∈ {0, 1}m are fixed public constants such that ipad 6= opad.
We sometimes write HMAChK(IV,M) to denote HMACh(K, IV,M) for simplicity.
See also Figure 1.

Fig. 1: HMAC and NMAC. Note that pad(M) = M [1]|| · · · ||M [`].

NMAC is a two-key variant of HMAC. Mathematically, it is a keyed function
NMACh : {0, 1}n×{0, 1}n×{0, 1}∗ → {0, 1}n defined by NMACh(K1,K2,M) :=
MDh(K2,MDh(K1,M)). Here, K1,K2 ∈ {0, 1}n are chosen independently and
uniformly at random.5 We sometimes write NMAChK1,K2

(M) instead of NMACh(
K1,K2,M) for simplicity. See also Figure 1.

Quantum security of HMAC and NMAC.

Simple Quantum distinguishing attacks on HMAC and NMAC. There are two
simple quantum attacks to distinguish HMAC from a random function. Suppose
that we are given an oracle O that is either of HMAC or a random function, in
addition to the quantum random oracle h.

The first attack is the one that tries to recover the secret key K. Once we
succeed in recovering the correct key K (when O is HMAC) or realizing that
there is no plausible candidate for K (when O a random function), we can
distinguish HMAC from a random function. Since the exhaustive key search of
k-bit keys can be done with O(2k/2) queries by using Grover’s algorithm [17], we
can distinguish HMAC from a random function with O(2k/2) quantum queries.

The second attack uses a collision for O. Suppose that the padding function
pad in the Merkle-Damg̊ard construction satisfies the condition that there exists
a function p : Z≥0 → {0, 1}∗ such that pad(M) = M ||p(|M |), which is the case
for usual hash functions such as SHA-2. First, we try to find M,M ′ ∈ {0, 1}m
such that O(M) = O(M ′), which can be done with O(2n/3) quantum queries by
using the BHT algorithm [11]. When we find such messages, we check whether
O(M ||0m) = O(M ′||0m) holds. This equality holds with a high probability if O
is HMAC, but it holds with a negligible probability if O is a random function.

5 Note that there is no IV involved in NMAC and the key-length is always n+n = 2n.
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Thus, we can distinguish HMAC from a random function with O(2n/3) quantum
queries.

In summary, HMAC can be distinguished with O(min{2n/3, 2k/2}) quantum
queries. The attacks are also applicable for NMAC, and O(min{2n/3, 22n/2}) =
O(2n/3) is an upper bound of the query complexity to distinguish NMAC.

Previous results on quantum security of HMAC and NMAC. Song and Yun
proved that HMAC and NMAC become secure quantum pseudorandom func-
tions (qPRFs) against polynomial-time quantum adversaries in the standard
model under the assumption that h(·||K) : {0, 1}m → {0, 1}n is a qPRF when
K ∈ {0, 1}n is randomly chosen [31]. They for the first time showed that HMAC
and NMAC are secure even in the quantum setting, which has great importance
in theory because it enables domain extension for qPRFs.

Roughly speaking, their proof guarantees security up to O(2n/5) or O(2n/8)
quantum queries when the underlying function hK is ideally random for each
key K.6 In other words, Ω(2n/5) or Ω(2n/8) is currently the best proven lower
bound of quantum query complexity to distinguish HMAC or NMAC from a
random function.

Results in standard models and those in (quantum) random oracles are not
directly comparable, but there exists a large gap between the current best lower
bound and the upper bound O(2n/3) (when k is large enough) given in the above
distinguishing attacks.

The gap between Ω(2n/5) (or Ω(2n/8)) and O(2n/3) may not be significant in
an ideal world where adversaries are modeled as polynomial-time machines, but
it is indeed significant in the real world applications, which we explain below.

Closing the gap. In the real world, closing the gap between Ω(2n/5) (or Ω(2n/8))
and O(2n/3) is relevant for the following reasons.

Recall that there exist two security notions in the quantum setting: quantum
security and standard security. The standard security of HMAC will have prac-
tical importance in a very near future because it is quite reasonable to assume
that an adversary has a quantum computer on which h is implemented, but the
attack target (HMAC) is implemented on a classical device.

Now, the problem is that exiting results guarantee the security of HMAC
and NMAC only up to O(2n/5) or O(2n/8) queries, not only for the quantum
security but also for the standard security (in the QROM). This is problematic
since when HMAC is instantiated with SHA-256, where n = 256, the security
is not guaranteed after about 2n/5 ≈ 252 (or 2n/8 ≈ 232) classical queries. It
is completely unacceptable in practice, as the number is modest even with the
current standard, and is too small to guarantee a longer term security.

In theory, the security up to O(2n/3) queries can be guaranteed with the
previous result if the security parameter is changed from n to 5n/3 (or 8n/3),

6 Actually, the previous work [31] did not give concrete security bound, but we can
reasonably deduce that the security is guaranteed up toO(2n/8) quantum queries. We
have the bound O(2n/5) instead of O(2n/8) if we assume a conjecture. See Section A
in the appendix for details.
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by replacing the underlying hash function with the one with a longer output
length. However, in the real world, it requires many years to change parameters
or primitives of widely used symmetric-key cryptosystems such as HMAC, or
sometimes it is simply infeasible, as we illusrtare below:

- Some small IoT devices (e.g., RFID tags) need MACs but do not have enough
area for hardware implementation of primitives with large parameters.

- Some banking systems are still using Triple-DES although 20 years have
already passed after the standardization of AES [3]. This is because even a
small change (changing the block cipher) in financial systems is too costly.

- Artificial satellites require MACs to prevent accepting commands from ma-
licious attackers. Changing primitives embedded as hardware is infeasible
after satellites are launched into the outer space [30].

Hence, giving a precise security bound is relevant from a practical view point,
and is one of the most important topics to study in symmetric-key cryptography,
even if the improvement will be from O(2n/5) (or O(2n/8)) to O(2n/3).

We also note that there has been a long line of research to close the gap for
HMAC and NMAC in the classical setting, and it was eventually addressed by
Gazi et al. at CRYPTO 2014 [16] showing the upper bound and the matching
lower bound. However, the analysis in the quantum setting does not reach this
point, and closing the gap is important also from a theoretical view point.

1.1 Our Contributions

The main result of this paper is the following theorem, which shows that the
tight bound of the number of quantum queries to distinguish HMAC or NMAC
from a random function is in Θ(2n/3) (when k is large enough).

Theorem 1 (Lower bound, informal). Assume m ≥ n. Suppose that the
maximum length of messages that we can query to HMAC, NMAC, or a random
function RF (which is independent of h) is at most m · `. Then, the following
claims hold in the model where h is a quantum random oracle.

1. To distinguish HMAC from RF with a constant probability by making at most
Q queries to HMAC or RF and at most qh queries to h, qh · `5/3 +Q · `5/3 ≥
Ω(2n/3), or qh +Q · ` ≥ Ω(2k/2) have to be satisfied.

2. To distinguish NMAC from RF with a constant probability by making at most
Q queries to NMAC or RF and at most qh queries to h, qh · `5/3 +Q · `5/3 ≥
Ω(2n/3) has to be satisfied.

Remark 1. Our tightness claim focuses on the number of quantum queries, ne-
glecting the effect of the lengths of the queries (see also Figure 2). Nevertheless,
our result still has practical importance. For instance, when HMAC-SHA-256 is
used to authenticate TCP/IP packets on Ethernet, ` < 32 always holds since
Maximum Segment Size (MSS) is about 1500-byte. In such a use-case our result
guarantees about 85-bit security (2n/3 ≈ 285 for n = 256), while previous works
do only about 52-bit security or 32-bit security (in the QROM).
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Fig. 2: The area that our result guarantees security (the grey triangle). We claim
tightness of the bound for ` = O(1).

Remark 2. Some readers may think that results in the standard model are always
superior to those in the (Q)ROM, but we emphasize that the standard model
and (Q)ROM are theoretically incomparable.

To show the theorem, we use an alternative formalization [18,19] of Zhandry’s
compressed oracle technique [33]. One of the most difficult issues in proving se-
curity of cryptographic schemes against quantum adversaries is to record quan-
tum queries to oracles. Zhandry [33] solved the issue by developing the com-
pressed oracle technique, which can be used to record queries to QROs and
efficiently simulate QROs. Intuitively, by using the technique, we can use the
classical lazy sampling for quantum random oracles to some extent. The tech-
nique is so powerful that it is used to prove security of many cryptographic
schemes [18,33,23,12,24,6]. However, efficient simulations of QROs are not nec-
essary when we focus on the number of quantum queries made by adversaries
and when their running time is irrelevant. Based on this observation, Hosoya-
mada and Iwata developed an alternative formalization of the compressed oracle
technique that achieved a simpler formalization by ignoring efficient simulations
of QROs and introducing notions of error terms, which is named recording stan-
dard oracle with errors (RstOE) [18,19]. Since our main focus is information
theoretic adversaries of which computational resources are unlimited except for
the number of quantum queries, we use RstOE instead of the original technique.

The technically hardest part to prove Theorem 1 is to show the indistin-
guishability of the function Fh1 (u, v) := h(v, f(u)) from a random function, where
u ∈ {0, 1}n, v ∈ {0, 1}m, and f : {0, 1}n → {0, 1}n is a random function that
is independent of h. (Adversaries have a direct oracle access to the quantum
random oracle h, but only indirect access to f . That is, adversaries can query
to f only through queries to Fh1 , and cannot observe the output values of f .
See also Figure 3.) Once we show the indistinguishability of Fh1 , the remaining
proofs can be done with simpler proof techniques.
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Fig. 3: Fh1 and F2. h is a quantum random oracle that adversaries can directly
access. f and g are random functions that are independent from h.

It turns out that previous techniques cannot be directly used to prove the in-
distinguishability of Fh1 . Thus we introduce a technique which we call equivalent
databases. We explain the details in the next subsection.

1.2 Technical Overview

Let us denote the distinguishing advantage of an adversary A between (pair
of) oracles (Oh1 , h) and (O2, h) by Advdist

(Oh1 ,h),(O2,h)
(A), where h is a quantum

random oracle and Oh1 depends on h. Let RF be a random function that is
independent of h. As mentioned above, the technically hardest part to show the
tight security bound of HMAC and NMAC is to show the following proposition7.

Proposition 1 (Technically hardest proposition to show, informal). If
A makes at most q queries to each oracle, Advdist

(Fh1 ,h),(RF,h)
≤ O(

√
q3/2n) holds.

Let F2 be the function defined by F2(u, v) := g(u, v, f(u)), where g : {0, 1}n ×
{0, 1}m×{0, 1}n → {0, 1}n is another random function (see also Figure 3). Then,
since g is a random function, Advdist

(Fh1 ,h),(RF,h)
(A) = Advdist

(Fh1 ,h),(F2,h)
(A) holds.

In what follows, we present an overview of how we show

Advdist
(Fh1 ,h),(F2,h)

(A) ≤ O(
√
q3/2n), (1)

instead of directly showing Proposition 1. For bit strings x and y, we identify
the concatenation x||y and the pair (x, y). 8

Following usual terminology on provable security in symmetric-key cryptol-
ogy, we call (direct) queries to h offline queries because h is an ideal model of a
public function that adversaries can compute offline. In addition, we call queries
to Fh1 and F2 online queries because the oracles of Fh1 and F2 model the keyed
functions that adversaries can compute only by making online queries.

7 In [33] Zhandry showed that Fh1 is indifferentiable from a QRO when h and g are
QROs. His result implies qPRF security of Fh1 up to O(2n/4) quantum queries, while
Proposition 1 guarantees security up to O(2n/3) queries.

8 We consider F2 instead of RF so that there exists a useful correspondence between
“good” databases for Fh1 and those for F2, which we will elaborate later.
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Classical proof intuitions. If our goal were to show the indistinguishability
of Fh1 and F2 in the classical setting, we could show it based on the following
idea by using the lazy sampling technique to f , g, and h:

If A cannot guess outputs of f , and outputs of f do not collide, then the
outputs of Fh1 and F2 seem completely random and indistinguishable.

More precisely, a (classical) adversary A cannot distinguish Fh1 and F2 as long
as the following two bad events hit and coll do not happen.9

hit: A succeeds in guessing a previous output of f and queries it to h. That is,
A has queried u||v′ to the online keyed oracle (Fh1 or F2) before, and now A
queries v||f(u) to h (for some v ∈ {0, 1}m).

coll: A new output of f (which is sampled during an online query) happens to
collide with either of (a) a previous output of f , or (b) the least significant
n-bit ζ of a previous offline query v||ζ to h.

Our proof for the classical indistinguishability would be as follows: First, we
show that Fh1 and F2 are completely indistinguishable as long as hit and coll do
not happen. Second, we show that Pr[hit] and Pr[coll] are small. Let colli denote
the event that coll happens at the i-th query. Then, by using the randomness
of outputs of f , we can show Pr [colli] ≤ O(i/2n) for each i, which implies that
Pr [coll] ≤

∑
1≤i≤q Pr [colli] ≤

∑
1≤i≤q O(i/2n) = O(q2/2n). Similarly, Pr [hit] ≤

O(q2/2n) can be shown. (Actually there exists a qualitative difference between
the proof for Pr [coll] ≤ O(q2/2n) and that for Pr [hit] ≤ O(q2/2n), which will be
explained later). Hence we can show Advdist

(Fh1 ,h),(F2,h)
(A) ≤ Pr [coll] + Pr [hit] ≤

O(q2/2n) in the classical setting.

How to show quantum indistinguishability? When we show the quantum
indistinguishability of Fh1 and F2, it is natural to combine the above classical
idea with some quantum proof techniques developed in previous works. Indeed,
our first idea toward a quantum proof is to combine the above classical idea with
a quantum technique introduced in [18,19]. 10 However, actually it turns out that
they cannot be simply combined. The issue is attributed to our situation where
we have to deal with the bad event hit that “A’s offline query to h collides with
a previous output of f in the online oracle”.

Below, we explain (1) an overview of the previous quantum proof technique,
(2) what kind of issue arises if we combine the above classical idea with the
previous quantum technique, and that (3) we can solve the issue by introducing
a new proof technique which we name equivalent databases.

9 We use the symbols u and ζ to denote n-bit strings and v to denote an m-bit string.
10 In Zhandry’s paper that introduced the compressed oracle technique, quantum indif-

ferentiability of the fixed-input-length Merkle-Damg̊ad construction is proved [33].
Note that the variable-input-length Merkle-Damg̊ad construction that is used in
HMAC and NMAC is not indifferentiable in the random oracle model even in the
classical setting [13]. In addition, the security bound of the indifferentiability is
proved up to O(2n/4) (but not O(2n/3)) quantum queries in [33]. Thus, we start
from the proof technique used in [18,19] instead of [33].
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Proof technique in [18,19]. The previous work [18,19] showed quantum in-
distinguishability (Proposition 4 in [19]) of certain two oracles as follows: 11

1. Suppose that random functions from which the oracles are built (in our case,
f , g, and h) are implemented by using RstOE so that we can use intuitions of
classical lazy sampling in quantum proofs to some extent (let Df , Dg, and
Dh denote databases associated with RstOE for f , g, and h, respectively,
which correspond to transcripts of queries in the classical setting).

2. Based on classical proof ideas of using good and bad events, define the notion
of good and bad for tuples of databases (in our case, (Df , Dh) for Fh1 and
(Df , Dg, Dh) for F2) in such a way that
(a) There exists a one-to-one correspondence between good databases for one

oracle (in our case, good databases (Df , Dh) for Fh1 ) and good databases
for the other oracle (in our case, good databases (Df , Dg, Dh) for F2).

(b) The behavior of one oracle (in our case, Fh1 ) on a good database is the
same as that of the other oracle (in our case, F2) on the corresponding
good database.

3. By using (a) and (b), show that the oracles (in our case, the pairs of the ora-
cles (Fh1 , h) and (F2, h)) are completely indistinguishable as long as databases
are good.

4. Show that the probability (in some sense) that good databases change to
bad databases is very small at each query.

Note that, unlike the setting, even if the record “x has been queried to f and
responded with y” is stored in a database Df for f , there is a possibility that
the record will be overwritten as “x has not been queried to f before”, or “x
has been queried to f and responded with y′” for some y′ such that y 6= y′ 12.
Hence it is not necessarily trivial how to define good and bad databases in such
a way that we can formally prove both of (a) and (b) hold.

Next, we explain what kind of issue happens when we apply the above idea
to our situation. In short, the issue lies in the last one of the above four steps.

An issue with our situation. In the previous work [18,19], each adversary can
access to only a single keyed oracle. Roughly speaking, a good database changes
to bad only when a fresh value x is (indirectly) queried to a random function
RF, and the newly sampled value y := RF(x) happens to collide with an existing
record in a database (i.e., a bad event that correspond to coll in our situation).

11 Some technical errors are contained in the Asiacrypt version of the previous work [18],
which are corrected in the revised version [19]. Our technical overview in this section
and formal proofs in later sections are based on the revised version. For completeness,
we do not rely on any propositions in [18,19] that is related to the technical errors
in [18]. The propositions from [18,19] that we use in this paper are the ones of
which correctness can be confirmed just by straightforward algebraic calculation
(Proposition 2 and Proposition 3).

12 This may seem somewhat strange, but some differences between quantum oracles
and classical oracles are explained by using this strange property.
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On the other hand, in our situation, a good database also changes to bad
when an adversary succeeds to query v||ζ to h such that ζ collides with a previous
output of f (i.e., hit occurs).

This difference causes an issue to prove that the “bad” probability is small.
Unlike the lazy sampling that always chooses values uniformly at random, (quan-
tum) adversaries can choose offline (quantum) queries to h arbitrarily and adap-
tively. Thus, an adversary may have strong ability to succeed to cause hit, even
if the probability of coll is small.

Note that how to deal with adaptive queries to offline queries is not an easy
issue even in the classical setting. To reduce the arguments on adaptive queries
into those on non-adaptive arguments, sophisticated proof techniques such as
the coefficients H technique [28] are usually used.

How to solve the issue. Our key intuition to solve the issue is, for arbitrary
good database (Df , Dh) for Fh1 that an adversary A is trying to change to be
bad, there would be sufficiently many good databases (D′f , D

′
h) that A cannot

distinguish from (Df , Dh).
Suppose that (I) A is running relative to Fh1 and h, and has made (i − 1)

queries in total, (II) both of the bad events coll and hit have not happened, and
(III) now A chooses a bit string ṽ||ζ̃ to query to h, trying to cause hit at the i-th
query.

Let Df and Dh be the current databases for f and h (before the i-th query).
Then there exist u1, . . . , us, α1, . . . , αs ∈ {0, 1}n (s ≤ i − 1) such that Df =
((u1, α1), . . . , (us, αs)). Intuitively, αj is equal to f(uj). Since bad events have
not happened yet, Df does not contain any collision (i.e., αi 6= αj for i 6= j).

Let hiti denote the event that hit occurs at the i-th query (to h). Then, hiti
occurs when A successfully chooses a value ṽ||ζ̃ such that ζ̃ = αj holds for some
j. Our current goal is to prove that Pr [hiti] is very small.

To achieve this goal, we show that Pr
[
hiti

∣∣∣A chooses ṽ||ζ̃
]

is very small for

arbitrary ṽ||ζ̃, by focusing on the freedom of the choices of the values f(u1) =
α1, . . . , f(us) = αs. Intuitively, even if the value αj(= f(uj)) in the element
(uj , αj) ∈ Df is replaced with another value α′j , A does not notice since A
does not observe output values of f . This means that the choices of the values
f(u1) = α1, . . . , f(u) = αs have some degree of freedom, even after A has
chosen which value ṽ||ζ̃ to query to h. We use this degree of freedom to bound

the probability Pr
[
hiti

∣∣∣A chooses ṽ||ζ̃
]

(actually we will show a stronger result).

To provide a proof based on the above intuition, we introduce the notion of
equivalent databases as follows.

Definition 1 (Equivalent database, informal). A (good) database (D′f , D
′
h)

is said to be equivalent to (Df , Dh) if |D′f | = |Df |, |D′h| = |Dh|, and (D′f , D
′
h)

is equal to (Df , Dh) except for the choices of the output values of f .

We present an example to illustrate the intuition on equivalent databases. Let

Df := ((u1, α1), (u2, α2)) andDh := ((v1||α1, w1), (v
(1)
2 ||α2, w

(1)
2 ), (v

(2)
2 ||α2, w

(2)
2 ),
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(v3||ζ3, w3)). This corresponds to the situation where u1||v1, u2||v(1)2 , u2||v(2)2

have been queried to Fh1 , and v3||ζ3 has been queried to h. See also Figure 4. The

adversary observes that Fh1 (u1||v1) = w1, Fh1 (u2||v(1)2 ) = w
(1)
2 , Fh1 (u2||v(2)2 ) =

w
(2)
2 , and h(v3||ζ3) = w3, but does not know the values α1 = f(u1) and α2 =

f(u2). Suppose α1, α2, ζ3 are distinct, which implies that (Df , Dh) is a good
database. Then, another good database (D′f , D

′
h) is equivalent to (Df , Dh) if and

only if there exist α′1 and α′2 such that α′1, α
′
2, ζ3 are distinct, D′f = ((u1, α

′
1), (u2,

α′2)), and D′h = ((v1||α′1, w1), (v
(1)
2 ||α′2, w

(1)
2 ), (v

(2)
2 ||α′2, w

(2)
2 ), (v3||ζ3, w3)).

`
hf̀𝑢1

𝑣1

𝑤1𝛼1?
`
hf̀𝑢2

𝑣2
(1)

𝑤2
1𝛼2?

`
hf̀𝑢2

𝑣2
(2)

𝑤2
2𝛼2?

`
h

𝑣3

𝑤3𝜁3

Fig. 4: The situation that corresponds to the good database (Df , Dh). A has no
information on α1 and α2 expect that α1, α2, ζ3 are distinct. We say that another
good database (D′f , D

′
h) is equivalent to (D′f , D

′
h) if and only if (Df , Dh) is equal

to (Df , Dh) except for the choice of the values for α1 and α2.

Let Equiv(Df , Dh) be the set of good databases that are equivalent to (Df , Dh).
Then, intuitively, the following properties hold:

1. The probability that a database happens to become (Df , Dh) (after A made
(i − 1) queries) is equal to the probability that the database happens to
become (D′f , D

′
h), for any (D′f , D

′
h) ∈ Equiv(Df , Dh).

