
Open Sesame: A Novel Non-SAT-Attack against CAS-Lock
Akashdeep Saha

IIT Kharagpur
Kharagpur, India

akashdeep@iitkgp.ac.in

Urbi Chatterjee
IIT Kanpur

Kanpur, India
urbic@cse.iitk.ac.in

Debdeep Mukhopadhyay
IIT Kharagpur

Kharagpur, India
debdeep@iitkgp.ac.in

Rajat Subhra Chakraborty
IIT Kharagpur

Kharagpur, India
rschakraborty@cse.iitkgp.ac.in

Abstract—CAS-Lock [1], is an advanced logic locking technique that
harnesses the concept of single-point function in providing SAT-attack
resiliency. It is claimed to be powerful and efficient enough in mitigating
state-of-the-art attacks against logic locking techniques. Despite the
security robustness of CAS-Lock as claimed by the authors, we expose
a serious vulnerability by exploiting the same and device a novel attack
algorithm. The proposed attack can reveal the correct key by extracting
the Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen
key simulation of the locked design. The correct key is obtained from
the combination of elements from the set of extracted DIPs. Our attack
is successful against various AND/OR cascaded-chain configurations of
CAS-Lock and reports a 100% success rate in recovering the correct key.

I. INTRODUCTION

The globalization of the integrated circuit (IC) manufacturing
industry has resulted in outsourcing of the IC design to foreign
fabrication laboratories to reduce time and cost. This has promoted
the adversary to come up with various malicious activities in the
IC supply chain. Logic locking has risen to prominence as the
most efficient defense strategy against such threats throughout the
IC supply chain. The basic idea of logic locking is to insert key-
gates into the original design to obscure the same to an adversary.
The circuit works as intended only on the application of the correct
key/s into the locked design.

The advent of Boolean satisfiability-based (SAT) attack [2] marked
the beginning of an era of logic locking since SAT-attack could
mitigate all the logic locking techniques existing till that time. It
is based on pruning the wrong keyspace, such that the existing
keys left behind are the correct keys. To mount a SAT-based attack,
an adversary requires (i) an oracle or a functional chip and (ii) a
locked netlist. The attack proceeds by finding out distinguishing input
patterns (DIP), which in turn can eliminate incorrect keys. The DIPs
are input patterns that produce different output, on the application
of different key values, whereas the oracle helps to distinguish the
incorrect keys. There were various techniques proposed to mitigate
SAT-attack. However, they were susceptible to other forms of attacks.
Recently, CAS-Lock was proposed which showed some promise in
resisting most of the attacks against logic locking.

A. CAS-Lock

CAS-Lock [1] is a recently proposed locking technique that differs
from Anti-SAT [3] only on the construction of the complementary
blocks. Anti-SAT consists of two logic blocks of AND gates arranged
in a tree structure, terminated by an AND gate and a NAND gate
respectively. The blocks are complementary as for a correct key the
two blocks produce complementary outputs. Here, instead of having
the AND-tree structure, the AND/OR gates are daisy-chained or
cascaded together to form the complementary blocks gcas and gcas,
as illustrated in Fig. 1. Like Anti-SAT, a random combination of
XOR/XNOR key gates with the input layer are present in both the
blocks of CAS-Lock. Let K1 and K2 be the keys for gcas and gcas,

Fig. 1: An instance of CAS-Lock. The blocks gcas and gcas are com-
plimentary in nature. The both receive same set of input bits. However,
the choice of XOR/XNOR gates are independent in the blocks.

respectively. It offers SAT-attack resistance as it follows the similar
SAT-resistance structure of Anti-SAT.

The advantage of CAS-Lock over Anti-SAT is that it could resist
the bypass attack [4]. Since Anti-SAT produces a single DIP for an
incorrect key, that particular DIP could be easily ‘bypassed’ utilizing
an additional bypass circuitry to produce a working IC. The overhead
of the additional bypass circuitry depends on the number of DIPs to
bypass. CAS-Lock produces multiple DIPs and hence the overhead
of the bypass circuitry becomes infeasible for CAS-Lock. Further, a
cascaded version of CAS-Locked (namely M-CAS) could mitigate
the removal attack [5].

B. Existing Attacks on CAS-Lock

Since the advent of CAS-Lock, the community is has taken a
keen interest in exposing the security vulnerability of CAS-Lock.
The author in [6] had proposed a trivial attack to break CAS-Lock
by setting key values to all 1’s or 0’s. This was an ineffective
attack algorithm that is based on a misinterpretation of CAS-Lock’s
implementation. The authors assumed that all the key bits were
XORed with the CAS-Lock block inputs. However, they failed to
realize that these key-bits were randomly chosen XOR/XNOR gates
(K1 6= K2). This insignificant attack was nullified by the authors of
CAS-Lock in [7].

Recently, in [8] two variants of attacks on CAS-Lock was proposed
to structurally analyze the CAS-Locked netlist and nullify the same.
It attempts to identify the flip signal of CAS-Lock locking and
eliminates the same by fixing this flip signal to 0/1. However, the
adversarial model considered in this work is very strong as it assumes
that the adversary has full knowledge of the technology mapping and

Fig. 2: Miter circuit used for extracting the DIP set. Copy A and Copy B
are the two instances of the locked netlist with different key assignments.

synthesis tools used during locking as specified in Section 2.1 of [8].
Thus, just by concealing the certain synthesis information, the attack
complexity could be intensified.

