Privacy-Preserving Machine Learning
with Fully Homomorphic Encryption
for Deep Neural Network

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun
Eom?, Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?,
Young-Sik Kim? and Jong-Seon No!

! Dept. of Electrical and Computer Eng., INMC, Seoul National University, Seoul, Republic of
Korea,
joonwoo42@snu.ac.kr, {eslee3209, jhlee}@ccl.snu.ac.kr, jsno@snu.ac.kr

2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea,
{hc1803.hang, yw0803.1lee, woosuk0.choi, jieun.eom,max.deriabin, say.yoo}@samsung. com

3 Dept. of Information and Communication Eng., Chosun University, Republic of Korea,
iamyskim@chosun.ac.kr

Abstract. Fully homomorphic encryption (FHE) is one of the prospective tools
for privacy-preserving machine learning (PPML), and several PPML models have
been proposed based on various FHE schemes and approaches. Although the FHE
schemes are known as suitable tools to implement PPML models, previous PPML
models on FHE such as CryptoNet, SEALion, and CryptoDL are limited to only
simple and non-standard types of machine learning models. These non-standard
machine learning models are not proven efficient and accurate with more practical
and advanced datasets. Previous PPML schemes replace non-arithmetic activation
functions with simple arithmetic functions instead of adopting approximation methods
and do not use bootstrapping, which enables continuous homomorphic evaluations.
Thus, they could not use standard activation functions and could not employ a
large number of layers. In this work, we firstly implement the standard ResNet-20
model with the RNS-CKKS FHE with bootstrapping and verify the implemented
model with the CIFAR-10 dataset and the plaintext model parameters. Instead of
replacing the non-arithmetic functions with the simple arithmetic function, we use
state-of-the-art approximation methods to evaluate these non-arithmetic functions,
such as the ReLU and softmax, with sufficient precision. Further, for the first time,
we use the bootstrapping technique of the RNS-CKKS scheme in the proposed model,
which enables us to evaluate an arbitrary deep learning model on the encrypted data.
We numerically verify that the proposed model with the CIFAR-10 dataset shows
98.43% identical results to the original ResNet-20 model with non-encrypted data.
The classification accuracy of the proposed model is 92.43%=+2.65%, which is pretty
close to that of the original ResNet-20 CNN model, 91.89%. It takes about 3 hours
for inference on a dual Intel Xeon Platinum 8280 CPU (112 cores) with 172 GB
memory. We think that it opens the possibility of applying the FHE to the advanced
deep PPML model.

Keywords: Privacy-preserving machine learning - ResNet-20 - RNS-CKKS FHE
scheme - SEAL library - Software implementation

*The first two authors contributed equally.

mailto:joonwoo42@snu.ac.kr, {eslee3209, jhlee}@ccl.snu.ac.kr, jsno@snu.ac.kr
mailto:{hc1803.hang, yw0803.lee, woosuk0.choi, jieun.eom, max.deriabin, say.yoo}@samsung.com
mailto:iamyskim@chosun.ac.kr

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
2 Neural Network

1 Introduction

The privacy-preserving issue is one of the most practical problems for machine learning
recently. Fully homomorphic encryption (FHE) is the most appropriate tool for privacy-
preserving machine learning (PPML) to ensure strong security in the cryptographic
sense and satisfy the communication’s succinctness. FHE is an encryption scheme whose
ciphertexts can be processed with any deep Boolean circuits or arithmetic circuits without
access to the data. The security of FHE has been usually defined with indistinguishability
under chosen-plaintext attack (IND-CPA) security, which is a standard cryptographic
security definition. If the client sends the public keys and the encrypted data with an FHE
scheme to the PPML server, the server can perform all computation needed in the desired
service before sending the encrypted output to the client. Therefore, the application of
FHE to PPML has been researched much until now.

The most successful PPML model on the homomorphically encrypted data until now
was constructed with the TFHE homomorphic encryption scheme by Lou and Jiang [LJ19],
but it used the leveled version of the TFHE scheme without bootstrapping, which is not
an FHE scheme. In other words, they chose in advance the parameters that can be used
to perform the desired network without bootstrapping. If we want to design a deeper
neural network with the leveled homomorphic encryption scheme, much impractically
larger parameters have to be used, and it causes heavy run-time or memory overhead.
Further, since the packing technique cannot be applied easily in the TFHE scheme, it can
cause additional inefficiency with regard to the running time and the memory overhead if
we want to process many data at once. Thus, it is desirable to use the FHE with moderate
parameters and bootstrapping, which naturally supports the packing technique in the
PPML model.

The applicable FHE schemes with this property are word-wise FHE schemes, such
as Brakerski-Fan-Vercauteren (BFV) scheme [FV20] or Cheon-Kim-Kim-Song (CKKS)
scheme [CKKS17, CHK " 18b]. Especially, the CKKS scheme has gained lots of interest for a
suitable tool of the PPML implementation since it can deal with the encrypted real number
naturally. However, these schemes support only homomorphic arithmetic operations such
as the homomorphic addition and the homomorphic multiplication. Unfortunately, the
popular activation functions are usually non-arithmetic functions, such as ReL.U, sigmoid,
leaky ReLU, and ELU. Thus, these activation functions cannot be evaluated directly using
the word-wise FHE scheme. When the previous machine learning models using FHE
replaced the non-arithmetic activation function with the simple polynomials, these models
were not proven to show high accuracy for advanced classification tasks beyond the MNIST
dataset.

Even though many machine learning models require multiple deep layers for high
accuracy, there is no choice but to use a small number of layers in previous FHE-based deep
learning models until FHE schemes’ fast and accurate bootstrapping techniques become
very recently available. The bootstrapping technique transforms a ciphertext that cannot
support the homomorphic multiplication further to a fresh ciphertext by extending the
levels of the ciphertext [Gen09, CHK™18a]. However, the bootstrapping technique has been
actively improved in regard to algorithmic time complexity [CCS19, HK20, BMTPH20],
precision [LLL*20a], and implementation [JKAT21], which make bootstrapping more
practical. The PPML model with many layers has to be implemented with the precise
and efficient bootstrapping technique in FHE. In addition, since the training process is
generally pretty expensive process as it requires many images and the large running time,
it is more desirable to use the pre-trained parameters trained for the original standard
plaintext machine learning model without any additional training process.

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 3

1.1 Our Contribution

For the first time, we implement the ResNet-20 model for the CIFAR-10 dataset [KH*09)
using the residue number system CKKS (RNS-CKKS) [CHK ™ 18b] FHE scheme, which is
a variant of the CKKS scheme using the SEAL library 3.6.1 version [Mic21], one of the
most reliable libraries implementing the RNS-CKKS scheme. In addition, we implement
bootstrapping of RNS-CKKS scheme in the SEAL library according to [CHK*18a, CCS19,
HK20, BMTPH20, LLL*20a] in order to support a large number of homomorphic opera-
tions for a deep neural network, as the SEAL library does not support the bootstrapping
operation. ResNets are one of the historic convolutional neural network (CNN) models
which enable a very deep neural network with high accuracy for complex datasets such as
the CIFAR-10 and the ImageNet. Many high-performance works for image classification
are based on ResNets since these models can reach sufficiently high classification accuracy
by stacking more layers. We firstly apply the ReLU function based on the composition of
minimax approximate polynomials [LLL"21] to the encrypted data. Using the results, we
show the possibility of applying the FHE with the bootstrapping to the standard deep
machine learning model by implementing the ResNet-20 over the RNS-CKKS scheme. The
implemented bootstrapping can support sufficiently high precision to successfully use the
bootstrapping in the ResNet-20 with the RNS-CKKS scheme for the CIFAR-10 dataset.

Boemer et al. [BCD120] pointed out that all existing PPML models based on FHE or
MPC are vulnerable to the model extraction attack. One of the reasons for this problem
is that the previous PPML methods with the FHE scheme do not evaluate the softmax
with the FHE scheme. It just sends the result before the softmax function, and then it is
assumed that the client computes the softmax by itself. Thus, the information about the
model can be extracted with lots of input-output pairs to the client. It can be desirable for
the server to evaluate the softmax function with FHE. We firstly implement the softmax
function in the machine learning model using the method in [CKKS17], and this is the first
implementation of a privacy-preserving machine learning model based on FHE mitigating
the model extraction attack.