2. The ratio between (I) the number of (D′f , D
′
h) ∈ Equiv(Df , Dh) that leads

to the bad event hiti (i.e., αj = ζ̃ for some j) and (II) the size of the entire
set Equiv(Df , Dh) is at most about ≈ |Df |/2n ≤ O(i/2n). 13

From the above two properties it follows that, for arbitrary ṽ||ζ̃ and arbitrary

good (Df , Dh), Pr
[
hiti

∣∣∣A chooses ṽ||ζ̃ ∧ database is equivalent to (Df , Dh)
]
≤

O (i/2n) holds. This implies that Pr [hiti] ≤ O(i/2n).
The above explanations are in fact based on classical intuitions. To show

they also work in the quantum setting, we carefully analyze quantum amplitude
(complex coefficients) of state vectors.

13 This holds due to the following reasoning. For simplicity, assume that nothing has
been directly queried to h before, and Df has (i−1) entries (u1, α1), . . . , (ui−1, αi−1)
(other cases can be shown similarly). Then |Equiv(Df , Dh)| is equal to the num-
ber of choices of the tuple (α1, . . . , αi−1) such that αj 6= αk for j 6= k. Hence
|Equiv(Df , Dh)| =

(
2n

i−1

)
. In addition, the number of (D′f , D

′
h) ∈ Equiv(Df , Dh) such

that αj = ζ̃ for some j is (i − 1) ·
(

2n

i−2

)
. Thus the ratio is (i − 1) ·

(
2n

i−2

)
/
(

2n

i−1

)
=

(i−1)
(2n−i+2)

≤ O(i/2n).
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Finishing the proof. Now we have Pr [hiti] ≤ O( i
2n ) in the quantum setting.

We can also show Pr [colli] ≤ O( i
2n ) with the technique in the previous work [18].

In the classical setting, the distinguishing advantage is upper bounded by
Advdist

(Fh1 ,h),(F2,h)
(A) ≤ Pr [hit] + Pr [coll] ≤

∑
1≤i≤q Pr [hiti] +

∑
1≤i≤q Pr [colli] .

On the other hand, roughly speaking, the quantum distinguishing advantage is
upper bounded by Advdist

(Fh1 ,h),(F2,h)
(A) ≤

∑
1≤i≤q

√
Pr [hiti]+

∑
1≤i≤q

√
Pr [colli].

Therefore, we obtain the bound as Advdist
(Fh1 ,h),(F2,h)

(A) ≤
∑

1≤i≤q O
(√

i/2n
)

+∑
1≤i≤q O

(√
i/2n

)
≤ O

(√
q3/2n

)
in the quantum setting, instead of the clas-

sical bound O(q2/2n).

The intuition behind the notion of equivalent databases might seem simple or
even trivial, though, the important point is that we can provide a rigorous proof
that the intuition actually works in the quantum setting through RstOE. (Recall
that it was unclear how to record quantum queries before the development of
the compressed oracle technique.)

As we mentioned before, it is quite important to show the tight security
bound in symmetric cryptology because even the improvement from O(2n/5) (or
O(2n/8)) to O(2n/3) has significant importance in the real world. Bad events
like hit that an adversary succeeds to guess an output of a random function
often appear in classical provable security for symmetric-key cryptosystems. To
deal with such bad events when showing quantum tight security bounds, proof
techniques like our equivalent databases seem indispensable. We believe that our
technique broadens the applicability of quantum provable security in symmetric-
key cryptology.

1.3 Limitations and Future Directions

Our security bound is tight and any further improvement is impossible in terms
of the number of queries. However, there is a room for improvement in terms
of the length of messages. When an adversary makes a single classical query of
very long length (e.g., a message of m ·2n/5 bits, or equivalently ` = 2n/5) to the
keyed oracle of HMAC or NMAC, our result no longer guarantees any security.
(Note that this does not invalidate the practical importance of our result. See
Remark 1 for details.) However, we do not find any quantum attack that actually
breaks the security of HMAC or NMAC by making only a few queries of which
length is O(m · 2n/5), and we expect that there does not exist such an attack.
Improving the security bound in terms of message lengths is an interesting future
work.

1.4 Related Works

There are various notions on quantum MAC security such as EUF-qCMA se-
curity [10] and blind unforgeability [1]. There also exists another security no-
tion for one-time MAC security [15]. MACs built from qPRFs satisfy all these

12



security notions. Boneh and Zhandry showed that qPRFs become quantum se-
cure MACs (in the sense of EUF-qCMA) and showed quantum security of the
Carter-Wegman MACs [10]. Czajkowski et al. showed quantum security of ran-
dom sponge, which can be seen as a variant of CBC-MAC [14].

1.5 Paper Organization

Section 2 describes notation, definitions, and some basic lemmas used in later
sections. Section 3 gives an overview on the alternative formalization (RstOE)
of Zhandry’s compressed oracle technique. Section 4 gives the formal proof of
the technically most hardest proposition (Proposition 1) and introduces the new
proof technique. Section 5 shows quantum security bound of HMAC and NMAC.

2 Preliminaries

In this paper, all adversaries are quantum algorithms. In denotes the identity
operator on n-qubit quantum states. We often write just I instead of In when it
will cause no confusion. For a unitary operator U , we denote the operators U⊗I
and I ⊗ U by the same symbol U , when it will cause no confusion. We identify
the set of bit strings {0, 1}n with the set of integers {0, 1, . . . , 2n − 1} for any
positive integer n. In addition, we identify the pair (x, y) ∈ {0, 1}m×{0, 1}n with
the concatenation x||y ∈ {0, 1}m+n. {0, 1}∗ denotes the set

∐∞
n=0{0, 1}n, where

{0, 1}0 denotes the set that includes only the empty string. For a positive integer
m, ({0, 1}m)+ denotes the set

∐∞
i=1{0, 1}im. td(·, ·) denotes the trace distance

function. For a vector |φ〉 and a positive integer n, we also denote |φ〉⊗ |0n〉 and
|0n〉 ⊗ |φ〉 by |φ〉, when it will cause no confusion.

2.1 Quantum Algorithms and Quantum Oracles

When we consider the computational resources of adversaries, we focus on the
number of queries made by adversaries, and we do not care about their running
time and memory usage (i.e., we consider quantum information theoretic adver-
saries). Here we describe how we model (oracle-aided) quantum algorithms and
quantum oracles in the case that each adversary is given an oracle access to a
single quantum oracle.

Following previous works (e.g., [9]), we model an (oracle-aided) quantum
algorithm A that makes at most q quantum queries to a single oracle as a se-
quence of unitary operators (U0, U1, . . . , Uq), where Ui corresponds to A’s offline
computation after the i-th oracle query for i ≥ 1, and U0 corresponds to A’s
initial computation. In addition, the quantum state space of A is a tensor prod-
uct Hquery ⊗Hanswer ⊗Hwork, where Hquery, Hanswer, and Hwork correspond to
the register to make queries to the oracle, the register to receive answers from
the oracle, and the register for A’s offline computations, respectively. After the
application of the final unitary operator Uq, A’s entire state is measured, and (a
part of) the measurement result (classical bit string) is returned as the output.
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When A does not take any initial input, we assume that A’s initial state is set to
be |0s〉 for some positive integer s. When A takes a classical input x ∈ {0, 1}m,
we assume that A’s initial state is set to be |x〉 by convention. (This paper does
not treat the situation that A takes quantum states as inputs.)

A quantum oracle O is modeled as a tuple of unitary operator O, quantum
state space Hquery ⊗Hanswer ⊗Hstate, and a vector (initial state) |init〉 ∈ Hstate.
Here, the state space Hquery⊗Hanswer (i.e., the registers to send queries and re-
ceive answers) is shared with adversaries, and Hstate is the oracle’s private space
that adversaries cannot access directly. O may be chosen randomly according to
a distribution at the beginning of each game.

When the adversary A runs relative to the quantum oracle O on input x,
the initial whole quantum state is |x〉 ⊗ |init〉. The whole quantum state just
before the i-th query is Ui−1OUi−2O · · ·OU0 |x〉⊗ |init〉, and the whole quantum
state just before the final measurement is UqOUq−1O · · ·OU0 |x〉 ⊗ |init〉. Let
z ← AO(x) denote the event that the quantum algorithm A returns z as the
final output when A takes x as an input and runs relative to O.

Example: Quantum oracle of a fixed function and a quantum random oracle.
According to the above model, the quantum oracle Of of a fixed function
f : {0, 1}m → {0, 1}n is modeled as follows: the state space of Of is empty.
The unitary operator Of that processes queries made to Of is defined by Of :
|x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 for all x ∈ {0, 1}m and y ∈ {0, 1}n.

In addition, a quantum random oracle (QRO) is defined to be the quantum
oracle such that, f : {0, 1}m → {0, 1}n is chosen uniformly at random at the
beginning of each game (for some m and n), and quantum oracle access to Of
is given to adversaries.

Even if a function f admits input messages M and M ′ of which lengths differ,
we assume that the quantum oracle of Of admits queries of superpositions of
M and M ′. In such a case, we assume that length |M | of each message M is
encoded with M . However, for ease of notation, we just write |M〉 instead of
|(|M |,M)〉 for each message M .

2.2 How to Model Accesses to Multiple Quantum Oracles

Suppose that an adversary A is given oracle accesses to multiple quantum oracles
O1, . . . ,Os, and A makes q queries to each oracle O1, . . . ,Os in a sequential or-
der. That is, for each 1 ≤ j < s, after A makes the i-th query to Oj , A performs
some offline computations, and then makes the i-th query to Oj+1. Similarly,
after A makes the i-th query to Os, A performs some offline computations, and
then makes the (i + 1)-th query to O1. Here we explain how to model the be-
havior of A and multiple quantum oracles O1, . . . ,Os as sequential applications
of unitary operators, in the case that A makes queries in a sequential order as
above.

We assume that the oracles share a state space that is described as the tensor
productHquery⊗Hanswer⊗Hstate. Here,Hquery⊗Hanswer is the partial state space
of A (thus the adversary and the oracles share the registers to send queries and
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receive answers). Hstate is oracles’ private space that adversaries cannot access
directly.

For each quantum oracle Oi, let Oi denote the unitary operator to process
queries. We assume that the initial state ofA is set to be |x〉 whenA takes x as an
input (when A does not take any initial input, by convention we assume that the
initial state of A is |0α〉 for some α). Let |init〉 be the initial state of the oracles’
private space Hstate. Then we model that the quantum state of A and the oracles

before the final measurement becomes
(∏q

j=1 Us,jOs · · ·U1,jO1

)
U0 |x〉 ⊗ |init〉,

where the adversary A is modeled as the sequence of unitary operators (U0, U1,1,
. . . , Us,1, U1,2, . . . , Us,q), and Ui,j corresponds to the offline computation by A
after the j-th query to Oi. By z ← AO1,...,Os(x), we denote the event that A
finally outputs the classical string z when A takes x as an input and runs relative
to the oracles O1, . . . ,Os.

The model of adversaries of which queries are not in a sequential order.
In the above model we considered the special case that the adversary queries to
oracles O1, . . . ,Os in a sequential order. However, even if an adversary B (given
oracle accesses to O1, . . . ,Os) does not make queries in such a sequential order,
the behavior of B can be captured with the above model: Suppose that B makes
at most qi quantum queries to Oi for each i, and s is a constant. Then, we can
make another adversary A such that A’s output distributions are the same as
that of B, and A makes O(max{q1, . . . , qs}) queries to each oracle in a sequential
order as in the above model, by appropriately increasing the number of queries.
Thus all reasonable adversaries are captured by the above model.

2.3 Security Advantages

Quantum distinguishing advantage. For quantum oracles O1, . . . ,Os and
O′1, . . . ,O′s, we define the quantum distinguishing advantage of an adversary A
by Advdist

(O1,...,Os),(O′1,...,O′s)(A) :=
∣∣∣Pr
[
1← AO1,...,Os()

]
− Pr

[
1← AO′1,...,O′s()

]∣∣∣ .
qPRF advantage in QROM. Let h be a QRO and FhK be a keyed func-
tion that may depend on h. By the same symbol FhK we denote the quan-
tum oracle such that the key K is chosen at random, and the quantum ora-
cle access to FhK is given to adversaries. In addition, let RF be the quantum
oracle of a random function that is independent of h. Then, we define the
quantum pseudorandom function advantage (qPRF advantage) of A on FhK by

AdvqPRF

FhK
(A) := Advdist

(FhK ,h),(RF,h)
(A).

Here we introduce a basic proposition from a previous work [29] for later use.

Lemma 1 (Lemma 2.2 of [29]). Let h : {0, 1}m+n → {0, 1}n be a quan-
tum random oracle. For a random key K ∈ {0, 1}k (k < m + n), define FhK :
{0, 1}m+n−k → {0, 1}n by FhK(x) = h(x||K). Then, for each adversary A that

makes at most qh quantum queries to h, AdvqPRF

FhK
(A) ≤ O

(
qh/2

k/2
)

holds.
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qPRG advantage. Let h be a quantum random oracle and ρh : {0, 1}k1 →
{0, 1}k2 be a function that may depend on h. Then, we define the quantum PRG

advantage AdvqPRG
ρh

(A) of A on ρh by AdvqPRG
ρh

(A) :=
∣∣∣Pr
[
K1

$←− {0, 1}k1 :

1← Ah(ρh(K1))
]
− Pr

[
K2

$←− {0, 1}k2 : 1← Ah(K2)
]∣∣∣ . In addition, we intro-

duce the following lemma for later use.

Lemma 2. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle, and k ≤
m. Let ∆ ∈ {0, 1}m and IV ∈ {0, 1}n be public constants such that ∆ 6= 0m. De-
fine ρh : {0, 1}k → {0, 1}2n by ρh(K) = h(K||0m−k||IV )||h((K||0m−k⊕∆)||IV ).
Then, for any quantum adversary A that makes at most qh quantum queries to
h, AdvqPRG

ρh
(A) ≤ O

(
qh/2

k/2
)

holds.

Lemma 2 can easily be shown by slightly modifying the proof of Lemma 1
(Lemma 2.2 in [29]), but we give a proof in Section B in the appendix for
completeness.

3 An Overview on How to Record Quantum Queries

Here, we give an overview of the recording standard oracle with errors [18,19],
which is an alternative formalization of Zhandry’s compressed oracle technique [33].

The primal definition of QRO. Let us begin with recalling the primal def-
inition of QRO (see Section 2 for details). A QRO is the quantum oracle such
that

1. a function f is chosen from Func({0, 1}m, {0, 1}n), the set of all functions
from {0, 1}m to {0, 1}n, uniformly at random, and

2. a quantum oracle access to f is given to adversaries.

Here, m and n are positive integers. Note that the quantum oracle of f is de-
scribed as the unitary operator Of that is defined by Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉
for all x ∈ {0, 1}m and y ∈ {0, 1}n. In the QROM, an adversary A makes quan-
tum queries to a QRO (and quantum queries to additional oracles that may
depend on the QRO) and finally returns some outputs.

An alternative view of QRO: the standard oracle. Here, let us define
a quantum oracle named the standard oracle, which is an alternative view of
QRO. First, suppose that each function f : {0, 1}m → {0, 1}n is encoded into
the 2m · (n+ 1)-bit string (0||f(0))|| · · · ||(0||f(2m − 1)), and identify f with this
bit string14. Second, let stO be the unitary operator defined by

stO : |x〉 |y〉 ⊗ |S〉 7→ |x〉 |y ⊕ Sx〉 ⊗ |S〉 , (2)

14 Here, the bit “0” concatenated with each f(i) is redundant, but it is necessary so
that the notation for stO is compatible with that for the recording standard oracle
with errors introduced later.
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where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0||S0)|| · · · ||(b2m−1||S2m−1) (bi ∈
{0, 1} and Si ∈ {0, 1}n for each i. Essentially, the operator stO does not act on
the register for bi for each i). Then we have stO |x〉 |y〉⊗|f〉 = |x〉 |y ⊕ f(x)〉⊗|f〉
for each function f .

Definition 2 (Standard oracle). The standard oracle is the quantum oracle
such that the initial state of the oracle is

∑
f

√
1/2n2m |f〉 and each quantum

query is processed with the unitary operator stO.

By the same symbol stO we denote not only the unitary operator (2) but also
the standard oracle if it will cause no confusion. The following lemma clearly
holds.

Lemma 3. For any quantum algorithm A and any possible output z (classical
bit string), Pr

[
z ← AQRO

]
= Pr

[
z ← AstO

]
holds.

The recording standard oracle with errors. Let IH, Utoggle, and CH be
the unitary operators that act on 2m · (n + 1)-qubit states defined by IH :=
(I ⊗ H⊗n)2

m

, Utoggle := (I1 ⊗ |0n〉 〈0n| + X ⊗ (In − |0n〉 〈0n|))2
m

, and CH :=
(CH)2

m

. Here, X is the 1-qubit bit-flip operation such that X |b〉 = |b⊕ 1〉 and
CH := |0〉 〈0|⊗ In + |1〉 〈1|⊗H⊗n. Let Uenc := CH ·Utoggle · IH and Udec := U∗enc,
and define the unitary operator RstOE that acts on (m+ n+ (n+ 1) · 2m)-qubit
quantum states by

RstOE := (Im+n ⊗ Uenc) · stO · (Im+n ⊗ Udec). (3)

Then the recording standard oracle with errors RstOE is defined as follows.

Definition 3 (Recording standard oracle with errors). The recording stan-
dard oracle with errors is the quantum oracle such that its initial state is |02m(n+1)〉
and each quantum query is processed with the unitary operator RstOE.

By the same symbol RstOE we denote not only the unitary operator (3) but also
the recording standard oracle with errors if it will cause no confusion.

Intuition behind the definition of RstOE. RstOE is the composition of Udec, stO,
and Uenc. The first operator Udec decodes superpositions of databases into the
uniform superposition of all functions

∑
f

√
1/2n2m |f〉. The second stO responds

to queries in the same way as the original standard oracle. Finally, Uenc encodes
the uniform superposition of functions into a superposition of databases. Recall
that Uenc = CH ·Utoggle · IH. Intuitively, after the action of the first unitary oper-
ator IH, the register of the function f that corresponds to the value f(x) changes
to |0n〉 if adversary has no information on f(x), and changes to some non-zero
value if adversary has some information on f(x). If the value of the register is
non-zero, database should record the value of f(x). The second operator Utoggle

checks if the register is non-zero, and set bx := 1 to indicate that “the value of
f(x) should be recorded”. Finally, the third operator CH constructs a (superpo-
sition of) database D in such a way that the value f(x) is recorded in D if and
only if bx = 1.
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Next, we give some notation used to describe the property of RstOE. Let D :=
(b0||y0)|| · · · ||(b2m−1||y2m−1) be a 2m ·(n+1)-bit bit string, where bi ∈ {0, 1} and
yi ∈ {0, 1}n for 0 ≤ i ≤ 2m− 1. We call D a valid database if ¬(bi = 0∧ yi 6= 0n)
holds for all i. If bi = 0∧yi 6= 0n holds for some i, we call D an invalid database.
Intuitively, a valid database D will be a quantum version of “transcript” for a
random oracle: bx = 1 ∧ yx = y implies that “the adversary queried x to the
random oracle before, and the query was responded with y”.

Let D = (b0||y0)|| · · · ||(b2m−1||y2m−1) be a valid database, and ID ⊂ {0, 1}m
be the set of indices such that i ∈ ID if and only if bi = 1. Then, we can define a
set SD ⊂ {0, 1}m × {0, 1}n from D by SD := {(i, yi)}i∈ID . Similarly, if a subset
S ⊂ {0, 1}m × {0, 1}n satisfies the condition

x 6= x′ for distinct elements (x, sx), (x′, sx′) ∈ S, (4)

we can define a valid database DS from S by DS := (b0||y0)|| · · · ||(b2m−1||y2m−1),
where bx = 1 and yx = sx if (x, sx) ∈ S and bx = 0 and yx = 0n otherwise. Each
of the maps D 7→ SD and S 7→ DS is the inverse of the other, and we identify
valid databases and the subsets that satisfy (4). Furthermore, we identify a set
S ⊂ {0, 1}m × {0, 1}n that satisfies (4) with the partially defined function fS
such that fS(x) = y if and only if (x, y) ∈ S, and fS(x) = ⊥ if (x, y) 6∈ S for any
y. Particularly, we use the same symbol D to denote SD and fSD .

Remark 3. Pay attention not to confuse the (valid) databases with the encoding
of functions f : {0, 1}m → {0, 1}n that is used when we defined the standard
oracle stO. The encoding of functions are used only in the definition of stO, but
the notion of databases are used throughout the rest of the paper.

By definition of RstOE, the proposition below immediately follows (see arguments
in Section 3 of [18,19] for details).

Proposition 2. The recording standard oracle with errors RstOE is completely
indistinguishable from the quantum random oracle. That is, for any quantum
algorithm A and any possible output z, Pr

[
z ← AQRO

]
= Pr

[
z ← ARstOE

]
holds.

In addition, if we measure the database register of RstOE just before A makes the
i-th query, the database after the measurement contains at most (i− 1) entries.

The following proposition shows the main properties of RstOE that are shown
in the previous work [18,19].

Proposition 3 (Proposition 1 in [18,19]). Let x ∈ {0, 1}m and D = (b0||y0)||
· · · ||(b2m−1||y2m−1) be a valid database such that D(x) = ⊥ (in particular, bx = 0
and yx = 0n hold). In addition, for z 6= 0n let D ∪ (x, z)invalid be the invalid
database D∪(x, z)invalid := (b′0||y′0)|| · · · (b′2m−1||y′2m−1) such that b′t = bt∧yt = y′t
if t 6= x, and bx = 0 ∧ yx = z.

1. For any y, α ∈ {0, 1}n, there exists a vector |ε1〉 such that

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉 = |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉+ |ε1〉 (5)
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and ‖|ε1〉‖ ≤ O(
√

1/2n) hold. More precisely,

|ε1〉 =
1√
2n
|x, y ⊕ α〉

|D〉 −
 ∑
β∈{0,1}n

1√
2n
|D ∪ (x, β)〉

 (6)

− 1√
2n

∑
β∈{0,1}n

1√
2n
|x, y ⊕ β〉

(
|D ∪ (x, β)〉 − |Dinvalid

β 〉
)

(7)

+
1

2n
|x〉 |0̂n〉

2
∑

β∈{0,1}n

1√
2n
|D ∪ (x, β)〉 − |D〉

 (8)

holds, where |Dinvalid
β 〉 is a superposition of invalid databases for each β de-

fined by |Dinvalid
β 〉 =

∑
γ 6=0n

(−1)β·γ√
2n
|D ∪ (x, γ)invalid〉 and |0̂n〉 := H⊗n |0n〉.

