
KHAPE: Asymmetric PAKE from Key-Hiding
Key Exchange

Yanqi Gu1, Stanislaw Jarecki1, and Hugo Krawczyk2

1 University of California, Irvine. Email: {yanqig1@,stasio@ics.}uci.edu.
2 Algorand Foundation. Email: hugokraw@gmail.com.

Abstract. OPAQUE [Jarecki et al., Eurocrypt 2018] is an asymmetric
password authenticated key exchange (aPAKE) protocol that is being
developed as an Internet standard and for use within TLS 1.3.
OPAQUE combines an Oblivious PRF (OPRF) with an authenticated
key exchange to provide strong security properties, including security
against pre-computation attacks (called saPAKE security). However,
the security of OPAQUE relies crucially on the security of the OPRF.
If the latter breaks (by cryptanalysis, quantum attacks or security
compromise), the user’s password is exposed to an offline dictionary
attack. To address this weakness, we present KHAPE, a variant of
OPAQUE that does not require the use of an OPRF to achieve aPAKE
security, resulting in improved resilience and near-optimal
computational performance. An OPRF can be optionally added to
KHAPE, for enhanced saPAKE security, but without opening the
password to an offline dictionary attack upon OPRF compromise.
In addition to resilience to OPRF compromise, a DH-based
implementation of KHAPE (using HMQV) offers the best performance
among aPAKE protocols in terms of exponentiations with less than the
cost of an exponentiation on top of an UNauthenticated Diffie-Hellman
exchange. KHAPE uses three messages if the server initiates the
exchange or four when the client does (one more than OPAQUE in the
latter case).
All results in the paper are proven within the UC framework in the ideal
cipher model. Of independent interest is our treatment of key-hiding AKE
which KHAPE uses as a main component as well as our UC proofs of
AKE security for protocols 3DH (a basis of Signal), HMQV and SKEME,
that we use as efficient instantiations of KHAPE.

1 Introduction

In the last few years the subject of password authenticated key exchange
(PAKE) protocols, particularly in the client-server setting (called asymmetric
PAKE, or aPAKE for short), has seen renewed interest due to the weaknesses
of password protocols and the ongoing standardization effort at the Internet
Engineering Task Force [51]. In particular, due to vulnerabilities in PKI
systems and TLS deployment, the standard PKI-based encrypted password
authentication (or “password-over-TLS”) often leads to disclosure of passwords

and increased exploitation of phishing techniques. Even when the password is
decrypted at the correct server, its presence in plaintext form after decryption,
constitutes a security vulnerability as evidenced by repeated incidents where
plaintext passwords were accidentally stored in large quantities and for long
periods of time even by security-conscious companies [1, 2].

In this paper we investigate the question of how “minimal” an asymmetric
PAKE can be. In spite of the many subtleties surrounding the design and
analysis of aPAKE protocols, there are several efficient and practical
realizations which meet a universally composable (UC) notion of aPAKE [29].
For example, the overhead of the recently analyzed SPAKE2+ protocol [53]
over the unauthenticated Diffie-Hellman (uDH) protocol is 1 or 2
exponentiations per party. Similar overhead costs are also imposed by the
generic results which compile any PAKE to aPAKE [29, 35]. Known strong
aPAKEs (see below), add similar or larger overhead costs [39, 15].

The comparison to uDH is significant not only from a practical point of
view, but also because PAKE protocols imply unauthenticated key exchange in
the sense of the Impagliazzo-Rudich results [36, 30]. Thus, we can see uDH as
the lowest possible expected performance of PAKE protocols. But how close to
the uDH cost can we get; can one improve on existing protocols?

In the symmetric PAKE case, where the two peers share the same
password, there are almost optimal answers to this question. The
Bellovin-Merrit’s classical EKE protocol [10], shows that all you need is to
apply a symmetric-key encryption on top of the uDH transcript. It requires a
carefully chosen encryption scheme, e.g., one that is modeled after an ideal
cipher, but it only involves symmetric key techniques [9, 4, 14, 48].3

Can this low overhead relative to uDH be achieved also in the more involved
setting of asymmetric PAKEs, where security against offline attacks is to be
provided even when the server is broken into? We show an aPAKE protocol,
KHAPE, that only requires symmetric operations (in the ideal cipher model)
over regular authenticated DH.

KHAPE (for Key-Hiding Asymmetric PakE) can be seen as a variant of the
OPAQUE protocol [39] that is being developed into an Internet standard [44]
and intended for use within TLS 1.3 [54]. OPAQUE introduces the idea of
password-encrypted credentials containing an encrypted private key for the
user and an authenticated public key for the server. The user deposits the
encrypted credentials at the server during password registration and it
retrieves them for login sessions, thus allowing user and server to run a regular
authenticated key exchange (AKE) protocol. However, encrypting and
authenticating credentials with a password opens the protocol to trivial offline
dictionary attacks. Therefore, OPAQUE first runs an Oblivious PRF (OPRF)
on the user’s password in order to derive a strong encryption key for the
credential. This makes the protocol fully reliant on the strength of the OPRF.

3 Several other symmetric PAKE protocols, e.g. SPAKE2 [5], SPEKE [37, 45, 31] and
TBPEKE [50], attain universally composable security without relying on an ideal
cipher but incur additional exponentiations over uDH costs [3].

2

If OPRF is ever broken (by cryptanalysis, quantum attacks or security
compromise), the user’s password is exposed to an offline dictionary attack.

Near-optimal aPAKE. KHAPE addresses this weakness by dispensing with the
OPRF (hence also improving performance). It uses a “paradoxical” mechanism
that allows to directly encrypt credentials with the password and still prevent
dictionary attacks. Two key ideas are: (i) dispense with authentication of the
credentials4 and instead use a non-committing encryption where decryption of
a given ciphertext under different keys cannot help identify which key from a
candidate set was used to produce that ciphertext; and (ii) using a key-hiding
AKE. The latter refers to AKE protocols that require that no adversary, not even
active one, can identify the long-term keys used by the peers to an exchange even
if provided with a list of candidate keys (a notion reminiscent of key anonymity
for public key encryption [8]).

Fortunately, many established AKE protocols are key hiding, including
implicitly authenticated protocols such as 3DH [46] and HMQV [43], and
KEM-based protocols with key-hiding KEMs (e.g., SKEME [41]). The
non-committing property of encryption models symmetric encryption as an
ideal model (similarly to the case of EKE discussed above) and allows for
implementations based on random oracles with hash-to-curve operations to
encode group elements as strings. As a result, KHAPE with HMQV, uses only
one fixed-base exponentiation, one variable-base (multi)exponentiation for each
party, and one hash-to-curve operation for the client. In all, it achieves
computational overhead relative to unauthenticated Diffie-Hellman of less than
the cost of one exponentiation, thus providing a close-to-optimal answer to our
motivating questions above. Such computational performance compares
favorably to that of other efficient aPAKE protocols such as SPAKE2+ and
OPAQUE that incur overhead of one and two (variable-base) exponentiations,
respectively, for server and client. In terms of number of messages, KHAPE uses
4 (3 if server initiates), compared to 3 messages in SPAKE2+ and OPAQUE.

Refer to Section 6 for a detailed description and rationale of the generic
KHAPE protocol (compiling any key-hiding AKE into an aPAKE) and to
Section 7 for the instantiation using HMQV.

On Strong aPAKE and reliance on OPRF. In the comparisons above, it
is important to stress that OPAQUE achieves a stronger notion of aPAKE, the
so called Strong aPAKE (saPAKE) model from [39]. In this model, the attacker
that compromises a server can only start running an offline dictionary attack
after breaking into the server. In contrast, in regular aPAKE, an offline attack
is still needed but a specialized dictionary can be prepared ahead of time and
used to find the password almost instantaneously when breaking into the server.
KHAPE, as discussed above, does not provide this stronger security. However, as
shown in [39], one can add a run of an OPRF to any aPAKE protocol to achieve

4 Dispensing with authentication of credentials in OPAQUE completely breaks the
protocol, allowing for trivial offline dictionary attacks.

3

Strong aPAKE security. If one does that to KHAPE, one gets a Strong aPAKE
protocol with performance similar to that of OPAQUE (using HMQV or 3DH).

However, there is a significant difference in the reliance on the security of
OPRF. While the password security of OPAQUE breaks down with a
compromise of the OPRF key (namely, it allows for an offline dictionary attack
on the password), in KHAPE the effect of compromising the OPRF is only to
fall back to the (non-strong) aPAKE setting. In particular, this distinction is
relevant in the context of quantum-safe cryptography as there are currently no
known efficient OPRFs considered to be quantum safe. This opens a path to
quantum-safe aPAKEs based on KHAPE with key hiding quantum-safe KEMs.

Closer comparison with OPAQUE. As stated above, KHAPE has an
advantage over OPAQUE in terms of security due to its weaker reliance on
OPRF and its computational advantage when the OPRF is not used. Also,
KHAPE seems more conducive to post-quantum security via post-quantum
key-hiding KEMs.5 On the other hand, KHAPE requires one more message and
allows for a more restrictive family of AKEs relative to OPAQUE (e.g., it does
not allow for signature-based protocols as those based on SIGMA [42] and used
in TLS 1.3 and IKEv2). KHAPE also relies for its analysis on the ideal cipher
model while OPAQUE uses the random oracle model. An interesting advantage
of KHAPE over OPAQUE is that in OPAQUE, an online attacker testing a
password learns whether the password was wrong before the server does (in
KHAPE the server learns first). This leads to a more complex mechanism for
counting password failures at a server running OPAQUE, especially in settings
with unreliable communication. Finally, we point out an advantage of using an
OPRF with KHAPE (in addition to providing Strong aPAKE security): It
allows for multi-server security via a threshold OPRF [38] where an attacker
needs to break into multiple servers before it can run an offline attack on a
password.

UC model analysis of (key-hiding) AKE’s. All our protocols are framed
and analyzed in the Universally Composable (UC) model [17]. This includes a
formalization of the key-hiding AKE functionality that underlies the design of
KHAPE. In order to instantiate KHAPE with specific AKE protocols, we prove
that protocols 3DH [46] and HMQV [43] realize the key-hiding AKE functionality
(in the ROM and under the Gap CDH assumption). We prove a similar result
for SKEME [41] with appropriate KEM functions. We see the security analysis
of these AKE protocols in the UC model, with and without key confirmation, as
a contribution of independent interest. Moreover, the study of key-hiding AKE
has applicability in other settings, e.g., where a gateway or IP address hides
behind it other identities; say, a corporate site hosting employee identities or a
web server aggregating different websites.