We prepare the pre-trained model parameters by training the original ResNet-20
model with the CIFAR-10 plaintext dataset and perform the privacy-preserving ResNet-20
with these plaintext pre-trained model parameters and encrypted input images. We find
that the inference result of the proposed implemented privacy-preserving ResNet-20 is
98.43% identical to that of the original ResNet-20. It achieves 92.43%+2.65% classification
accuracy, which is quite close to the original accuracy of 91.89%. Thus, we verify that the
proposed implemented PPML model successfully performs the ResNet-20 on the encrypted
data even with the model parameters trained for the plaintext model.

1.2 Related Works

HE-friendly Network Some previous works re-design the machine learning model com-
patible with the HE scheme by replacing the standard activation functions with the simple
non-linear polynomials [GBDL 16, CBL*18, vEPIL19, BCL 20, HTG17], called the HE-
friendly network. Although the highest classification accuracy of the HE-friendly CNN
with the simple polynomial activation function implemented by word-wise HE is 91.5%
for the CIFAR-10 dataset [HTG17], better PPML machine learning model has not been
shown until now. It may suggest that these machine learning models are usually successful
only for the simple dataset and cannot reach sufficiently high accuracy for the advanced
dataset. Since the choice of the activation functions is sensitive in the advanced machine
learning model, it may not be desirable to replace the standard and famous activation
functions with simple arithmetic functions. Moreover, the additional pre-training process
has to be followed before the PPML service is given. Since the training process is pretty
time-consuming and needs quite a lot of data, it is preferable to use the standard model

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
4 Neural Network

parameters of ResNets and VGGNets trained for plaintext data when the data privacy of
the testing dataset has to be preserved.

Hybrid Model with FHE and MPC Some previous works evaluate the non-arithmetic
activation functions with the multiparty computation technique to implement the stan-
dard well-known machine learning model preserving privacy [JVC18, RCK ™20, BLCW19,
BCCW19, BCD™20]. Although this method can evaluate even the non-arithmetic functions
exactly, the privacy for the model information can be disclosed. In other words, the client
should know the used activation function in the model, which is not desirable for the
PPML servers. Also, since the communication with the clients is not succinct, the clients
have to be involved in the computation, which is not desirable for the clients.

PPML with Leveled Homomorphic Encryption Some works use leved homomorphic
encryption scheme to implement the standard machine learning model. The representative
example is the work of Lou and Jiang [LJ19], which implements the ResNet-20 for
the CIFAR-10 dataset or the ResNet-18 for the ImageNet dataset with leveled version
of TFHE scheme. When we use leveled homomorphic encryption scheme, we should
set parameters capable of the depth consumption for the desired circuit. Thus, if we
want to homomorphically evaluate the deeper circuits, we have to set large parameters.
This property of the leveled homomorphic encryption scheme makes difficult to evaluate
more deep learning model because the required parameters may be rather impractical
to the general computing environment. Further, the running time of each homomorphic
encryption becomes larger, and thus the total running time could be asymptotically larger
than the linear time with the circuit depth. On the other hand, FHE scheme uses practical
parameters with fixed size regardless of the circuit depth, and the total running time can
be just linear with the circuit depth. Therefore, for the practical deep learning models
which has large circuit depths, the implementation of the deep learning model using the
FHE scheme is an important research topic.

2 Preliminaries

2.1 RNS-CKKS Scheme

The CKKS scheme [CKKS17] is an FHE scheme supporting the arithmetic operations
on encrypted data over real or complex numbers. Any users with the public key can
process the encrypted real or complex data with the CKKS scheme without knowing
any private information. The security of the CKKS scheme is based on the Ring-LWE
hardness assumption. The supported homomorphic operations are the addition, the scalar
multiplication, the non-scalar multiplication, the rotation, and the complex conjugation
operation, and each operation except the homomorphic rotation operation is applied
component-wisely. While the scalar multiplication is the multiplication with the plaintext,
the non-scalar multiplication is the multiplication with the ciphertext. The rotation
operation homomorphically performs a cyclic shift of the vector by some step. The non-
scalar multiplication, rotation, and complex conjugation operations in the CKKS scheme
need additional corresponding evaluation keys and the key-switching procedures.

Each real number data is scaled with some big integer, called the scaling factor, and
then rounded to the integer before encrypting the data. When the two data encrypted
with the CKKS scheme are multiplied homomorphically, the scaling factors of the two
data are also multiplied. This scaling factor should be reduced to the original value using
the rescaling operation for the following operations.

Since the CKKS scheme needs pretty big integers, the original CKKS scheme uses a
multi-precision library, which requires higher computational complexity. To reduce the

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 5

complexity, the residue number system variant of the CKKS scheme [CHK™18b], called
the RNS-CKKS scheme, was also proposed. In the residue number system, the big integer
is split into several small integers, and the addition and the multiplication of the original
big integers are equivalent to the corresponding component-wise operations of the small
integers. We use the RNS-CKKS scheme in this paper. We show some required operations
in RNS-CKKS scheme in the followings.

We denote the homomorphic addition, the homomorphic scalar multiplication, and
the homomorphic non-scalar multiplication as @, ®,® in this paper. The homomorphic
rotation operation for left rotation with r steps is denoted as rot(ct,r).

2.2 Baby-Step Giant-Step Polynomial Evaluation

In order to utilize homomorphic encryption, many non-arithmetic operations of ResNets
and bootstrapping must be approximated using high-order polynomials. When we evaluate
a polynomial for the encrypted input with RNS-CKKS scheme, it is important to reduce
the number of non-scalar multiplication and the depth consumption as much as possible.
A well-known polynomial evaluation method efficient in non-scalar multiplications and
depth consumption is the baby-step giant-step polynomial evaluation method.

Bossuat et al. [BMTPH20] suggests a variant of the baby-step giant-step polynomial
evaluation method that guarantees the optimal depth consumption with small additional
non-scalar multiplication. Since the depth consumption is generally more sensitive that
the number of non-scalar multiplication because of the number of the bootstrapping, we
use this variant as a default method for the homomorphic polynomial evaluation. Lee et
al. [LLLT20b] suggest an efficient method for polynomials with only odd degree terms.
These algorithms are elaborated with the proposed implementation based on binary tree
in Section 3.1.

2.3 Bootstrapping of CKKS Scheme

The rescaling operation reduces both the scaling factor and the ciphertext modulus, which
is necessary for each homomorphic multiplication. After several consecutive multiplications,
the ciphertext modulus cannot be reduced further at some point. The bootstrapping
operation of the CKKS scheme [CHKT18a] transforms the ciphertext with too small
modulus into the fresh ciphertext with large modulus without changing the message.
Therefore, any arithmetic circuits with large multiplicative depth can be obtained using
the bootstrapping operation.

The bootstrapping of the CKKS scheme starts with raising the modulus of the ciphertext.
Since the message polynomial becomes m + goI where ¢q is the level-0 modulus and I is
some unknown integer polynomial, the modular reduction of the coefficients of the message
polynomial should be performed homomorphically to remove gyl part.

To move the coefficients of the message polynomials into the slots, COEFFTOSLOT
is performed to the raised ciphertext. The core part of this operation is the matrix
multiplication with a kind of Vandermonde matrix. Specifically, if we have Uy and Uy as

N/2-1 N/2 N/2+1 N—1
. L .
1 G e C1/ C1/ A
Uo=|.) .) yUp =
. - . N/-2—1 N/z N/2+1 ' N_1
L Cnj2—1 C1\7/271 CN/271 CN/271 T SNj2-1

then the COEFFTOSLOT operation is the homomorphic evaluation of two formulas z; =
(UL -z+UT -z) for k=0,1. Chen et al. [CCS19] proposed the FFT-like optimization
technique for this operation. They observed these matrices are FFT-friendly matrix in

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
6 Neural Network

that some kind of butterfly structure can be applied to the operation. To give a trade-
off between the running time and the depth consumption, they also proposed the level
collapsing technique, where several layers in the butterfly structure are merged to reduce
the depth consumption to desired value. We use this FFT-like optimization technique and
the level collapsing technique in our implementation.