2. For any y, there exists a vector |ε2〉 such that

RstOE |x, y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉+ |ε2〉 (9)

and ‖|ε2〉‖ ≤ O(
√

1/2n) hold. More precisely,

|ε2〉 =
1√
2n
|x〉 |0̂n〉

|D〉 − ∑
β∈{0,1}n

1√
2n
|D ∪ (x, β)〉

 (10)

holds, where |0̂n〉 := H⊗n |0n〉.

The first and second properties (especially, (5) and (9)) in this proposition cor-
respond to the classical intuition for lazy sampling such that, when x is queried
to a random function, (i) if x has been queried before and responded with α, re-
spond with α again, and (ii) if x has not been queried before, sample α uniformly
at random and respond with α, respectively. This intuition works well when the
initial state |x, y〉 ⊗ |D ∪ (x, α)〉 or |x, y〉 ⊗ |D〉 are not superposed. When the
initial states are superposed, the effect of the error terms |ε1〉 and |ε2〉 become
significant, and quantum-specific property such that “an entry (x, α) ∈ D is
deleted from D at a query” or “an entry (x, α) ∈ D is overwritten with another
data (x, α′) at a query” emerge.

4 Technical Proposition

The goal of this section is to show the following proposition, which is the tech-
nically hardest part to show quantum security of HMAC and NMAC.15 Once
we prove it, the remaining proofs for HMAC and NMAC can be shown by using
simpler techniques. See also Section 1.2 for proof intuition.

15 The proposition is a formal restatement of Proposition 1 in Section 1.2 for the case
u ∈ {0, 1}n+m

′
.
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Proposition 4. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. Let
f : {0, 1}n+m′ → {0, 1}n be a random function, and Fh1 : {0, 1}n+m′×{0, 1}m →
{0, 1}n be the function defined by Fh1 (u, v) := h(v, f(u)). Let A be an algorithm
that runs relative to the quantum oracle of Fh1 and the quantum random oracle h,
or the quantum oracle of a random function RF and the quantum random oracle
h. Suppose that A makes at most qh quantum queries to h and Q quantum queries
to Fh1 or RF. Let q := max{Q, qh}, and suppose that q is in o(2n/3). Then

AdvqPRF

Fh1
(A) ≤ O

(√
q3/2n

)
(11)

holds.

Let F2 be the function defined by F2(u, v) := g(u, v, f(u)), where g : {0, 1}n+m′×
{0, 1}m×{0, 1}n → {0, 1}n is another random function. Then, since g is a random

function, AdvqPRF

Fh1
(A) = Advdist

(Fh1 ,h),(F2,h)
(A) holds. To simplify proofs, instead

of directly showing (11), we show that Advdist
(Fh1 ,h),(F2,h)

(A) ≤ O
(√

q3/2n
)

holds.

4.1 Proof of Proposition 4

Here we give a proof for the case m′ = 0. The claims for m′ > 0 can be shown
in the same way. We assume that A makes queries to Fh1 and h (or, F2 and h)
in a sequential order and model the adversary and oracles as in Section 2.2. In
particular, by convention we assume that A’s (2i − 1)-th query is made to Fh1
(or F2) and 2i-th query is made to h for 1 ≤ i ≤ q. (For instance, A first queries
to Fh1 (or F2) and second queries to h.) We call queries to Fh1 and F2 online
queries and queries to h offline queries since, in practical settings, computations
of h are done offline on adversaries’ (quantum) computers.

We assume that the unitary operators to process queries to Fh1 and F2 are
implemented as follows:

Quantum oracle of Fh1 .

1. Take |u, v〉 |y〉 as an input, where u, y ∈ {0, 1}n and v ∈ {0, 1}m.
2. Query u to f and obtain

|u, v〉 |y〉 ⊗ |f(u)〉 . (12)

3. Query (v, f(u)) to h and add the answer into the y register to obtain

|u, v〉 |y ⊕ Fh1 (u, v)〉 ⊗ |f(u)〉 . (13)

4. Uncompute Step 2 to obtain |u, v〉 |y ⊕ Fh1 (u, v)〉 .

We assume that the quantum oracle of F2 is implemented in the same way as
Fh1 , except that the query (v, f(u)) to h in Step 3 is replaced with the query
(u, v, f(u)) to g. See also Figure 5.
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Fig. 5: Implementations of Fh1 and F2. “in” and “out” denote the registers to send
queries and receive answers, respectively. The dotted lines (and |Df 〉 , |Dh〉 , |Dg〉)
appear only when f, h, g are implemented with RstOE, which correspond to the
database registers.

We show the hardness of distinguishing Fh1 and F2 by using the recording
standard oracle with errors (RstOE): We assume that the quantum oracles of
f , g, and h are implemented by using RstOE (quantum queries are processed
with RstOE). Let RstOEf , RstOEg, and RstOEh be the recording standard oracle
with errors for f , g, and h, respectively. We use the symbols Df , Dg, and Dh

to denote databases for f , g, and h, respectively. Then the unitary operator
OFh1 (resp., OF2

) to process queries to Fh1 (resp., F2) can be decomposed as

OFh1 = RstOE∗f · RstOEh · RstOEf (resp., OF2
= RstOE∗f · RstOEg · RstOEf ). See

also Figure 5 for the intuition about which registers the different RstOEs act.

Good and bad databases. Here we introduce the notion of good and bad
databases for Fh1 and F2. When we use the symbols u, ζ, v, w, we assume that
u, ζ, w ∈ {0, 1}n and v ∈ {0, 1}m. We say that a pair of valid database (Df , Dh)
for Fh1 is good if and only if the following properties are satisfied.

1. For each (u, ζ) ∈ Df , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that
((v, ζ), w) ∈ Dh.

2. For (u, ζ) and (u′, ζ ′) in Df such that u 6= u′, ζ 6= ζ ′ holds (there is no
collision for f).

We say that (Df , Dh) is bad if it is not good.
Similarly, we say that a tuple of valid databases (Df , Dg, Dh) for F2 is good

if and only if the following properties are satisfied.

1. For each (u, ζ) ∈ Df , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that
((u, v, ζ), w) ∈ Dg.

2. For each ((u, v, ζ), w) ∈ Dg, (u, ζ) ∈ Df .
3. For (u, ζ) and (u′, ζ ′) in Df such that u 6= u′, ζ 6= ζ ′ holds (i.e., there is no

collision for f).
4. For each ((v, ζ), w) ∈ Dh and (u′, ζ ′) ∈ Df , ζ 6= ζ ′ holds (i.e., the most

significant n bits of inputs to h and the outputs of f do not collide).

We say that (Df , Dg, Dh) is bad if it is not good.
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Intuition behind good databases. Intuitively, a database (Df , Dh) for Fh1 is de-
fined to be good if and only ifDf does not contain collisions (the second condition
on Fh1 ). The first condition on Fh1 is included so that a weird situation such as
“u has been queried to f , but (v, f(u)) has not been queried to h for any v”
will not happen for good databases. Similarly, a database (Df , Dg, Dh) for F2 is
defined to be good if and only if Df does not contain collisions (the third condi-
tion condition on F2) and the least significant n bits of inputs to h do not collide
with outputs of f (the fourth condition on F2). The first and second conditions
on F2 is included so that weird situations such as “u has been queried to f , but
(u, v, f(u)) has not been queried to g for any v” or “(u, v, ζ) has been queried to
g, but u has not been queried to f” will not happen for good databases.

One-to-one correspondence for good databases. For a good database
(Df , Dg, Dh) for F2, let Dg?Dh be the valid database for h such that ((v, ζ), w) ∈
Dg ? Dh if and only if ((v, ζ), w) ∈ Dh or ((u, v, ζ), w) ∈ Dg for some u. Then
(Df , Dg ?Dh) becomes a good database for Fh1 . Let us denote (Df , Dg ?Dh) by
[(Df , Dg, Dh)]1. Then, it can easily be shown that the map [·]1 : (Df , Dg, Dh) 7→
[(Df , Dg, Dh)]1 = (Df , Dg ?Dh) is a bijection between the set of good databases
for F2 and that for Fh1 . Let [·]2 denote the inverse map of [·]1.

The bijections extend to (partially defined) isometries between the state
spaces. LetHA be the state space of the adversary, andHDfDh (resp.,HDfDgDh)

be the state space of the databases for Fh1 (resp., Fh2 ). In addition, let V
(1)
good ⊂

HDfDh (resp., V
(2)
good ⊂ HDfDgDh) be the subspace spanned by good databases.

Then, the linear map from HA⊗V (1)
good to HA⊗V (2)

good that maps |η〉⊗|Df , Dh〉 to
|η〉 ⊗ |[Df , Dh]2〉 for |η〉 ∈ HA and a good database (Df , Dh) becomes an isom-
etry. We denote this isometry and its inverse also by [·]2 and [·]1, respectively.

Equivalent good databases. Next, we define the notion of equivalent databases.
First, we define the notion for equivalent good databases for Fh1 . Let (Df , Dh)
be a good database for Fh1 , and let

S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh and (u, ζ) 6∈ Df for all u} .

We say that another good database (D′f , D
′
h) is equivalent to (Df , Dh) if and

only if they are the same except for the output values of f , i.e., there exists a
permutation π on {0, 1}n such that

1. π(ζ) = ζ for all ζ ∈ S,
2. (u, ζ) ∈ Df if and only if (u, π(ζ)) ∈ D′f , and
3. ((v, ζ), w) ∈ Dh if and only if ((v, π(ζ)), w) ∈ D′h holds.

We define that a good database (D′f , D
′
g, D

′
h) for F2 is equivalent to an-

other good database (Df , Dg, Dh) in the same way, except that S is defined
as S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh} and the following condition is
additionally imposed.
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3+. ((u, v, ζ), w) ∈ Dg if and only if ((u, v, π(ζ)), w) ∈ D′g hold.

As explained in Section 1.2, intuitively, two good databases are defined to be
equivalent if and only if any adversary cannot distinguish them. By definition
of equivalent databases, if a good database (Df , Dg, Dh) for F2 is equivalent to
another good database (D′f , D

′
g, D

′
h), then D′h = Dh holds.

Notations for state vectors. Let |φ2i−1〉 be the whole quantum state just
before A’s i-th query to Fh1 when A runs relative to Fh1 and h. In addition, let
|φ2i〉 be the whole quantum state just before A’s i-th query to h when A runs
relative to Fh1 and h. Define |ψ2i−1〉 and |ψ2i〉 similarly when A runs relative to
F2 and h. For ease of notation, let |φ2q+1〉 and |ψ2q+1〉 be the quantum states
just before the final measurement when A runs relative to (Fh1 , h) and (F2, h),
respectively.

We will show that Proposition 4 follows from the proposition below.

Proposition 5. For each j = 1, . . . , 2q + 1, there exist |φgoodj 〉, |φbadj 〉, |ψ
good
j 〉,

and |ψbad
j 〉 that satisfy the following properties:

1. |φj〉 = |φgoodj 〉+ |φbadj 〉 and |ψj〉 = |ψgood
j 〉+ |ψbad

j 〉.
2. |φgoodj 〉 ∈ HA ⊗ V (1)

good and |ψgood
j 〉 ∈ HA ⊗ V (2)

good.

3. |φgoodj 〉 =
[
|ψgood
j 〉

]
1
.

4. There exists a complex number a
(j)
uvyzDfDgDh

such that

|ψgood
j 〉 =

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh):good

a
(j)
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉 (14)

and a
(j)
uvyzDfDgDh

= a
(j)
uvyzD′fD

′
gD
′
h

if (Df , Dg, Dh) and (D′f , D
′
g, D

′
h) are equiv-

alent, where (u, v), y, and z correspond to A’s register to send queries, to
receive answers from oracles, and for offline computations, respectively. 16

5. For a good database (Df , Dg, Dh) with non-zero coefficient in |ψgood
2i−1〉 (resp.,

in |ψgood
2i 〉), |Dg| ≤ i − 1, |Df | ≤ 2(i − 1), and |Dh| ≤ i − 1 hold (resp.,

|Dg| ≤ i, |Df | ≤ 2i, and |Dh| ≤ i− 1 hold).

6. ‖ |φbadj 〉 ‖ ≤ ‖ |φbadj−1〉 ‖+O
(√

j/2n
)

and ‖ |ψbad
j 〉 ‖ ≤ ‖ |ψbad

j−1〉 ‖+O
(√

j/2n
)

hold (we regard that ‖ |φbad0 〉 ‖ = ‖ |ψbad
0 〉 ‖ = 0).

Intuitive interpretation of Proposition 5. The first and second properties show
that |φj〉 and |ψj〉 are divided into good and bad components. The third property
shows that the good component of |φj〉 matches to that of |ψj〉 through the

16 To be precise, we have to use the symbol (v, ζ) instead of (u, v) when j = 2i since we
always use the symbol v||ζ to denote an input to h. However, here we use (u, v) to sim-

plify notations. In the proof we use the symbol a
(2i)
vζyzDfDgDh

instead of a
(2i)
uvyzDfDgDh

.
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isometry [·]1, which intuitively means that A cannot distinguish the two oracles
as long as databases are good. The fourth property shows that the coefficients of
equivalent databases are perfectly equal, which intuitively means that A cannot
distinguish equivalent good databases. The fifth property shows the upper bound
of the size of databases. The sixth property shows that the chance for good
databases change to bad is very small at each query.

Overview of the proof of Proposition 5. The proposition is shown by induction on
j. The claim for j = 1 obviously holds by setting |φbad1 〉 = |ψbad

1 〉 = 0. Inductive
steps are separated into two cases.

(Online queries): If the claim for j = 2i− 1 (i.e., before the i-th query to Fh1
or F2) holds, then the claim for j = 2i (i.e., after the query) holds.
(Offline queries): If the claim for j = 2i (i.e., before the i-th query to h)
holds, then the claim for j = 2i+ 1 (i.e., after the query) holds.

Proof for online queries. Recall that OFh1 (resp., OF2
) are decomposed as OFh1 =

RstOE∗f ·RstOEh ·RstOEf (resp., OF2 = RstOE∗f ·RstOEg ·RstOEf ). We show that
Properties 1–6 listed in Proposition 5 hold at each action of RstOEf , RstOEh
(resp., RstOEg), and RstOE∗f . A state vector after an action of RstOE can be
decomposed into three components. 17

(i) The one that was (pre-)good before the action and still remains (pre-)good.
(ii) The one that was (pre-)good before the action but changed to bad.
(iii) The one that was already bad before the action.

Roughly speaking, we define (i) to be a new good vector, and the sum of (ii)
and (iii) to be a new bad vector.18 Then Properties 1 and 5 of Proposition 5 can
easily be shown.

Intuitively, we defined good databases so that the behavior of the oracle of
Fh1 on good databases will be the same for that of F2 on the corresponding
good databases. Thus we can show that Property 3 still holds for the new good
vectors by keeping track of how the coefficients of basis vectors change, using
Proposition 3.

The intuition for the proof of Property 4 is as follows. LetDB0 := (Df , Dg, Dh)

andDB1 := (D′f , D
′
f , D

′
h) (resp., D̃B0 := (D̃f , D̃g, D̃h) and D̃B1 := (D̃′f , D̃

′
f , D̃

′
h))

be equivalent good databases in |ψgood
2i−1〉 (resp., |ψgood

2i 〉). In addition, by pij we

ambiguously denote the “probability” that DBi changes to D̃Bj for i, j ∈ {0, 1}
(pij has the information on the ratio of the coefficient of the vector correspond-

ing to DBi and that of D̃Bj). Then we can show pij = pi′j′ holds for all
(i, j), (i′, j′) ∈ {0, 1} × {0, 1} by using symmetry of equivalent databases and

17 Pre-good databases are defined in the complete proof of Proposition 5 presented in
Section C in the appendix.

18 To be more precise, we sometimes include small “good” terms into the new bad
vector so that the analysis will be easier.
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Proposition 3. Since the coefficients corresponding to DB0 and DB1 are equal
due to Property 4 on |ψgood

2i−1〉, this implies that Property 4 also holds for |ψgood
2i 〉.

Property 6 is proven by showing the norm of the component (iii) is in
O(
√
i/2n). Intuitively, this corresponds to showing the probability that the event

coll in Section 1.2 happens at the query is O(i/2n). We carefully prove it by us-
ing Proposition 3, taking into account that records in databases may be deleted
or overwritten.
Proof for offline queries. The proof for offline queries are similar19, except that
showing

∥∥(iii)
∥∥ ≤ O(

√
i/2n) corresponds to showing Pr [hiti] ≤ O(i/2n) in Sec-

tion 1.2. See the explanations around page 11 for the intuition on Pr [hiti] ≤
O(i/2n). To formally prove the bound, we use the inductive hypothesis that
Property 4 holds for j = 2i.

See Section C in the appendix for a complete proof.

Proof (of Proposition 4). Let trD1 (resp., trD2) denote the partial trace opera-
tions over the quantum states of the databases for (Fh1 , h) (resp., (F2, h)). Then

Advdist
Fh1 ,F2

(A) ≤ td (trD1(|φ2q+1〉 〈φ2q+1|), trD2(|ψ2q+1〉 〈ψ2q+1|))

≤ td
(

trD1(|φgood2q+1〉 〈φ
good
2q+1|), trD2(|ψgood

2q+1〉 〈ψ
good
2q+1|)

)
(15)

+
∥∥|φbad2q+1〉

∥∥+
∥∥|ψbad

2q+1〉
∥∥ (16)

holds. By Property 3 of Proposition 5, the term (15) is equal to zero. In addition,

(16) ≤
∑

1≤j≤2q+1O
(√

j/2n
)

+
∑

1≤j≤2q+1O
(√

j/2n
)
≤ O

(√
q3/2n

)
follows

from Property 6 of Proposition 5. Hence Proposition 4 follows. ut

5 Quantum Security Proofs for HMAC and NMAC

The goal of this section is to show the following proposition.

Proposition 6. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. As-
sume m ≥ n. Suppose that the padding function pad for the Merkle-Damg̊ard
construction is injective and there exists a function p : Z≥0 → {0, 1}∗ such
that pad(M) = M ||p(|M |)20. Let A be a quantum adversary that runs relative
to two quantum oracles Oh and h 21 such that (i) |pad(M)| ≤ m · ` for arbi-
trary M that A queries to Oh when Oh is HMAChK or NMAChK1,K2

, and (ii) A
makes at most Q queries to Oh and qh queries to h. Then AdvqPRF

HMAChK
(A) ≤

O

(√
(qh+Q)3`5

2n + qh+Q`
2k/2

)
and AdvqPRF

NMAChK1,K2

(A) ≤ O
(√

(qh+Q)3`5

2n

)
hold.

19 Actually the proof for offline queries are even simpler because the offline oracle is just
a single random oracle h while the online oracles consist of two random functions.

20 These conditions are satisfied for usual concrete hash functions such as SHA-2. Recall
that ({0, 1}m)+ is the set of bit strings of length positive multiple of m bits.

21 Oh will be HMAChK , NMAChK1,K2
, or a random function.
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Recall that HMAChK (resp., NMAChK1,K2
) is the composition of the functions

MDh(IV,Kin||·) and MDh(IV,Kout||·) (resp., MDh(K1, ·) and MDh(K2, ·)). Let
us call the first (resp., second) function the inner function (resp., outer func-

tion). In addition, let MD
′h : {0, 1}n×({0, 1}m)+ → {0, 1}n be the function that

is defined in the same way as MDh but without padding. Then, to prove Proposi-
tion 6, it suffices to prove the claim in the case that the inner function of HMAChK
(resp., NMAChK1,K2

) is replaced with MD
′h(IV,Kin||·) (resp., MD

′h(K1, ·)) and
the lengths of messages queried by A is always a multiple of m and at most ` ·m,
since this change does not decrease adversaries’ ability to distinguish.

Thus, in what follows, we prove Proposition 6 in the case where HMAChK and
NMAChK1,K2

are modified as above. We show it by introducing (2` + 2) games
G0,H , G0,N , Gi (1 ≤ i ≤ `), G′i (1 ≤ i ≤ `).

Game G0,H . This is the game that the adversary is given oracle access to the

quantum oracle of HMAChK , in addition to h.

Game G0,N . This is the game that the adversary is given oracle access to the

quantum oracle of NMAChK1,K2
, in addition to h.

Game Gi for 1 ≤ i ≤ `. In the game Gi, the adversary is given quantum
oracle access to the function Hh

i (in addition to h) that is defined as follows. Let
M := M [1]|| · · · ||M [j] (M [t] ∈ {0, 1}m for each t) be an input message for Hh

i .

1. If j < i, Hh
i (M) := gj(M) for a random function gj : {0, 1}mj → {0, 1}n.

2. If j = i, Hh
i (M) := fout(fi(M)) for a random function fi : {0, 1}mi →

{0, 1}n and fout : {0, 1}n → {0, 1}n.
3. If j > i, first Si := fi(M [1]|| · · · ||M [i]) is computed, and then St := h(M [t]||
St−1) is iteratively computed for i < t ≤ j, and finally Hh

i (M) is set as
Hh
i (M) := fout(Sj).

See also Figure 6.

Game G′
i for 1 ≤ i ≤ `. In the game G′i, the adversary is given quantum

oracle access to the function H
′h
i (in addition to h) that is defined as follows.

Let M := M [1]|| · · · ||M [j] (M [t] ∈ {0, 1}m for each t) be an input for H
′h
i .

1. If j ≤ i, H ′hi (M) := gj(M) for a random function gj : {0, 1}mj → {0, 1}n.
2. If j > i, first Si := fi(M [1]|| · · · ||M [i]) is computed, and then St := h(M [t]
||St−1) is iteratively computed for i < t ≤ j, and finally H

′h
i (M) is set as

H
′h
i (M) := fout(Sj). Here, fi : {0, 1}mi → {0, 1}n and fout : {0, 1}n →
{0, 1}n are random functions.

See also Figure 7. Since the lengths of messages queried by A is at most m · `,
G′` becomes the ideal game that A runs relative to a random function and h.

For the distinguishing advantage betweenG0,N andG1 and the distinguishing
advantage between G0,H and G1, the following two lemmas hold.
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𝑗 = 𝑖

𝑗 < 𝑖

𝑗 > 𝑖

ℎ

Fig. 6: Hh
i (M) in game Gi.

