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Abstract

Fully homomorphic encryption (FHE) is an encryption scheme which enables computation on en-
crypted data without revealing the underlying data. While there have been many advances in the field
of FHE, developing programs using FHE still requires expertise in cryptography. In this white paper,
we present a fully homomorphic encryption transpiler that allows developers to convert high-level code
(e.g., C++) that works on unencrypted data into high-level code that operates on encrypted data. Thus,
our transpiler makes transformations possible on encrypted data.

Our transpiler builds on Google’s open-source XLS SDK [I] and uses an off-the-shelf FHE library,
TFHE [2], to perform low-level FHE operations. The transpiler design is modular, which means the
underlying FHE library as well as the high-level input and output languages can vary. This modularity
will help accelerate FHE research by providing an easy way to compare arbitrary programs in different
FHE schemes side-by-side. We hope this lays the groundwork for eventual easy adoption of FHE by
software developers. As a proof-of-concept, we are releasing an experimental transpiler [3] as open-
source software.

1 Introduction

As cloud computing services continue to see widespread adoption, it becomes increasingly important for
service providers to guarantee the security and privacy of the data of their customers. Fully homomorphic
encryption (FHE) is a cryptographic technique that provides strong security guarantees since the server only
ever has access to encrypted data. FHE has not seen widespread use so far, for two main reasons: FHE
is still too computationally expensive to be practical, and developing FHE applications requires extensive
cryptographic expertise. Fortunately, over the last few years, FHE has become much less computationally
intensive, due to significant progress in hardware acceleration, efficient optimizations, and low-level imple-
mentations. However, the widespread adoption of FHE still requires available tools that allow software
developers without cryptography expertise to incorporate FHE into their applications. Our work attempts
to bridge this gap. We have built and open-sourced a proof-of-concept general-purpose transpiler [3] that
can automatically convert a regular program that works on unencrypted data into one that performs the
same operations on encrypted data.

In the remainder of this paper, the term plaintext refers to unencrypted data, and ciphertexct refers to
encrypted data.



2 Background

This section provides context and details on fully homomorphic encryption and transpilers for fully homo-
morphic encryption.

2.1 Fully Homomorphic Encryption

A homomorphic encryption scheme is an encryption scheme in which some operations can be performed on
both plaintext or ciphertext inputs and outputs. Homomorphic encryption has a few flavors including par-
tially homomorphic encryption (PHE), fully homomorphic encryption (FHE), and somewhat homomorphic
encryption (SHE).

In PHE, only a subset of all possible computations can be performed on ciphertext without decryption.
For example, in the additively homomorphic Paillier cryptosystem [4], the product of two ciphertexts is
equivalent to the sum of two plaintexts. In the multiplicatively homomorphic RSA cryptosystem [5], the
multiplication of two ciphertexts is equivalent to the multiplication of two plaintexts.

Often called the “Holy Grail” of cryptography [6], FHE is an encryption mechanism that allows both
addition and multiplication (and therefore any arbitrary computation) to be performed on encrypted data [7].
Though first proposed in the 1970s [7], a theoretically feasible construction was not introduced until 2009
by Craig Gentry [g].

A SHE scheme [9] allows both addition and multiplication to be performed but only for a few computa-
tions, after which the ciphertext loses too much integrity, and can no longer be correctly decrypted.

Most modern FHE schemes rely on the “Learning with Errors” (LWE) technique [I0], which relies on
noise being added to ciphertexts. As long as the noise is sufficiently small, ciphertext can be decrypted to
the correct message. During homomorphic operations, the noise in the ciphertext grows. While this effect is
negligible during additions, multiplying two ciphertexts significantly increases the total amount of noise. As
a result, only a fixed number of consecutive multiplications (a parameter called multiplicative depth) can be
performed before decryption becomes impossible. This limitation can be circumvented using bootstrapping,
a technique that resets the noise level of a ciphertext to a fixed lower level by homomorphically evaluating
the decryption circuit (i.e., the logic that converts ciphertext into plaintext) with an encrypted secret key
as input.