Next, we perform the homomorphic modular reduction to the converted ciphertext,
called MODREDUCTION. There are several techniques and we elaborate only the techniques
we used to implement. Lee et al. [LLL%20a] proposed that the modular reduction is
represented by the composition of several functions hs o h% o hy such that

hi(x) = cos <227Z (z - i)) ho(z) = 22% — 1, hy(z) = % arcsin x.
Then hy; and hgz are approximated with the minimax approximate polynomials in the
approximation regions. Lee et al. also proposed the improved multi-interval Remez
algorithm to obtain the minimax approximate polynomial for piecewise continuous functions.
This approximation needs several parameters. K is the parameter determining the number
of the approximation intervals, and € is the half width of each interval. The approximation
region is Uf;__l(K_l)[i — €, + €]. While the parameter € is related to the range and the
precision of the input message data, the parameter K is related to the bootstrapping failure.
The additional parameters is the polynomial degree of the approximate polynomials of hy
and hs functions. The homomorphic evaluation of the polynomials are performed by the
baby-step giant-step polynomial evaluation algorithm in Section 2.2.

Then, the modular-reduced slots is reverted to the coefficients of the message polynomial
by SLOTTOCOEFF. The SLOTTOCOEFF operation is the homomorphic evaluation of the
formula z = Uy - zg + Uy - z1. This operation can be also optimized with the FFT-like
optimization and the level collapsing technique [CCS19].

2.4 Minimax Composition of ReLU

Lee et al. [LLL*21] show that the ReLU function has to be approximated with sufficiently
high precision if we use the pre-trained model parameters with the original ResNet-20
model. We need a polynomial with quite a large degree if a single minimax polynomial
approximates the ReLLU function, and it needs a pretty big running time to evaluate
homomorphically. Instead of using the single minimax polynomial for the ReLU function,
they use the formula ReLU(z) = (1 + sign(z)) and approximate sign(x) by the minimax
composition of the small degree polynomials [LLNK20]. It reduces the running time of the
homomorphic evaluation of the ReLU function, and this approximation method makes
more practical the homomorphic evaluation of the non-arithmetic functions such as the
ReLU function.

Lee et al. [LLNK20] specified the method to find the optimal composite polynomials
for sign function. When they find each polynomial composing the composite polynomial,
they used the range of the previous polynomial as the approximation domain for the next
polynomial. If each polynomial is the minimax approximate polynomial of the sign function
for each domain, the range of each polynomial is always two intervals symmetric to the
origin. Each degree of the element polynomial requiring minimal non-scalar multiplications
for desired precision are found by dynamic programming algorithm.

3 New Consideration for ResNet-20 on RNS-CKKS Scheme

To implement the ResNet-20 model with the RNS-CKKS scheme, there are three points to
be newly considered: binary tree based implementation for polynomial evaluation, natural
implementation for the strided convolution, and implemenation for the softmax function.

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 7

3.1 Binary Tree Based Implementation of Polynomial Evaluation

For more intuitive and systemetic implementation, we modify the baby-step giant-step poly-
nomial evaluation algorithm using binary tree data structure. There is a pre-computation
process for recursively dividing by the division algorithm for the polynomial, which is
shown in Algorithm 1. The output of DividePoly is a binary tree which is useful in
homomorphic polynomial evaluation process.

Algorithm 2 shows the binary tree-based baby-step giant-step polynomial evaluation
algorithm. For the optimal depth consumption, we may further divide the leftmost leaf
node as modification of Bossuat et al.[BMTPH20] in Lines 3-13. We generalize the giant
step degree as arbitrary integer, rather than power-of-two integer as in [LLLT20b].

Then, Lines 15-18 homomorphically evaluate for the polynomial in non-leaf nodes and
the leaf nodes. T, (x) means the n-th Chebyshev polynomial. Chebyshev polynomials have
a recursive formula as follows,

Tongn(@) = T (2) = 2T (2) T (2)

where m > n. When we homomorphically evaluate the Chebyshev polynomials in Lines 15,
17, we use the formula with m = n where Ty(x) is 1. When we homomorphically evaluate
other Chebyshev polynomials in Line 16, we set m as the most large power-of-two integer
less than the degree and n as the difference between the degree and m.

Lines 19-26 reduce the binary tree until the binary tree has only the root node by
homomorphically evaluating the polynomials for non-leaf nodes having two leaf nodes.
This implementation is essentially the same as the method in [BMTPH20], but it is more
easy to design the implementation for the algorithm.

Lee et al. [LLLT20b] suggest the method for polynomials with only odd degree terms.
They observed if k is even, there is no need to evaluate the Chebyshev polynomials with
even degree that is not power-of-two integer in Line 16. If we denote 0ddPolyEval rather
than PolyEval in the following section, we omit these polynomial evaluation process.

Algorithm 1: DividePoly(p; k)
Input :A degree-d polynomial p, a giant step parameter k
Output: A binary tree P with leaf having polynomials
if d < k then

‘ return a binary tree P with a single root node having p
else
Find m such that k-2m"1 < d < k.2m.
Generate a binary tree P with a single root node having T}, .om-1.
Divide p by T}.om-1 to obtain the quotient ¢ and the remainder r.
Generate a binary tree () using DividePoly(g; k).
Generate a binary tree R using DividePoly(r;k).
Append @, R to the left child and the right child of the root in P, respectively.
return P

© 00 N O Uk~ W N -

[
o

end

=
[

3.2 Strided Convolution

Juvekar et al. [JVC18] proposed an efficient convolution operation for the packing structure
in FHE scheme. They also proposed strided convolution operation on the homomorphic
encryption scheme by decomposing the strided convolution into a sum of non-strided
convolutions. However, their proposed strided convolution operation is not natural for the

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
8 Neural Network

Algorithm 2: PolyEval(ct,p; k)
Input :A ciphertext ct = Enc(z), a degree-d polynomial p
Output : A ciphertext of p(z)
1 Generate a binary tree P using DividePoly(p;k).
2 [+ [logk] —1
if P is a full binary tree and the leftmost leaf polynomial has degree more than 2

3
then

4 po < the leftmost leaf polynomial

5 V < the leftmost leaf node

6 while the polynomial in V has degree more than 2' do

7 Replace pg with Ty in V.

8 Divide pg by T%: to obtain the quotient ¢ and the remainder r.
9 Append ¢, r to the left child and the right child of V.
10 V « the left child of V
11 l—1-1
12 end
13 end

14 [< [logk] —1

15 Homomorphically evaluate Ty (z), Ty(x), - - -, Toi (x) using Ty, (x) = 2T, (z)? — 1.
16 Homomorphically evaluate other T,,(z) for 3 <n < k.

17 Homomorphically evaluate To (), - -, Tom—1.4(x).

18 Evaluate all of leaf node polynomials using the pre-computed ciphertexts.

19 while P has only a root node do

20 V' < one of the non-leaf nodes that have two leaf child

21 cty < ciphertext for the polynomial (7'(z)) in V' (pre-computed in Line 15, 17)
22 ctq — ciphertext for the polynomial (g(z)) in left child of V'

23 ct, < ciphertext for the polynomial (r(x)) in right child of V'

24 Cty < cty ® ctp O cty

25 Replace T'(x) with ¢(z)T(z) + r(z) in node V and remove the childs of V/
26 end

27 return ct, for input polynomial p(x)

packing structure in the RNS-CKKS scheme. Further, the following operations after their
strided convolution are difficult to be performed on the RNS-CKKS scheme.

We propose an efficient and natural method for the strided convolution on RNS-CKKS
scheme. Instead of decomposing the strided convolution, we regard the output of the
strided convolution as a part of the non-strided convolution. Indeed, the output data for
the non-strided convolution include the output data for the strided convolution. If we
perform the non-strided convolution, there are some gaps between the required output
data for the strided convolution, which is not completely uniform but some regular sense.
The slot structure of the output data of the strided convolution in the output slots of the
non-strided convolution is shown in Fig. 1.