`
𝑓𝑖

𝑀 1 ||⋯ ||𝑀 𝑖 𝑀 𝑖 + 1

`

𝑀 𝑗

𝑓𝑜𝑢𝑡 𝐻′𝑖
ℎ 𝑀

𝑔𝑗 𝐻′𝑖
ℎ 𝑀𝑀

𝑗 = 𝑖

𝑗 < 𝑖

𝑗 > 𝑖

𝑔𝑖 𝐻′𝑖
ℎ 𝑀𝑀

ℎ ℎ

Fig. 7: H
′h
i (M) in game G′i.

Lemma 4 (G0,N and G1). It holds that Advdist
(NMAChK1,K2

,h),(Hh1 ,h)
(A) is in O

(√
(qh +Q`)3/2n

)
.

Lemma 5 (G0,H and G1). Advdist
(HMAChK ,h),(H

h
1 ,h)

(A) is in O(
√

(qh +Q`)3/2n

+ (qh +Q`)/2k/2).

It is straightforward to show that these lemmas follow from Lemma 1, Lemma 2,
and Proposition 4. See Section D and Section E in the appendix for complete
proofs.

For the distinguishing advantage between Gi and G′i for 1 ≤ i ≤ `, the
following lemma holds.

Lemma 6 (Gi and G′i). Advdist
(Hhi ,h),(H

′h
i ,h)

(A) is in O(
√
q3`3/2n), where q =

max{Q, qh}.

Here we provide a rough proof overview. See Section F in the appendix for
details.

Proof Overview. First, let us slightly modify the definition of H
′h
i . For a mes-

sage M = M [1]|| · · · ||M [i] of length m · i, the value H
′h
i (M) was defined as

H
′h(M) := gi(M) for a random function gi, but here we re-define H

′h
i (M) :=

f ′out(M,fi(M)), where f ′out : {0, 1}mi × {0, 1}n → {0, 1}n is another random
function. This modification does not change the distribution of H

′h
i since f ′out is

random.
Our proof strategy for Lemma 6 is similar to that for Proposition 4, and

we use RstOE to show the indistinguishability. In fact proving Lemma 6 is eas-
ier than proving Proposition 4 because the following difference exists between
Proposition 4 and Lemma 6.

1. In the proof of Proposition 4, a function to which adversaries can directly
query in one construction (i.e., h in Fh1 ) is replaced with another function to
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which adversaries can query only indirectly in the other construction (i.e., g
in F2).

2. On the other hand, in Lemma 6, a function to which adversaries can query
only indirectly in one construction (i.e., fout in Hh

i of Gi) is replaced with
another function to which adversaries can query only indirectly in the other
construction (i.e., f ′out in H

′h
i of G′i).

In the proof of Proposition 4, we had to assure that the probability that an
adversary directly queries to h a value that is recorded in a database is very
small (i.e., the probability of the bad event hit in Section 1.2 is very small). This
is the reason that we introduced the notion of equivalent databases. On the other
hand, in Lemma 6, adversaries can query to both of fout and f ′out only indirectly
(adversaries do not have full control on inputs to fout and f ′out). In particular, we
can define bad events in Lemma 6 in such a way that whether they happen or not
do not depend on the values of A’s queries, and their probability can be bounded
by using the randomness of outputs of random functions (like coll in Section 1.2).
Therefore we do not have to introduce the notion of equivalent databases in
Lemma 6. Hence it easier to prove Lemma 6 than to prove Proposition 4.

For the distinguishing advantage between G′i and Gi+1 for 1 ≤ i < `, the
following lemma holds.

Lemma 7 (G′i and Gi+1). Advdist
(H
′h
i ,h),(Hhi+1,h)

(A) is in O
(√

(qh +Q`)3/2n
)
.

Proof. Let f
′h
i+1 : {0, 1}m(i+1) → {0, 1}n be the function defined by f

′h
i+1(M [1]||

· · · ||M [i+ 1]) := h(M [i+ 1]||fi(M [1]|| · · · ||M [i])).
For an adversary A to distinguish (H

′h
i , h) from (Hh

i+1, h) that makes at most

Q quantum queries to H
′h
i or Hh

i+1 and at most qh quantum queries to h, we

construct another adversary B to distinguish (f
′h
i+1, h) and (fi+1, h) by making

O(Q) queries to f
′h
i+1 or fi+1 and O(qh +Q`) queries to h, as follows.

B is given a quantum oracle access to Oh, which is f
′h
i+1 or fi+1, in addition to

a quantum oracle access to h. First, B chooses functions g̃j : {0, 1}jm → {0, 1}n
for j = 1, . . . , i and fout : {0, 1}n → {0, 1}n uniformly at random, and runs A.
When A makes a query to the second oracle (which is supposed to be h), B
responds by querying to h. When A queries M = M [1]|| · · · ||M [j] to the first
oracle (which is supposed to be H

′h
i or Hh

i+1), B responds to A as follows:

1. If j ≤ i, B computes T = g̃j(M) by itself, and responds to A with T .
2. If j > i, B computes Si+1 := Oh(M), Su := h(M [u]||Su−1) for u = i +

2, . . . , j, and T := fout(Sj), by making queries to Oh and h. Then B responds
to A with T .

Finally, B returns A’s output as its own output.
Then B perfectly simulates H

′h
i or Hh

i+1 depending on whether Oh = f
′h
i+1 or

Oh = fi+1, which implies that Advdist
(H
′h
i ,h),(Hhi+1,h)

(A) = Advdist
(f
′h
i+1,h),(fi+1,h)

(B).

In addition, B makes at most O(Q) quantum queries to f
′h
i+1 or fi+1 and O(qh+
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Q`) quantum queries to h. Therefore

Advdist
(H
′h
i ,h),(Hhi+1,h)

(A) = Advdist
(f
′h
i+1,h),(fi+1,h)

(B) ≤ O

(√
(qh +Q`)3

2n

)
(17)

follows from Proposition 4. ut

Proof (of Proposition 6). The claim of the proposition immediately follows from
Lemma 4, Lemma 5, Lemma 6, and Lemma 7. ut
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A On Security Bound Given in [31]

This section explains why the result in [31] guarantees security of NMAC up to
O(2n/8) or O(2n/5) quantum queries when the compression function is ideally
random. (Almost the same arguments apply to HMAC.)
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We can reasonably deduce that the security is guaranteed up to O(2n/8)
quantum queries, and have the bound O(2n/5) instead of O(2n/8) if we assume
a conjecture.

First, we describe the original result on NMAC in the standard model (under
the assumption that the compression function is a qPRF), and then translate
it into the corresponding claim in the quantum random oracle model where the
compression function is a random oracle.

The original result on NMAC. Let f : {0, 1}m × {0, 1}n → {0, 1}n be a
function, and for each K ∈ {0, 1}n let fK denote the function fK(x) = f(x||K).
For an adversary A and the keyed function fK , define the qPRF advantage under
random leakage by

AdvqPRF-rl
fK

(A) :=
∣∣Pr
[
1← AfK ,H(H(K))

]
− Pr

[
1← Aρ,H(w)

]∣∣ , (18)

where ρ : {0, 1}m → {0, 1}n and H : {0, 1}n → {0, 1}n are random functions,

and w
$←− {0, 1}n.

In the previous work, Song and Yun showed the following proposition.

Proposition 7 (Theorem 5.2 in [31]). For any adversary A that makes at
most Q quantum queries to NMAC or a random function, where the length of
each message is upper bounded by m · `, we can construct adversaries Ad and
Arl such that

AdvqPRF

NMACfK1,K2

(A) ≤ AdvqPRF
fK

(Ad) + 34(`+ 1)
√
Q3 ·AdvqPRF-rl

fK
(Arl), (19)

where Ad makes at most Q quantum queries to fK or a random function, and
Arl makes at most 4Q queries to fK or a random function and at most 6Q
queries to H.

Translation of Proposition 7 into the QROM. Now, suppose that f is a
random oracle. Then, similarly to (18), we can define the qPRF advantage under
random leakage by

AdvqPRF-rl
fK

(A) :=
∣∣Pr
[
1← AfK ,f,H(H(K))

]
− Pr

[
1← Aρ,f,H(w)

]∣∣ , (20)

where ρ : {0, 1}m → {0, 1}n and H : {0, 1}n → {0, 1}n are random functions
that are independent of f .

In what follows, let us assme m = n for simplicity. Then, the proposition
in the QROM (where the compression function f is a quantum random oracle)
that correspond to Proposition 7 would be like the following proposition, though
we do not provide a formal proof.

Proposition 8. For any adversary A that makes at most Q quantum queries
to NMAC or a random function and the quantum random oracle f , where the
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length of each message is upper bounded by m · `, we can construct adversaries
Ad and Arl such that

AdvqPRF

NMACfK1,K2

(A) ≤ AdvqPRF
fK

(Ad) +O

(√
`2Q3 ·AdvqPRF-rl

fK
(Arl)

)
, (21)

where Ad makes at most O(Q) quantum queries to fK or a random function and
at most O(Q) quantum queries to the random oracle f , and Arl makes at most
O(Q) quantum queries to fK or a random function and at most O(Q) quantum
queries to the random oracles f and H.

Let AdvqPRF
fK

(Q) := maxAAdvqPRF
fK

(A) and AdvqPRF-rl
fK

(Q) := maxAAdvqPRF-rl
fK

(A),
where the maximum is taken over all adversaries that make at most Q queries
to each oracle. Then,

AdvqPRF
fK

(Q) ≤ AdvqPRF-rl
fK

(Q) (22)

apparently holds since some information on K is leaked via H (when A runs
relative to fK).

Now, let us assume

AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q),

which may overestimate (but never underestimate) the security claim shown in
Proposition 8. Then

AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q) ≤ O

(√
Q2

2n

)
(23)

holds by Lemma 1. Therefore,

AdvqPRF

NMACfK1,K2

(A) ≤ O

(
4

√
`4 ·Q8

2n

)
. (24)

follows from (21). When ` = O(1), the inequality (24) guarantees the security of
NMAC only up to O(2n/8) queries.

The bound O(2n/5) based on a conjecture. The final bound (24) is based
on Lemma 1, which provides the current best qPRF security bound of fK in the
QROM as far as we know. However, we are not sure if the bound is tight because
we do not know any distinguishing attack that matches the bound of Lemma 1.

If we assume the following conjecture instead of (23), we obtain the bound
O(2n/5) instead of O(2n/8).

Conjecture 1. It holds that AdvqPRF-rl
fK

(Q) = AdvqPRF
fK

(Q) ≤ O
(
Q2/2n

)
.22

22 This bound matches the bound by the Grover search.
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If we assume this, from (21) we obtain

AdvqPRF

NMACfK1,K2

(A) ≤ O

(√
`2 ·Q5

2n

)
(25)

instead of (24). When ` = O(1), the inequality (25) guarantees the security of
NMAC only up to O(2n/5) queries.

Remark 4. Very roughly speaking, the barrier to achieve an improved result in
the standard model when fK is a qPRF (instead of the QROM) lies in Theo-
rems 3.3 and 4.5 of the previous work [31]. Intuitively, the theorems enable us
to reduce the qPRF security of Fh1 in our paper (see Section 1.2. In fact “h” in
Section 1.2 is replaced with “f” here) to the qPRF security of fK . The theorems
are versatile and useful, but the security loss is too large to achieve the tight
bound of HMAC (roughly speaking, for an adversary A that makes q queries,

AdvqPRF

Fh1
(A) is upper bounded by

√
q3AdvqPRF

fK
(B) for an adversary B that

makes O(q) queries). Either improving the bound of Theorem 3.3 (and Theo-
rem 4.5) or completely different proof idea will be necessary to achieve the tight
bound in the standard model.

B Proof of Lemma 2

The proof in this section is a simple extension of a previous work (the proof of
Lemma 2.2 in [29]). In this section we do not use the recording standard oracle
with errors.

We use the following lemma.

Lemma 8 (Lemma C.1 in [31]). For a bit string K ∈ {0, 1}k that is uniformly
chosen at random, let g̃K : {0, 1}k → {0, 1} be the function such that g̃K(x) = 1
if and only if x = K. In addition, let g̃⊥ : {0, 1}k → {0, 1} be the function such
that g̃⊥(x) = 0 for all x. Then, for a quantum adversary A that makes at most
q quantum queries to g̃K or g̃⊥,

Advdist
gK ,g⊥

(A) ≤ O
( q

2k/2

)
(26)

holds.

First, we show that the lemma below follows from Lemma 8.

Lemma 9. Let ∆ ∈ {0, 1}m be a public constant such that ∆ 6= 0m and suppose

that k ≤ m. Let g
rel(∆)
K : {0, 1}m → {0, 1} be the function such that g

rel(∆)
K (x) = 1

if and only if x = K||0m−k or x = (K||0m−k) ⊕ ∆ (K ∈ {0, 1}k is chosen
uniformly at random). In addition, let g⊥ : {0, 1}m → {0, 1} be the function
such that g⊥(x) = 0 for all x. Then, for any quantum adversary A that makes

at most q quantum queries to g
rel(∆)
K or g⊥,

Advdist

g
rel(∆)
K ,g⊥

(A) ≤ O
( q

2k/2

)
(27)

holds.
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Proof. We construct an adversary B to distinguish g̃K and g̃⊥ that makes at

most O(q) queries from the adversary A to distinguish g
rel(∆)
K and g⊥ as follows:

B is given access to the quantum oracle of a Boolean function G (G = g̃K or
g̃⊥). First, B runs A. When A queries x to its oracle, B performs the following
procedure and responds to A:

1. If k < m, and both of the least significant (m−k) bits of x (which we denote
by [x]lsb(m−k)) and x⊕∆ (which we denote by [x⊕∆]lsb(m−k)) are not equal

to 0m−k, respond to A with 0.
2. If k = m, or [x]lsb(m−k) = 0m−k, or [x⊕∆]lsb(m−k) = 0m−k, then:

(a) Set b1 ← 0 and b2 ← 0.
(b) If k = m or [x]lsb(m−k) = 0m−k, query the most significant k bits of x

(which we denote by [x]msb(k)) to G, and set b1 ← G([x]msb(k)).

(c) If k = m or [x ⊕ ∆]lsb(m−k) = 0m−k, query the first k bits of x ⊕ ∆
(which we denote by [x⊕∆]msb(k)) to G, and set b2 ← G([x⊕∆]msb(k)).

(d) Respond to A with b1 ∨ b2.

Finally B returns A’s last output as its own output.

Then, B perfectly simulates g
rel(∆)
K or g⊥ depending on whether G = g̃K or

g̃⊥, and B makes at most O(q) quantum queries. Thus

Advdist

g
rel(∆)
K ,g⊥

(A) = Advdist
g̃K ,g̃⊥

(B) ≤ O
( q

2k/2

)
(28)

follows from Lemma 8. ut

Next we show the following lemma.

Lemma 10. Let h : {0, 1}n+m → {0, 1}n be a quantum random oracle, and
let k ≤ m. For a randomly chosen key K ∈ {0, 1}k and a public constant ∆ ∈
{0, 1}m such that ∆ 6= 0m, define a keyed function FhK : {0, 1}×{0, 1}n → {0, 1}n
by, for each b ∈ {0, 1} and x ∈ {0, 1}n,

FhK(b, x) :=

{
h(K||0m−k||x) if b = 0,

h((K||0m−k ⊕∆)||x) if b = 1.
(29)

Then, for any quantum algorithm A that makes at most qh quantum queries to
h,

AdvqPRF

FhK
(A) ≤ O

( qh
2k/2

)
(30)

holds.

Proof. Let H0 : {0, 1} × {0, 1}n → {0, 1}n be a random function that is inde-

pendent of h. In addition, let Hh,H0

1 : {0, 1}m+n → {0, 1}n be a function defined
by, for each α ∈ {0, 1}m and x ∈ {0, 1}n,

Hh,H0

1 (α||x) :=


h(α||x) if α 6= K||0m−k and α 6= K||0m−k ⊕∆,
H0(0, x) if α = K||0m−k,
H0(1, x) if α = K||0m−k ⊕∆.

(31)

34



Then the distribution of the functions (FhK , h) and the distribution of the func-

tions (H0, H
h,H0

1 ) are the same. Thus

AdvqPRF

FhK
(A) = Advdist

(FhK ,h),(H0,h)
(A)

≤ Advdist

(FhK ,h),(H0,H
h,H0
1 )

(A) + Advdist

(H0,H
h,H0
1 ),(H0,h)

(A)

= Advdist

(H0,H
h,H0
1 ),(H0,h)

(A) (32)

holds.

We construct an adversary B to distinguish g
rel(∆)
K and g⊥ from the adversary

A to distinguish (H0, H
h,H0

1 ) and (H0, h) as follows: B is given access to the

quantum random oracle of a Boolean function G (G = g
rel(∆)
K or g⊥). B first

samples random functions h′ : {0, 1}m+n → {0, 1}n and H ′0 : {0, 1} × {0, 1}n →
{0, 1}n, and runs A. When Amakes a query to the first oracle (which is supposed
to be H0), B responds by using H ′0. When A makes a query α||x (α ∈ {0, 1}m
and x ∈ {0, 1}n) to the second oracle (which is supposed to be Hh,H0

1 or h), B
runs the following procedure and respond to A:

1. Query α to G.

2. If G(α) = 0, B responds to A with h′(α||x).

3. If G(α) = 1 and [∆]lsb(m−k) 6= 0m−k, then

(a) If [α]lsb(m−k) = 0m−k, B responds to A with H ′0(0, x).

(b) If [α]lsb(m−k) 6= 0m−k, B responds to A with H ′0(1, x).

4. If G(α) = 1 and [∆]lsb(m−k) = 0m−k, then

(a) If α < α⊕∆ (here we regard α and α⊕∆ as integers in {0, . . . , 2k−1}),
B responds to A with H ′0(0, x).

(b) If α > α⊕∆, B responds to A with H ′0(1, x).

Finally B returns A’s last output as its own output.

Then, B perfectly simulates (H0, H
h,H0

1 ) and (H0, h) depending on whether

G is g
rel(∆)
K or g⊥, and B makes at most O(qh) quantum queries. Thus

Advdist

(H0,H
h,H0
1 ),(H0,h)

(A) = Advdist

g
rel(∆)
K ,g⊥

(B) ≤ O
( qh

2k/2

)
(33)

follows from Lemma 9, which completes the proof. ut

Now we show Lemma 2.

Proof (of Lemma 2). Lemma 2 immediately follows from Lemma 10, since ad-
versaries to distinguish ρh(K) and a random 2n-bit string can be regarded as
special adversaries to distinguish FhK and a random function that query only
(0, IV ) and (1, IV ) to FhK (or the random function). ut
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C Proof of Proposition 5

As mentioned in Section 4, we show the proposition by induction on j. The
claim for j = 1 obviously holds by setting |φbad1 〉 = |ψbad

1 〉 = 0. Inductive steps
are separated into the proof for online queries (i.e., the proof for j = 2i under
the hypothesis on j = 2i − 1) and the one for offline queries (i.e., the proof for
j = 2i+ 1 under the hypothesis on j = 2i).

First we prove the former by decomposing OFh1 (resp., OF2
) as OFh1 =

RstOE∗f ·RstOEh ·RstOEf (resp., OF2 = RstOE∗f ·RstOEg ·RstOEf ), and showing
Properties 1–6 in the proposition hold at each action of RstOEf , RstOEh (resp.,
RstOEg), and RstOE∗f . (See also Figure 5 about the decompositions.)

Before providing the proof, we define pre-good and pre-bad databases in
addition to good and bad databases, and see that the one-to-one correspondence
between good databases and the notions on equivalent databases are naturally
extended to pre-good databases.

Pre-good and pre-bad databases. We say that a (pair of) valid database
(Df , Dh) for Fh1 is pre-good if and only if it satisfies the following properties:

1. (Df , Dh) is good, or
2. There exists an element (u, ζ) ∈ Df such that (Df \ (u, ζ), Dh) is good and

((ζ, v), w) 6∈ Dh for all v and w, and (u′, ζ) 6∈ Df for all u′ 6= u.

We say that (Df , Dh) is pre-bad if it is not pre-good.
Similarly, we say that a (tuple of) valid database (Df , Dg, Dh) for F2 is

pre-good if and only if it satisfies the following properties:

1. (Df , Dg, Dh) is good, or
2. There exists an element (u, ζ) ∈ Df such that (Df \ (u, ζ), Dg, Dh) is good

and ((v, ζ), w) 6∈ Dh ∧ ((u, v, ζ), w) 6∈ Dg holds for all v and w, and (u′, ζ) 6∈
Df for all u′ 6= u.

We say that (Df , Dg, Dh) is pre-bad if it is not pre-good.

Intuition behind pre-good databases. Intuitively, a database is pre-good if and
only if one of the following conditions hold: (i) It is just good, or (ii) A queried
some value (u, v) to Fh1 (resp., F2), the query u to f has already been pro-
cessed inside Fh1 (resp., F2) and a new output value f(u) is sampled but the
query (v, f(u)) to h (resp., (u, v, f(u)) to g) has not been processed yet, and the
database is likely to become good.

One-to-one correspondence for pre-good databases. Here we re-define
the one-to-one correspondence and the isometries [·]1 and [·]2 so that they are
defined not only on good databases but also on pre-good databases.

For a pre-good database (Df , Dg, Dh) for F2, let Dg ? Dh be the valid
database for h such that ((v, ζ), w) ∈ Dg ? Dh if and only if ((v, ζ), w) ∈ Dh or
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((u, v, ζ), w) ∈ Dg for some u. Then (Df , Dg ?Dh) becomes a pre-good database
for Fh1 . Let us denote (Df , Dg ? Dh) by [(Df , Dg, Dh)]1. Then, it can easily be
shown that the map [·]1 : (Df , Dg, Dh) 7→ [(Df , Dg, Dh)]1 = (Df , Dg ? Dh) is a
bijection between the set of pre-good databases for F2 and the set of pre-good
databases for Fh1 . Let [·]2 denote the inverse map of [·]1.