The first generation FHE schemes were based on the original Gentry scheme [I1] and were slow, often
requiring 30 mins [I2] for a single multiplication. These first generation schemes convert an SHE scheme
into an FHE scheme through bootstrapping.

Second generation schemes, such as BGV [I3] and BFV [I4], use a technique called leveled homomorphic
encryption, which involves choosing sufficiently large parameters to allow the required computation without
having to perform bootstrapping. They also introduced SIMD-style batching [15], an optimization technique
where many messages are packed into a single ciphertext, to reduce the overall latency overhead.

Third generation schemes based on the GSW scheme [16] focus on fast bootstrapping, which reduces the
time spent on bootstrapping by several orders of magnitude. However, fast bootstrapping does not allow
SIMD-style bootstrapping and batching, which presents a tradeoff between latency and throughput when
compared to second generation schemes (i.e., BGV, BFV). The TFHE scheme [I7] (itself based on GSW)
uses fast bootstrapping.

Developing software that uses FHE poses a unique challenge in parameter selection. For a specific
computation, one must choose the right parameter set that avoids bootstrapping, still provides security, and
ensures that the size of the ciphertext remains manageable. It also involves selecting the proper encoding
scheme for the right computations. For example, binary encoding is preferable for Boolean operations (i.e.,
TFHE), while arithmetic encoding is preferable for arithmetic computations (i.e., BGV and BFV).

2.2 FHE Transpilers

FHE is getting closer to becoming practical, but it still requires significant expertise to incorporate it in
software development. Beyond the understanding of required cryptographic parameters, prior work mostly
focused on supporting low-level programming primitives (e.g., arithmetic operators or Boolean logic), so de-
velopers need additional expertise in low-level software design to use these primitives and build more complex



#include <tfhe.h>

void sum (LweSample* result,
const LweSamplex* a,
const LweSample* b,
const int nb_bits,
const TfheKeySet* bk) {
LweSample* carry = new_ciphertext (bk->params);
LweSample* temp = new_ciphertext(bk->params) ;

bootsCONSTANT (&carry, O, bk);

int sum(int a, int b) {
return a + b;

¥ for (int i = 0; i < nb_bits; i++) {

bootsXOR(&temp, &alil, &b[il, bk);
bootsXOR(&result[i], &temp, &carry, bk);

bootsAND (&carry, &carry, &temp, bk);

bootsAND (&temp, &alil, &b[il, bk);

bootsOR (&carry, &temp, &carry, bk);
}

delete_ciphertext (carry);
delete_ciphertext (temp) ;

Figure 1: Example of a transpiled C++ program..

programs. FHE application development currently lacks a generic way for developers without cryptography
expertise to write code without having to understand the underlying scheme. An FHE transpiler can bridge
this gap.

A transpiler is a tool that converts one high-level language into another high-level language. An FHE
transpiler takes code written in a high-level language (e.g., C+4) and produces equivalent code capable of
processing encrypted inputs.

As recently mentioned by Viand et al. [12], a missing component of the FHE story is a series of clean
abstraction layers that separate business logic (i.e., what a developer is trying to achieve) from intermediate
representation (i.e., how lower-level systems might reason or optimize around this) and optimized low-level
implementation (i.e., what libraries and backends might be used to support these first two layers). Ideally,
the top-most layer would accept high-level languages as input while allowing intermediate layers to remain
expressive enough to represent gate operations and arithmetic operations in order to take advantage of
various FHE schemes and translate among them [I8], if needed. We believe that our transpiler helps fill
this gap.

3 Design

Our general-purpose transpiler leverages features on the XLS toolchain and the gate level operations of
TFHE to convert C++ programs into FHE-C++ programs. However, our transpiler design is modular, such
that the backend FHE library, as well as the input and output languages, can be changed to suit different
use cases.

3.1 External Components

Our transpiler uses two external components: XLS [I] and TFHE [2].
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Figure 2: High-level overview of the transpiler invocation process.
3.1.1 XLS

XLS is a software development kit for hardware design. As part of its toolchain, it provides functionality to
compile high-level hardware designs down to lower levels, and eventually to Verilog [19]. This compilation
step introduces a flexible intermediate representation (XLS IR) that allows for optimizations and other code
transformations in the space between the high-level input language and the targeted output Verilog.