We also find that this slot structure with the regular gaps is compatible with the
following ReLLU functions, non-strided convolution operations, and even strided convolution
operations. Since the ReLLU function is evaluated component-wisely, this slot structure
does not count for the ReLLU function. The non-strided convolution to the slot structure
after the proposed strided convolution can be performed with the Gazelle’s convolution
method with all rotation steps doubled. The additional strided convolution to the slot
structure after the strided convolution can be performed with the non-strided convolution
for this slot structure followed by additional filtering. With these convolution methods,

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 9
[eloTeTaleleTelnli 5 [xlt m nloTe]

[

l stride-1 convolution
X

a[1]1]x[L]m][x]o]z]

®
-

|
1

o

EREE

HEER
ofofoel:]
N

|
3
o - Al [
[

(a) (b)

B =

Blmlo|w
o |m|m|n

0[1]0[0|0|0|0|windowkemel
[<[]

K | | | |slride-2convolution

Figure 1: Stride-2 convolution (a) plaintext (b) ciphertext.

we can perform non-strided and strided convolution operations even after several strided
convolutions.

In the ResNet-20, we only use the convolution with stride one or two, and thus we
assume that the strided convolution is the convolution with stride two. Each convolution
operation should be given an additional parameter, slotstr, that represents the slot structure
for the meaningful data in the input ciphertext of each convolution. The parameter slotstr
is stored in each ciphertext for each channel and initialized with zero, and it is added
by one only when the strided convolution is performed. If the non-strided convolution is
performed, we perform Gazelle’s convolution method with the steps multiplied by 2sletstr,
If the strided convolution is performed, we perform the same procedure as the non-strided
convolution except the following filtering. Specific algorithm for the strided convolution
will be suggested in Section 5.3.

3.3 Approximation for Softmax

We implement the softmax function in our privacy-preserving ResNet-20 implementation
for the security against the model extraction attack. The softmax function is e®¢/ Z;:Ol e’
foreachi =0,---,T—1 where T is the number of the classification types. Since the softmax
function was not implemented in the previous works for the PPML with homomorphic
encryption, the approximation method for the softmax function should be newly designed.
There are two non-arithmetic operations in the process of the softmax function, the
exponential function and the inverse function.

We use different approximation techniques to these non-arithmetic function because of
the difference in the characteristic of the input values. The absolute input values of the
exponential function are dozens, but the output values of that function are rather unstable.
On the other hand, the input values of the inverse function are unstable in that each scale
of the input value is different from each other’s input value. With these characteristics, we
choose the following approximation methods, and whole algorithm is suggested in Section
5.7.

Exponential Function If we simply approximate the exponential functions on a desired
interval, the approximation may not be so accurate in that the scales of the output for
the exponential function can be too various. Assume that we have to approximate the
exponential function e® in [—B, B]. Then, we can regard the function as (e*/7)Z. Note
that we may approximate e¥ in [—1, 1] when we set y = /B, and the exponential function
in this interval is easy to approximate. Thus, we approximate the exponential function
in [—1, 1] with the least square method, and we find that the approximate polynomial
with degree 12 can approximate sufficiently precisely. Then, when we homomorphically
evaluate the exponential function in [—B, B], we divide the input by B, evaluate the
approximate polynomial for the exponential function, and exponentiate with B. If we
set B as power-of-two integer, exponentiation with B can be implemented by repeated
squaring.

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
10 Neural Network

Inverse Function While the exponential function has a range with various scales, the in-
verse function in the softmax function has a domain with various scales. This characteristic
makes the approximation of the inverse function difficult with some ordinary polynomial
approximation, even with some scaling of the input. In this case, Goldschmidt division
method is appropriate for the evaluation of the inverse function on the input with various
scale [Gol64, CKK'19]. In Goldschmidt division method, the following formula is used,

on n—1

———=[[a+a")

=0

If |x|< 1, the left term of the above formula converges to 1/(1 — z) very fast even with
small n. When we substitute y = 1 — z, the inverse function 1/y can be approximated as
H?gol(l +(1—y)?") when 0 < y < 2. Note that even if y is close to zero, the approximated
inverse function value amplified to very large number. This characteristic cannot be
satisfied with the ordinary polynomial approximation methods. The characteristic can be
used to reserve the role of the softmax function for generating one-hot vector even when
we approximate the softmax function.

When the range of the input is (0,2R], we regard the inverse function on the range
as 1/R-1/(y/R). In other words, the input value is multiplied with 1/R, evaluated by
the inverse function with Goldschmidt division method, and multiplied with 1/R again.
Note that R will be very large number, and the input may be far less than R. Even if
y/R is very close to zero, the Goldschmidt method stably evaluates the inverse function as
mentioned above.

Gumbel Softmax Function If the input value of the softmax function is somewhat large,
the bound B for the range of the exponential function should be extremely large. If the
value R is set to a fixed value for a sufficient precision of the inverse function, the input
value of the inverse function can be larger than 2R. In this case, we may use the Gumbel
softmax technique, which evaluates the following function instead of the softmax function,

ezi/k

Z;F:_Ol €%/
where) is an additional parameter. If we use the Gumbel softmax function, the output
vector is still similar to one-hot vector, and thus the model extraction attack can be
mitigated enough. Further, the range of the exponential function is reduced from B to
B'/* | the input of the inverse function will be included in (0, 2R].

4 Position of Bootstrapping

As we first use the bootstrapping operation in a machine learning model, we should consider
when we perform the bootstrapping operation in the middle of the ResNet-20 model. In
this section, we analyze several factors about the position of the bootstrapping operation
affecting the efficiency.

The key-switching operation is the heavist operation in the homomorphic operations in
RNS-CKKS scheme, and thus the non-scalar multiplication, the rotation, and the complex
conjutation requiring the key-switching operation are far heavier than the addition and the
scalar multiplication. For this reason, the number of the key-switching operations roughly
determines the total amount of operations.

There is a major additional factor affecting the total amount of operations, the level
of the ciphertext for the key-switching operation. The key-switching operation includes
the decomposing operation, the mult-sum operation, and the mod-down operation. While

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 11

the mod-down operation is linear with the level of the input ciphertext, the decomposing
operation and the mult-sum operation are quadratic with the level of the input ciphertext.
Since the most time-consuming operation among the three procedures is the decomposing
operation, the key-switching operation is quadratic function with the level. This quadratic
property shows the large effect of the level of the ciphertext to the key-switching operation
and the total amount of the operations.

This quadratic property is numerically confirmed with SEAL library as in Fig. 2. Fig.
2 shows the running time of the rotation operation for the various levels of the input
ciphertext, where the most part of the rotation operation is the key-switching operation,
and it also shows the graph of the square root of the running time to represent the quadratic
property more clearly. The square root of the running time is almost the linear function
with the level, which confirms the quadratic property. Thus, the sum of the squared level
of each input ciphertext of each key-switching operation can simulate much more closely
than the number of the key-switching operations.

12 12

o
&

Running time (s)
Square root of running time
-

H

0 5 10 15 20 25 0 5 10 15 20 25
Ciphertext modulus (level +1) # Ciphertext modulus (level +1)

(a) (b)

Figure 2: Running time for the rotation operation for various number of ciphertext modulus
with N = 216 (a) Tot-(€ + 1) graph (b) v/Trot-(¢ + 1) graph.

Although the most time-consuming operation in the ResNet-20 is the bootstrapping
operation, the level of the ciphertexts for each key-switching operation in the bootstrapping
is rather fixed regardless of the structure of the ResNet-20. Thus, it is desirable to compare
the number of the key-switching operations of the convolution operation and the ReLLU
function. We note that the number of the key-switching operations in the convolution
operation is far more than that in the ReLLU function because of many rotation operation
in the convolution operation.

This fact suggests that it is desirable to perform the bootstrapping just after the
convolution operation. Then, the convolution operation is performed in the lowest level
of the ciphertext, and lots of rotation operations in the convolution operation will be
significantly reduced. Numerical comparison for this analysis will be dealt with in Section 6.