The bijections extend to (partially defined) isometries between the state
spaces. Again, let HA denote the state space of the adversary, and HDfDh (resp.,

HDfDgDh) denote the state space of the databases for Fh1 (resp., Fh2 ). In addi-

tion, let V
(1)
pre-good ⊂ HDfDh (resp., V

(2)
pre-good ⊂ HDfDgDh) be the subspace spanned

by pre-good databases. Let Haux be the state space that corresponds to the aux-
iliary qubits used by the oracles (see (12) and (13)). Then, the linear map from

HA ⊗ V (1)
pre-good ⊗Haux to HA ⊗ V (2)

pre-good ⊗Haux that maps |η〉 ⊗ |Df , Dh〉 ⊗ |ξ〉
to |η〉 ⊗ |[Df , Dh]2〉 ⊗ |ξ〉 for |η〉 ∈ HA, |ξ〉 ∈ Haux, and a pre-good database
(Df , Dh) becomes an isometry. We denote this isometry and its inverse also by
[·]2 and [·]1, respectively.

The above mappings [·]1 and [·]2 are generalizations of those on good databases
define in Section 4. Note that [(Df , Dg, Dh)]1 is good if and only if (Df , Dg, Dh)
is good.

Equivalent pre-good databases. Let (Df , Dh) be a good database for Fh1 .
Recall that another good database (D′f , D

′
h) is equivalent to (Df , Dh) if and only

if they are the same except the output values of f , i.e., there exists a permutation
π on {0, 1}n such that

1. π(ζ) = ζ for all ζ ∈ S,
2. (u, ζ) ∈ Df if and only if (u, π(ζ)) ∈ D′f , and
3. ((v, ζ), w) ∈ Dh if and only if ((v, π(ζ)), w) ∈ D′h hold,

where

S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh and (u, ζ) 6∈ Df for all u} .

Next, we extend the notion for pre-good databases for Fh1 . By definition,
arbitrary pre-good database has the form (Df ∪ (u, ζ), Dh) such that (Df , Dh)
is good. Let (D′f ∪(u′, ζ ′), D′h) be another pre-good database such that (D′f , D

′
h)

is good. We say that (Df ∪ (u, ζ), Dh) is equivalent to (D′f ∪ (u′, ζ ′), D′h) if and
only if

4. (Df , Dh) is equivalent to (D′f , D
′
h) in the above sense, and

5. u = u′ ∧ ζ ′ = π(ζ), where π is the permutation defined above for (Df , Dh).

We define that a pre-good database (D′f , D
′
g, D

′
h) for F2 is equivalent to

another pre-good database (Df , Dg, Dh) in the same way, except that S is defined
as S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh} and the following condition is
additionally imposed.

3+. ((u, v, ζ), w) ∈ Dg if and only if ((u, v, π(ζ)), w) ∈ D′g hold.
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Regular and irregular states. Let |φ〉 be a joint quantum state of A and the
oracle ((Fh1 , h) or (F2, h)) that is not in superposition23. We say that the state
|φ〉 is irregular when the database in |φ〉 is invalid, or the auxiliary n qubits
that are temporarily used in the oracle (the rightmost register |f(u)〉 in (12) and
(13)) is not |0n〉. We say that |φ〉 is regular if it is not irregular.

Remarks on other notations. In what follows, to simplify notations on sum-
mations, we denote the sum over variables x1, . . . , xs that satisfies predicates
P1(x1, . . . , xs), . . . , Pt(x1, . . . , xs) by

∑
x1,...,xs;P (x1,...,xs),...,Pt(x1,...,xs)

. That is,
we separate the symbols of variables over which the summation is taken and
the conditions that the variables satisfy by “;”. For example, the summation
over α, β, γ ∈ {0, 1}n that satisfy α ⊕ β = 0n and β ⊕ γ = 0n is denoted by∑
α,β,γ;α⊕β=0n,β⊕γ=0n .
Let Πvalid and Πinvalid denote the orthogonal projections onto the vector space

spanned by valid and invalid databases, respectively. Let Πgood and Πbad de-
note the orthogonal projections onto the vector space spanned by good and
bad databases, respectively. Let Πpre-good and Πpre-bad denote the orthogonal
projections onto the vector space spanned by pre-good and pre-bad databases,
respectively. Let Πreg and Πirr denote the orthogonal projections onto the vector
space spanned by regular and irregular databases, respectively.

Remark 5. Note that a good database can be pre-good and bad because the set
of pre-good databases is wider than that of good databases, and we say that a
database is bad if it is not good. In the proofs below, we sometimes use the fact
that Πbad |Df , Dg, Dh〉 = |Df , Dg, Dh〉 (resp., Πbad |Df , Dh〉 = |Df , Dh〉) holds
for a database (Df , Dg, Dh) (resp., (Df , Dh)) that is pre-good and bad, without
any notice.

Next we prove the following lemma, which shows how the quantum states
|φgood2i−1〉 and |ψgood

2i−1〉 change when RstOEf acts on them.

Lemma 11 (Action of RstOEf). Suppose that there exist |φgood2i−1〉, |φbad2i−1〉,
|ψgood

2i−1〉, and |ψbad
2i−1〉 that satisfy the properties of Proposition 5. Then there exist

|φgood,12i−1 〉, |φ
bad,1
2i−1〉, |ψ

good,1
2i−1 〉, and |ψbad,1

2i−1 〉 that satisfy the following properties:

1. RstOEf |ψ2i−1〉 = |ψgood,1
2i−1 〉+|ψ

bad,1
2i−1 〉 and RstOEf |φ2i−1〉 = |φgood,12i−1 〉+|φ

bad,1
2i−1〉.

2. |φgood,12i−1 〉 ∈ HA ⊗ V
(1)
pre-good ⊗Haux and |ψgood,1

2i−1 〉 ∈ HA ⊗ V
(2)
pre-good ⊗Haux.

3. |φgood,12i−1 〉 =
[
|ψgood,1

2i−1 〉
]
1
.

4. There exists complex number a
(2i−1),1
uvyzDfDgDh

such that the following properties

(a) and (b) hold:
(a) It holds that

|ψgood,1
2i−1 〉 =

∑
u,v,y,z,Df ,Dg,Dh;

(Df ,Dg,Dh): pre-good
Df (u) 6=⊥

a
(2i−1),1
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉 ⊗ |Df (u)〉 ,

23 That is, even if we measure |φ〉 with computational basis, |φ〉 does not change.
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where (u, v), y, and z correspond to A’s register to send queries, register
to receive answers from oracles, and register for offline computations,
respectively. (The rightmost register |Df (u)〉 corresponds to the auxiliary
qubits used in the oracle. See (12) and (13).)

(b) a
(2i−1),1
uvyzDfDgDh

= a
(2i−1),1
uvyzD′fD

′
gD
′
h

if (Df , Dg, Dh) and (D′f , D
′
g, D

′
h) are equivalent.

5. For a pre-good database (Df , Dg, Dh) with non-zero coefficient in |ψgood,1
2i−1 〉,

|Dg| ≤ i− 1, |Df | ≤ 2(i− 1) + 1, and |Dh| ≤ i− 1 hold.

6. ‖ |φbad,12i−1〉 ‖ ≤ ‖ |φbad2i−1〉 ‖+O
(√

i/2n
)

and ‖ |ψbad,1
2i−1 〉 ‖ ≤ ‖ |ψbad

2i−1〉 ‖+O
(√

i/2n
)

hold.

Remark 6. Intuitive interpretation of the lemma is almost the same as that for
Proposition 5 (see the explanation below Proposition 5 for details) except that
the fourth property is divided into 4-(a) and 4-(b) in the above lemma, where 4-

(a) says that there is an auxiliary register Df (u) and the coefficient a
(2i−1),1
uvyzDfDgDh

in |ψgood,1
2i−1 〉 is non-zero only if Df (u) 6= ⊥.

Proof. First, note that property 3 and 4 of Proposition 5 imply that

|φgood2i−1〉 =
[
|ψgood

2i−1〉
]
1

=
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh):good

a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg ? Dh〉 (34)

holds.
Let Π⊥ and Π6⊥ be the orthogonal projections onto the spaces spanned by

the vectors |u, v〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉 (or, |u, v〉 |y〉 |z〉 ⊗ |Df , Dh〉) such that
Df (u) = ⊥ and Df (u) 6= ⊥, respectively.

Recall that |ψgood
2i−1〉 is represented as in (14). By applying the first property

in Proposition 3 in a straightforward manner, we have

ΠvalidRstOEfΠ6⊥ |ψgood
2i−1〉

= ΠvalidRstOEf
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg, Dh〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg, Dh〉 ⊗ |α〉
(35)

+
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg, Dh〉 ⊗ |α〉

(36)
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−
∑

u,v,y,z,α,γ,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1

2n
a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, γ), Dg, Dh〉 ⊗ |γ〉
(37)

+
1

2n

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
2
∑
γ

1√
2n
|Df ∪ (u, γ)〉 − |Df 〉

)
|Dg, Dh〉 ⊗ |0̂n〉 ,

(38)

where the terms (35)-(38) correspond to (5)-(8), respectively. Similarly, by ap-
plying the second property in Proposition 3 we have

ΠvalidRstOEfΠ⊥ |ψgood
2i−1〉

= ΠvalidRstOEf
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg, Dh〉 ⊗ |α〉

(39)

+
1√
2n

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg, Dh〉 ⊗ |0̂n〉 ,

(40)

where the terms (39) and (40) correspond to (9) and (10), respectively. Since
(34) holds, in the same way we have

ΠvalidRstOEfΠ6⊥ |φgood2i−1〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉 ⊗ |α〉
(41)

+
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

|Df ∪ (u, γ)〉

)
|Dg ? Dh〉 ⊗ |α〉

(42)

−
∑

u,v,y,z,α,γ,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1

2n
a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, γ), Dg ? Dh〉 ⊗ |γ〉
(43)
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+
1

2n

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
2
∑
γ

1√
2n
|Df ∪ (u, γ)〉 − |Df 〉

)
|Dg ? Dh〉 ⊗ |0̂n〉

(44)

and

ΠvalidRstOEfΠ⊥ |φgood2i−1〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

1√
2n

a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉
⊗ |Df ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

(45)

+
1√
2n

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg ? Dh〉 ⊗ |0̂n〉 .

(46)

Define |ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φbad,12i−1〉 by

|ψgood,1
2i−1 〉 := |(35)〉+Πpre-good |(39)〉 , |ψbad,1

2i−1 〉 := RstOEf |ψ2i−1〉 − |ψgood,1
2i−1 〉 ,

|φgood,12i−1 〉 := |(41)〉+Πpre-good |(45)〉 , |φbad,12i−1〉 := RstOEf |φ2i−1〉 − |φgood,12i−1 〉 .

Remark 7. The intuition behind the definitions of |ψgood,1
2i−1 〉 is as follows. Roughly

speaking, the two terms |(35)〉 and |(39)〉 reflect classical intuition of lazy sam-
pling, and other terms represent the difference between classical behavior and
quantum-specific behavior of oracle. Since now the output of f is written into
the auxiliary register that is set to be 0, the behavior of the RstOEf is very
close to that of the classical random oracle, and the effect of quantum-specific
behavior of the oracle is very small. Therefore we define |ψgood,1

2i−1 〉 to be the pre-
good components of |(35)〉 and |(39)〉 (note that all the databases in |(35)〉 are

good and Πpre-good |(35)〉 = |(35)〉 holds). |ψbad,1
2i−1 〉 is defined in such a way that

property 1 of the lemma holds. The intuition behind |φgood,12i−1 〉 and |φgood,12i−1 〉 is the
same.

Property 1, 4-(a), 5 of the lemma immediately follow from the definition of

|ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φbad,12i−1〉.

Property 2 of the lemma holds since all the databases in |(35)〉 and |(41)〉 are
good, and those in Πpre-good |(39)〉 and Πpre-good |(45)〉 are pre-good.

Property 3 of the lemma holds because, for each basis vector |ũ, ṽ〉 |ỹ〉 |z̃〉 ⊗
|D̃f , D̃g, D̃h〉⊗|γ̃〉 in |(35)〉 (resp., in Πpre-good |(39)〉), its coefficient is equal to the

coefficient of [|ũ, ṽ〉 |ỹ〉 |z̃〉⊗ |D̃f , D̃g, D̃h〉⊗ |γ̃〉]1 = |ũ, ṽ〉 |ỹ〉 |z̃〉⊗ |D̃f , D̃g ? D̃h〉⊗
|γ̃〉 in |(41)〉 (resp., in Πpre-good |(45)〉).
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For property 4-(b), note that all the databases in |(35)〉 are good while those
in Πpre-good |(39)〉 are pre-good and bad. In particular, it can be checked that the

coefficient a
(2i−1),1
uvyzDfDgDh

in |ψgood,1
2i−1 〉 can be represented as

a
(2i−1),1
uvyzDfDgDh

= a
(2i−1)
uvyzDfDgDh

if (Df , Dg, Dh) is good,

and

a
(2i−1),1
uvyzDfDgDh

=
1√
2n
a
(2i−1)
uvyz(Df\(u,Df (u)))DgDh if (Df , Dg, Dh) is pre-good and bad,

and (Df \ (u,Df ), Dg, Dh) is a good database in the latter equation. Therefore
property 4-(b) follows from property 4 of Proposition 5.

Below we prove that property 6 of the lemma holds for |φbad,12i−1〉 by showing
the norms of the terms |(42)〉 - |(44)〉, Πpre-good |(45)〉, and |(46)〉 are small. 24

Upper bounding the norm of |(42)〉.
Summands of the term (42) are orthogonal to each other. Hence

‖|(42)〉‖2 ≤ O
(

1

2n

)
·

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2

= O

(
1

2n

)
·
∥∥∥Π 6⊥ |φgood2i−1〉

∥∥∥2 ≤ O( 1

2n

)
(47)

holds.

Upper bounding the norm of |(43)〉.
We have

‖|(43)〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,γ,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1

2n
a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, γ), Dg ? Dh〉 ⊗ |γ〉

∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

u,v,y,z,γ,Df ;
Df (u)=⊥

1

22n

∥∥∥∥∥∥∥∥
∑

α,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

a
(2i−1)
uvyzDf∪(u,α)DgDh |Dg ? Dh〉

∥∥∥∥∥∥∥∥
2

24 The term Πpre-good |(45)〉 corresponds to the classical situation where a fresh value
of f is sampled and causes a bad event. Other terms correspond to the difference
between classical behavior and quantum-specific behavior of the oracle.
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=
∑

u,v,y,z,γ,Df ;
Df (u)=⊥

1

22n

∑
D′h

∥∥∥∥∥∥∥∥∥∥∥
∑

α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),Dg,Dh): good

a
(2i−1)
uvyzDf∪(u,α)DgDh |D

′
h〉

∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

u,v,y,z,γ,Df ;
Df (u)=⊥

1

22n

∑
D′h

∣∣∣∣∣∣∣∣∣∣∣
∑

α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),D′h): good

a
(2i−1)
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣∣∣∣

2

. (48)

For each fixed tuple (u, α,Df , D
′
h), there exist at most only one pair (Dg, Dh)

such that Dg ? Dh = D′h and (Df ∪ (u, α), D′h) becomes good. Let us denote
this pair by (Dg[u, α,Df , D

′
h], Dh[u, α,Df , D

′
h]) (when such a pair exists). In

addition, for each fixed tuple (u,Df , D
′
h), the number of α such that (Df ∪

(u, α), D′h) becomes good is at most |D′h| ≤ O(i). Therefore, for summands of
(48) we have

∑
D′h

∣∣∣∣∣∣∣∣∣∣∣
∑

α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),D′h): good

a
(2i−1)
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣∣∣∣

2

=
∑
D′h

∣∣∣∣∣∣∣∣
∑
α;

(Df∪(u,α),D′h): good

a
(2i−1)
uvyzDf∪(u,α)Dg [u,α,Df ,D′h]Dh[u,α,Df ,D

′
h]

∣∣∣∣∣∣∣∣
2

≤
∑
D′h

O(i) ·
∑
α;

(Df∪(u,α),D′h): good

∣∣∣a(2i−1)uvyzDf∪(u,α)Dg [u,α,Df ,D′h]Dh[u,α,Df ,D
′
h]

∣∣∣2

= O(i) ·
∑
D′h

∑
α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),D′h): good

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2

= O(i) ·
∑

α,Dg,Dh;
(Df∪(u,α),Dg?Dh): good

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2 , (49)

where we used convexity of quadratic functions for the inequality. From (48) and
(49),

‖|(43)〉‖2 ≤ O(i) ·
∑

u,v,y,z,γ,Df ;
Df (u)=⊥

1

22n

∑
α,Dg,Dh;

(Df∪(u,α),Dg?Dh): good

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2
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= O

(
i

2n

)
·

∑
u,v,y,z,α,Df ,Dg,Dh;

Df (u)=⊥
(Df∪(u,α),Dg?Dh): good

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2 ·(∑
γ

1

2n

)

= O

(
i

2n

)
·
∥∥∥Π 6⊥ |φgood2i−1〉

∥∥∥2 · 1 ≤ O( i

2n

)
(50)

follows.

Upper bounding the norm of |(44)〉.
On the term (44), we have that

‖|(44)〉‖2 =
1

22n

∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
2
∑
γ

1√
2n
|Df ∪ (u, γ)〉 − |Df 〉

)
|Dg ? Dh〉 ⊗ |0̂n〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ O
(

1

22n

)
∥∥∥∥∥∥∥∥∥∥∥

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

a
(2i−1)
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df 〉 ⊗ |Dg ? Dh〉 ⊗ |0̂n〉

∥∥∥∥∥∥∥∥∥∥∥

2

= O

(
1

22n

) ∑
u,v,y,z,Df ,Dg,Dh;

Df (u)=⊥

∣∣∣∣∣∣∣∣
∑
α;

(Df∪(u,α),Dg,Dh): good

a
(2i−1)
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣
2

≤ O
(

1

22n

) ∑
u,v,y,z,Df ,Dg,Dh;

Df (u)=⊥

2n
∑
α;

(Df∪(u,α),Dg,Dh): good

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2


= O

(
1

2n

) ∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

∣∣∣a(2i−1)uvyzDf∪(u,α)DgDh

∣∣∣2

= O

(
1

2n

)
·
∥∥∥Π 6⊥ |φgood2i−1〉

∥∥∥2 ≤ O( 1

2n

)
(51)

holds, where we used convexity of quadratic functions for the second inequality.

Upper bounding the norm of Πpre-bad |(45)〉.
When (Df , Dg, Dh) is good and Df (u) = ⊥, the number of α such that (Df ∪
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(u, α), Dg ? Dh) becomes pre-bad is at most |Df |+ |Dh| ≤ O(i). Therefore,

‖Πpre-bad |(45)〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥
(Df∪(u,α),Dg,Dh):pre-bad

1√
2n
a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

∣∣∣a(2i−1)uvyzDfDgDh

∣∣∣2 ∑
α;

(Df∪(u,α),Dg,Dh):pre-bad

1

2n

≤ O
(
i

2n

)
·

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

∣∣∣a(2i−1)uvyzDfDgDh

∣∣∣2

= O

(
i

2n

)
·
∥∥∥Π⊥ |φgood2i−1〉

∥∥∥2 ≤ O( i

2n

)
(52)

holds.

Upper bounding the norm of |(46)〉.
For the term (46), since the summands are orthogonal to each other we have

‖|(46)〉‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥
1√
2n

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1)
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg ? Dh〉 ⊗ |0̂n〉

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ O
(

1

2n

)
·

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

∣∣∣a(2i−1)uvyzDfDgDh

∣∣∣2

= O

(
1

2n

)
·
∥∥∥Π⊥ |φgood2i−1〉

∥∥∥2 ≤ O( 1

2n

)
(53)

holds.

Upper bounding the norm of |φbad,12i−1〉.
Since we always obtain a valid database when we measure RstOEf |φ2i−1〉, we
have RstOEf |φ2i−1〉 = ΠvalidRstOEf |φ2i−1〉. Thus, from (47), (50), (51), (52),
and (53). ∥∥∥|φbad,12i−1〉

∥∥∥ =
∥∥∥RstOEf |φ2i−1〉 − |φgood,12i−1 〉

∥∥∥
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=
∥∥∥ΠvalidRstOEf |φ2i−1〉 − |φgood,12i−1 〉

∥∥∥
≤
∥∥|φbad2i−1〉

∥∥+
∥∥∥ΠvalidRstOEf |φgood2i−1〉 − |φ

good,1
2i−1 〉

∥∥∥
≤
∥∥|φbad2i−1〉

∥∥+ ‖|(42)〉‖+ ‖|(43)〉‖+ ‖|(44)〉‖
+ ‖Πpre-bad |(45)〉‖+ ‖|(46)〉‖

≤
∥∥|φbad2i−1〉

∥∥+O

(√
i

2n

)
(54)

follows. Hence the sixth property of the lemma for |φbad,12i−1〉 holds. The sixth

property of the lemma for |ψbad,1
2i−1 〉 can be shown in the same way. ut

Next we prove the following lemma, which shows that the behavior of RstOEg
on a pre-good database for F2 is the same as that of RstOEh on the corresponding
pre-good database for Fh1 .

Lemma 12. Let (Df , Dg, Dh) and (D′f , D
′
g, D

′
h) be pre-good databases for F2.

Then, for each u, u′, ζ, ζ ′, y, y′ ∈ {0, 1}n and v, v′ ∈ {0, 1}m,

〈u′, v′, ζ ′, y′| 〈D′f , D′g, D′h|RstOEg |u, v, ζ, y〉 |Df , Dg, Dh〉
= 〈u′, v′, ζ ′, y′| 〈D′f , D′g ? D′h|RstOEh |u, v, ζ, y〉 |Df , Dg ? Dh〉 (55)

holds, where RstOEg acts on |u, v, ζ, y〉 and |Dg〉, and RstOEh acts on |v, ζ, y〉
and |Dg ? Dh〉. (|u, v, ζ〉 corresponds to an input to g, and |v, ζ〉 corresponds to
an input to h. The answers to the queries are written (added) to |y〉 register.)

Proof. Since RstOEg and RstOEh do not change the registers |u〉, |v〉, |ζ〉, and
|Df 〉, both sides of (55) are 0 when (u, v, ζ,Df ) 6= (u′, v′, ζ ′, D′f ). Below we show
the equation when (u, v, ζ,Df ) = (u′, v′, ζ ′, D′f ).

RstOEg does not act on the |Dh〉 register. In addition, RstOEg does not

affect the register that corresponds to the element ((ũ, ṽ, ζ̃), w̃) in Dg when

(ũ, ṽ, ζ̃) 6= (u, v, ζ). Therefore, it suffices to show the equation when (i) Dh = ∅
and Dg = {((u, v, ζ), w)} (Dg has only a single entry), or (ii) Dh = ∅ and Dg = ∅.