Organization. In Section 2, we define the notion of UC key-hiding AKE. In
Sections 3 and 4, we show, respectively, that 3DH and HMQV, are secure UC

5 We are currently investigating the use of NIST’s post-quantum KEM selections [49]
in conjunction with KHAPE.

4

key-hiding AKE protocols under the Gap DH assumption in ROM. In Section
5, we study the security of the SKEME protocol as a key-hiding AKE. In
Section 6, we show a compiler from key-hiding AKE to asymmetric PAKE. In
Section 7 we describe a concrete example of aPAKE, KHAPE-HMQV, that
instantiates KHAPE with HMQV as the key-hiding AKE. Finally, in Section 8
we survey potential ideal cipher instantiations and curve encodings based on
quasi-bijections.

Appendices: In Appendix A we model standard UC AKE with entity
authentication and show that adding key confirmation to a UC key-hiding
AKE protocol converts it into a secure UC AKE-EA protocol. In Appendix B
we recall the definition of UC aPAKE, with an extension to explicit
client-to-server entity authentication. Finally, appendices C and D include
proofs deferred from the main body.

2 The Key-Hiding AKE UC Functionality

Protocol KHAPE results from the composition of an encrypted credentials
scheme and a key-hiding AKE protocol. Fig. 1 defines the UC functionality
FkhAKE that captures the properties required from a key-hiding AKE protocol.
The modeling choices target the following requirements: First, as shown in
Section 6, the security and key-hiding properties of this key-hiding AKE model
suffice for our main application, a generic construction of UC aPAKE from any
protocol realizing FkhAKE. Second, as shown in Section A, adding a standard
key confirmation to any protocol that realizes FkhAKE results in a (standard)
UC AKE with explicit entity authentication. Lastly, this functionality is
realized by several well-known and efficient AKE protocols, including 3DH and
HMQV, as shown in Sections 3 and 4, as well as by a KEM-based AKE such as
SKEME, if instantiated with a key-hiding KEM, see Section 5. We provide
more details and rationale for the FkhAKE next.

High-level requirements for key-hiding AKE. The most salient property
we require from AKE is key hiding. To illustrate this requirement consider an
experiment where the attacker A is provided with a transcript of a session
between a party P and its counterparty CP. Party P has two inputs in this
AKE instance: a public key pkCP for CP and its own private key skP which P
uses to authenticate to CP who presumably knows P’s public key pkP. In
addition, A is given a pair of private keys: P’s private key skP and a second
random independent private key. A’s goal is to decide which of the two keys P
used in that session.6 We are interested in AKE protocols where the attacker
has no better chance to answer correctly than guessing randomly even for
sessions in which A is allowed to choose the messages from CP.

The key hiding property will come up in the analysis of KHAPE as follows.
The attacker learns a ciphertext c that encrypts the user’s private key under

6 This is reminiscent of key anonymity for PK encryption [8] where the attacker needs
to distinguish between public keys for a given ciphertext.

5

– PK is the list of all public keys created via Init, initially empty
– PK P is the list of all public keys created by P, initially empty for all P
– CPK is the list of all compromised keys in PK , initially empty

Keys: Initialization and Attacks

On Init from P:

Send (Init,P) to A, let A specify pk s.t. pk 6∈ PK , add pk to PK and to PK P, and
output (Init, pk) to P

On (Compromise,P, pk) from A:

If pk ∈ PK P then add pk to CPK

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, pk , pkCP) from P:

If pk ∈ PK P and there is no prior session record 〈sid,P, ·, ·, ·, ·〉 then:

– create session record 〈sid,P,CP, pk , pkCP,⊥〉 marked fresh
– initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
– send (NewSession, sid,P,CP) to A

On (Interfere, sid,P) from A:

If session 〈sid,P,CP, pkP, pkCP,⊥〉 is marked fresh then change its mark to interfered

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:

If ∃ session record rec = 〈sid,P,CP, pkP, pkCP,⊥〉 then:

– if rec is marked fresh: If ∃ record 〈sid,CP,P, pkCP, pkP, k
′〉 marked fresh s.t.

k ′ 6= ⊥ then set k ← k ′, else pick k ←R {0, 1}κ
– if rec is marked interfered then set k ← Rsid

P (pkP, pkCP, α)
– update rec to 〈sid,P,CP, pkP, pkCP, k〉 and output (NewKey, sid, k) to P

Session-Key Query

On (SessionKey, sid,P, pk , pk ′, α) from A:

If ∃ record 〈sid,P, ...〉 and pk ′ ∈ CPK or pk ′ 6∈ PK , send Rsid
P (pk , pk ′, α) to A

Fig. 1. FkhAKE: Functionality for Key-Hiding AKE

6

the user’s password. By decrypting this ciphertext under all passwords in a
dictionary, the attacker obtains a set of possible private keys for the user. The key
hiding property ensures that the attacker cannot identify the correct key (or the
password) in the set. Fortunately, as we prove here, a large class of AKE protocols
satisfy the key-hiding property, including implicitly authenticated protocols such
as HMQV and 3DH, and some KEM-based protocols.

Additionally, FkhAKE strengthens the basic guarantees of AKE protocols in
several ways. It requires resilience to KCI (key-compromise impersonation)
attacks, namely, upon the compromise of the private key of party P, the
attacker can impersonate P to others but it cannot impersonate others to P. In
the aPAKE setting, this ensures that an attacker that compromises a server,
cannot impersonate the client to the server without going through an offline
dictionary attack. In the context of key hiding AKE, we also need KCI
resilience to prevent the attacker from authenticating to the client when given
a set of possible private keys for that client.

Second, FkhAKE requires that keys exchanged by a honest P with a corrupted
CP still maintain a good amount of randomness, namely, the attacker can cause
them to deviate from uniform but not by much (a property sometimes referred
to as “contributive” key exchange, and not required in standard UC treatment).
In the setting of protocol KHAPE, adversarial choice of session keys (particularly
the ability of the attacker to create equal keys in different sessions) could lead to
protocols where the attacker can test more than one password in a single session.

Properties that we do not consider as part of the FkhAKE functionality, but
will be provided by our final aPAKE protocol, KHAPE, include key confirmation,
explicit authentication and full forward secrecy (FkhAKE itself implies forward
secrecy only against passive attackers).

Identities and public keys. We consider a setting where each party P has
multiple public keys in the form of arbitrary handles pk . In the security model
we assume that the public keys are arbitrary bitstrings chosen without loss of
generality by the attacker (ideal adversary) A, with the limitation that honest
parties are assigned non-repeating pk strings. Pairs (P, pk) act as regular UC
identities from the environment’s point of view, but the pk component is
concealed from A during key exchange sessions, even for sessions which are
actively attacked by A. This model can capture practical settings where P
represents a gateway or IP address behind which other identities reside, e.g., a
corporate site hosting employee identities or a web server aggregating different
websites, and where one is interested to hide which party behind the gateway is
communicating in a given session. Our specific application setting when using
key-hiding AKE in the aPAKE construction of Section 6, is more abstract: The
party symbols P,CP represent parties like internet clients and servers, while
the multiplicity of public keys comes from decryptions of encrypted credentials
under multiple password.

(Compromise,P, pk). This adversarial action hands the (long-term) private key
of party (P, pk) to the attacker A. Such private-key leakage does not provide A
with control over party P, and it does not even imply that the sessions which

7

party P runs using the (leaked) key pk are insecure. However, when combined
with the ability to run active attacks, via the Interfere action below, A can fully
impersonate (P, pk) in sessions of A’s choice. The leakage of the private key sk
corresponding to (P, pk) does not affect the security of a session executed by
party P even if it uses the compromised key pk . This captures the KCI property,
i.e. that leakage of the private key of party P does not allow to impersonate
others to party P. Also, any party P′ which runs AKE with a counterparty
identity specified as (P, pk), will also be secure as long as A does not actively
interfere in that protocol. This captures the requirement that passively-observed
AKE instance are secure regardless of the compromise of the long-term secrets
used by either party. Note that A cannot compromise a party P but rather an
identity pair (P, pk) and such compromise does not affect other pairs (P, pk ′).

NewSession. A session is initiated by a party P that specifies its own identity
pair (P, pk) as well as the intended counterparty identity pair (CP, pkCP). Session
identifiers sid are assumed to be unique within an honest party. The role of the
initialized session-specific random function Rsid

P is described below. A record for a
session is initialized as fresh and is represented by a tuple 〈sid,P,CP, pk , pkCP,⊥〉
where the last position, set to ⊥, is reserved for recording the session key. An
essential element in NewSession is that A learns (sid,P,CP) but it does not learn
(pk , pkCP). In the real world this translates into the inability of the attacker to
identify public (or private) keys associated to a pair of parties (P,CP) engaging
in the Key-Hiding AKE protocol.

The functionality enforces that an honest P can start a session only on key pk
which P generated and for which it holds a private key. However, the functionality
does not check anything about the intended counterparty’s identity (CP, pkCP),
so the private key corresponding to pkCP could be held by party CP, or it could
be held by a different party, or it could be compromised by the adversary, or it
could be that pkCP was not even generated by the key generation interface of
FkhAKE, and it is an adversarial public key, whose private key the environment
gave to the adversary. Our model thus includes honest parties who are tricked to
use a wrong public key for the counterparty (e.g., via a phishing attack) in which
case the attacker may know the corresponding private key. Note that regardless
of what key pkCP the session runs on, it is not given to the adversary, so if it
is a key created by the envriment (i.e. a higher-level application which uses the
key-hiding AKE) it does not necessarily follow that this key will be known to
the adversary, and only in the case it is known the adversary will be able to
attack that session using interfaces Interfere, NewKey, and SessionKey below.

Function Rsid
P . When command NewSession creates a session for (sid,P) the

functionality initializes a random function Rsid
P specific to this session. Function

Rsid
P is used to set the value of the session key for sessions in which A actively

interferes. It also allows A to have limited control over the value of the key
under strict circumstances, namely it must know the pulic keys pk , pkCP used
on that session, and it must compromise party (CP, pkCP). Even then the only
freedom A has is to evaluate function Rsid

P on any point α via a SessionKey
query, see below, and then choose one such point in the NewKey caommand.