5 Implementation Details of ResNet-20 on RNS-CKKS

5.1 Structure

Fig. 3 shows the structure of the ResNet-20 model and Table 1 shows the specification
of the ResNet-20. With this structure, We design our implemented structure for the
ResNet-20 with the RNS-CKKS scheme as shown in Fig. 4, where it consists of convolution
(Conv), batch normalization (BN), ReLU, bootstrapping (Boot), average pooling (AP),
fully connected layer (FC), and softmax. This model is virtually identical to the original
ResNet-20 model except that the bootstrapping procedures are added. All of these
procedures will be specified in the following subsections.

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
12 Neural Network

Table 1: The specification of the ResNet-20 (CIFAR-10)

Layer Input Size #Inputs Filter Size #Filters Output Size #Outputs
Convl 32 x 32 3 3x3 16 32 x 32 16
2-1 32 x 32 16 3x3 16 32 x 32 16
Conv2 2-2 32 x 32 16 3x3 16 32 x 32 16
2-3 32 x 32 16 3x3 16 32 x 32 16
3-1-1 32 x 32 16 3x3 32 16 x 16 32
3-1-2 16 x 16 32 3x3 32 16 x 16 32
Conv3d 3-1-s 32 x 32 16 1x1 32 16 x 16 32
3-2 16 x 16 32 3x3 32 16 x 16 32
3-3 16 x 16 32 3x3 32 16 x 16 32
4-1-1 16 x 16 32 3x3 64 8 x8 64
4-1-2 8% 8 64 3x3 64 8 x8 64
Convd 4-1-s 16 x 16 32 1x1 64 8% 8 64
4-2 8% 8 64 3 x3 64 8% 8 64
4-3 8% 8 64 3 x3 64 8% 8 64
Average Pooling 8 x 8 64 8x 8 64 - 64
Fully Connected 64 x 1 1 - - - 10

HE HE I]I m m @ m+ l E H i‘{}‘:g?
-

Figure 3: Structure of ResNet-20.

5.2 General Setting for RNS-CKKS Scheme

5.2.1 Parameters

We set the ciphertext polynomial degree as 2'6 and the secret key Hamming weight as

64. The bit length of base modulus (go), special modulus, and default modulus are set as
60, 60, and 50, respectively. The bit length of modulus in the bootstrapping range is the
same as that of ¢g. The numbers of levels for the general homomorphic operations and the
bootstrapping are set as 11 and 13, respectively. The maximum bit length of modulus is
1450, which satisfies 111.6-bit security. The security level X is computed based on Cheon
et al’s hybrid dual attack [CHHS19], which is the fastest attack for the LWE with the
sparse key. Table 2 lists the above parameters.

Table 2: RNS-CKKS parameter settings

A Hamming Degree Modulus Special Scaling Evaluation Bootstrapping
Weight & Q % Prime Factor Level Level
111.6 64 2161450 bits 60 bits 60 bits 50 bits 11 13

5.2.2 Data Packing

The message is a 32 x 32 x 3 CIFAR-10 RGB image, and a single image is processed at
a time. We can use 2!° message slots in one ciphertext with our parameters, which is
the half polynomial degree. Rather than using the full slots of the ciphertext, we employ
the sparse packing method [CHK™18a] to pack a channel of a CIFAR-10 image in one
ciphertext using only 2'° sparse slots. This is because the bootstrapping of sparsely packed
ciphertext takes much less time than that of fully packed ciphertext and the convolution
operations can be performed more smoothly with the minimal rotation operations.

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No! 13

<500

~oow

Zz2®
cro®
[~oow

° o
~oow

@

)
[~oow]
<son

X | ~oowm |[roowm

@

{ [~ocow |[Foow

{ [~oow |[Foowm
=
Ceeos]

Convl Co

H
2
S
e
o
8
H
2
R
'
o
8
H
2
S
'w

~oo0ow®m |[~o0 @
zo

X [~oowm |[~0o0®
{ [~oow |[Foouwm
£

[~oow]

o
g
3
2
&
o
g
3
2
&
'~
o
g
3
2
&
'w

10-Tuple
Vector

X [~oowm |[~oo0wm
zZw
X [~oowm |[~oowm

X [~oowm |[~oowm
zw
+
crox
[=ooa]
o>
o
[~oow]
[~oow]
13 v

o
g
E
S
N
o
8
S
S
N
o
8
S
S
'w

Figure 4: Proposed structure of ResNet-20 over RNS-CKKS scheme.

We construct the structure type for the encrypted tensor. In our implementation,
it is not sufficient only to have ciphertexts composing the encrypted data, but we have
to store slot structure parameter generated by the strided convolution. For the ease of
understanding, we also store the dimension of the tensor to the encrypted tensor. An
encrypted tensor Tensorct for a tensor in R**¢*" is the form of ({ct}x, ¢, slotstr, h), where
{cty }x is an array of the ciphertexts composing the encrypted tensor and slotstr is the slot
structure parameter. Algorithm 3 shows the detailed algorithm to encrypt image tensors.

Algorithm 3: EncTensor(A € REXLxH)

Input :A tensor A € REXLxH
Output : An encrypted tensor Tensorct
for k=0to H—1do
v 0 € RLZ
fori=0to L—1do
for j=0to L —1do
ri-L+j
vele] Ali,j, k]
end

end

cty < Enc(vk; N, L2)

end

return ({ctg}i=o0,...u-1,L,0, H)

© 00 N O oA W N =

=
= O

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
14 Neural Network

5.2.3 Data Range and Precision

Any polynomials can approximate continuous functions only in some bounded set. If even
one value in the message slots exceeds this bounded set, the absolute value of output
diverges to a pretty big number, leading to complete classification failure. Since FHE
can only handle arithmetic operations, polynomial approximation should be used for
non-arithmetic operations such as the ReLU function, the bootstrapping, and the softmax
function. Thus, the inputs for these procedures should be in the bounded approximation
region. We analyze the absolute input values for the ReLU, the bootstrapping, and the
softmax when performing the ResNet-20 with several images. Since the observed maximum
absolute input value for these procedures is 37.1, we conjecture that the absolute input
values for these procedures are less than 40 with a very high probability. We use this
observation in the implementation of each procedure. We also empirically find that the
precision of the approximate polynomial or the function should be at least 16-bit below the
decimal point, and thus we approximate each non-arithmetic function with 16-bit average
precision.

5.2.4 Optimization for Precision of Homomorphic Operations

We apply several methods to reduce the rescaling error and relinearization error and
ensure the precision of the resultant message, such as the scaling factor management in
[KPP20], lazy rescaling, and lazy relinearization [BGP*20, LLK"20]. The lazy rescaling
and relinearization can also be applied to reduce the computation time as it requires much
computation due to the number-theoretic transformation (NTT) and gadget decomposition.

5.3 Convolution and Batch Normalization

Most of the operations in the ResNet-20 are convolutions with zero-padded input to
maintain their size. We use the packed single input single output (SISO) convolution with
stride 1 used in Gazelle [JVC18]. The strided convolution with stride 2 is also required
to perform down-sampling, and it is performed by the proposed method in Section 3.2.
Algorithm 4 shows the detailed algorithm for convolution, and it includes both the non-
strided convolution and the strided convolution. The non-strided convolution is performed
when str is 1, and the strided convolution is performed when str is 2. Each rotation steps
are multiplied by the slotstr value as discussed in Section 3.2.

Since the batch normalization procedure is a simple linear function with constant
coefficients, it can be implemented with the homomorphic addition and the homomorphic
scalar multiplication.

5.4 RelU

For the first time, we implement the ReLU function in the ResNet-20 with the RNS-
CKKS scheme using the composition of the minimax polynomial approximation by Lee et
al.[LLL"21]. To find an appropriate precision value, we repeatedly perform the ResNet-20
simulation over the RNS-CKKS scheme while changing the precision, and as a result, we
find that the minimum 16-bit precision shows good performance on average.