In the case (i), Dg ? Dh = {((v, ζ), w)} holds, and the equation (55) follows
from the first property in Proposition 3. In the case (ii), Dg ?Dh = ∅ holds, and
the equation (55) follows from the second property in Proposition 3. ut

Next we prove the following lemma, which shows how the quantum states
RstOEf |φgood2i−1〉 and RstOEf |ψgood

2i−1〉 change when RstOEh and RstOEg act on
them.

Lemma 13 (Actions of RstOEh in OFh1 and RstOEg in OF2
). Suppose that

there exist vectors |ψgood
2i−1〉, |ψbad

2i−1〉, |φ
good
2i−1〉, and |φbad2i−1〉 that satisfy the properties

of Proposition 5. Then there exist |ψgood,2
2i−1 〉, |ψ

bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φbad,22i−1〉 that

satisfy the following properties.
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1. RstOEgRstOEf |ψ2i−1〉 = |ψgood,2
2i−1 〉 + |ψbad,2

2i−1 〉 and RstOEhRstOEf |φ2i−1〉 =

|φgood,22i−1 〉+ |φbad,22i−1〉 hold.

2. |φgood,22i−1 〉 ∈ HA ⊗ V
(1)
pre-good ⊗Haux and |ψgood,2

2i−1 〉 ∈ HA ⊗ V
(2)
pre-good ⊗Haux.

3. |φgood,22i−1 〉 =
[
|ψgood,2

2i−1 〉
]
1
.

4. There exists complex number a
(2i−1),2
uvyzDfDgDh

that satisfies the following prop-

erties (a) and (b).
(a) It holds that

|ψgood,2
2i−1 〉 =

∑
u,v,y,z,Df ,Dg,Dh

(Df ,Dg,Dh): pre-good
Df (u)6=⊥

a
(2i−1),2
uvyzDfDgDh

|u, v〉 |y〉 |z〉
⊗ |Df , Dg, Dh〉 ⊗ |Df (u)〉 ,

where (u, v), y, and z corresponds A’s register to send queries, the reg-
ister to receive answers from oracles, and the register for offline compu-
tations, respectively.

(b) a
(2i−1),2
uvyzDfDgDh

= a
(2i−1),2
uvyzD′fD

′
gD
′
h

holds if (Df , Dg, Dh) and (D′f , D
′
g, D

′
h) are

equivalent,
5. For a pre-good database (Df , Dg, Dh) with non-zero coefficient in |ψgood,2

2i−1 〉,
|Dg| ≤ i, |Df | ≤ 2(i− 1) + 1, and |Dh| ≤ i− 1 hold.

6. ‖ |ψbad,2
2i−1 〉 ‖ ≤ ‖ |ψbad

2i−1〉 ‖+O
(√

i/2n
)

and ‖ |φbad,22i−1〉 ‖ ≤ ‖ |φbad2i−1〉 ‖+O
(√

i/2n
)

hold.

Proof. By Lemma 11, there exist vectors |ψgood,1
2i−1 〉, |ψ

bad,1
2i−1 〉, |φ

good,1
2i−1 〉, and |φbad,12i−1〉

that satisfy the six properties in Lemma 11.
Define |ψgood,2

2i−1 〉, |ψ
bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φbad,22i−1〉 by

|ψgood,2
2i−1 〉 := ΠvalidRstOEg |ψgood,1

2i−1 〉 ,

|ψbad,2
2i−1 〉 := RstOEgRstOEf |ψ2i−1〉 − |ψgood,2

2i−1 〉 ,

|φgood,22i−1 〉 := ΠvalidRstOEh |φgood,12i−1 〉 ,

|φbad,22i−1〉 := RstOEhRstOEf |φ2i−1〉 − |φgood,12i−1 〉 .

Remark 8. The intuition behind the definition of |ψgood,2
2i−1 〉 is as follows. First,

by definition of pre-good databases, all pre-good databases in |ψgood,1
2i−1 〉 remain

pre-good (as long as it does not become invalid) after the action of RstOEg due

to the following reasoning: If a database in |ψgood,1
2i−1 〉 is pre-good and bad before

the query, then the current query to RstOEg is fresh and the database becomes

good after the query. If a database in |ψgood,1
2i−1 〉 is good before the query, then the

current query to RstOEg has been recorded in Dg. The record may be overwrit-
ten (resp., removed) after the query, but the resulting database remains good
(resp., changes to pre-good) by definition of good (resp., pre-good) databases.

In particular, databases do not change to pre-bad. Thus we define |ψgood,2
2i−1 〉 as
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above. |ψbad,2
2i−1 〉 is defined so that property 1 of the lemma will hold. The intuition

behind the definition of |φgood,22i−1 〉 and |φgood,22i−1 〉 is the same.

Then, property 1, 4-(a), and 5 of the lemma follows by the definition of

|ψgood,2
2i−1 〉, |ψ

bad,2
2i−1 〉, |φ

good,2
2i−1 〉, and |φbad,22i−1〉.

As explained in the above remark, all pre-good database remain pre-good
(as long as it does not become invalid) after the action of RstOEh in OFh1 (and

RstOEg in OF2
). Hence property 2 of Lemma 13 follows from property 2 of

Lemma 11.
Recall that property 3 of Lemma 11 guarantees that the coefficient of each

basis vector in |φgood,12i−1 〉 is equal to that of the corresponding basis vector in

|ψgood,1
2i−1 〉. Lemma 12 assures that the same thing holds for |φgood,12i−1 〉 and |ψgood,2

2i−1 〉.
Hence property 3 of the Lemma 13 also holds.

From property 6 in Lemma 11 it follows that∥∥∥|ψbad,2
2i−1 〉

∥∥∥
=
∥∥∥RstOEgRstOEf |ψ2i−1〉 − |ψgood,2

2i−1 〉
∥∥∥

=
∥∥∥ΠvalidRstOEgRstOEf |ψ2i−1〉 − |ψgood,2

2i−1 〉
∥∥∥

=
∥∥∥ΠvalidRstOEg

(
|ψgood,1

2i−1 〉+ |ψbad,1
2i−1 〉

)
−ΠvalidRstOEg |ψgood,1

2i−1 〉
∥∥∥

≤
∥∥∥|ψbad,1

2i−1 〉
∥∥∥ ≤ ∥∥|ψbad

2i−1〉
∥∥+O

(√
i

2n

)

holds,25 and similarly
∥∥∥|φbad,22i−1〉

∥∥∥ ≤ ∥∥|φbad2i−1〉
∥∥ + O

(√
i/2n

)
also holds. Hence

property 6 of Lemma 13 also holds.

In what follows, we show that property 4-(b) of Lemma 13 holds. Suppose
that (Df , Dg, Dh) and (D̃f , D̃g, D̃h) are equivalent pre-good databases for F2

such that |Dg| ≤ i, |Df | ≤ 2(i − 1) + 1, and |Dh| ≤ i − 1 hold, and there

exists u such that Df (u) 6= ⊥ and D̃f (u) 6= ⊥. Below we show a
(2i−1),2
uvyzDfDgDh

=

a
(2i−1),2
uvyzD̃f D̃gD̃h

for arbitrary v, y, and z.

If both of (Df , Dg, Dh) and (D̃f , D̃g, D̃h) are good, then by definition of good
databases and definition of equivalent databases, there exists an integer s ≥ 0

and ui ∈ {0, 1}n, Xi, Yi ∈ {0, 1}n, v
(j)
i ∈ {0, 1}m, w

(j)
i ∈ {0, 1}n for i = 1, . . . , s

and j = 1, . . . , ti (ti is a positive integer for each i) such that

1. ui 6= ui′ , Xi 6= Xi′ , Yi 6= Yi′ for i 6= i′,

2. v
(j)
i 6= v

(j′)
i for each i and j 6= j′,

25 For the second equality, we used the fact that we always obtain a valid
database when we measure the state RstOEgRstOEf |ψ2i−1〉, which implies that
RstOEgRstOEf |ψ2i−1〉 = ΠvalidRstOEgRstOEf |ψ2i−1〉 holds.
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and

Df = {(ui, Xi)}1≤i≤s , Dg =
{((

ui, v
(j)
i , Xi

)
, w

(j)
i

)}
1≤i≤s,1≤j≤ti

, (56)

D̃f = {(ui, Yi)}1≤i≤s , D̃g =
{((

ui, v
(j)
i , Yi

)
, w

(j)
i

)}
1≤i≤s,1≤j≤ti

(57)

hold.
If both of (Df , Dg, Dh) and (D̃f , D̃g, D̃h) are pre-good and bad, there exist

additional elements u0, X0, Y0 ∈ {0, 1}n such that u0 6= ui, X0 6= Xi, Y0 6= Yi
for i ≥ 1, and

Df = {(ui, Xi)}0≤i≤s , Dg =
{((

ui, v
(j)
i , Xi

)
, w

(j)
i

)}
1≤i≤s,1≤j≤ti

, (58)

D̃f = {(ui, Yi)}0≤i≤s , D̃g =
{((

ui, v
(j)
i , Yi

)
, w

(j)
i

)}
1≤i≤s,1≤j≤ti

(59)

hold (note that (Df , Dg, Dh) and (D̃f , D̃g, D̃h) are not equivalent if one of them
is good and the other is bad).

Regardless whether (Df , Dg, Dh) is good or (Df , Dg, Dh) is pre-good and
bad, there exists a unique i such that u = ui holds. In addition, there exist a non-
negative integer s′ and ζ1, . . . , ζs′ ∈ {0, 1}n, η1, . . . , ηs′ ∈ {0, 1}m, ξ1, . . . , ξs′ ∈
{0, 1}n such that

1. (ηi, ζi) 6= (ηi′ , ζi′) for i 6= i′,
2. ζi 6= Xα and ζi 6= Yβ hold for arbitrary i ∈ {1, . . . , s′} and α, β ∈ {1, . . . , s},

and
Dh = D̃h = {((ηi, ζi) , ξi)}1≤i≤s′ (60)

holds.
Let π be a permutation on {0, 1}n such that π(Xi) = Yi for each Xi and

π(ζi) = ζi for each ζi. For arbitrary D′g such that (Df , D
′
g, Dh) is pre-good,

define a database (D′′f , D
′′
g , D

′′
h) by

1. D′′h = Dh,

2. D′′f = D̃f , and

3. ((u′′, v′′, ζ ′′), w′′) ∈ D′′g if and only if ((u′′, v′′, π−1(ζ ′′)), w′′) ∈ D′′g .

Then (D′′f , D
′′
g , D

′′
h) is a pre-good database that is equivalent to (Df , D

′
g, Dh)

Let us denote this database (D′′f , D
′′
g , D

′′
h) by π[Df , D

′
g, Dh].

Since (a) of the fourth property in Lemma 11 holds, by the definition of

|ψgood,2
2i−1 〉,

a
(2i−1),2
uvyzDfDgDh

= (〈u, v, y, z| ⊗ 〈Df , Dg, Dh| ⊗ 〈Df (u)|) |ψgood,2
2i−1 〉

=
∑
y′,D′g ;

(Df ,D
′
g,Dh): pre-good

〈u, v, y, z| ⊗ 〈Df , Dg, Dh| ⊗ 〈Df (u)|
RstOEg |u, v, y′, z〉 ⊗ |Df , D

′
g, Dh〉 ⊗ |Df (u)〉

·
(
〈u, v, y′, z| ⊗ 〈Df , D

′
g, Dh| ⊗ 〈Df (u)|

)
|ψgood,1

2i−1 〉
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=
∑
y′,D′g ;

(Df ,D
′
g,Dh): pre-good

c
[
y′, Df , D

′
g, Dh → y,Df , Dg, Dh

]
· a(2i−1),1uvy′zDfD′gDh

follows, where we put

c
[
y′, Df , D

′
g, Dh → y,Df , Dg, Dh

]
:= 〈u, v, y, z| ⊗ 〈Df , Dg, Dh| ⊗ 〈Df (u)|

RstOEg |u, v, y′, z〉 ⊗ |Df , D
′
g, Dh〉 ⊗ |Df (u)〉 .

Now, for arbitrary y′ and D′g such that (Df , D
′
g, Dh) is pre-good,

a
(2i−1),1
uvy′zDfD′gDh

= a
(2i−1),1
uvy′zπ[DfD′gDh]

(61)

holds by the fourth property in Lemma 11, and

c
[
y′, Df , D

′
g, Dh → y,Df , Dg, Dh

]
= c

[
y′, π[Df , D

′
g, Dh]→ y, π[Df , Dg, Dh]

]
(62)

follows from the first property of Proposition 3. In addition, the followings hold:

I. π[Df , Dg, Dh] = (D̃f , D̃g, D̃h) holds.
II. π[·] is a bijection between the set of pre-good databases of the form (Df , D

′
g, Dh)

(for some D′g) and the set of pre-good databases of the form (D̃f , D
′′
g , D̃h)

(for some D′′g ).

Therefore we have

a
(2i−1),2
uvyzDfDgDh

=
∑
y′,D′g ;

(Df ,D
′
g,Dh): pre-good

c
[
y′, Df , D

′
g, Dh → y,Df , Dg, Dh

]
· a(2i−1),1uvy′zDfD′gDh

((61) and (62))
=

∑
y′,D′g ;

(Df ,D
′
g,Dh): pre-good

c
[
y′, π[Df , D

′
g, Dh]→ y, π[Df , Dg, Dh]

]
· a(2i−1),1uvy′zπ[DfD′gDh]

(from I)
=

∑
y′,D′g;

(Df ,D
′
g,Dh): pre-good

c
[
y′, π[Df , D

′
g, Dh]→ y, D̃f , D̃g, D̃h

]
· a(2i−1),1uvy′zπ[DfD′gDh]

(from II)
=

∑
y′,D′′g ;

(D̃f ,D
′′
g ,D̃h): pre-good

c
[
y′, D̃f , D

′′
g , D̃h → y, D̃f , D̃g, D̃h

]
· a(2i−1),1
uvy′zD̃fD′′g D̃h

= a
(2i−1),2
uvyzD̃f D̃gD̃h

, (63)

which shows that property 4-(b) of Lemma 13 also holds. ut
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Next we prove the following lemma, which shows how the quantum states
RstOEh ·RstOEf |φgood2i−1〉 and RstOEgRstOEf |ψgood

2i−1〉 change when RstOE∗f acts on
them.

Lemma 14 (Action of RstOE∗f). Suppose that there exist vectors |ψgood
2i−1〉,

|ψbad
2i−1〉, |φ

good
2i−1〉, and |φbad2i−1〉 that satisfy the sixth properties of Proposition 5.

Then there exist vectors |ψgood,3
2i−1 〉, |ψ

bad,3
2i−1 〉, |φ

good,3
2i−1 〉, and |φbad,32i−1〉 that satisfy the

following properties:

1. RstOE∗fRstOEgRstOEf |ψ2i−1〉 = |ψgood,3
2i−1 〉+|ψ

bad,3
2i−1 〉 holds, and RstOE∗fRstOEh

· RstOEf |φ2i−1〉 = |φgood,32i−1 〉+ |φbad,32i−1〉 holds.

2. |φgood,32i−1 〉 ∈ HA ⊗ V
(1)
good and |ψgood,3

2i−1 〉 ∈ HA ⊗ V
(2)
good.

3. |φgood,32i−1 〉 =
[
|ψgood,3

2i−1 〉
]
1
.

4. There exists complex number a
(2i−1),3
uvyzDfDgDh

such that the following properties

(a) and (b) hold:
(a) It holds that

|ψgood,3
2i−1 〉 =

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh):good

a
(2i−1),3
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉 ,

(64)
where (u, v), y, and z correspond to A’s register to send queries, register
to receive answers from oracles, and register for offline computations,
respectively.

(b) If (Df , Dg, Dh) and (D′f , D
′
g, D

′
h) are equivalent good databases, then

a
(2i−1),3
uvyzDfDgDh

= a
(2i−1),3
uvyzD′fD

′
gD
′
h

holds.

5. For a good database (Df , Dg, Dh) with non-zero coefficient in |ψgood,3
2i−1 〉, |Dg| ≤

i, |Df | ≤ 2i, and |Dh| ≤ i− 1 hold.

6. ‖ |φbad,32i−1〉 ‖ ≤ ‖ |φbad2i−1〉 ‖+O
(√

i/2n
)

and ‖ |ψbad,3
2i−1 〉 ‖ ≤ ‖ |ψbad

2i−1〉 ‖+O
(√

i/2n
)

hold.

Proof. By Lemma 13, there exist vectors |φgood,22i−1 〉, |φ
bad,2
2i−1〉, |ψ

good,2
2i−1 〉, and |ψbad,2

2i−1 〉
that satisfy the six properties in Lemma 13.

For each tuple (u, v, y, z,Df , Dg, Dh) such that

1. |Dg| ≤ i, |Df | ≤ 2i, and |Dh| ≤ i− 1,
2. (Df , Dg, Dh) is good, and
3. Df (u) = ⊥,

let α be an n-bit string such that (Df ∪ (u, α), Dg, Dh) is pre-good, and define

a
(2i−1),3
uvyzDfDgDh

:=
√

2na
(2i−1),2
uvyzDf∪(u,α)DgDh . (65)

Due to property 4-(b) of Lemma 13, the definition (65) is independent from the
choice of α.

In addition, for each tuple (u, v, y, z,Df , Dg, Dh) such that
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1. |Dg| ≤ i, |Df | ≤ 2i, and |Dh| ≤ i− 1 hold,
2. (Df , Dg, Dh) is good,
3. Df (u) 6= ⊥,

define

a
(2i−1),3
uvyzDfDgDh

:= a
(2i−1),2
uvyzDfDgDh

. (66)

When the conditions |Dg| ≤ i, |Df | ≤ 2i, and |Dh| ≤ i− 1 are not satisfied, let

a
(2i−1),3
uvyzDfDgDh

:= 0. (67)

Define |ψgood,3
2i−1 〉 by the equation (64), where the coefficients a

(2i−1),3
uvyzDfDgDh

are

those defined in (65), (66), and (67). In addition, define |φgood,32i−1 〉 by |φgood,32i−1 〉 :=[
|ψgood,3

2i−1 〉
]
1
. Define |ψbad,3

2i−1 〉 and |φbad,32i−1〉 by |ψbad,3
2i−1 〉 := RstOE∗fRstOEgRstOEf |ψ2i−1〉−

|ψgood,3
2i−1 〉 and |φbad,32i−1〉 := RstOE∗fRstOEhRstOEf |φ2i−1〉 − |φgood,32i−1 〉.

Remark 9. The intuition behind the definition of |ψgood,3
2i−1 〉 is as follows. Roughly

speaking, we defined |ψgood,3
2i−1 〉 in such a way that Πpre-goodRstOEf |ψgood,3

2i−1 〉 will

be close to |ψgood,2
2i−1 〉. Suppose we have |ψgood,3

2i−1 〉 that satisfies (64) and let RstOEf

act on it (rather than we have |ψgood,2
2i−1 〉 and let RstOE∗f act on it). Then, since

this RstOEf writes outputs into an auxiliary register, the behavior of RstOEf
is close to the classical lazy sampling. Intuitively, the followings will hold if
Πpre-goodRstOEf |ψgood,3

2i−1 〉 = |ψgood,2
2i−1 〉.

1. Databases |Df , Dg, Dh〉 with Df (u) 6= ⊥ are not changed by RstOEf , and
(65) holds.

2. Databases |Df , Dg, Dh〉 withDf (u) = ⊥ are changed to
∑
α

1√
2n
|Df ∪ (u, α), Dg, Dh〉

by RstOEf , and (66) holds.

This is the reason that we defined a
(2i−1),3
uvyzDfDgDh

and |ψgood,3
2i−1 〉 like above. We pro-

vided definitions based on |ψgood,3
2i−1 〉 rather than |ψgood,2

2i−1 〉, unlike previous lemmas,
because it makes the proof for property 4-(b) simple (or just trivial). We defined

|ψbad,3
2i−1 〉, |φ

good,3
2i−1 〉, and |φbad,32i−1〉 in such a way that property 1-5 of the lemma will

be satisfied.

Then, property 1, 2, 3, 4-(a), and 5 of Lemma 14 immediately follow from

the definitions of |ψgood,3
2i−1 〉, |ψ

good,3
2i−1 〉, |φ

bad,3
2i−1〉, and |φbad,32i−1〉. In addition, property

4-(b) of Lemma 14 follows from the definition of the coefficients a
(2i−1),3
uvyzDfDgDh

and property 4-(b) of Lemma 13. Below we show that property 6 of Lemma 14
holds.

Remark 10. Later, we will show that
∥∥∥|φbad,32i−1〉

∥∥∥ is upper bounded by
∥∥∥|φbad,22i−1〉

∥∥∥+∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ
good,2
2i−1 〉

∥∥∥. In what follows, our main goal is to show that∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ
good,2
2i−1 〉

∥∥∥ is in O(
√
i/2n).
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By applying the first property of Proposition 3, and by definition of regular
states26, we have

ΠregRstOE∗fΠgood |φgood,22i−1 〉

= ΠregRstOEf
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh):good

Df (u)=⊥

a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉
(68)

+
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg ? Dh〉

(69)

−
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1

2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉
(70)

+
1

23n/2

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(
2
∑
γ

1√
2n
|Df ∪ (u, γ)〉 − |Df 〉

)
|Dg ? Dh〉 ,

(71)

where the terms (68)-(71) correspond to (5)-(8), respectively.

On the term (68).
Let Π 6⊥ be the orthogonal projection onto the space spanned by the vectors
|u, v〉 |y〉 |z〉 |Df , Dg, Dh〉 such that Df (u) 6= ⊥. Then

|(68)〉 = Π 6⊥ |φgood,32i−1 〉 (72)

holds.