II. PROPOSED NOVEL ATTACK ON CAS-LOCK

As introduced previously, CAS-Lock follows a structure similar
to Anti-SAT but produces more DIPs than Anti-SAT. Let DIPset

be the set produced by CAS-Lock corresponding to an incorrect key
configuration. We have exploited the relation between the correct
key (Kc) of CAS-Lock and DIPset. The proposed attack works
towards finding the correct key from the elements of DIPset. This is
complementary to the principles of SAT-attack, where elements of the
DIPset set is used to eliminate a set of incorrect keys from the entire
probable key space. Whereas in bypass attacks, the attacker uses to
incorporate the bypass circuit for every element of the DIPset set
that would restore the correct output of the overall design circuitry.

Further, there exists another exploitable vulnerability in Anti-SAT
and CAS-Lock that is: Pairwise bit-flip of the correct key Kc in the
two complementary blocks will also be a correct key. For example:
let K1 = 0111 and K2 = 0101 be the correct key values. When
the first key-bits of the correct key for both the blocks are flipped,
K10 = 1111 and K20 = 1101 be the key-bits in which the 0th key-
bit has been flipped with respect to both K1 and K2. We observe
that Kc = K10||K20. Thus, there exists multiple correct key and
this observation is valid even when multiple key-bits are flipped.

The attack begins with the DIPset extraction. We follow the same
procedure as illustrated in the bypass attack [4] for DIP extraction. It
begins with the construction of the miter circuit, as illustrated in Fig. 2
to extract the DIPset for a wisely chosen incorrect key configuration
for the complementary blocks. The miter circuit consists of two
copies of the locked netlist: Copy A and Copy B. Copy A has
K1A = 1 and K2A = 0, whereas Copy B has both K1B = 0
and K2B = 0 as the chosen key values. This choice of key value
assignments to the miter circuit prevents generation of overlapping
DIPs. We are interested in DIPs generated for Copy A, that is for
K1A = 1 and K2A = 0, to get Kc.

Once DIPset is constructed we proceed to identify the correct
key from it. DIPset always consists of odd number of elements [1].
There is exactly one element in DIPset which is non-repeating. We
identify this DIP and this corresponds to K1. We just require to query
the oracle with other elements of DIPset to get K2. We illustrate
our attack on a miniature circuit of stand-alone CAS-Lock blocks.

Example: Let us take into account the CAS-Locked netlist as
shown in Fig. 3 and fed into our miter circuit construction (as

Fig. 3: An instance of CAS-Lock technique for 4 inputs. K0,K1,K2,K3

are collectively represented as K1 is the key input to the gcas block. Like-
wise, K4,K5,K6,K7 are represented as K2 is the key input to the gcas
block. Both the blocks share same set of inputs: IN0, IN1, IN2, IN3.
A and B are single-bit outputs of gcas and gcas blocks, respec-
tively. and Y is the final output of the CAS-Lock block. The key-bits
K1,K2,K3,K5,K7 are XNORed with the inputs. Key-bits K0,K4,K6

are XORed.

referred in Fig. 2). The DIPset = {0011, 1011, 0101, 0111,
1111} corresponding to Copy A. It is evident that X011, X111,
and 0101 have been obtained as DIPs, where X signifies don’t care
at MSB. It is seen that Kc = 01010111, where K1 = 0101 and
K2 = 0111 exists in DIPset and 0101 is the non-repeating DIP.
Further, Kc = 01110101 is also a correct key where the key values
of K1 and K2 are exchanged. The proposed attack is also effective
for OR/NOR CAS-Lock structures.

III. CONCLUSION

In this work, we have demonstrated a novel attack algorithm that
is effective yet simple in unlocking CAS-Lock. The assumptions
and the interpretation of the security analysis of CAS-Lock made
in this work conforms with the original work. This attack is potent
enough to extract the secret key for various CAS-Lock configurations
simply by analyzing the DIPs for an incorrect key. It is devoid of any
requirement of complex and often infeasible structural analysis of the
locked netlist.

REFERENCES

[1] B. Shakya, X. Xu, M. Tehranipoor, and D. Forte, “Cas-lock: A security-
corruptibility trade-off resilient logic locking scheme,” IACR Trans.
CHES, pp. 175–202, 2020.

[2] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in HOST. IEEE, 2015, pp. 137–143.

[3] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic locking,”
IEEE Trans. CAD, vol. 38, no. 2, pp. 199–207, 2018.

[4] X. Xu and et. al., “Novel bypass attack and bdd-based tradeoff analysis
against all known logic locking attacks,” in CHES. Springer, 2017, pp.
189–210.

[5] M. Yasin and et. al., “Removal attacks on logic locking and camouflaging
techniques,” IEEE Trans. Emerging Topics in Computing, vol. 99, no. 8,
pp. 1–14, 2017.

[6] A. Sengupta and O. Sinanoglu, “Cas-unlock: Unlocking cas-lock without
access to a reverse-engineered netlist.” IACR Cryptol. ePrint Arch., vol.
2019, p. 1443, 2019.

[7] B. Shakya, X. Xu, M. M. Tehranipoor, and D. Forte, “Defeating cas-
unlock.” IACR Cryptol. ePrint Arch., vol. 2020, p. 324, 2020.

[8] A. Sengupta, N. Limaye, and O. Sinanoglu, “Breaking cas-lock and its
variants by exploiting structural traces.”

2