To synthesize the sign function for the ReLLU approximation, we generate the compo-
sition of the small minimax approximate polynomials with precision parameter o = 12
using the three minimax approximate polynomials with degrees 7, 15, and 27. Algorithm 5
shows the algorithm generating the composite polynomials approximating the sign function
[LLNK20]. GenMinimax(f,d, D) in Algorithm 5 is an algorithm generating the minimax
approximate polynoimal with degree d for function f on the domain D, and we implement
this algorithm by the multi-interval Remez algorithm [LLL™20a]. Range(f, D) means the
range of f on the domain D.

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 15

Algorithm 4: Conv(Tensorct, W € REX*X" stride)

Input :An encrypted tensor Tensorct = ({ctx}x=0,....t—1, ¥, slotstr, t), weight
parameters W € RX*%t" (¢ is an odd integer), and the stride of the
convolution operation str

Output : An output encrypted tensor Tensorct’

L + (- slotstr

1
2 forh=0tot —1do

3 ctj, <0

4 for k=0tot—1do

5 for (i,7) = (0,0) to (¢ —1,¢—1) do

6 w0 € R

7 for (i/,7) =(0,0) to (¢{ —1,£—1) do

8 if 0<i+i—[c/2] <{—1and?,j =0 mod slotstr - str then
0 | wli’ - 0+ §) Wi, j, k, B

10 end

11 end

12 re (= Le/2]) -0+ (G — Le/2])

13 ct}, « ctj, @ (w @ rot(ct, r - slotstr))

14 end

15 end

16 end

17 return ({ct}, }n=0,... 1, {/str,slotstr - str,t’)

Algorithm 6 shows the homomorphic evaluation method for RelLU function using
the composite polynomials generated by Algorithm 5 as input. After homomorphically
evaluating p;’s in order, we homomorphically evaluate x(1 + sign(z))/2.

This composition of polynomials ensures that the average approximation precision
is about 16-bit precision. The homomorphic evaluation of the polynomials is carried
out using the odd baby-giant method in [LLLT20b] and the optimal level consumption
method in [BMTPH20]. Since the homomorphic evaluation of polynomial compositions
consumes many depths, it is impossible to finish it without bootstrapping. Thus, we use
bootstrapping twice in a layer, once in the middle and once at the end of evaluating the
ReLU function.

5.5 Bootstrapping

Since we have to consume many depths to implement the ResNet-20 on the RNS-CKKS
scheme, many bootstrapping procedures are required to ensure enough homomorphic
multiplications. For the first time, we apply the bootstrapping technique to perform
the deep neural network such as the ResNet-20 on the encrypted data and prove that
the FHE scheme with the state-of-the-art bootstrapping can be successfully applied for
privacy-preserving deep neural networks. Since the SEAL library does not support any
bootstrapping technique, we implement the most advanced bootstrapping with the SEAL
library [BMTPH20, LLL"20a, JKA*21]. The COEFFTOSLOT and the SLOTTOCOEFF are
implemented using collapsed FFT structure [CCS19] with depth 2. The MODREDUCTION
is implemented using the composition of the cosine function, two double angle formulas,
and the inverse sine function [HK20, LLL"20a], where the cosine function and the inverse
sine function are approximated with the multi-interval Remez algorithm as in [LLL"20a].

The most crucial issue when using the bootstrapping of the RNS-CKKS scheme is the
bootstrapping failure. More than a thousand bootstrapping procedures are required in our

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
16 Neural Network

Algorithm 5: GenSignPoly(«, {d;};)
Input :Precision parameter of sign function «, sequence of composite polynomial
degrees {d;}i=o,....s—1
Output : Sequence of composite polynomials for sign function {p;}i=o,... s—1 where
Pet 00 po() ~ sign(z)
1 fori=0tos—1do
2 if ¢ =0 then
3 ‘ Dy + [-1,—-27%]U 27, 1]
4 else
5 | D; <+ Range(pi—1,D;_1)
6
7
8

end
p; < GenMinimax(sign, d;, D;)
end

Algorithm 6: ReLU(Tensorct, {p; };)

Input :An encrypted tensor Tensorct = ({ctx}x=0,....t—1, £, slotstr, t), sequence of
composite polynomials for sign function {p;}i=o,....s—1
Output : An activated encrypted tensor with ReLU Tensorct’
1 fork=0tot—1do
ct), cty
fori=0tos—1do
| ct}, + 0ddPolyEval(ct},p;)
end
cty, < (0.5 @ cty) @ (1 +ct},)
end

N 0 A WoN

model, and the result of the whole neural network can be largely distorted if even one of the
bootstrapping procedures fails. The bootstrapping failure occurs when one of the slots in
the input ciphertext of the MODREDUCTION procedure is not on the approximation region.
The approximation interval can be controlled by the bootstrapping parameters (K, ¢),
where the approximation region is U 11(K—1) [i —¢,i+¢] [CHKT18a]. While the parameter
€ is related to the range and the precision of the input message data, the parameter K is
related to the values composing the ciphertext and not related to the input data. Since the
values contained in the ciphertext are not predictable, we have to investigate the relation
between the bootstrapping failure probability and the parameter K.

Table 3: Boundary of approximation region given key Hamming weight and failure
probability of modular reduction

Pr(|I;|> K) h=64 h=128 h=192
2-25 [BMTPH20] || 12 17 21
230 14 20 24
940 16 23 28

We describe how the bootstrapping failure affects the whole ResNet evaluation and pro-
pose a method to reduce the bootstrapping failure probability. As the CKKS bootstrapping
is based on the sparsity of the secret key, there is a failure probability of bootstrapping.

Here is the reason why the approximated modular reduction in the previous CKKS
bootstrapping has a certain failure probability. The decryption formula for a ciphertext
(@, b) of the CKKS scheme is given as a-s+b=m+e (mod R,) for the secret key s; hence,
a-s+brm+q-I (mod Rg), where the Hamming weight of s is h. As the coefficients of

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,

Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 17
QO(};-H))

a and b are in [-%9, ©), the coefficients of a - s 4 b have an absolute value less than
However, by the Ring-LWE assumption, the coefficients of a-s+b follow a scaled Irwin-Hall
distribution, and it is assumed that the coefficients of I < K = O(v/h) [LLK"20]. As the
modular reduction function is approximated in the domain Ufiil(Kfl) [i —€e,i+¢€],if a
coefficient of I has a value greater than or equal to K, the modular reduction returns a
useless value, and thus, failed.

Even though O(\/ﬁ) is a reasonable upper bound for a single bootstrapping, it is not
enough when the number of slots is large, and there are many bootstrappings. Let p
be the probability of modular reduction failure, Pr(|I;|> K). If there are n slots in the
ciphertext, there are 2n coefficients to perform the modular reduction. Hence, the failure
probability of single bootstrapping is 1 — (1 — p)?" ~ 2n - p. Similarly, when there are
Ny bootstrappings in the evaluation of the whole network, the failure probability of the
whole network is 2N, - n - p. As there are many slots in our ciphertext, and thousands
of bootstrapping are performed, the failure probability is very high when using previous
approximate polynomials.

In Table 3, we show several bounds of the input message and its failure probability.
A larger bound means that a higher degree of the approximate polynomial is required;
hence, more computation is required. Using the new bound for approximation in Table 3,
we can offer a trade-off between the evaluation time and failure probability of the whole
network. Following [BMTPH20, LLK™20], the approximated modular reduction in the
CKKS bootstrapping so far has failure probability ~ 2723, but it is not sufficiently small
since we have to perform pretty many bootstrapping procedures for the ResNet-20. Thus,
the bootstrapping failure probability is set to be less than 2740 in our implementation.
The Hamming weight of the secret key is set to be 64, and (K,e) = (17,2710). The
corresponding degree for the minimax polynomial for the cosine function is 45, and that of
the inverse sine function is 1, which is obtained by the multi-interval Remez algorithm
[LLL*20a]. The number of the double-angle formula ¢ is set to be 2.

5.6 Average Pooling and Fully Connected Layer

The size of the tensor after all convolutional layers are performed is 8 x 8 x 64. We
perform the average pooling to each channel to obtain a vector of length 64 and the fully
connectned layer to obtain a vector of length 10. The form of the output for the average
pooling is an array of the ciphertexts with length 64, and each element of ciphertext array
has corresponding data in the first slot. Since all data are seperated in other ciphertexts,
no rotation operation is needed when we perform the fully connected layer. Algorithm 7
shows the detailed procedures for average pooling and the fully connected layer.