26 Recall that a state is regular if and only if it does not contain invalid databases and
the auxiliary register is set to be 0. In particular, the projection Πreg nullifies the
terms with invalid databases and those of which auxiliary register is non-zero.
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Upper bounding the norm of the terms (69) and (71).
First we have∥∥∥∥∥∥∥∥∥∥∥

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

1√
2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉 |Df , Dg ? Dh〉

∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,Df ,Dg,Dh,D
′
h;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥
Dg?Dh=D

′
h

1√
2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉 |Df , D

′
h〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

u,v,y,z,Df ;
Df (u)=⊥

1

2n

∑
D′h

∣∣∣∣∣∣∣∣∣∣∣
∑

α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),D′h): good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣∣∣∣

2

. (73)

For each database (Df , D
′
h) such that Df (u) = ⊥ for Fh1 , the number of α such

that (Df ∪ (u, α), D′h) becomes good is at most |D′h| ≤ O(i). Hence we can show

∑
D′h

∣∣∣∣∣∣∣∣∣∣∣
∑

α,Dg,Dh;

Dg?Dh=D
′
h

(Df∪(u,α),D′h): good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣∣∣∣

2

≤ O(i) ·
∑

α,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2 (74)

in the same way as we showed (49). From (73) and (74), it follows that∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉 |Df , Dg ? Dh〉

∥∥∥∥∥∥∥∥∥∥∥

2

≤
∑

u,v,y,z,Df ;
Df (u)=⊥

O

(
i

2n

)
·

∑
α,Dg,Dh;

(Df∪(u,α),Dg,Dh): good

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2
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= O

(
i

2n

) ∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2

≤ O
(
i

2n

)
·
∥∥∥|φgood,22i−1 〉

∥∥∥2 ≤ O( i

2n

)
(75)

holds. We can show∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df∪(u,α),Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1),2
uvyzDf∪(u,α)DgDh |u, v〉 |y〉 |z〉

⊗

(∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg ? Dh〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ O
(
i

2n

)
·
∥∥∥|φgood,22i−1 〉

∥∥∥2 ≤ O( i

2n

)
(76)

in the same way. Now,

‖|(69)〉‖ ≤ O

(√
i

2n

)
and ‖|(71)〉‖ ≤ O

(√
i

2n

)
(77)

follow from (75) and (76).

Upper bounding the norm of the term (70).
We have that

‖|(70)〉‖2 =
1

22n

∑
u,v,y,z,α,Df ,Dg,Dh;

(Df∪(u,α),Dg,Dh): good
Df (u)=⊥

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2

≤ 1

22n

∥∥∥|φgood,22i−1 〉
∥∥∥2 ≤ O( 1

22n

)
(78)

holds since all summands are orthogonal to each other.
Now, from (68) - (71), (72), (77), and (78),∥∥∥Π6⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠgood |φgood,22i−1 〉

∥∥∥ ≤ O(√ i

2n

)
(79)

follows.

Remark 11. So far we have shown
∥∥∥Π6⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠgood |φgood,22i−1 〉

∥∥∥
is small. Next we will prove

∥∥∥Π⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠbad |φgood,22i−1 〉
∥∥∥ is small,

which will lead to showing that
∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ

good,2
2i−1 〉

∥∥∥ is small.
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Next, let Π⊥ be the orthogonal projection onto the space spanned by the
vectors |u, v〉 |y〉 |z〉 |Df , Dg ? Dh〉 such that Df (u) = ⊥. Then, by applying the
second property in Proposition 3, we have

RstOEfΠ⊥ |φgood,32i−1 〉

=
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

1√
2n
a
(2i−1),3
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗ |Df ∪ (u, α), Dg ? Dh〉 ⊗ |α〉

(80)

+
1√
2n

∑
u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1),3
uvyzDfDgDh

|u, v〉 |y〉 |z〉

⊗

(
|Df 〉 −

∑
γ

1√
2n
|Df ∪ (u, γ)〉

)
|Dg ? Dh〉 ⊗ |0̂n〉 ,

(81)

where the terms (80) and (81) correspond to (9) and (10), respectively.

On the term Πpre-good |(80)〉.
By the equation (65),

Πpre-good |(80)〉 = Πbad |φgood,22i−1 〉 (82)

holds.27

Upper bounding the norms of the terms Πpre-bad |(80)〉 and |(81)〉.
For a good database (Df , Dg, Dh) for F2, let NumPreGood(Df , Dg, Dh) be the
number of α such that (Df ∪ (u, α), Dg, Dh) becomes pre-good. Then we have
|NumPreGood(Df , Dg, Dh)| ≥ 2n − |Df | − |Dh| ≥ 2n − 2i, and∣∣∣a(2i−1),3uvyzDfDgDh

∣∣∣
=

∣∣∣∣∣∣∣∣
√

2n

NumPreGood(Df , Dg, Dh)

∑
α;

(Df∪(u,α),Dg,Dh): pre-good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
√

2n

2n − 2i

∑
α;

(Df∪(u,α),Dg,Dh): pre-good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣ (83)

holds. Thus we have that∥∥∥Π⊥ |φgood,32i−1 〉
∥∥∥2

27 Note that here we are focusing on pre-good and bad databases. See also Remark 5.
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=

∥∥∥∥∥∥∥∥∥∥∥
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

a
(2i−1),3
uvyzDfDgDh

|u, v〉 |y〉 |z〉 ⊗ |Df , Dg ? Dh〉

∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

∣∣∣a(2i−1),3uvyzDfDgDh

∣∣∣2

(83)

≤
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

∣∣∣∣∣∣∣∣
√

2n

2n − 2i

∑
α;

(Df∪(u,α),Dg,Dh): pre-good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣
2

=
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

( √
2n

2n − 2i

)2

∣∣∣∣∣∣∣∣
∑
α;

(Df∪(u,α),Dg,Dh): pre-good

a
(2i−1),2
uvyzDf∪(u,α)DgDh

∣∣∣∣∣∣∣∣
2

convexity

≤
∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥

( √
2n

2n − 2i

)2

· 2n
∑
α;

(Df∪(u,α),Dg,Dh): pre-good

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2

= O(1) ·
∑

u,v,y,z,α,Df ,Dg,Dh;
(Df ,Dg,Dh): good

Df (u)=⊥
(Df∪(u,α),Dg,Dh): pre-good

∣∣∣a(2i−1),2uvyzDf∪(u,α)DgDh

∣∣∣2

≤ O(1) ·
∥∥∥Πbad |φgood,22i−1 〉

∥∥∥2 (84)

holds, where “convexity” denotes convexity of square functions. 28 Therefore∥∥∥Π⊥ |φgood,32i−1 〉
∥∥∥ ≤ ∥∥∥Πbad |φgood,22i−1 〉

∥∥∥ ·O (1) ≤ O(1) (85)

holds.
Since (85) holds, we can show

‖Πpre-bad |(80)〉‖ ≤ O

(√
i

2n

)
·
∥∥∥Π⊥ |φgood,32i−1 〉

∥∥∥ ≤ O(√ i

2n

)
(86)

and

‖|(81)〉‖ ≤ O

(√
i

2n

)
·
∥∥∥Π⊥ |φgood,32i−1 〉

∥∥∥ ≤ O(√ i

2n

)
(87)

28 Note that Πbad do not cancel pre-good and bad databases.
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in the same way as we showed (52) and (53) in the proof of Lemma 11, respec-
tively.

Now it follows that∥∥∥RstOEfΠ⊥ |φgood,32i−1 〉 −Πbad |φgood,22i−1 〉
∥∥∥

=
∥∥∥(|(80)〉+ |(81)〉)−Πbad |φgood,22i−1 〉

∥∥∥
=
∥∥∥Πpre-good |(80)〉+Πpre-bad |(80)〉+ |(81)〉 −Πbad |φgood,22i−1 〉

∥∥∥
(82)
= ‖Πpre-bad |(80)〉+ |(81)〉‖

(86) and (87)

≤ O

(√
i

2n

)
(88)

holds.
Since ΠregΠ⊥ |φgood,32i−1 〉 = Π⊥ |φgood,32i−1 〉 holds by definition of |φgood,32i−1 〉,∥∥∥Π⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠbad |φgood,22i−1 〉

∥∥∥
=
∥∥∥Πreg

(
Π⊥ |φgood,32i−1 〉 − RstOE∗fΠbad |φgood,22i−1 〉

)∥∥∥
≤
∥∥∥Π⊥ |φgood,32i−1 〉 − RstOE∗fΠbad |φgood,22i−1 〉

∥∥∥
(88)

≤ O

(√
i

2n

)
(89)

holds.
From (79) and (89), it follows that∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ

good,2
2i−1 〉

∥∥∥
≤
∥∥∥Π 6⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠgood |φgood,22i−1 〉

∥∥∥
+
∥∥∥Π⊥ |φgood,32i−1 〉 −ΠregRstOE∗fΠbad |φgood,22i−1 〉

∥∥∥
≤ O

(√
i

2n

)
(90)

holds.
Since we obtain a regular database whenever we measure the state RstOE∗fRstOEh

· RstOEf |φ2i−1〉,

ΠregRstOE∗fRstOEhRstOEf |φ2i−1〉 = RstOE∗fRstOEhRstOEf |φ2i−1〉 (91)

holds. Therefore, from property 1 and 6 in Lemma 13, (90), and (91),∥∥∥|φbad,32i−1〉
∥∥∥
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=
∥∥∥RstOE∗fRstOEhRstOEf |φ2i−1〉 − |φgood,32i−1 〉

∥∥∥
(91)
=
∥∥∥ΠregRstOE∗fRstOEhRstOEf |φ2i−1〉 − |φgood,32i−1 〉

∥∥∥
property 1

=
∥∥∥ΠregRstOE∗f

(
|φgood,22i−1 〉+ |φbad,22i−1〉

)
− |φgood,32i−1 〉

∥∥∥
≤
∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ

good,2
2i−1 〉

∥∥∥+
∥∥∥|φbad,22i−1〉

∥∥∥
property 6

≤
∥∥∥|φgood,32i−1 〉 −ΠregRstOE∗f |φ

good,2
2i−1 〉

∥∥∥+
∥∥|φbad2i−1〉

∥∥+O

(√
i

2n

)
(90)

≤ O

(√
i

2n

)
+
∥∥|φbad2i−1〉

∥∥ (92)

follows, which implies that property 6 of Lemma 14 for |φbad,32i−1〉 holds. We can

show property 6 of the lemma for |ψbad,3
2i−1 〉 in the same way. ut

Proof (of Proposition 5). We show the claim by induction on j. The claim for

j = 1 obviously holds by setting |φgood1 〉 = |φ1〉, |ψgood
1 〉 = |ψ1〉, |φbad1 〉 = 0, and

|ψbad
1 〉 = 0.

From (2i− 1) to 2i. Here we show that the claim holds for j = 2i if the claim

holds for j = 1, . . . , 2i− 1. By Lemma 14, there exist vectors |ψgood,3
2i−1 〉, |ψ

bad,3
2i−1 〉,

|φgood,32i−1 〉, and |φbad,32i−1〉 that satisfy the six properties in Lemma 14.
Let U2i−1 denote the unitary operator that corresponds to the offline com-

putation by A between the (2i − 1)-th query (the i-th query to Fh1 or F2) and
the 2i-th query (the i-th query to h), and define

|ψgood
2i 〉 := U2i−1 |ψgood,3

2i−1 〉 , |ψbad
2i 〉 = U2i−1 |ψbad,3

2i−1 〉 ,

|φgood2i 〉 := U2i−1 |φgood,32i−1 〉 , |φbad2i 〉 = U2i−1 |φbad,32i−1〉 .

Then, the six properties in Proposition 5 for j = 2i immediately follow from the
six properties in Lemma 14. Hence the claim holds for j = 2i.

From 2i to 2i+ 1. Here we show that the claim holds for j = 2i+ 1 if the claim
holds for j = 1, . . . , 2i. Let Πhit be the orthogonal projection onto the space that
is spanned by the vectors |v, ζ〉 |y〉 |z〉⊗|Df , Dg, Dh〉 (or, |v, ζ〉 |y〉 |z〉⊗|Df , Dh〉)
such that (u, ζ) ∈ Df for some u29. In addition, let Π¬hit := I −Πhit.

Let U2i denote the unitary operator that corresponds to the offline computa-
tion by A between the 2i-th query (the i-th query to h) and the (2i+1)-st query

(the (i+1)-st query to Fh1 or F2). We define |ψgood
2i 〉, |ψbad

2i 〉, |φ
good
2i 〉, and |φbad2i 〉 by

|ψgood
2i+1〉 := U2iΠvalidRstOEhΠ¬hit |ψgood

2i 〉 , |ψbad
2i+1〉 := |ψ2i+1〉 − |ψgood

2i+1〉 , |φ
good
2i+1〉 :=

U2iΠvalidRstOEhΠ¬hit |φgood2i 〉 , |φbad2i+1〉 := |φ2i+1〉 − |φgood2i+1〉 .

29 This projection corresponds to the event hit in Section 1.2.
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Then property 1 of Proposition 5 for j = 2i+1 holds by definition of |ψgood
2i 〉,

|ψbad
2i 〉, |φ

good
2i 〉, and |φbad2i 〉. Property 2, 3, 4, 5 for j = 2i + 1 can be shown by

checking how the coefficients of basis vectors in Π¬hit |ψgood
2i 〉 and Π¬hit |φgood2i 〉

change when RstOEh act on them (by applying Proposition 3 on RstOEh). 30

Below we show that property 6 holds for j = 2i+ 1.
For a good database (Df , Dg, Dh) for F2, let Equiv(Df , Dg, Dh) be the set of

good databases that are equivalent to (Df , Dg, Dh). Let R be a complete system
of representatives of the equivalence relation on good databases for F2 (i.e., R is
a set of good databases for F2 such that the set of all good databases for F2 is
decomposed into the disjoint union

∐
(D̃f ,D̃g,D̃h)∈R Equiv(D̃f , D̃g, D̃h)). In addi-

tion, for a good database (Df , Dg, Dh) for F2 and ζ, let EquivHitζ(Df , Dg, Dh)
be the set of good databases (D′f , D

′
g, D

′
h) such that (D′f , D

′
g, D

′
h) is equivalent

to (Df , Dg, Dh) and (u, ζ) ∈ D′f for some u. Then the following claim holds.

Claim. For each ζ and each good database (Df , Dg, Dh) ∈ R such that a
(2i)
vζyzDfDgDh

6=
0 for some v, ζ, y, z, ∣∣EquivHitζ(Df , Dg, Dh)

∣∣
|Equiv(Df , Dg, Dh)|

≤ O
(
i

2n

)
holds. 31

Proof. Let

S := {ζ ′ ∈ {0, 1}n|∃v, w s.t. ((v, ζ ′), w) ∈ Dh} ,

and

ΠS := {π : {0, 1}n → {0, 1}n|π is a permutation and π(ζ ′) = ζ ′ for all ζ ′ ∈ S} .

Then, a good database (D′f , D
′
h, D

′
h) is equivalent to (Df , Dg, Dh) if and only if

there exists π ∈ ΠS such that

1. Dh = D′h,
2. (u, ζ ′) ∈ Df if and only if (u, π(ζ ′)) ∈ D′f , and
3. ((u, v, ζ ′), w) ∈ Dg if and only if ((u, v, π(ζ ′)), w) ∈ D′g holds.

Therefore we have∣∣EquivHitζ(Df , Dg, Dh)
∣∣

|Equiv(Df , Dg, Dh)|
= Pr
π

$←−ΠS
[There exists (u, ζ ′) ∈ Df such that π(ζ ′) = ζ] .

30 Intuitively, the behavior of RstOEh on Π¬hit |ψgood
2i 〉 is the same as that of RstOEh on

Π¬hit |φgood
2i 〉.

31 In (14) we used the symbol a
(2i)
uvyzDfDgDh

for ease of notations, but here we use

a
(2i)
vζyzDfDgDh

(“uv” is replaced with “vζ”) because we use the symbol v||ζ to denote

an input to h.
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The probability on the right hand side is upper bounded as

Pr
π

$←−ΠS
[There exists (u, ζ ′) ∈ Df such that π(ζ ′) = ζ]

≤
∑

(u,ζ′)∈Df

Pr
π

$←−ΠS
[π(ζ ′) = ζ] =

∑
(u,ζ′)∈Df

|{π ∈ ΠS |π(ζ ′) = ζ}|
|ΠS |

=
∑

(u,ζ′)∈Df

(2n − |S| − 1)!

(2n − |S|)!
=

|Df |
2n − |Dh|

≤ O

(
i

2n

)
.

Hence the claim follows. ut

Now we have

∥∥∥Πhit |ψgood
2i 〉

∥∥∥2 =

∥∥∥∥∥∥∥∥∥∥∥
∑

v,ζ,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good
∃u s.t. (u,ζ)∈Df

a
(2i)
vζyzDfDgDh

|v, ζ〉 |y〉 |z〉 ⊗ |Df , Dg, Dh〉

∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

v,ζ,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good
∃u s.t. (u,ζ)∈Df

∣∣∣a(2i)vζyzDfDgDh

∣∣∣2

=
∑

(D̃f ,D̃g,D̃h)∈R

∑
v,ζ,y,z,Df ,Dg,Dh;

(Df ,Dg,Dh)∈Equiv(D̃f ,D̃g,D̃h)
∃u s.t. (u,ζ)∈Df

∣∣∣a(2i)vζyzDfDgDh

∣∣∣2

property 4
for j = 2i

=
∑

(D̃f ,D̃g,D̃h)∈R

∑
v,ζ,y,z,Df ,Dg,Dh;

(Df ,Dg,Dh)∈Equiv(D̃f ,D̃g,D̃h)
∃u s.t. (u,ζ)∈Df

∣∣∣a(2i)
vζyzD̃f D̃gD̃h

∣∣∣2

=
∑

(D̃f ,D̃g,D̃h)∈R

∑
v,ζ,y,z

∣∣∣EquivHitζ(D̃f , D̃g, D̃h)
∣∣∣ ∣∣∣a(2i)

vζyzD̃f D̃gD̃h

∣∣∣2
(Claim)

≤ O

(
i

2n

)
·

∑
(D̃f ,D̃g,D̃h)∈R

∑
v,ζ,y,z

∣∣∣Equiv(D̃f , D̃g, D̃h)
∣∣∣ ∣∣∣a(2i)

vζyzD̃f D̃gD̃h

∣∣∣2
property 4
for j = 2i

= O

(
i

2n

)
·

∑
(D̃f ,D̃g,D̃h)∈R

∑
v,ζ,y,z,Df ,Dg,Dh;

(Df ,Dg,Dh)∈Equiv(D̃f ,D̃g,D̃h)

∣∣∣a(2i)vζyzDfDgDh

∣∣∣2

= O

(
i

2n

)
·

∑
v,ζ,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh): good

∣∣∣a(2i)vζyzDfDgDh

∣∣∣2

61



= O

(
i

2n

)
·
∥∥∥|ψgood

2i 〉
∥∥∥2 ≤ O( i

2n

)
. (93)

Therefore we have∥∥|ψbad
2i+1〉

∥∥ =
∥∥∥|ψ2i+1〉 − |ψgood

2i+1〉
∥∥∥

=
∥∥∥U2iRstOEh |ψ2i〉 − U2iΠvalidRstOEhΠ¬hit |ψgood

2i 〉
∥∥∥

=
∥∥∥ΠvalidRstOEh |ψ2i〉 −ΠvalidRstOEhΠ¬hit |ψgood

2i 〉
∥∥∥

≤
∥∥∥|ψ2i〉 −Π¬hit |ψgood

2i 〉
∥∥∥ =

∥∥∥|ψgood
2i 〉+ |ψbad

2i 〉 −Π¬hit |ψ
good
2i 〉

∥∥∥
≤
∥∥|ψbad

2i 〉
∥∥+

∥∥∥Πhit |ψgood
2i 〉

∥∥∥ ≤ ∥∥|ψbad
2i 〉

∥∥+O

(√
i

2n

)
,

where we used the fact that we always obtain a valid database when we measure
the state RstOEh |ψ2i〉, for the third equality. Hence the sixth property for |ψbad

2i+1〉
holds. We can show that the sixth property for |φbad2i+1〉 holds in the same way. ut

D Proof of Lemma 4

Proof (of Lemma 4). Recall that each message for NMAC is first processed with

MD
′h(K1, ·)32 and second with MDh(K2, ·). In addition, the length of messages

processed with MDh(K2, ·) is fixed to be n. Let MD
h
(K2, ·) : {0, 1}n → {0, 1}n

be the function that is the same as MDh(K2, ·) but the domain is restricted to

{0, 1}n. Recall that we call MD
′h(K1, ·) and MD

h
(K2, ·) the inner function and

the outer function, respectively. Then, the difference between NMAChK1,K2
and

the function Hh
1 in G1 are: (i) The first application of h in the inner function in

NMAChK1,K2
(i.e., the function h(·||K1)) is replaced with a random function f1 in

Hh
1 . (ii) The outer function in NMAChK1,K2

is replaced with a random function

fout in Hh
1 .

Let H̃h
1 be the function that is the same as Hh

1 except that the random func-
tion f1 is replaced with h(·||K1) (K1 ∈ {0, 1}n is chosen uniformly at random).
Then, for a quantum adversary A to distinguish (NMAChK1,K2

, h) from (H̃h
1 , h)

that makes at most Q quantum queries to NMAChK1,K2
or H̃h

1 and at most
qh quantum queries to h, we can construct another adversary B to distinguish

(MD
h
(K2, ·), h) from (fout, h) that makes at most O(Q) queries to MD

h
(K2, ·)

or fout and at most O(qh +Q`) quantum queries to h as follows.

B is given quantum oracle access to Oh (Oh = MD
h
(K2, ·) or Oh = fout)

and h. First, B chooses K1 ∈ {0, 1}n uniformly at random, and runs A. When A
makes a query to the second oracle (which is supposed to be h), B responds by

32 Remember that the definition of NMAChK1,K2
is slightly modified during the proof

of Proposition 6.
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querying to h. WhenA queries a message M to the first oracle (which is supposed

to be NMAChK1,K2
or H̃h

1 ), B computes the value T := Oh(MD
′h(K1,M)) by

making queries to Oh and h, and responds to A with T . Finally B returns A’s
output as its own output.

Then B makes at most O(Q) queries to Oh and at most O(qh +Q`) queries
to h. In addition, B completely simulates NMAChK1,K2

or H̃1 depending on Oh =

MD
h
(K2, ·) or Oh = fout. Thus

Advdist
(NMAChK1,K2

,h),(H̃h1 ,h)
(A) = Advdist

(MD
h
(K2,·),h),(fout,h)

(B) = AdvqPRF

MD
h
(K2,·)

(B)

(94)
holds.

Below we consider two cases depending on whether |pad(M)| = m or |pad(M)| ≥
m for M ∈ {0, 1}n.

Proof for the case that |pad(M)| = m for M ∈ {0, 1}n.