8

This captures the “contributive” property discussed above: If an honest party
runs the AKE protocol even with adversary as a counterparty, the adversary’s
influence over the session key is limited to pre-computing polynomially-many
random key candidates and then choosing one of them as a key on that session.
The exact mechanics and functionality of Rsid

P are defined in the NewKey and
SessionKey actions below.

(Interfere, sid,P). This action represents an active attack on session (P, sid) and
makes the session change its status from fresh to interfered. The adversary does
not have to know either P’s own key pk or the intended counterparty key pkCP

which P uses on that session.7 Such active atack will prevent session (P, sid) from
establishing a secure key with any other honest party session, e.g. (CP, sid). It
will also allow A to learn and/or influence the value of the session key this
session outputs (using function Rsid

P), but only if in addition to being active A
compromises the counterparty key (CP, pkCP) used on session (P, sid).

NewKey. This action finalizes an AKE instance and makes (P, sid) output a
session key. If the session is fresh then it receives either a fresh random key or
the same key that was previously received by a matching session. If the session
is interfered, the value of the session key is determined by the function Rsid

P on
input (pk , pkCP, α) where α is chosen arbitrarily by A, allowing A to influence
the value of the session key (but in a very limited way as explained above). In
the real-world, α represents transcript elements generated by the attacker, e.g.,
value Y an adversarial P2 sends to an honest party P1 in 3DH or HMQV.

SessionKey. This action allows A to query the function Rsid
P associated to a

session (sid,P), potentially allowing A to learn and/or influence the session key
for (sid,P). Note that learning any values of function Rsid

P is useless unless the
adversary actively attacks session (sid,P), because otherwise Rsid

P is not used to
determine the key output by session (sid,P). Moreover, A needs to provide
(pk , pkCP, α) as input to SessionKey, and if those inputs do not match P’s own
key pk and the intended counterparty key pkCP which P uses on session
(sid,P), then this query reveals an irrelevant value, since Rsid

P is a random
fuction. Finally, FkhAKE releases value Rsid

P (pk , pkCP, α) to A only if key pkCP is
either compromised or adversarial. Summing up, the ability to learn (and/or
control via the NewKey interface) the session key output by session (sid,P) is
restricted to the case where all of the following hold: A actively interfered on
that session, A guesses keys pk , pkCP which this session uses, and A
compromises counterparty’s key (CP, pkCP).

How FkhAKE ensures key hiding and session security. The description
of FkhAKE is now complete. We now explain how FkhAKE ensures the key hiding

7 Currently functionality FkhAKE assumes the ideal-world adversary A knows, and
indeed creates, all honest parties’ public keys. A tighter model is possible, if FkhAKE

samples public keys on behalf of honest players using the prescribed key generation
algorithm, instead of letting A pick them. This would allow modeling use cases where
the public keys are not public and are not freely available to the adversary.

9

property by which A cannot learn the value pk for an identity pair (P, pk) even if
A knows P, has a list of all possible values of (P, pk), and actively interacts with
(P, pk) using a compromised party (CP, pkCP). Let’s assume these conditions
hold. Note that the only actions in which A can learn pk values from FkhAKE are
upon key generation and via the SessionKey call. Key generation assumes that A
has a list of all possible values (P, pk). As we explain above, the only argument
on which the value of function Rsid

P is useful is a tuple (pk , pkCP, α) which the
functionality uses to derive a session key for an actively attacked session (sid,P).

Consequently, the only way FkhAKE can leak the session key output by
(sid,P) is if A satisfies the three conditions above, i.e. it interferes in that
session, key pkCP used on that session is either compromised or adversarial,
and A queries SessionKey on the proper keys pk , pkCP. This is also the only
way A can learn anything about keys pk , pkCP used by session (sid,P): It has
to attack the session, compromise pkCP, get a session key candidate k∗ via
query SessionKey on pk , pkCP, and then compare this key candidate against any
information it has about the key k output by session (sid,P). For example, if
P’s higher-level application uses key k to MAC or encrypt a message, the
adversary can verify the result against a candidate key k∗ and thus learn
whether k∗ = k , and hence whether keys pk , pkCP which A used to compute k∗

were the same keys that were used by session (sid,P).

3 3DH as Key-Hiding AKE

We show that protocol 3DH, presented in Figure 2, realizes the UC notion of
Key-Hiding AKE, as defined by functionality FkhAKE in Section 2, under the Gap
CDH assumption in ROM. As a consequence, 3DH can be used to instantiate
protocol KHAPE in a simple and efficient way.

3DH [46] is a simple, implicitly authenticated key exchange used as the basis
of the X3DH protocol [47] that underlies the Signal protocol. It consists of a
plain Diffie-Hellman exchange authenticated via the session-key derivation that
combines the ephemeral and long-term key of both peers. Specifically, if (a,A)
and (b,B) are the long-term key pairs of two parties P1 and P2, and (x,X)
and (y, Y) are their ephemeral DH values, then 3DH combines these key pairs
to compute a (hash of) the triple of Diffie-Hellman values, σ = gxb‖gay‖gxy.
Security of 3DH is intuitively easy to see: It follows from the fact that to compute
σ the attacker must either (1) know (x, a) to attack party P2 who uses A as a
public key for its counterparty, or (2) know (y, b) to attack party P1 who uses
B as a public key for its counterparty. In other words, the attacker wins only if
it is an active man-in-the-middle attacker and it compromises the key used as
counterparty’s public key by the attacked party. (Recall that “compromising a
public key” stands for learning the corresponding private key.) The key-hiding
property comes from the fact that the values X and Y exchanged in the protocol
do not depend on long-term keys, and the fact that the only information about
the long-term keys used by any party can be gleaned only from the session key
they output and from H oracle queries on a σ value computed using these keys.

10

The formal proof of key-hiding in the UC model captures this argument, and we
present it below.

We note that 3DH is not the most efficient key-hiding AKE. 3DH costs one
fixed-base and three variable-base exponentiations per party, and in Section 4
we will show that HMQV, which preserves the bandwidth and round complexity
of 3DH but folds the three variable-base exponentiations of 3DH into a single
multi-exponentiation, realizes the key-hiding AKE functionality under the same
Gap CDH assumption (although with worse exact security guarantees). However,
HMQV can be seen as a modification of 3DH, and the security analysis of 3DH
we show below will form a blueprint for the analysis of HMQV in Section 4.

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on Init P2 on Init
a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

-X � Y

σ1 ← Bx‖Y a‖Y x σ2 ← Xb‖Ay‖Xy

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 2. Protocol 3DH: “Triple Diffie-Hellman” Key Exchange

Conventions.

(1) In Figure 2 we assume that each party runs 3DH using key pair (sk , pk)
previously generated via procedure Init. In Figure 2 these are resp. (a,A) for P1

and (b,B) for P2. Note that no such requirement is posed on the counterparty
public key each party uses, resp. public key B used by P1 and A used by P2.

(2) We implicitly assume that each party Pi uses its own identity as a protocol
input, together with the identity CPi of its assumed counterparty. These
identities could be e.g. domain names, user names, or any other identifiers.
They have no other semantics except that the two parties can establish the
same session key only if they assume matching identifiers, i.e.
(P1,CP1) = (CP2,P2).

(3) Protocol 3DH is symmetric except for the ordering of group elements in tuple
σ and the ordering of elements in the inputs to hash H. Each protocol party P

11

can locally determine this order based on whether string P is lexicographically
smaller than string CP. (In Figure 2 we assume that P1 <lex P2.) An equivalent
way to see it is that each party P computes a “role” bit role ∈ {1, 2} and follows
the protocol of party Prole in Figure 2: Party P sets this bit as role = 1, called
the “client role”, if P <lex CP, and role = 2, called the “server role”, otherwise.

(4) We assume that parties verify public keys and ephemeral DH values, resp.
B, Y for P1 and A,X for P2, as group G elements. Optionally, instead of group
membership testing one can use cofactor exponentiation to compute σ.

Cryptographic Setting: Gap CDH and RO Hash. Let g generate a cyclic
group G of prime order p. The Computational Diffie-Hellman (CDH) assumption
on G states that given (X,Y) = (gx, gy) for (x, y) ←R (Zp)2 it is hard to find
cdhg(X,Y) = gxy. The Gap CDH assumption states that CDH is hard even if
the adversary has access to a Decisional Diffie-Hellman oracle ddhg, which on
input (A,B,C) returns 1 if C = cdhg(A,B) and 0 otherwise.

Theorem 1. Protocol 3DH shown in Figure 2 realizes FkhAKE if the Gap CDH
assumption holds and H is a random oracle.

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :

if ∃ (sk , pk) ∈ KLP send sk to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , store 〈sid,P,CP, role, w〉, send W = gw to A

On A’s message Z to session Psid (only first such message counts):

if ∃ record 〈sid,P,CP, ·, w〉:
if ∃ no record 〈sid,CP,P, ·, z〉 s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (sid,C, S, X, Y, σ) to random oracle H:

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

if ∃ record 〈sid,C,S, 1, x〉 and (a,A) ∈ KLC s.t. (X,σ) = (gx, (Bx‖Y a‖Y x)) for
some B , send (SessionKey, sid,C,A,B , Y) to F , if F returns k∗ reset k ← k∗

if ∃ record 〈sid, S,C, 2, y〉 and (b,B) ∈ KLS s.t. (Y, σ) = (gy, (Xb‖Ay‖Xy)) for
some A, send (SessionKey, sid, S,B ,A, X) to F , if F returns k∗ reset k ← k∗

add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 3. Simulator SIM showing that 3DH realizes FkhAKE (abbreviated “F”)

12

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP then output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:
if ∃ (sk , pkP)∈KLP, pick w ←R Zp , write 〈sid,P,CP, sk , pkCP, w〉, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record 〈sid,P,CP, skP, pkCP, w〉, set σ ← ((pkCP)w‖ZskP‖Zw),
k ← H(sid, {P,CP,W,Z, σ}ord), output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:
add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 4. 3DH: Environment’s view of real-world interaction (Game 0)

Proof Overview. We show that that for any efficient environment algorithm
Z, its view of the real-world security game, i.e. an interaction between the real-
world adversary and honest parties who follow protocol 3DH, is indistinguishable
from its view of the ideal-world game, i.e. an interaction between the ideal-world
adversary, whose role is played by the simulator, with the functionality FkhAKE.
We show the simulator algorithm SIM in Figure 3. The real-world game, Game 0,
is shown in Figure 4, and the ideal-world game defined by a composition of
algorithm SIM and functionality FkhAKE, denoted Game 7, is shown in Figure 5.