5.7 Softmax

We use the softmax method proposed in Section 3.3. The bound parameters B and R are
set as 64 and 10*, respectively, and the Gumbel softmax parameter X is set to be 4. The
approximation parameter in Goldschmidt’s division algorithm is set to be 16. Although
parameter B greater than 40 is sufficient, as we discussed in Section 3.3, we use 64 since
a power-of-two B is better for implementation. T is the number of classification types,
which is 10 in the CIFAR-10 dataset. Algorithm 8 shows the detailed procedures for the
softmax function.

Since the softmax function consumes many depths, several bootstrapping operations
are used in the middle of the process. The bootstrapping is performed for each ciphertext
just before the beginning of the softmax function, just before the inverse function, and
after 8 iterations of Goldschmidt division process.

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
18 Neural Network

Algorithm 7: AvgPoolFullCon(Tensorct, W)

Input :An encrypted tensor Tensorct = ({cty}x=0,....t—1, ¥, slotstr, t), weight
parameters for fully connected layer W € RT*?
Output : An array of ciphertexts {ct} }x=o,... 71

1 fork=0tot—1do

2 &k < Cctg

3 for i =0 tologl{—1do

4 tmpct < rot(cty, slotstr - 2¢)
5 cty + cty @ tmpct

6 end

7 for j =0 to logl/ — 1 do

8 tmpct < rot(cty, slotstr - £ - 2%)
9 cty + cty @ tmpct
10 end
11 end
12 foru=0to T —1do
13 ctl, + 0
14 for k=0tot—1do
15 | ct), «ct), & (W[u, k] © ctr)
16 end
17 end

18 return {ct} }r=o,... 7—1

6 Simulation Result

6.1 Simulation Setting and Model Parameters

We simulate the proposed model by the SEAL library [Mic21] released by Microsoft
equipped with our implementation of RNS-CKKS bootstrapping. Our simulation envi-
ronment is a dual Intel Xeon Platinum 8280 CPU (112 cores) with 512GB memory. We
allocate one thread per one channel of each layer by using the OpenMP library to improve
the execution speed of the ResNet-20. The required memory for this simulation is 172GB.

The model parameters are prepared by the following training method. We use 32 x 32
RGB images, subtract the mean of the pixels in the training dataset, and adopt a data
argumentation method such as shifting and mirroring horizontally for training. We adopt
the He initialization [HZRS15] as the weight initialization and no dropout. We train the
model with 32 x 32 mini-batches and cross-entropy loss function. The learning rate starts
with a 0.001 learning rate divided by 10 after 80 epochs and 100 after 120 epochs during
training. The classification accuracy with the trained model parameters is 91.89%, which
is tested with 10,000 images.

6.2 Performance

Table 4 shows the agreement ratio between the classification results of the implemented
privacy-preserving ResNet-20 and that of the original ResNet-20, which shows almost the
same results. We test the inference on 383 encrypted images, and the 95% confidence
interval is suggested for each result. The classification accuracy of the ResNet-20 for the
encrypted data is 92.43%+ 2.65%, while that of the original ResNet-20 for the corresponding
plaintext image is 92.95%+ 2.56%. We also measure the agreement ratio, which is the
percentage of the case when the output of the classification in the proposed PPML model
is the same as the that in the original ResNet-20 model. Our agreement ratio is 98.43%+

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 19

Algorithm 8: Softmax(Tensorct, B, R, \)

Input :An array of ciphertext {cty}x=o,.. 7—1, bound parameter B, R (B is a
power-of-two integar), power-of-two Gumbel parameter A\, Goldschmidt
approximation parameter d

Output : An encrypted one-hot vector {ct} }r=o,... 7—1

Pexp ¢ GenApproxPoly(e”, [—1,1])

ct« 0

fork=0toT —1do

cty, < 1/B O cty,

ct), < polyeval(ct}, Pexp)

for i = 0 to log B —log A do

| ct], «ct], @ct],

end

Ct «— ct P ct),

end

ct+201/ROct

tmpct < ct o 1

for j=0tod—1do

tmpct < tmpct ® tmpct
ct + ct® (1 @ tmpct)
end

for k=0toT —1do

| ct], «ctp®ct
end
return {ct} }x=o,.... 7—1

© 00 N O s W N

I S e T s T e = T
©C © N O bk W N K O

1.25%, which is a sufficiently high agreement result. Thus, we verify that the ResNet-20
can be successfully carried out using the RNS-CKKS scheme with sufficient accuracy for
classification and the proper bootstrapping operation.

Table 5 shows the running time for the whole ResNet-20 and the portion for each
component in the model. Note that we include the running time of the bootstrapping
operation in BN or ReLU when the bootstrapping operation is performed in the middle of
each operation. In other words, the regular bootstrapping for each layer is counted for the
running time of the bootstrapping. The proposed model takes about 3 hours to infer one
image, and the most time-consuming components are the convolution, the ReLLU, and the
bootstrapping.

Table 6 shows the running time of ResNet-20 when the bootstrapping operation is
performed after convolution operation and after ReLU function, respectively. The running
time of the case when the bootstrapping is performed after convolution operation is reduced
by 27.8% compared to the case when the bootstrapping is performed after ReL.U function.
This supports the analysis of the bootstrapping position in Section 4.

Table 4: Classification accuracy of the ResNet-20 for plaintext and ciphertext and
agreement ratio
Model ResNet-20! ResNet-202 PPML ResNet-20 Agreement
Accuracy 91.89% 92.95% + 2.56% 92.43% + 2.65% || 98.43%+ 1.25%
! Classification accuracy verified with 10,000 images.

2 Classification accuracy verified with 383 images which are used to test ResNet-20 on
encrypted images.

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep
20 Neural Network

Table 5: The running time of the ResNet-20 and the percentage of time spent in each
component relative to total time
Layer Conv BN ReLU Boot AP + FC Softmax | Total time (s)
Time ratio || 17.44% 13.55% 34.61% 31.55% 0.04% 2.81% 10,602

Table 6: Comparison of the running time of ResNet-20 for two positions of the bootstrapping
Bootstrapping position || After conv After ReLU
Total Time (s) 10,602 14,694

6.3 Discussion

Running Time The running time for the proposed model, which is about 3 hours, is
somewhat large for practical use. This work firstly shows the possibility of applying the
FHE to standard deep learning models with high accuracy, but it has to be optimized
and improved in various ways to reduce the running time. Therefore, the essential future
work is the advanced implementation of the ResNets with the RNS-CKKS scheme with
various accelerators realized using GPU, FPGA, or ASIC. Since research on implementing
the state-of-the-art FHE scheme is advancing rapidly, the ResNet-20 over the encrypted
data will be made more practically soon. Also, we implement the PPML model for only
one image, and the running time per image can be much improved if we properly use the
packing method of the RNS-CKKS scheme. We leave this optimization for many images
as future work.

Security Level The security level of the proposed model is 111.6-bit security, which is a
marginal security level that can be considered secure. Since the standard security level in
most applications is 128 bit, someone can regard this security level as insecure, and we
may want to raise the security level. However, this 111.6-bit security is not a hard limit
of our implementation; we can easily raise the security level by changing the parameters
of the RNS-CKKS scheme. This just makes the trade-off between the security and the
running time, and thus we can reach the higher security level at the cost of longer running
time.

Classification Accuracy Even if ML models are trained with the same hyper-parameters,
the ML models have different performances because weights are initialized to random
values for each training. Thus, the ML model performance, such as accuracy, is shown
as the average values obtained by training several times. However, since we focus on
implementing the ResNet-20 for homomorphically encrypted data, we train this model
only once, not many times. Nevertheless, we have shown that the encrypted ResNet-20
operation is possible with almost the same accuracy as the original ResNet-20 paper
[HZRS16]. Furthermore, since it is implemented in the FHE with bootstrapping, it can be
expected that the same result will be obtained for a deeper network than the Resnet-20.