In this case, MD
h
(K2,M) = h(pad(M)||K2) holds for all M ∈ {0, 1}n. Thus,

from Lemma 1,

AdvqPRF

MD
h
(K2,·)

(B) = AdvqPRF
h(pad(·)||K2)

(B) ≤ O
(
qh +Q`

2n/2

)
(95)

follows. From (94) and (95),

Advdist
(NMAChK1,K2

,h),(H̃h1 ,h)
(A) ≤ O

(
qh +Q`

2n/2

)
(96)

holds.
In the same way as we showed (96), we can show that

Advdist
(H̃h1 ,h),(H

h
1 ,h)

(A) ≤ O
(
qh +Q`

2n/2

)
(97)

holds (that is, we can replace h(·||K1) in the inner function of H̃h
1 with the

random function f1). Hence

Advdist
(NMAChK1,K2

,h),(Hh1 ,h)
(A) ≤ O

(
qh +Q`

2n/2

)
(98)

follows from (96) and (97).

Proof for the case that |pad(M)| = m · j (j > 1) for M ∈ {0, 1}n.
We show the claim for the case that |pad(M)| = 2m for M ∈ {0, 1}n. Other
cases can be shown in the same way.

Let f̂out : {0, 1}m×{0, 1}m → {0, 1}n be the function defined by f̂out(u, v) :=
h(v||ρ(u)), where ρ : {0, 1}m → {0, 1}n is a random function. Let fbig : {0, 1}m×
{0, 1}m → {0, 1}n be another random function.
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Now,

Advdist

(MD
h
(K2,·),h),(f̂out◦pad,h)

(B) ≤ O
(
qh +Q`

2n/2

)
(99)

follows from Lemma 133, and

Advdist
(f̂out◦pad,h),(fbig◦pad,h)

(B) ≤ O

(√
(qh +Q`)3

2n

)
(100)

follows from Proposition 4. In addition,

Advdist
(f̂out◦pad,h),(fbig◦pad,h)

(B) = Advdist
(f̂out◦pad,h),(fout,h)

(B) (101)

holds since pad : M 7→ pad(M) is injective for M ∈ {0, 1}n and fbig is a random
function. From (99), (100), and (101),

AdvqPRF

MD
h
(K2,·)

(B) = Advdist

(MD
h
(K2,·),h),(fout,h)

(B) ≤ O

(√
(qh +Q`)3

2n

)
(102)

follows.
Since (97) also holds when |pad(M)| > m for M ∈ {0, 1}n,

Advdist
(NMAChK1,K2

,h),(Hh1 ,h)
(A) ≤ O

(√
(qh +Q`)3

2n

)
(103)

follows from (94), (97), and (102). ut

E Proof of Lemma 5

Proof (of Lemma 5). Let N̂MAC
h

K1,K2
be the function that is defined in the

same way as NMAChK1,K2
but the outer function MDh(K2, ·) is replaced with the

function MD
′′h(K2, ·), where MD

′′h : {0, 1}n×{0, 1}∗ → {0, 1}n is defined in the
same way as MDh but the padding function is replaced from pad to pad′′, which
is defined by pad′′(M) = M ||p(|M |+m). Then we have

Advdist
(HMAChK ,h),(H

h
1 ,h)

(A)

≤ Advdist

(HMAChK ,h),(N̂MAC
h

K1,K2
,h)

(A) + Advdist

(N̂MAC
h

K1,K2
,h),(Hh1 ,h)

(A), (104)

and we can show

Advdist

(N̂MAC
h

K1,K2
,h),(Fh1 ,h)

(A)

33 The difference between MD
h
(K2, ·) and f̂out ◦ pad is that h(·||K2) in the former is

replaced with ρ in the latter.
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≤


O

(√
qh+Q`
2n/2

)
if |p(m+ n)| = 2m,

O

(√
(qh+Q`)3

2n

)
if |p(n+m)| = m · j (j > 2),

(105)

in the same way as we proved Lemma 4.

Upper bounding the term Advdist

(HMAChK ,h),(N̂MAC
h

K1,K2
,h)

(A).

Let ρh : {0, 1}k → {0, 1}2n be the function defined by

ρh(K) := h((K||0m−k ⊕ ipad)||IV )||h((K||0m−k ⊕ opad)||IV ). (106)

For a quantum adversary A to distinguish (HMAChK , h) from (N̂MAC
h

K1,K2
, h)

that makes at most Q quantum queries to HMAChK or N̂MAC
h

K1,K2
and at most

qh quantum queries to h, we construct another adversary B to distinguish the
bit string ρh(K) (K is chosen uniformly at random) from a truly random 2n-bit
string by making O(qh +Q`) quantum queries to h, as follows.
B is given quantum oracle access to h, and given a bit string X ∈ {0, 1}2n,

which is ρh(K) (K ←$ {0, 1}k) or chosen uniformly at random. Let X1 and X2

be the most significant n-bit and the least significant n-bit of X, respectively.
First, B runs A. When A makes a query to the second oracle (which is supposed
to be h), B responds by querying to the oracle of h. When A queries a message M

to the first oracle (which is supposed to be HMAChK or N̂MAC
h

K1,K2
), B computes

the value T := N̂MAC
h

X1,X2
(M) by making queries to h, and responds to A with

T . Finally B returns A’s output as its own output.

Then, B perfectly simulates HMAChK or N̂MAC
h

K1,K2
depending on whether

X is ρh(K) (K ←$ {0, 1}k) or chosen uniformly at random, which implies that

Advdist

(HMAChK ,h),(N̂MAC
h

K1,K2
,h)

(A) = AdvqPRG
ρh

(B). In addition, B makes at most

O(qh +Q`) quantum queries to h. Thus, from Lemma 2,

Advdist

(HMAChK ,h),(N̂MAC
h

K1,K2
,h)

(A) = AdvqPRG
ρh

(B) ≤ O
(
qh +Q`

2k/2

)
(107)

follows.
The claim of Lemma 5 follows from (104), (105), and (107). ut

F Proof of Lemma 6

As mentioned in the proof overview below Lemma 6, in this proof we modify the
definition of H

′h
i a little bit. Let M = M [1]|| · · · ||M [i] be a message of length

m · i. On this input, the value H
′h
i (M) was defined as H

′h(M) := gi(M) for a
random function gi, but here we re-define it as

H
′h
i (M) := f ′out(M,fi(M)), (108)
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where f ′out : {0, 1}mi × {0, 1}n → {0, 1}n is another random function. Since f ′out
is random, this modification does not change the distribution of the function
H
′h
i . This section gives a proof only for the case i = 1. The proof for i > 1 can

be done in the same way.

As in Section 2.2, we assume that A makes queries to Hh
1 and h (or, Hh′

1 and
h) in a sequential order. In particular, we assume that A’s (2i − 1)-th query is
made to Hh

1 (or Hh′

1 ) and 2i-th query is made to h for 1 ≤ i ≤ q. (For instance,
A first queries to Hh

1 (or Hh′

1 ) and second queries to h.) We call queries to Hh
1

and Hh′

1 online queries, and queries to h offline queries since computations of h
is done offline on adversaries’ (quantum) computers in practical settings.

Recall that, when a message M is queried to an oracle, we implicitly assume
that the length of the message |M | is encoded with M like |(|M |,M)〉 (see
the paragraph “Example: Quantum oracle of a fixed function and a quantum
random oracle.” in Section 2). Since Hh

1 and H
′h
1 take messages of different

length as inputs, we carefully describe how we implement them. We assume that
the unitary operators to process queries to Hh

1 and Hh′

1 are implemented as
follows.

Quantum oracle of Hh
1 .

1. Take |M〉 |y〉 as an input, where y ∈ {0, 1}n and M ∈ {0, 1}mj for some
1 ≤ j ≤ `. For ease of notations, let us define M [t] := 0m for j + 1 ≤ t ≤ `.

2. Query M [1] to f1 and obtain

|M〉 |y〉 ⊗ |S1〉 , (109)

where S1 := f1(M [1]).

3. For t = 2, . . . , `, iteratively compute St := h(M [t]||St−1) by queryingM [t]||St−1
to h, to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 . (110)

4. Copy Sj into an additional register to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (111)

5. Query Sj (in the rightmost register) to fout and add the result to y to obtain

|M〉 |y ⊕Hh
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (112)

6. Uncompute Steps 2 - 4 to obtain |M〉 |y ⊕Hh
1 (M)〉.

Remark 12. Some readers may wonder why we compute not only S1, . . . , Sj
but also Sj+1, . . . , S`, and copy Sj into an auxiliary register. Those operations
may seem redundant, but we perform them so that the implementation will be
independent of the length of the message. (Among Steps 1-5, only Step 4 depends
on the message lengths |M |.)
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Quantum oracle of H
′h
1 .

1. Take |M〉 |y〉 as an input, where y ∈ {0, 1}n and M ∈ {0, 1}mj for some
1 ≤ j ≤ `. For ease of notations, let us define M [t] := 0m for j + 1 ≤ t ≤ `.

2. Query M [1] to f1 and obtain

|M〉 |y〉 ⊗ |S1〉 , (113)

where S1 := f1(M [1]).
3. For t = 2, . . . , `, iteratively compute St := h(M [t]||St−1) by queryingM [t]||St−1

to h, to obtain
|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 . (114)

4. Copy Sj into an additional register to obtain

|M〉 |y〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (115)

5. If j = 1, query (M [1], S1) to f ′out and add the result to y to obtain

|M〉 |y ⊕H
′h
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (116)

6. If j > 1, query Sj (in the rightmost register) to fout and add the result to y
to obtain

|M〉 |y ⊕H
′h
1 (M)〉 ⊗ |S1〉 · · · |S`〉 ⊗ |Sj〉 . (117)

7. Uncompute Steps 2 - 4 to obtain |M〉 |y ⊕H ′h1 (M)〉.

We show the hardness of distinguishing Hh
1 and H

′h
1 by using the recording

standard oracle with errors (RstOE). We assume that the quantum oracles of
f1, h, fout, and f ′out are implemented by using RstOE (quantum queries are
processed with RstOE). Let RstOEf1 , RstOEh, RstOEfout , and RstOEf ′out be the
recording standard oracle with errors for f1, h, fout, and f ′out, respectively. We
use the symbols Df1 , Dh, Dfout , and Df ′out

to denote databases for f1, h, fout,
and f ′out, respectively.

Let OHh1 be the unitary operator to process queries to Hh
1 implemented as

above. Then, OHh1 can be decomposed as

OHh1 = RstOE∗f1 ·RstOE∗h · · ·RstOE∗h︸ ︷︷ ︸
`−1 times

·CP ·Oout ·CP ·RstOEh · · ·RstOEh︸ ︷︷ ︸
`−1 times

·RstOEf1 ,

(118)
where Oout = RstOEfout and CP denotes the unitary operator to perform the
copy operation in Step 4.

Similarly, let OH′h1
be the unitary operator to process queries to H

′h
1 imple-

mented as above. In addition, let Π1 be the orthogonal projection onto the space
spanned by the vectors of messages |M〉 such that |M | = 1. Then, OH′h1

can be

decomposed as

OH′h1
= RstOE∗f1 ·RstOE∗h · · ·RstOE∗h︸ ︷︷ ︸

`−1 times

·CP ·O′out ·CP ·RstOEh · · ·RstOEh︸ ︷︷ ︸
`−1 times

·RstOEf1 ,

(119)
where O′out := Π1 ⊗ RstOEf ′out + (I −Π1)⊗ RstOEfout .
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Good and bad databases. Based on the description above, we introduce the
notion of good and bad databases for Hh

1 and H
′h
1 .34

We say that a (tuple of) valid database (Df1 , Dh, Dfout) for Hh
1 is good if

and only if it satisfies the following properties.

1. For (u, ζ) and (u′, ζ ′) in Df1 such that u 6= u′, ζ 6= ζ ′ holds (there is no
collision for f1).

2. For ((v, ζ), w) and ((v′, ζ ′), w′) in Dh such that (v, ζ) 6= (v′, ζ ′), w 6= w′ holds
(there is no collision for h).

3. For all (u, ζ) ∈ Df1 and ((v, ζ ′), w) ∈ Dh, ζ 6= w holds (there is no collision
between outputs of f1 and h).

4. For each (α, β) ∈ Dfout , there exists (u, α) ∈ Df1 for some u, or there exists
((v, ζ), α) ∈ Dh for some v and ζ.

We say that (Df1 , Dh, Dfout) is bad if it is not good.
Similarly, we say that a (tuple of) valid database (Df1 , Dh, Dfout , Df ′out

) for

H
′h
1 is good if and only if it satisfies the following properties.

1. For (u, ζ) and (u′, ζ ′) in Df1 such that u 6= u′, ζ 6= ζ ′ holds (there is no
collision for f1).

2. For ((v, ζ), w) and ((v′, ζ ′), w′) in Dh such that (v, ζ) 6= (v′, ζ ′), w 6= w′ holds
(there is no collision for h).

3. For all (u, ζ) ∈ Df1 and ((v, ζ ′), w) ∈ Dh, ζ 6= w holds (there is no collision
between outputs of f1 and h).

4. For each (α, β) ∈ Dfout , there exists ((v, ζ), α) ∈ Dh for some v and ζ.
5. For each ((u, α), β) ∈ Df ′out

, (u, α) ∈ Df1 holds.

We say that (Df1 , Dh, Dfout , Df ′out
) is bad if it is not good.

Intuition behind good and bad databases. Intuitively, a database (Df1 , Dh, Dfout)
for Hh

1 is defined to be good if and only if Df1 does not contain collisions (the
first condition on Hh

1 ), Dh does not contain collisions (the second condition
on Hh

1 ), and there is no collision of output values between Df1 and Dh (the
third condition on Hh

1 ). The fourth condition on Hh
1 is included so that a weird

situation such as “α has been queried to fout, but both of f1 and h have not
returned the value α as output” will not happen for good databases. Good
databases for H

′h
1 are defined in the same way. Intuitively, a good database

changes to bad if and only if an output value of f1 or h is randomly sampled at
a query, and collide with a previous output of f1 or h.

One-to-one correspondence for good databases. For a good database
(Df1 , Dh, Dfout , Df ′out

) for H
′h
1 , let D̃fout be the valid database for fout such

that (α, β) ∈ D̃fout if and only if (α, β) ∈ Dfout or ((u, α), β) ∈ Df ′out
for

34 We use the symbols u, ζ, w, α, β, u′, ζ′, w′, α′, β′ to denote n-bit strings, and use the
symbols v, v′ to denote m-bit strings.
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some u. Then (Df1 , Dh, D̃fout) becomes a good database for Hh
1 . Let us de-

note (Df1 , Dh, D̃fout) by [(Df1 , Dh, Dfout , Df ′out
)]uni (uni is an abbreviation of

“unify”). Then, it is easy to check that the map [·]uni : (Df1 , Dh, Dfout , Df ′out
) 7→

[(Df1 , Dh, Dfout , Df ′out
)]uni is a bijection between the set of good databases for

H
′h
1 and the set of good databases for Hh

1 . Let [·]sep (sep is an abbreviation of
“separate”) denote the inverse map of [·]uni, i.e., the map from the set of good
databases for Hh

1 to that for H
′h
1 defined by [[(Df1 , Dh, Dfout , Df ′out

)]uni]sep =
(Df1 , Dh, Dfout , Df ′out

).
The bijections extend to (partially defined) isometries between the state

spaces. LetHA be the state space of the adversary, andHDB (resp.,H′DB) be the

state space of the databases for Hh
1 (resp., H

′h
1 ). In addition, let Vgood ⊂ HDB

(resp., V ′good ⊂ H′DB) be the subspace spanned by good databases. Then, the
linear map from HA ⊗ Vgood to HA ⊗ V ′good that maps |η〉 ⊗ |Df1 , Dh, Dfout〉 to
|η〉⊗ |[Df1 , Dh, Dfout ]sep〉 for |η〉 ∈ HA and a good database (Df1 , Dh, Dfout) for
Hh

1 becomes an isometry. We denote this isometry and its inverse also by [·]sep
and [·]uni, respectively.

Notations for state vectors. Recall that, when an adversary A is given oracle
accesses to Hh

1 (or H
′h
1 ) and h, we assume that the (2i− 1)-th query is made to

Hh
1 (or H

′h
1 ) and the 2i-th query is made to h for 1 ≤ i ≤ q. Let |φ2i−1〉 be the

whole quantum state just before A’s i-th query to Hh
1 when A runs relative to

Hh
1 and h. In addition, let |φ2i〉 be the whole quantum state just before A′s i-th

query to h when A runs relative to Hh
1 and h. Define |ψ2i−1〉 and |ψ2i〉 similarly

when A runs relative to H
′h
1 and h. For ease of notation, let |φ2q+1〉 and |ψ2q+1〉

be the quantum states just before the final measurement when A runs relative
to (Hh

1 , h) and (H
′h
1 , h), respectively.

We can show that Lemma 6 follows from the proposition below in the same
way as we showed Proposition 4 follows from Proposition 5.

Proposition 9. For each j = 1, . . . , 2q + 1, there exist vectors |φgoodj 〉, |φbadj 〉,
|ψgood
j 〉, and |ψbad

j 〉 that satisfy the following properties:

1. |φj〉 = |φgoodj 〉+ |φbadj 〉 and |ψj〉 = |ψgood
j 〉+ |ψbad

j 〉 hold.

2. |φgoodj 〉 ∈ HA ⊗ Vgood and |ψgood
j 〉 ∈ HA ⊗ V ′good.

3. |φgood2i−1〉 =
[
|ψgood

2i−1〉
]
uni

4. For a good database (Df1 , Dh, Dfout , Df ′out
) with non-zero coefficient in |ψgood

2i−1〉
(resp., in |ψgood

2i 〉), |Df1 | ≤ 2(i− 1), |Dh| ≤ (2`+ 1)(i− 1), |Dfout | ≤ i− 1,
and |Df ′out

| ≤ i − 1 hold (resp., |Df1 | ≤ 2i, |Dh| ≤ (2` + 1)(i − 1) + 2`,
|Dfout | ≤ i, and |Df ′out

| ≤ i hold).

5. ‖ |φbadj 〉 ‖ ≤ ‖ |φbadj−1〉 ‖+O
(
`
√
j`/2n

)
and ‖ |ψbad

j 〉 ‖ ≤ ‖ |ψbad
j−1〉 ‖+O

(
`
√
j`/2n

)
hold (we regard that ‖ |φbad0 〉 ‖ = ‖ |φbad0 〉 ‖ = 0).

Intuition behind the claim of this proposition is almost the same for that of
Proposition 5 (see explanations below Proposition 5), except that Proposition 9
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does not contain a claim on equivalent databases (such as property 4 of Propo-
sition 5).

As we mentioned above, in Proposition 9, a good database changes to bad
only when a randomly chosen output of a random function happens to collide
with an existing element in databases, like coll in Section 1.2. In particular,
there does not exist a bad event that corresponds to hit in Section 1.2. This is
the reason that Proposition 9 does not contain a claim on equivalent databases
(recall that equivalent databases are introduced to deal with bad events like hit).

Proposition 9 can be shown in a similar way as we showed Proposition 5 by
decomposing OHh1 and OH′h1

as in (118) and (119), respectively, and checking

how the quantum states change when RstOEf1 , RstOEh, RstOEfout , RstOEf ′out ,
RstOE∗h, and RstOE∗f1 act in a sequential order. In fact the proof of Proposition 9
is even simpler than the proof of Proposition 5: Proposition 9 can be proven
only with the proof techniques used in the previous work [18] because it does
not contain claims on equivalent databases.

Hence, in what follows, we omit writing the details and explain only the
differences between the proofs of Proposition 9 and Proposition 5. The main
differences are summarized as follows.

D1. Proposition 9 does not contain a claim on equivalent databases (such as
property 4 of Proposition 5).

D2. The oracles OHh1 and OH′h1
in Proposition 9 take inputs of various lengths

while the length of inputs to the oracles in Proposition 5 are fixed.
D3. The oracles OHh1 and OH′h1

in Proposition 9 invoke random functions many

(about 2`) times whereas the oracles in Proposition 5 do at most only 3
times.

As mentioned before, the difference D1 just simplify some parts of the proof. To
translate the proof of Proposition 5 into a proof of Proposition 9, what we have
to do about the differences D1 is just to ignore the arguments on property 4 of
Proposition 5.

The second difference D2 may look like it make the proof of Proposition 9
complex, but actually it does not. Each message M is encoded with its length
|M | like |(|M |,M)〉, and the vector |(|M |,M)〉 is orthogonal to the vector of
another message |(|M ′|,M ′)〉 if |M ′| 6= |M |. In addition, the oracles do not
affect the message register. Thus, to show the five properties of Proposition 9,
it suffices to prove such properties hold when the lengths of all the messages
are fixed and equal. When |M | ≥ 2m (i.e., M consists of two or more blocks),
apparently the behaviors of the oracles OHh1 and OH′h1

on M are the same as

long as databases are good because Hh
1 (M) = H

′h
1 (M). When |M | = m (i.e.,

M consists of a single block), we can also prove that the behaviors of OHh1 and
OH′h1

are the same as long as databases are good in a way similar to the proof

of Proposition 5. Hence properties 1-4 of Proposition 9 can be shown. The proof
for property 5 of Proposition 9 is similar to that for property 6 of Proposition 5,
except that the upper bounds of ‖ |φbadj 〉 ‖ and ‖ |ψbad

j 〉 ‖ are slightly different.
This difference is attributed to D3, which we explain below.
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The difference D3 increases the number of total queries made to h to O(`q),
and the number of elements in the database of h at the i-th query to OHh1 (resp.,

OH′h1
) or at the i-th offline query to h becomes O(` · i). Hence, roughly speaking,

the norm of the “bad” vector increases by O(
√
`i/2n) (but not O(

√
i/2n)) at

each query to h during the i-th query to OHh1 (resp., OH′h1
) or the i-th offline

query to h. In addition, h and f1 are invoked O(`) times in total at each query
to OHh1 (resp., OH′h1

). Hence the upper bound of ‖ |φbadj 〉 ‖ in property 5 of

Proposition 9 is ‖ |φbadj−1〉 ‖+O
(
`
√
j`/2n

)
but not ‖ |φbadj−1〉 ‖+O

(√
j/2n

)
(resp.,

the upper bound of ‖ |ψbad
j 〉 ‖ is ‖ |ψbad

j−1〉 ‖ + O
(
`
√
j`/2n

)
but not ‖ |ψbad

j−1〉 ‖ +

O
(√

j/2n
)

), unlike property 6 of Proposition 5.
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