As is standard, we assume that the real-world adversary A is a subroutine
of the environment Z, therefore the sole party that interacts with Games 0 or 7
is Z, issuing commands Init and NewSession to honest parties P, adaptively
compromising public keys, and using A to send protocol messages Z to honest
party’s sesssions and making hash function H queries. The proof follows a
standard strategy of showing a sequence of games that bridge between Game 0
and Game 7, where at each transition we argue that the change is
indistinguishable. We use Gi to denote the event that Z outputs 1 while
interacting with Game i, and the theorem follows if we show that
|Pr[G0]− Pr[G7]| is negligible under the stated assumptions.

Notation. To make the real-world interaction in Figure 4 more concise, we
adopt a notation which stresses the symmetric nature of 3DH protocol: We
use variable W = gw to denote the message which party P sends out, and
variable Z to denote the message it receives, e.g. (W,Z) = (X,Y) if P plays the
“client” role and (W,Z) = (Y,X) if P plays the “server” role. If σ = σ1‖σ2‖σ3

then let {σ}flip = σ2‖σ1‖σ3. We will use {P,CP,W,Z, σ}ord to denote string
P,CP,W,Z, σ if P <lex CP or string CP,P, Z,W, {σ}flip if CP <lex P. With this
notation each party’s 3DH protocol code can be restated in the symmetric way,

13

as in Figure 4, because session key computation of party P can be denoted in a
uniform way as k ← H(sid, {P,CP,W,Z, σ}ord) for σ = (pkCP)w‖ZskP‖Zw.

We use the same symmetric notation to describe simulator SIM in Figure 3
and the ideal-world game implied by SIM and FkhAKE in Figure 5, except for the
way SIM treats H oracle queries, which we separate into two cases based on the
roles played by the two parties whose sessions are potentially involved in any
H query. In H-handling code of SIM we denote the identifiers of the two parties
involved in a query as C and S, for the parties playing respectively the client
and server roles, and the code that follows uses role-specific notation to handle
attacks on the sessions executed respectively by C and S.

Throughout the proof we use Psid to denote a session of party P with identifier
sid. We use vsidP to denote a local variable v pertaining to session Psid or a message
v which this session receives, and whenever identifier sid is clear from the context
we write vP instead of vsidP . Note that session CPsid is uniquely defined for every

session Psid by setting CP = CPsid
P , and we will implicitly assume below that a

counterparty’s session is defined in this way.
For a fixed environment Z, let qK and qses be (the upper-bounds on) the

number of resp. keys and sessions initialized by Z, let qH be the number of H
oracle queries Z makes, and let εZg-cdh be the maximum advantage in solving
Gap CDH in G of an algorithm that makes qH DDH oracle queries and uses the
resources of Z plus O(qH + qses) exponentiations in G.

Define the following two functions for every session Psid:

3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′)‖cdhg(pk , Z)‖cdhg(W,Z) for W = W sid

P (1)

Rsid
P (pk , pk ′, Z) = H(sid, {P,CPsid

P ,W
sid
P , Z, 3DHsid

P (pk , pk ′, Z)}ord) (2)

If session Psid runs on its own private key skP, counterparty’s public key pkCP,
and receives message Z, then its output session key is k = Rsid

P (pkP, pkCP, Z)
for pkP = gskP . Note also that an adversary can locally compute function Rsid

P

for any pkP, any key pkCP which was either generated by the adversary or it
was generated by an honest party but it has been compromised, and any Z
which the adversary generates, because the adversary can then compute
functions cdhg(·, pkCP) and cdhg(·, Z) on any inputs.

Simulator. Simulator SIM, shown in Figure 3, picks all (sk , pk) pairs on
behalf of honest players and surrenders the corresponding private key whenever
an honestly-generated public key is compromised. To simulate honest party P
behavior the simulator sends W = gw for random w. When Psid receives Z the
simulator forks: If Z originated from honest session CPsid which runs on
matching identifiers (sid,CP,P), SIM treats this as a case of honest-but-curious
attack that connects two potentially matching sessions and sends NewKey to
FkhAKE. (Z included in this call is ignored by FkhAKE.) Otherwise SIM treats it
as an active attack on Psid and sends Interfere followed by (NewKey, ..., Z). Note
that in response FkhAKE will treat Psid as interfered and set its output key as
k ← Rsid

P (pkP, pkCP, Z) where (pkP, pkCP) are the (own,counterparty) pair of
public keys which Psid uses, and which is unknown to SIM (except if pkCP was

14

generated by the adversary, in which case it was leaked to SIM at NewSession).
Finally, SIM services H oracle queries (sid,C,S, X, Y, σ) by identifying those
that pertain to viable session-key computations by either session Csid or Ssid.
We describe it here only for Csid-side H queries since Ssid-side queries are
handled symmetrically. If H query involves σ = 3DHsid

C (A,B , Y) for some A,B
s.t. (1) A is one of the public keys generated by C, and (2) B is either some
compromised honestly generated public key or it is an adversarial key which
Csid uses for the counterparty (recall that if Csid runs on an adversary-generated
counterparty key pkCP then functionality FkhAKE leaks it to the adversary),
then SIM treats that query as a potential computation of a session key output
by Csid, queries (SessionKey, sid,C,A,B , Y) to FkhAKE. If B is compromised or
adverarial then FkhAKE responds with k∗ ← Rsid

C (A,B , Y) and SIM embeds k∗

into H output. Note that if (A,B) matches the (own,counterparty) keys used
by Csid, and Csid receives Z = Y in the protocol, then k∗ will match the session
key output by Csid. For all other triples (A,B , Y) the outputs of Rsid

C are
irrelevant except that (1) if the adversary learns the real session key output by
Csid then these H outputs inform the adversary that pair (A,B) is not the
(own,counterparty) key pair used by Csid, and (2) if the adversary bets on some
(A,B) pair used by Csid then it can use H queries to find an “optimal” protocol
response Y to Csid for which the resulting (randomly sampled) session key has
some properties the adversary likes, e.g. its last 20 bits are all zeroes, etc.

Game Sequence from Game 0 to Game 7.

Game 0 (real world): This is the interaction of environment Z (and its
subroutine, the real-world adversary) with protocol 3DH, as shown in Fig. 4.

Game 1 (past H queries are irrelevent to new sessions): Game 1 adds an
abort if NewSession initializes session Psid with W = gw s.t. H has been queried
on any tuple of the form (sid, {P, ·,W, ·, ·}ord). Since each H query can pertain to
at most two sessions, Psid and CPsid, there at most qH such queries, and w ←R Zp ,
we have:

|Pr[G1]− Pr[G0]| ≤ (2qH)/p

Game 2 (programming Rsid
P values into H outputs): Define sessions Csid,Ssid

to be matching if CPsid
C = S and CPsid

S = C. Note that for any matching sessions
Csid,Ssid and any public keys A,B correctness of 3DH implies that
Rsid

C (A,B, YS) = Rsid
S (B,A,XC). While in equation (2) we defined function Rsid

P

in terms of hash H, in Game 2 we set H outputs using appropriately chosen
functions Rsid

P . For every pair of matching sessions Csid,Ssid consider a pair of
random functions Rsid

C , Rsid
S : (G)3 → {0, 1}κ s.t.

Rsid
C (A,B, Y sid

S) = Rsid
S (B,A,Xsid

C) for all A,B ∈ G (3)

More precisely, for any session Psid with no matching session Rsid
P is set as

a random function, and for Psid for which a prior matching session exists Rsid
P

is set as a random function subject to constraint (3). Let PK be the list of all

15

Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:

set sk ←R Zp , pk ← gsk , send (Init, pk) to P, add pk to PK and (sk , pk) to KLP

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP add pk to CPK and output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (sk , pkP) ∈ KLP then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , write 〈sid,P,CP, pkP, pkCP, role, w,⊥〉 as fresh, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record rec = 〈sid,P,CP, pkP, pkCP, role, w,⊥〉:
if ∃ record rec′ = 〈sid,CP,P, pk ′CP, pk ′P, role′, z, k ′〉 s.t. gz = Z

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk ′CP), and k ′ 6= ⊥:
then k ← k ′

else k ←R {0, 1}κ
else set k ← Rsid

P (pkP, pkCP, Z) and re-label rec as interfered
update rec to 〈sid,P,CP, pkP, pkCP, role, w, k〉, send (NewKey, sid, k) to P

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

1. if ∃ record 〈sid,C, S, ·, ·, 1, x, ·〉 s.t. (X,σ) = (gx, (Bx‖Y a‖Y x)) for some
(a,A) ∈ KLC and B s.t. B ∈ CPK or B 6∈ PK then reset k ← Rsid

C (A,B , Y)

2. if ∃ record 〈sid, S,C, ·, ·, 2, y, ·〉 s.t. (Y, σ) = (gy, (Xb‖Ay‖Xy)) for some
(b,B) ∈ KLS and A s.t. A ∈ CPK or A 6∈ PK then reset k ← Rsid

S (B ,A, X)

add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 5. 3DH: Environment’s view of ideal-world interaction (Game 7)

16

public keys generated so far, and PK P be the set of keys generated for P. Let
PK +(Psid) stand for PK ∪ {pkCP} where pkCP is the counterparty public key
used by Psid. (If pkCP ∈ PK then PK +(Psid) = PK .) Consider an oracle H which
responds to each new query (sid,C,S, X, Y, σ) for C <lex S as follows:

1. If ∃ Csid s.t. (S, X) = (CPsid
C , X

sid
C), and ∃ A,B s.t. A ∈ PK C, B ∈ PK +(Csid),

and 3DHsid
C (A,B, Y) = σ, then set k ← Rsid

C (A,B, Y)

2. If ∃ Ssid s.t. (C, Y) = (CPsid
S , Y

sid
S), and ∃ B,A s.t. B ∈ PK S, A ∈ PK +(Ssid),

and 3DHsid
S (B,A,X) = {σ}flip, then set k ← Rsid

S (B,A,X)
3. In any other case sample k ←R {0, 1}κ

Since the game knows each key pair (skP, pkP) generated for each P, and
the ephemeral state w of each session Psid, it can decide for any Z, pk ′ if σ =
3DHsid

P (pkP, pk ′, Z) = (pk ′)w‖ZskP‖Zw. Note that each value of Rsid
P is used to

program H on at most one query. Also, if H query (sid,C,S, X, Y, σ) satisfies both
conditions then (X,Y) = (Xsid

C , Y sid
S) = (gx, gy) and ∃ A′, B′, a, b s.t.