XLS IR is designed to describe and manipulate low-level operations (such as AND, OR, NOT, and other
simple logical operations) of varying bit widths. Fortunately, this is exactly what is needed to translate
higher-level language (e.g., C++) operations into lower-level Boolean operations (i.e., gates). Our transpiler
uses XLS IR as the intermediate layer between the input C++ and the TFHE library. Optimizations (e.g.,
reducing gate count or eliminating unneeded bits) and transformations (e.g., Booleanification, which is “flat-
tening” an N-bit-wide operation to a series of 1-bit-wide operations) are performed on this intermediate layer.

3.1.2 TFHE

TFHE is a fast fully homomorphic encryption library over torus, proposed by Chilloti et al. [20]. Tt is based
on GSW and its ring variants. It significantly speeds up the bootstrapping operation (less than 0.1 sec [20])
and reduces bootstrapping key size, while preserving the same security levels as long as the T(R)LWE [20]
problem remains intractable.

TFHE exposes an API for gate operations. In particular, it performs a bootstrap operation for every
operation on the ciphertext. As the ciphertext refreshes itself after every gate operation, it allows for
unlimited computations without noise management. With the operations provided by TFHE, it is possible
to represent any computation as a composition of binary inputs and logical gates. This makes it ideal for
the IR layer defined in the previous section to use TFHE for transpilation.

3.2 Transpiler Invocation Stages

We have designed a general-purpose transpiler for converting standard programs into FHE programs. As a
proof-of-concept, we built a transpiler that uses TFHE to convert C++ programs into FHE-C++ programs,
and published it as open-source software [3]. However, our transpiler design is modular, such that the
backend FHE library, as well as the input and output languages, can be changed to suit different use cases.

We now describe our transpiler by stepping through our initial open-source implementation. The sequen-
tial stages of a transpiler invocation are as follows:

e C++ frontend: Converts C++ input into an intermediate representation (XLS IR).

e Optimizer: Simplifies the IR by reducing the number of operations, replacing operations with less-
intensive equivalents, reducing bit widths, and other optimizations. This is part of the XLS toolchain.

e Booleanifier: Replaces all multi-bit compound operations with equivalent sequences of single-bit
fundamental (e.g., AND, OR, NOT) operations. This is also part of the XLS toolchain.

e FHE IR Translator: Constructs a C++ function invoking the TFHE library routine corresponding
to each Boolean IR operation.
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Figure 3: Visualization of a gate in XLS IR representation.

3.2.1 XLS[cc] Stage
We use XLS|cc| [21] as our frontend, compiling C++ into XLS IR.

3.2.2 Optimizer Stage

We leverage the XLS optimizer to apply various optimizations [22] to the IR produced by XLS[cc]. Our
transpiler supports multiple optimization passes and the IR is Booleanified between optimization passes to
take advantage of bit-level optimization opportunities.

3.2.3 Booleanifier Stage

The optimized XLS IR is translated into Boolean XLS IR, which only uses Boolean gates. This is required
because TFHE only supports Boolean gates. This step is applied after each optimization pass if multiple
optimization passes are requested.

3.2.4 FHE IR Translation Stage

The TFHE transpiler backend translates the Boolean XLS IR into C++ code that invokes TFHE for gate
implementations. Our library also includes an FHE IR Interpreter which provides more flexibility in execution
strategies, including multicore dispatch for improved performance.

This backend is deliberately constructed to be easily ported to any library that provides implementations
for gates. Thus, other FHE libraries that provide the same gate-based interface can be used as drop-in
replacements for TFHE. As an example, we implemented a version that uses native C++ boolean operations
(without any FHE functionality), which proved useful for debugging during transpiler development.