7 Conclusion

For the first time, we applied the RNS-CKKS scheme, one of the state-of-the-art FHE
schemes, to the standard deep neural network ResNet-20 to implement the PPML. Since
the precise approximation of the ReLLU function, the bootstrapping, and the softmax
function had not been applied to the PPML models until now, we applied these techniques
with fine-tuned various parameters. Then, we showed that the implemented ResNet-20
with the RNS-CKKS scheme achieves almost the same result as the original ResNet-20 and
reaches the highest classification accuracy among the PPML models with the word-wise

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 21

FHE scheme introduced so far. This work firstly suggested that the word-wise FHE with
the most advanced techniques can be applied to the state-of-the-art machine learning
model without re-training it.

References

[BCCW19]

[BCD*20]

[BCL*20]

[BGP+20]

[BLCW19]

[BMTPH20]

[CBL*18]

[CCS19]

[CHHS19]

[CHK*18a)]

Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. nGraph-HE2: A high-throughput framework for neural network
inference on encrypted data. In Proceedings of the 7th ACM Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, pages 45-56,
2019.

Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider,
and Hossein Yalame. MP2ML: A mixed-protocol machine learning framework
for private inference. In Proceedings of the 15th International Conference on
Awailability, Reliability and Security, pages 1-10, 2020.

Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Sim Jun Jie, Benjamin
Hong Meng Tan, Xiao Nan, Aung Mi Mi Khin, and Vijay Chandrasekhar.
Towards the Alexnet moment for homomorphic encryption: HCNN;, the first
homomorphic CNN on encrypted data with GPUs. IFEE Transactions on
Emerging Topics in Computing, 2020.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, Kurt Rohloff, and Vinod
Vaikuntanathan. Optimized homomorphic encryption solution for secure
genome-wide association studies. BMC Medical Genomics, 13(7):1-13, 2020.

Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski.
nGraph-HE: A graph compiler for deep learning on homomorphically en-
crypted data. In Proceedings of the 16th ACM International Conference on
Computing Frontiers, pages 3—13, 2019.

Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and
Jean-Pierre Hubaux. Efficient bootstrapping for approximate homomor-
phic encryption with non-sparse keys. Cryptology ePrint Archive, Report
2020/1203, 2020. https://eprint.iacr.org/2020/1203, accepted to EU-
ROCRYPT 2021.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and
Li Fei-Fei. Faster cryptonets: Leveraging sparsity for real-world encrypted
inference. arXiv preprint, abs/1811.09953, 2018. http://arxiv.org/abs/
1811.09953.

Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for
approximate homomorphic encryption. In EUROCRYPT 2019, pages 34-54,
2019.

Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of
dual and meet-in-the-middle attack on sparse and ternary secret lwe. IEEE
Access, 7:89497-89506, 2019.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In
EUROCRYPT 2018, pages 360-384, 2018.

https://eprint.iacr.org/2020/1203
http://arxiv.org/abs/1811.09953
http://arxiv.org/abs/1811.09953

Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep

22

Neural Network

[CHK*18b)]

[CKK*19]

[CKKS17]

[FV20]

[GBDL*16]

[Gen09]

[Gol64]

[HK20]

[HTG17]

[HZRS15]

[HZRS16]

[JKA+21]

[IVC18]

[KH+09)]

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full RNS variant of approximate homomorphic encryption. In
Proceedings of International Conference on Selected Areas in Cryptography
(SAC), pages 347-368, Calgary, Canada, 2018.

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo
Lee. Numerical method for comparison on homomorphically encrypted
numbers. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 415-445. Springer, 2019.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In ASIACRYPT 2017,
pages 409-437, 2017.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2020.
https://eprint.iacr.org/2012/144.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of Inter-
national Conference on Machine Learning (ICML), pages 201-210, 2016.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing
(STOC), pages 169-178, 2009.

Robert E Goldschmidt. Applications of division by convergence. PhD thesis,
Massachusetts Institute of Technology, 1964.

Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate
homomorphic encryption. In Proceedings of Cryptographers’ Track at the
RSA Conference, pages 364-390, 2020.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCYV), pages 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770-778, 2016.

Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. Cryptology ePrint Archive, Report
2021/508, 2021. https://eprint.iacr.org/2021/508.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network inference. In
27th USENIX Security Symposium, pages 1651-1669, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2021/508

Joon-Woo Lee!*, HyungChul Kang?* , Yongwoo Lee?, Woosuk Choi?, Jieun Eom?,
Maxim Deryabin?, Eunsang Lee!, Junghyun Lee!, Donghoon Yoo?, Young-Sik Kim? and
Jong-Seon No' 23

[KPP20]

[LI19]

[LLK*20]

[LLL*+20a]

[LLL*+20b]

[LLL*21]

[LLNK20]

[Mic21]
[RCK+20]

[VEPIL19]

Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate
homomorphic encryption with reduced approximation error. Cryptology
ePrint Archive, Report 2020/1118, 2020. https://eprint.iacr.org/2020/
1118.

Qian Lou and Lei Jiang. SHE: A fast and accurate deep neural network
for encrypted data. Advances in Neural Information Processing systems
(NeurIPS), 2019.

Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, HyungChul Kang, and Jong-
Seon No. High-precision and low-complexity approximate homomorphic
encryption by error variance minimization. Cryptology ePrint Archive, Report
2020/1549, 2020. https://eprint.iacr.org/2020/1549.

Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon
No. High-precision bootstrapping of RNS-CKKS homomorphic encryption
using optimal minimax polynomial approxiamtion and inverse sine function.
Cryptology ePrint Archive, Report 2020/552, 2020. https://eprint.iacr.
org/2020/552, accepted to FEUROCRYPT 2021.

Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon
No. Optimal minimax polynomial approximation of modular reduction for
bootstrapping of approximate homomorphic encryption. Cryptology ePrint
Archive, Report 2020/552, Second Version, 2020. https://eprint.iacr.
org/2020/552/20200803:084202.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim,
and Jong-Seon No. Precise approximation of convolutional neural networks
for homomorphically encrypted data. arXiv preprint, abs/2105.10879, 2021.
http://arxiv.org/abs/2105.10879.

Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. Minimax
approximation of sign function by composite polynomial for homomorphic
comparison. Cryptology ePrint Archive, Report 2020/834, 2020. https:
//eprint.iacr.org/2020/834.

Microsoft. Microsoft SEAL. https://github.com/microsoft/SEAL, 2021.

Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S
Lee, Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating
homomorphic encryption for private inference. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
26-39. IEEE, 2020.

Tim van Elsloo, Giorgio Patrini, and Hamish Ivey-Law. SEALion: A
framework for neural network inference on encrypted data. arXiv preprint,
abs/1904.12840, 2019. http://arxiv.org/abs/1904.12840.

https://eprint.iacr.org/2020/1118
https://eprint.iacr.org/2020/1118
https://eprint.iacr.org/2020/1549
https://eprint.iacr.org/2020/552
https://eprint.iacr.org/2020/552
https://eprint.iacr.org/2020/552/20200803:084202
https://eprint.iacr.org/2020/552/20200803:084202
http://arxiv.org/abs/2105.10879
https://eprint.iacr.org/2020/834
https://eprint.iacr.org/2020/834
https://github.com/microsoft/SEAL
http://arxiv.org/abs/1904.12840

	Introduction
	Our Contribution
	Related Works

	Preliminaries
	RNS-CKKS Scheme
	Baby-Step Giant-Step Polynomial Evaluation
	Bootstrapping of CKKS Scheme
	Minimax Composition of ReLU

	New Consideration for ResNet-20 on RNS-CKKS Scheme
	Binary Tree Based Implementation of Polynomial Evaluation
	Strided Convolution
	Approximation for Softmax

	Position of Bootstrapping
	Implementation Details of ResNet-20 on RNS-CKKS
	Structure
	General Setting for RNS-CKKS Scheme
	Convolution and Batch Normalization
	ReLU
	Bootstrapping
	Average Pooling and Fully Connected Layer
	Softmax

	Simulation Result
	Simulation Setting and Model Parameters
	Performance
	Discussion

	Conclusion