3DHsid
C (ga, B′, Y) = (B′)x‖Y a‖Y x = Xb‖(A′)y‖Xy = {3DHsid

S (gb, A′, X)}flip

Since these equations imply that (A′, B′) = (ga, gb), and by equation (3),
Rsid

C (A′, B′, Y sid
S) = Rsid

S (B′, A′, Xsid
C), it follows that if both conditions are

satisfied then both will program H output to the same value. Thus we conclude:

Pr[G2] = Pr[G1]

Game 3 (direct programming of session keys using random functions Rsid
P):

In Game 3 we make the following changes: We mark each initialized session
Psid as fresh, and when A sends Z to Psid then we re-label Psid as interfered
if Z does not equal to the message sent by the matching session CPsid, i.e.
if Zsid

P 6= W sid
CP . Secondly, if session Psid runs on its own key pair (skP, pkP)

and intended counterparty public key pkCP, we say that it runs “under keys
(pkP, pkCP)”. Using this book-keeping, Game 3 modifies session-key computation
for session Psid which runs under keys (pkP, pkCP) as follows:

1. If k sid
CP 6= ⊥, sessions Psid,CPsid are fresh and matching, and CPsid runs under

keys (pkCP, pkP), then k sid
P ← k sid

CP

2. In any other case set k sid
P ← Rsid

P (pkP, pkCP, Z).

We argue that this change makes no difference to the environment. In
Game 2 the session key k sid

P is computed as H(sid, {P,CP,W,Z, σ}ord) for

σ = 3DHsid
P (pkP, pkCP, Z). However, H on such input is programmed in Game 2

to output Rsid
P (pkP, pkCP, Z) if σ = 3DHsid

P (pkP, pkCP, Z) for any
pkCP ∈ PK +(Psid). Since pkCP used by Psid must be in set PK +(Psid), setting
k sid
P directly as Rsid

P (pkP, pkCP, Z) only short-circuits this process. Moreover,
since Rsid

C and Rsid
S are correlated by equation (3), setting k sid

C as k sid
S or vice

versa, in the case both are fresh, i.e. Zsid
C = Y sid

S and Zsid
S = Xsid

C , and sessions

17

Csid,Ssid run under matching keys, resp. (pkP, pkCP) = (A,B) and
(pkCP, pkP) = (B,A), also does not change the game. Thus we conclude:

Pr[G3] = Pr[G2]

Game 4 (abort on session-key derivation H query for passive sessions): We
add an abort if oracle H triggers evaluation of Rsid

P (pk , pk ′, Z) for any pk , pk ′

and Z = W sid
CP where CPsid is a matching session of Psid. Note that if Psid is

passively observed, i.e. it remains fresh then value W sid
CP either has been delivered

to Psid, i.e. Zsid
P = W sid

CP , or Psid is still waiting for message Z. By the code of
oracle H in Game 2 the call to Rsid

P (pk , pk ′,W sid
CP) is triggered only if H query

(sid, {P,CP,W,Z, σ}ord) satisfies the following for Z = W sid
CP and W = W sid

P :

σ = 3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′) ‖ cdhg(pk , Z) ‖ cdhg(W,Z)

Hardness of computing such tuple relies on the hardness of computing its last
element, i.e. cdhg(W,Z), because (W,Z) are Diffie-Hellman KE messages sent by

honest sessions Psid and CPsid. We show that solving Gap CDH can be reduced
to causing event Bad, defined as the event that adversary makes such H query.
Reduction R takes a CDH challenge (X̄, Ȳ) and embeds it in the messages of
simulated parties: If role = 1 then R sends X = X̄s for s←R Zp as the message
from Csid, and if role = 2 then R sends Y = Ȳ t for t←R Zp as the message from
Ssid. Finally, R responds to Init by generating keys (skP, pkP) as in Game 0.
R does not know x = s·x̄ and y = t·ȳ corresponding to messages X,Y , where

x̄ = dlogg(X̄) and ȳ = dlogg(Ȳ), but it can use the DDH oracle to emulate the

way Game 3 services H queries: To test if H input (sid,C,S, X, Y, σ) for X = X̄s

satisfies σ = (L‖M‖N) = (pkx‖Y a‖Y x) for x = s · x̄ and any a, pk , reduction
R checks if L = cdhg(X̄, pks), M = Y a, and N = cdhg(X̄, Y

s). Symmetrically,
R tests if (X,Y, σ) for Y = Ȳ t satisfies σ = (M‖L‖N) = (Xb‖pky‖Xy) by
checking if L = cdhg(Ȳ , pk t), M = Xb, and N = cdhg(Ȳ , X

t).
Since R emulates Game 3 perfectly, event Bad occurs with the same

probability as in Game 3. If it does then R detects it by checking if the last
element N in σ satisfies N = cdhg(W,Z) for W = W sid

P and Z = W sid
CP . If Psid

and CPsid are matching then one of them plays the client role and the other the
server role, i.e. either (W,Z) or (Z,W) is equal to (X̄s, Ȳ t) for some s, t known
by R. In either case R can output N1/(st) as the answer cdhg(X̄, Ȳ) to its
CDH challenge. It follows that Pr[Bad] ≤ εZg-cdh, hence:

|Pr[G4]− Pr[G3]| ≤ εZg-cdh

Game 5 (random keys on passively observed sessions): We modify the game
so that if session Psid remains fresh when A sends Z to Psid then instead of setting
k sid
P ← Rsid

P (pkP, pkCP, Z) as in Game 3, we now set k sid
P ←R {0, 1}κ. Since session

Psid can remain fresh only if Z it receives was sent by its matching session, i.e.
Z = W sid

CP , and by Game 4 oracle H never queries Rsid
P (pkP, pkCP, Z) for such

18

Z, it follows by randomness of Rsid
P that the modified game remains externally

identical, hence:
Pr[G5] = Pr[G4]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): Let Game 6 be as Game 5,
except that functions Rsid

S , Rsid
S are chosen without the constraint imposed by

equation (3). Since by Game 5 neither function is queried on the points which
create the correlation imposed by equation (3), it follows that:

Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): Recall
that in Game 6, as in Game 2, H(sid, {P,CP,W sid

P , Z, σ}ord) is defined as

Rsid
P (pk , pk ′, Z) if σ = 3DHsid

P (pk , pk ′, Z) for some pk ∈ PK P, and
pk ′ ∈ PK +(Psid). In Game 7 we add a condition that this programming of H
can occur only if either (1) pk ′ is an honestly generated key of some party, but
it has been compromised or (2) pk ′ is the counterparty key which session Psid

runs under, and it is an adverarial key, i.e. it has not been generated by Init.
Note that these are the two cases in which the adversary can know the secret
key corresponding to pk ′, and we will show that this knowledge is indeed
necessary for adversary to compute σ s.t. σ = 3DHsid

P (pk , pk ′, Z).
Let CPK be the list of generated public keys who were compromised so far,

and let CPK +(Psid) stand for CPK if the counterparty public key pkCP used by
Psid is an honestly generated key, and for CPK ∪{pkCP} if pkCP is adversarially-
generated. The modification of Game 7 is that H output is programmed to
Rsid

P (pk , pk ′, Z) for pk ′ s.t. σ = 3DHsid
P (pk , pk ′, Z) only if pk ′ ∈ CPK +(Psid), while

in Game 6, as in Game 2, this programming was done whenever pk ′ ∈ PK +(Psid).
Therefore the two games diverge in the case of event Bad defined as H query as
above for pk ′ ∈ PK \ CPK , i.e. honestly generated and not compromised key.
Let Badn be Bad where Psid plays role = n. We show a reduction R that solves
Gap CDH if Bad1 occurs. The argument for event Bad2 is symmetrical.

Note that Bad1 corresponds to H query on string (sid,C,S, X, Y, σ) for
σ = (Bx‖Y a‖Y x) where x = xsidC , a is some private key of C, and B is a
non-compromised public key in PK (not necessarily owned by S). On input a
CDH challenge (X̄, B̄), R sets each Xsid

C as X̄s for random s, just like the
reduction in Game 4, but it sets each Y sid

S as gy for random y. R also picks all
keys (skP, pkP) as in Game 0, except for a chosen index i ∈ [1, . . . , qK], where
R sets the key generated in the i-th call to Init (by any party P) as pk [i] ← B̄.
Let Bad1[i] denote event Bad1 occuring for B which is this i-th key, i.e. B = B̄.

As long as key pk [i] is not compromised, R can emulate Game 6 because it
can respond to a compromise of all other keys, and it can service H queries as
follows: To test server-side σ’s, i.e. if σ = (M‖L‖N) = (Xsk‖pky‖Xy), reduction
R tests it as Game 6 does except for sk that corresponds to the public key B̄, in
which case it tests if M = cdhg(B̄,X), L = pky, and N = Xy. To test client-side
σ’s, i.e. if σ = (L‖M‖N) = (pkx‖Y sk‖Y x) for x = s · x̄ where x̄ = dlogg(X̄) and

any pk , including pk = B̄, reduction R tests if L = cdhg(X̄, pks), M = Y sk , and

19

N = cdhg(X̄, Y
s), except for the case that sk is the private key corresponding to

the public key B̄, in which case R replaces test M = Y sk with M = cdhg(B̄, Y).
Note that Bad1[i] can happen only before key pk [i] is compromised, so event

Bad1[i] occurs in the reduction with the same probability as in Game 6. (If A
asks to compromise of pk [i] then R aborts.) R can detect event Bad1[i] because
it occurs if H query involves the public key pk [i] = B̄ and σ satisfies the client-
side equation for this key, in which case R can output L1/s = cdhg(X̄, B̄). If R
picks index i at random it follows that Pr[Bad1] ≤ qK · εZg-cdh. Since a symmetric
argument holds also for Pr[Bad2], we conclude:

|Pr[G7]− Pr[G6]| ≤ (2qK) · εZg-cdh

Observe that Game 7 is identical to the ideal-world game shown in Figure 4:
By Game 6 all functions Rsid

P are random, by Game 5 the game responds to Z
messages to Psid as the game in Figure 4, and after the modification in oracle H
done in Game 7 this oracle also acts as in Figure 4. This completes the argument
that the real-world and the ideal-world interactions are indistinguishable to the
environment, and hence completes the proof of Theorem 1.