3.3 Features
3.3.1 Modular Design

Our transpiler design is modular in three ways:
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Figure 4: Client server interaction.

e The input code can be in any language that can be translated into XLS. This significantly reduces the
burden of transpiling existing code, since it need not be written in a fixed supported language.

e The output FHE code can be in any language with an FHE library. This reduces the requirements
for interacting with transpiled FHE code, since the FHE code can be transpiled into a language that
interfaces well with the rest of the code providing the computational service.

e The underlying FHE backend can be any library that exposes gates as part of its API. Our library
includes classes prefixed with Encoded, which can be reused to ease development. This can accelerate
FHE research by providing an easy way to compare arbitrary programs in different FHE schemes
side-by-side.

We hope our modular transpiler design will lay the groundwork towards more research breakthroughs
and eventual easy adoption of FHE by software developers.

3.3.2 TFHE Interface Utilities

To interface with a FHE-C++ program (i.e., run it on some inputs and receive the output), developers
need to write code that takes some input, sends the encrypted input to the generated FHE-C++ code, and
allocates memory to receive the result. In the special case of a test bench running the FHE-C++ program
with known inputs, it also needs to encrypt the input and decrypt the result to verify it is as expected.

We help simplify these operations, providing an API to encode/encrypt and decode/decrypt data while
automatically managing memory allocation. This includes wrappers for several standard data types (e.g.,
integers, arrays of integers, and strings). Our transpiler also automatically generates wrappers with the
same API for user-provided data types (e.g., classes and structs). More specifically, FheValue and other
classes with the Fhe prefix [23] provide a simple interface for converting between native plaintext data and
encrypted LweSample* for a user that has the secret key, while also handling basic memory management. To
help interface with other potential backends, including the unencrypted Boolean backend, we provide similar
classes (EncodedValue and others with the Encoded prefix [24]) that convert between native plaintext data
and a plaintext-bits representation.

3.3.3 Debugging Utilities

One of the obstacles for FHE adoption is the inability to debug programs. To help with debugging, our
open-source library includes an alternate backend that transpiles the input to a Booleanified C4++ version
(without any FHE features). This uses the same computation steps as the FHE version, but operates on
plaintext bits. This is, of course, only intended to be used for debugging purposes, as it does not provide
any security guarantees.



4 How Best to Use the Transpiler

Our transpiler is currently experimental. We do not recommend relying on it for production use cases. This
open-source release is meant to showcase the feasibility of transforming general-purpose code (written by
non-experts in cryptography) to FHE programs that work on encrypted data.

We see this as an important stepping stone in privacy-protecting technologies that can be iterated upon
to accelerate research innovation and build feature-rich solutions. For example, as discussed in the Modular
Design section above, the transpiler can support different input and output programming languages and can
be used to compare different FHE schemes. This is possible because the XLS intermediate representation
is independent of both the front-end language and the underlying FHE scheme. This also decouples FHE
schemes from circuits, which allows researchers and experts in respective fields to make progress indepen-
dently.

4.1 FHE Programming Restrictions

Traditional imperative programming languages use data-dependent branching for control flow and optimiza-
tions. In FHE programming, computations must be data-independent. The execution hardware doesn’t have
access to the plaintext, so it cannot support branching. This implies a number of restrictions, as follows.

Variable-length loops and arrays cannot be used, and must be replaced by fixed-sized arrays and loops with
a fixed number of iterations. Early returns are not useful, since the entire function body must be evaluated
regardless of the input. Recursion is not supported either, since it requires data-dependent termination.
Pointers are not supported as they are data-dependent. Branch-and-bound optimizations are not possible
because all branches must be executed.

4.2 Threat Model

Our transpiler generates code for a server to perform computations on encrypted text. It assumes an honest-
but-curious adversary, whereby the server can be trusted to do the expected computation and knows the
type of the data, but cannot be allowed to decrypt or view the data itself. The data type (e.g., int, string,
class) is known to the server. The length of the data (e.g., the size of an input array) needs to be explicitly
protected on the client-side by enforcing a fixed maximum input length (using padding).