4 HMQV as Key-Hiding AKE

We show that protocol HMQV [43], presented in Figure 6, realizes the UC notion
of Key-Hiding AKE, as defined by functionality FkhAKE in Section 2, under the
Gap CDH assumption in ROM. It allows us to use HMQV with KHAPE, resulting
in its most efficient instantiation, and, to the best of our knowledge the most
efficient aPAKE protocol proposed. HMQV has been analyzed in [43] under
the game-based AKE model of Canetti and Krawczyk [19], but the analysis we
present is the first, to the best of our knowledge, to be done in the UC model.8

The logic of why HMQV is key hiding is similar to the case of 3DH. Namely,
the only way to attack the privacy of party P which runs HMQV on inputs
(sk , pk) = (a,B), is to compromise the private key b corresponding to the public
key B . (And symmetrically for the party that runs on (sk , pk) = (b,A).) The
HMQV equation, just like the 3DH key equation, involves both the ephemeral
sessions secrets (x, y) and the long-term keys (a, b), combining them in a DH-
like formula σ = g(x+da)·(y+eb) where d, e are hashes of (session state identifiers
and) resp. X = gx and Y = gy. Following essentially the same arithmetics as in
the proof due to [43] shows that the only way to compute σ is to know either
both x, a or both y, b, which means that the attacker must be (1) active, to chose
the ephemeral session state variable resp. x or y, and (2) it must know the
counterparty private key, resp. a or b.

Theorem 2. Protocol HMQV shown in Figure 6 realizes FkhAKE if the Gap CDH
assumption holds and H,H′ are random oracles.

The proof of theorem 2 follows the template of the proof for the corresponding
theorem on 3DH security, i.e. theorem 1, and we defer it to Appendix C.

8 However, we do not include adaptive session state compromise considered in [19, 43].

20

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

P1 on Init P2 on Init
a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

-X � Y

d1 ← H′(sid,P1,CP1, 1, X) d2 ← H′(sid,CP2,P2, 1, X)
e1 ← H′(sid,P1,CP1, 2, Y) e2 ← H′(sid,CP2,P2, 2, Y)

σ1 ← (Y · Be1)x+d1·a σ2 ← (X ·Ad2)y+e2·b

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 6. Protocol HMQV [43]

5 SKEME as Key-Hiding AKE

We present a variant of the SKEME protocol [41] in Figure 7, where we
implement two modifications. First, we rely on OW-PCA 4 secure and perfect
key-private 3 KEM. Recall that KEM is a special case of public key encryption
customized to encrypting random keys, hence it follows from OW-PCA secure
and key-hiding PKE [8]. Secondly, for compliance with the UC notion of AKE
modeled by functionality FkhAKE, we derive the session key via a hash involving
several additional elements, including a session identifier sid, party identities C
and S, public keys A and B , and the transcript X, c, Y, d. We will also use
{P,CP,A,B , X, c, Y, d, σ}ord to denote (P,CP, A,B, gw, c, Z, d, (K,L,Zw)) if P
plays role = 1, and string (CP,P, A,B, Z, c, gw, d, (K,L,Zw)) if role = 2. Using
this notation each party P can derive its session key as
k ← H(sid, {P,CP,A,B , X, c, Y, d, σ}ord).

Theorem 3. Protocol SKEME shown in Figure 7 realizes FkhAKE if the Gap
CDH assumption holds, KEM is a OW-PCA secure and perfect key-private KEM,
and H is a random oracle.

Because of inherent similarities of SKEME and 3DH, the proof of the above
theorem follows a similar pattern as the proof of Theorem 1, and we defer it to
Appendix D.

21

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

KEM scheme KEM = (Gen,Enc,Dec)

P1 on Init P2 on Init
(a,A)← KEM.Gen (b,B)← KEM.Gen
store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

c,K ← KEM.Enc(B) d, L← KEM.Enc(A)

-X, c � Y, d

L← KEM.Dec(a, d) K ← KEM.Dec(b, c)
σ ← (K,L, Y x) σ ← (K,L,Xy)
k1 ← H(sid,P1,CP1, A,B,X, c, Y, d, σ) k2 ← H(st,CP2,P2, A,B,X, c, Y, d, σ)
output k1 output k2

Fig. 7. Protocol SKEME: KEM-authenticated Key Exchange

6 Compiler from key-hiding AKE to asymmetric PAKE

We show that any UC Key-Hiding AKE protocol can be converted to a UC
asymmetric PAKE (aPAKE) with a very small computational overhead. We
call this AKE-to-aPAKE compiler construction KHAPE, which stands for
Key-Hiding Asymmetric PakE, shown in Figure 8. The compiler views each
party’s AKE inputs, namely its own private key and its counterparty public
key, as a single object, an AKE “credential”. The two parties participating in
aPAKE, the server and the user, a.k.a. the client, each will have such a
credential: The server’s credential contains the server’s private key and the
client’s public key, and the client’s credential contains the client’s private key
and the server’s public key. Running AKE on such matching pair of inputs
would establish a secure shared key, but while the server can store its
credential, the client’s only input is her password and it is not clear how one
can derive an AKE credential from a password. Protocol KHAPE enables
precisely this derivation: In addition to server’s credential, the server will also
store a ciphertext which encrypts, via an ideal cipher, the client’s credential
under the user’s password, and the aPAKE protocol consists of server sending
that ciphertext to the client, the client decrypting it using the user’s password
to obtain its certificate, and using that certificate to run an AKE instance with
the server.

22

• cipher (IC∗.E, IC∗.D) on space of private and public AKE keys (see page 25)
• pseudorandom function prf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B)),
stores file[uid, S]← (e, (b,A)), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(a,B)← IC∗.D(pw , e) � e
(e, (b,A))← file[uid,S]

-(sid,C,S, a,B) � (sid,S,C, b,A)

Key-Hiding AKE

� k1 -k2

τ ← prf(k1, 1) -τ
γ ← ⊥ if τ 6= prf(k2, 1)

else γ ← prf(k2, 2)
� γ

K1 ← ⊥ if γ 6= prf(k1, 2) K2 ← ⊥ if τ 6= prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 8. Protocol KHAPE: Compiler from Key-Hiding AKE to aPAKE

Reduced-bandwidth variant. In the aPAKE construction in Figure 8,
ciphertext e password-encrypts a pair of the client’s secret key skC and the
server’s public key pkS. Without loss of generality every AKE key pair (sk , pk)
is generated by the key generation algorithm from uniformly sampled
randomness r. The aPAKE construction can be modified so that envelope e
password-encrypts only the server’s public key pkS, while the client derives its
private key skC using the key generation algorithm on randomness r ← H(pw)
via RO hash H. Note that if key-hiding AKE is either 3DH or HMQV then this
amounts to the client setting it’s secret exponent a ← H(pw) where H maps
onto range Zq.9 This change does not simplify the construction of the ideal
cipher by much because typically the public key is a group element and the
private key is a random modular residue, but it reduces the size of ciphertext
e. We believe that the security proof for the aPAKE protocol in Figure 8 can
be adjusted to show security of this reduced-bandwidth implementation.

Why we need key-hiding AKE. Note that anyone who observes the
credential-encrypting ciphertext e can decrypt it under any password. Each
password guess will decrypt e into some credential cred = (skC, pkS), where
skC is a client’s private key and pkS is a server’s public key. Let cred(pw)

9 If AKE is implemented as SKEME of Section 5 then the client must also derive the
public key pkC, since it is used in the key-derivation hash, see Figure 7.

23

denote the credential obtained by decrypting e using password pw . For any
password guess pw∗ the attacker can use credential cred(pw∗) as input to an
AKE protocol with the server, but that is equivalent to an on-line password
authentication attempt using pw∗ as a password guess (see below). Note that
the attacker can also either watch or interfere with AKE instances executed by
the honest user on credential cred(pw) that corresponds to the correct
password pw . Moreover, the attacker w.l.o.g. holds a list of credential
candidates cred(pw1), ..., cred(pwn) corresponding to offline password guesses.
However, the key-hiding property of AKE implies that even if cred(pw) is on
the attacker’s list, interfering or watching client’s AKE instances cannot help
the attacker decide which credential is the one that the client uses. The only
way to learn anything from client AKE instances on input cred(pw) would be
to engage them using a matching credential, i.e. (skS, pkC). This is possible if
the adversary compromises the server who holds exactly these keys, but
otherwise doing so is equivalent to breaking AKE security.

Why we need mutual key confirmation. To handle the server-side attack
we needed the key-hiding property of AKE to imply that the only way to decide
which keys (skS, pkC) the server uses is to engage in an AKE instance using
the matching counterparty keys (skC, pkS). The key-hiding property provided
by 3DH and HMQV, as modeled by functionality FkhAKE, actually does not
suffice for this by itself. Let the attacker hold a list of n possible decrypted
client credentials cred i = cred(pw i) = (ai,Bi) for i = 1, ..., n, and let S hold
credential credS = (b,A) which matches cred i, i.e. A = gai and Bi = gb , which
is the case if password guess pw i matches the correct password pw . If an active
attacker chooses x and sends X = gx to S then it can locally complete the 3DH or
HMQV equation using any key pair (ai,Bi) it holds, thus computing n candidate
session keys ki. By 3DH or HMQV correctness, since the i-th client credential
matches the server’s credential, key ki equals to the session key k computed by
S. Therefore, if S used key k straight away then the attacker could observe that
ki = k and hence that pw i = pw .

However, the fix is simple: To make the server’s session key output safe to use,
the client must first send a key confirmation message to the server, implemented
in Figure 8 by client’s final message τ . This stops the attack because the attacker
sending τ uniquely determines one of the keys ki on its candidate list, and since
this succeeds only if ki = k , this attack reduces to an on-line test of a single
password guess pw i, which is unavoidable in a (a)PAKE protocol. A natural
question is if there is no equivalent attack on the client-side, which would be
abetted by the client sending a key confirmation message τ . This is not the case
because of the following asymmetry: Off-line password guesses give the attacker
a list of possible client-side credentials, which by AKE rules can be tested against
server sessions. However, by the the key-hiding property of AKE such credentials
are useless in deciding which of them, if any, is used by the honest user. Moreover,
since the ciphertext e encrypts only the client-side keys, by the KCI property of
the AKE the knowledge of client-side keys is not helpful in breaking the security
of AKE instances executed by the honest client on such keys.

24

Server-to-client key confirmation is needed too, in this case to ensure forward
secrecy. Without it, an attacker could choose Y = gy (in the HMQV or 3DH
instantiations) and later, after the session is complete, compromise the server to
learn the private key b with which it can compute the session key. The client-to-
server key confirmation addresses this issue on the client side.

In addition to ensuring security, key confirmation serves as (explicit) entity
authentication in this aPAKE construction.

Why we need credential encryption to be an ideal cipher. Note that
the attacker can attack the client too, by sending an arbitrary ciphertext to the
client, but the ideal cipher property is that the ciphertext commits the attacker
to only one choice of key for which the attacker can decide a plaintext: for all
other keys the decrypted plaintext will be random.

For the above to work the encryption used to password-encrypt the client
credential needs to be an ideal cipher over the space of (private,public) key pairs
used in AKE. In all key-hiding AKE protocols examples we discuss in this paper,
i.e. 3DH, HMQV, as well as SKEME instantiated with Diffie-Hellman KEM, this
message space is Zp ×G where G is a group of order p. We refer to Section 8 for
several methods of instantiate an ideal cipher on this space. Here we will assume
the implementation of the following form, which is realized by the Elligator2 or
Elligator-squared encodings (see Section 8). Let X be the Cartesian product of
the space of private keys and the space of public keys in AKE, let IC.E, IC.D
be an ideal cipher on n-bit strings, and let map be a (randomized) invertible
quasi-bijective map from X to X ′ = {0, 1}n. A randomized 1-1 function map :
X → X ′ is quasi-bijective if there is a negligible statistical difference between
a uniform distribution over X ′ and x′ ←R map(x) for random x in X. Instead
of a direct ideal cipher on message space X protocol KHAPE in Fig. 8 uses a
randomized cipher (IC∗.E, IC∗.D) on X ′ where IC∗.E(x) outputs IC.E(x′) where
x′ ← map(x; r) for random r used by map, and IC∗.D(y) outputs x = map−1(x′)
where x′ = IC.D(y).

Comparison with Encrypted Key Exchange of Bellovin-Merritt. It is
instructive to compare the KHAPE design to that of the “Encrypted Key
Exchange” (EKE) construction of Bellovin-Meritt [10]. The EKE compiler
starts from unauthenticated KE, uses an Ideal Cipher to encrypt each KE
protocol message under the password, and this results in UC PAKE in the IC
model (see e.g. [48]). By contrast, our compiler starts from Authenticated KE,
and uses IC to password-encrypt only the client’s inputs to the AKE protocol,
while the protocol messages themselves are exchanged without any change.
Just like EKE, our compiler adds only symmetric-key overhead to the
underlying KE, but it results in an aPAKE instead of just PAKE. However,
just like EKE, it imposes additional requirements on the underlying key
exchange protocol: Whereas EKE needs the key exchange to have a “random
transcript” property, i.e. KE protocol messages must be random in some
message space, in the case of KHAPE the underlying AKE needs to have the
key-hiding property we define in Section 2. Either condition also relies on an
Ideal Cipher (IC) modeling for a non-standard plaintext space: For EKE the

25

IC plaintext space is the space of KE protocol messages, while for KHAPE the
IC plaintext space is the Cartesian product of the space of private keys and the
space of public keys which form AKE protocol inputs.

UC aPAKE security model. We refer to Appendix B for the functionality
FaPAKE we use to model UC aPAKE. This model is very similar to the one defined
by Gentry et al. [29], but it introduces some modifications, which we discuss in
Appendix B. The main notational change is that we use a user account identifier
uid, instead of generic session identifier sid, to index password files held by a
given server. Functionality FaPAKE also includes uni-directional (client-to-server)
entity authentication as part of the security definition. We refer to Appendix
B also for a discusson of several subtle issues involved in UC modeling of tight
bounds on adversary’s local computation during an offline dictionary attack.

Theorem 4. Protocol KHAPE realizes the UC aPAKE functionality FaPAKE if
the AKE protocol realizes the Key-Hiding AKE functionality FkhAKE, assuming
that prf is a secure PRF and (Enc,Dec) is an ideal cipher over message space of
private,public key pairs in AKE.

We show that the environment’s view of the real-world security game, denoted
Game 0, i.e. an interaction between the real-world adversary and honest parties
who follow protocol KHAPE, is indistinguishable from the environment’s view of
the ideal-world game, denoted Game 7, i.e. an interaction between simulator SIM
of Figures 9 and 10 and functionality FaPAKE. As before, we use Gi to denote the
event that Z outputs 1 while interacting with Game i, and the theorem follows if
|Pr[G0]−Pr[G7]| is negligible. For a fixed environment Z, let qpw, qIC, and qses be
the upper-bounds on the number of resp. password files, IC queries, and online S
or C aPAKE sessions. Let εZkdf(SIMAKE) and εZake(SIMAKE) be the advantages of an
environment who uses the resources of Z plus O(qIC +qses +qpw) exponentiations
in G in resp. breaking the PRF security of prf, and in distinguishing between
the real-world AKE protocol and its ideal-world emulation of SIMAKE interacting
with FkhAKE. Let X ′ = Y = {0, 1}n be the domain and range of the ideal cipher
IC used within IC∗, let X be the domain of (private,public) keys in AKE (e.g.
for both 3DH and HMQV we have X = Zp ×G where G is a group of order p),
and let map : X → {0, 1}n be εmap-quasi-bijective.

Simulator construction. We split the description of simulator SIM into two
phases: Figure 9 shows how SIM deals with creation and compromise of a
password file and with adversary’s ideal cipher queries, while Figure 10 shows
how SIM deals with on-line sessions, i.e. how it executes AKE sessions and
translates adversary’s responses into on-line attacks on the aPAKE.

Simulator SIM uses as a sub-procedure the AKE-protocol simulator SIMAKE,
which exists by the assumption that the AKE protocol realizes functionality
FkhAKE. Namely, SIM hands over to SIMAKE the simulation of all C-side and S-
side AKE instances where parties run on honestly generated AKE keys. SIM
employs SIMAKE to generate such keys, in password file initialization and in IC
decryption queries, see Figure 9, and then it hands off to SIMAKE the handling

26

Initialization
Initialize simulator SIMAKE, an empty table TIC, empty lists CPK ,PK C,PK S

Notation: Tpw
IC .X

′ = {x′‖ ∃y (pw , x′, y) ∈ TIC}, Tpw
IC .Y = {y | ∃x′ (pw , x′, y) ∈ TIC}

Convention: First call to SvrSession or StealPwdFile for (S, uid) sets euid
S ←R Y

Ideal Cipher IC queries

– On query (pw , x′) to IC.E, send back y if (pw , x′, y) ∈ TIC, otherwise pick
y ←R Y \ Tpw

IC .Y , add (pw , x′, y) to TIC, and send back y
– On query (pw , y) to IC.D, send back x′ if (pw , x′, y) ∈ TIC, otherwise do:

1. If y 6= euid
S for any (S, uid) then pick x′ ←R X

′ \ Tpw
IC .X

′

2. If y = euid
S for some (S, uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE and:

(a) If FaPAKE sends “correct guess” then set (A,B)← (Auid
S ,Buid

S)
(b) Otherwise initialize keys A and B via two Init calls to SIMAKE, add A

to PK C and B to PK S

Set pkuid
S (pw) ← (A,B), send query (Compromise, A) to SIMAKE, define a

as SIMAKE’s response, add A to CPK , set x′ ←R map(a,B)
In either case add (pw , x′, y) to TIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends
“no password file,” pass it to A, otherwise declare (S, uid) compromised and:

1. If FaPAKE returns no value then initialize keys A and B via two Init calls to
SIMAKE, add A to PK C and B to PK S

2. If FaPAKE returns pw then set (A,B)← pkuid
S (pw)

Send (Compromise, B) to SIMAKE, define b as SIMAKE’s response, add B to CPK ,
set (Auid

S ,Buid
S)← (A,B), return file[uid,S]← (euid

S , b, A) to A.

Fig. 9. Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 1

of all AKE instances that run on such keys, see Figure 10. SIM cannot handle all
AKE executions via SIMAKE, because the adversary can guess client C’s password
pw and form an envelope e ′ as IC encryption of arbitrary keys (a∗, B∗) under
pw , in which case C executes AKE on adversarial keys (a∗, B∗). The ideal model
of key-hiding AKE, i.e. functionality FkhAKE of Figure 1, allows the environment
to invoke AKE sessions on adversarially chosen counterparty public key, i.e. B∗,
but it assumes that an honest party can use only its own previously generated
key as its private key a. Since functionality FkhAKE makes no claims for parties
who run on inputs that violate this assumption, simulator SIM in this case simply
executes the AKE protocol on behalf of C on such adversarially-chosen inputs
(a∗, B∗). However, since this case implies a succesful on-line password guessing
attack against client C, the simulation can give up on security on such sessions,
hence w.l.o.g. this AKE execution could reveal inputs a∗, B∗ to the adversary.

Game 0 (real world): This is the interaction, shown in Figure 11, of
environment Z with the real-world protocol KHAPE, except that the
symmetric encryption scheme is idealized as an ideal cipher oracle.

27

Starting AKE sessions

On (SvrSession, sid,S,C, uid) from FaPAKE, initialize random function Rsid
S :

({0, 1}∗)3 → {0, 1}κ, set flag(Ssid)← hbc, send euid
S to A as a message from Ssid,

and send (NewSession, sid, S,C,⊥) to SIMAKE.