The generated code does not protect against an adversarial server’s malicious manipulation of the data.
This is inherent in all FHE schemes, given that the goal of FHE is to allow the server to compute functions
on the data, but does not provide verification of what function was computed.

4.3 Security Considerations

The TFHE scheme [I7] bases its security on the torus variant of the (R)LWE problems. In cryptography, the
reputation and credibility of a cryptosystem is typically established through work of cryptanalysis experts
who have unsuccessfully tried to break such a scheme over multiple years. In contrast, the TFHE scheme
is new and has not enjoyed as much public scrutiny as widely-deployed cryptographic primitives. The same
paper that introduced TFHE [I7] presented a thorough cryptanalysis assessment, but the cryptography
community may still eventually find more efficient algorithms that break the underlying premises of TFHE,
which would impact the security estimates of the parameters used by the transpiler tool.

5 Related Work

Our FHE Transpiler’s main novelty is that it generates debuggable high-level language output. Another
primary contribution is the introduction of XLS as an expressive intermediate representation that is in-
dependent from both the front-end language and the underlying FHE scheme. This allows interoperability
between languages and even FHE schemes. By decoupling the FHE scheme from the implementation circuits,
researchers and experts in respective fields are free to make progress independently. Finally, it provides a
framework to compare new FHE schemes and cryptographic optimizations uniformly on different programs.



However, the concept of automatically converting programming language source code into FHE-related
implementations is not new. The Armadillo framework [25] (currently called the Cingulata toolchain),
for instance, is also based on the TFHE scheme and converts C++ into Boolean circuits, performs gate
operations, and converts the Boolean operations to FHE binary operations. In comparison to our work,
Cingulata currently does not convert the source code back to any C++ source code. Furthermore, our
transpiler supports higher-level operations such as SUM, MUL, and DIV in addition to gate operations.
Converting the IR to FHE-C++ supports extensibility to a wider variety of FHE libraries and helps in
debugging.

Another similar tool, also based on TFHE, is Encrypt-Everything-Everywhere (E3) [26]. It enables FHE
operations, but requires the program to be written with overloaded methods provided by the E3 library. It
also requires the user to specify a configuration on the data types used. E3 converts the compiled netlist
into C++ functions that can be called directly from the program. In comparison, our transpiler works on
pre-existing programs in supported high-level languages, automatically generating the transpiled FHE-C++
and relevant libraries to encode the data types involved in the program (including structs and classes) and
does not need an explicit configuration file.

A few other similar tools, based on different (non-TFHE) underlying FHE schemes, have been proposed
in the literature. For example, ALCHEMY [27], Marble [28] and RAMPARTS [29] are all FHE compilation
tools based on the BGV or FV schemes, which are good for homomorphic arithmetic operations but suffer
from inefficient bootstrapping operations. There is also a growing literature on the specific topic of building
FHE compiler tools for specific workloads. For example, nGraph-HE [30], SEALion [31], and CHET [32] all
intend to produce efficient and FHE-friendly code for certain machine learning workloads.

6 Future Directions

A natural direction for future work on a generic FHE transpiler like ours is to improve execution times. We
believe that the XLS intermediate representation can help with reasoning about, and implementing, various
optimizations. For instance, if programmable bootstrapping [33] is supported in the underlying FHE scheme,
this would allow optimizations using high-performance versions of arbitrary univariate functions.

The transpiler currently uses bitwise operations, so all arithmetic operations are converted into many
single-bit Boolean gates, making them quite slow. MUL and DIV/MOD of two ciphertext values are es-
pecially expensive. Support for native arithmetic operations and SIMD-style packing with CHIMERA [I8]
would help speed up arithmetic operations and improve throughput.

The interpreter in the FHE IR Translation stage provides more flexibility in execution strategies, includ-
ing multicore dispatch for improved performance. We intend to add additional optimizations that will be
especially useful for heterogeneous compute environments, such as mixed CPU/GPU execution.

Automatic parameter selection has remained a challenging problem in the field of FHE because of the
unknown circuits for programs. As our transpiler generates circuits for arbitrary programs, it could be
augmented for automatic parameter selection at transpilation time.
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