On (CltSession, sid,C, S) from FaPAKE and message e ′ sent by A to Csid, initialize
random function Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:

1. If e ′ = euid
S set flag(Csid)← hbcuidS , send (NewSession, sid,C, S,⊥) to SIMAKE

2. If e ′ 6= euid
S check if e ′ was output by IC.E on some (pw , x′), and:

(a) If there is no such IC.E query then send (TestPwd, sid,C,⊥) to FaPAKE, set
flag(Csid)← rnd, and send (NewSession, sid,C,S,⊥) to SIMAKE

(b) Otherwise define (pw , x′) as the first query to IC.E which outputted e ′,
send (TestPwd, sid,C, pw) to FaPAKE, and:

i. If FaPAKE returns “wrong guess” then set flag(Csid)← rnd and send
(NewSession, sid,C,S,⊥) to SIMAKE

ii. If FaPAKE returns “correct guess” then set (a,B) ← map−1(x′) and
run the AKE protocol on behalf of Csid on inputs (sid,C, S, a, B);
When Csid terminates with key k then send τ ← prf(k , 1) to A and
(NewKey, sid,C, prf(k , 0)) to FaPAKE

Responding to AKE messages
SIM forwards AKE protocol messages between A and SIMAKE, and reacts as follows
to SIMAKE’s queries to FkhAKE, whose role is played by SIM. (SIM ignores SIMAKE’s
queries pertaining to any Psid that was not started by a NewSession message.)

If SIMAKE outputs (Interfere, sid, S) set flag(Ssid)← act

If SIMAKE outputs (Interfere, sid,C) and flag(Csid) = hbcuidS then set flag(Csid)← actuidS

If SIMAKE outputs (NewKey, sid,C, α):

1. If flag(Csid) = actuidS then send (Impersonate, sid, C, S, uid) to FaPAKE;
If FaPAKE sends “correct guess” output τ ← prf(k , 1) for k = Rsid

C (Auid
S ,Buid

S , α)
2. In any other case (including “wrong guess” above), output τ ←R {0, 1}κ

If SIMAKE outputs (NewKey, sid, S, α) and A sends τ ′ to Ssid:

1. If flag(Ssid) = hbc and τ ′ was generated by SIM for Csid s.t. flag(Csid) = hbcuidS ,
then send (NewKey, sid, S,⊥) to FaPAKE and output γ ←R {0, 1}κ

2. If flag(Ssid) = act and τ ′= prf(k ,1) for k = Rsid
S (B,A, α) and (A,B) =

pkuid
S (pw), send (TestPwd, sid,S, pw), (NewKey, sid, S, prf(k , 0)) to FaPAKE,

output γ ← prf(k , 2)
3. Else (TestPwd, sid, S,⊥), (NewKey, sid, S,⊥) to FaPAKE, output γ ←R {0, 1}κ

If SIMAKE sends γ′ to Csid:

1. If flag(Csid) = hbcuidS and γ′ was generated by SIM for Ssid s.t. flag(Ssid) = hbc,
send (NewKey, sid,C,⊥) to FaPAKE

2. If flag(Csid) = actuidS , FaPAKE sent “correct guess” for Csid, and γ′ = prf(k , 2) for
k computed for Csid above, send (NewKey, sid,C, prf(k , 0)) to FaPAKE

3. Else send (TestPwd, sid,C,⊥), (NewKey, sid,C,⊥) to FaPAKE

If SIMAKE outputs (SessionKey, sid,P, pk , pk ′, α):
If pk ∈ PK P and pk ′ ∈ CPK send Rsid

P (pk , pk ′, α) to A

Fig. 10. Simulator SIM showing that protocol KHAPE realizes FaPAKE: Part 2

28

(Technically, this is a hybrid world where each party has access to the ideal
cipher functionality IC.)

Initialize empty table TIC; (Notation Tpw
IC .X

′ and Tpw
IC .Y as in Fig. 9)

– On (StorePwdFile, uid, pwuid
S) to S: Generate keys (a,A), (b,B), set euid

S ←
IC.E(pwuid

S ,map(a,B)), and file[uid, S]← (euid
S , b, A)

– On new (pw , x′) to IC.E: Output y ←R Y \ Tpw
IC .Y , add (pw , x′, y) to TIC

– On new (pw , y) to IC.D: Output x′ ←R X
′ \ Tpw

IC .X
′, add (pw , x′, y) to TIC

– On (StealPwdFile,S, uid): Output file[uid, S]

– On (SvrSession, sid,C, uid) to S: Set (euid
S , (b, A)) ← file[uid, S], send euid

S and
start AKE session Ssid on (sid, S,C, b, A), set k2 to Ssid output;
If Z sends τ ′ = prf(k2, 1) to Ssid, set K2, γ as prf(k2, 0), prf(k2, 2), else as ⊥,⊥

– On (CltSession, sid, S, pw) and message e ′ to C: Set (a,B) ←
map−1(IC.D(pw , e ′)), and start AKE session Csid on (sid,C,S, a, B), set
k1 to Csid output, send τ = prf(k1, 1) to Z;
If Z sends γ′ = prf(k1, 2) to Csid, set K1 = prf(k1, 0) else K1 = ⊥

Fig. 11. Game 0: Z’s interaction with real-world protocol KHAPE

Game 1 (embedding random keys in IC.D outputs): We modify processing of
Z’s query (pw , y) to IC.D for any y 6∈ Tpw

IC .Y , i.e. y for which IC.D(pw , y) has
not been yet defined. On such query Game 1 generates fresh key pairs (a,A) and
(b, B), sets x′ ←R map(a,B), and if x′ 6∈ Tpw

IC .X
′ then it sets IC.D(pw , y) ← x′.

If x′ ∈ Tpw
IC .X

′, i.e. x′ is already mapped by IC.E(pw , ·) to some value, Game 1

aborts. If y = euid
S for some (S, uid) then the game also sets pkuid

S (pw)← (A,B).
The divergence this game introduces is due to the probability (qIC)2/2n of

ever encountering an abort, and the statistical distance qICεmap between random
IC domain elements and images of map on random X elements, which leads to
|Pr[G1]− Pr[G0]| ≤ qICεmap + (qIC)2/2n.

Game 2 (random euid
S in the password file): We change StorePwdFile

processing by picking ciphertext euid
S as a random element in {0, 1}n instead of

via query to IC.E, then we pick two key pairs (a,A), (b, B), define
(Auid

S ,Buid
S)← (A,B), and sample x′ ←R map(a,B). If euid

S ∈ Tpw
IC .Y for any pw ,

not necessarily pwuid
S , the game aborts. The game also aborts if x′ ∈ Tpw

IC .X
′ for

pw = pwuid
S . Otherwise the game sets IC.D(pwuid

S , euid
S) ← x′ and

pkuid
S (pwuid

S) ← (A,B). The divergence this game introduces is due to the
probability of abort occuring in either case, which leads to
|Pr[G2]− Pr[G1]| ≤ qpwεmap + 2qpwqIC/2

n.

Game 3 (abort on ambiguous ciphertexts): In the ideal-world game simulator
SIM identifies ciphertext e ′ which was output by the ideal cipher for some query
(pw , x′) to IC.E, as an encryption of the first (pw , x′) pair which satisfies this. To
eliminate the possibility of ambiguous ciphertexts we introduce an abort if IC.E

29

oracle picks the same ciphertext for any two queries (pw1, x
′
1) and (pw2, x

′
2).

Since IC.E samples random outputs in Y we get |Pr[G3]− Pr[G2]| ≤ (qIC)2/2n.

Taking stock of the game. Let us review how Game 3 operates: The
initialization of password file file[uid,S] on password pwuid

S picks fresh keys
(a,A), (b, B), picks euid

S as a random string, keeps the client and server public

keys as pkuid
S (pwuid

S) = (Auid
S ,Buid

S) = (A,B), and programs IC.D(pwuid
S , euid

S) to
map(a,B). Oracle IC.D on inputs (pw ′, y) for which decryption is undefined,
picks fresh key pairs (a′, A′) and (b′, B′) and programs IC.D(pw ′, y) to
map(a′, B′). In addition, if y = euid

S then it assigns pkuid
S (pw ′) ← (a′, B′).

Finally, encryption is now unambiguous, i.e. every ciphertext e can be output
by IC.E on only one pair (pw , x′).

This is already very close to how simulator SIM operates as well. The
crucial difference between the ideal-world interaction and Game 3, is that in
Game 3 keys Auid

S ,Buid
S are generated at the time of password file initialization,

and IC.D(pwuid
S , euid

S) is set to map(auid
S ,Buid

S) at the same time. In the
ideal-world game these keys are undefined until password compromise, and
IC.D(pwuid

S , euid
S) is set only after offline dictionary attack succeeds in finding

pwuid
S . This delayed generation of the keys in file[uid,S] is possible because AKE

sessions which S and C run on these keys can be simulated without knowledge
of these keys, an key-hiding AKE functionality allows precisely for such
simulation, as we show next.

Game 4 (Using SIMAKE for AKE’s on honestly-generated keys): In Game 4
we modify Game 3 by replacing all honest parties that run AKE instances on
keys A,B generated either in password file initialization or by oracle IC.D, with
a simulation of these AKE instances via simulator SIMAKE. Game 4 is shown in
Figure 12. For notational brevity in Figure 12 we say that query (pw , x′) to IC.E
or (pw , y) to IC.D are new(!) as a shortcut for saying that table TIC includes no
prior tuple corresponding to these inputs, resp. (pw , x′, ·) and (pw , ·, y). If such
tuple exists then IC.E and IC.D oracles use the retrieved (key,input,output) tuple
to answer the according query. We also omit the possibilities of the game aborts,
because such aborts happen only with negligible probability. These aborts occur
in three places, all marked (∗): (1) When euid

S is chosen in StorePwdFile the game
aborts if euid

S ∈ Tpw
IC .Y for any pw (not necessarily pw = pwuid

S); (2) When
x′ is then sampled as x′ ←R map(a,B), the game aborts if x′ ∈ Tpw

IC .X
′ for

pw = pwuid
S ; (3) When x′ ←R map(a,B) is sampled in IC.D query (pw , y) the

game aborts also if x′ ∈ Tpw
IC .X

′.
Game 4 operates like Game 3, except that it outsources AKE key

generation in StorePwdFile and IC.D to SIMAKE, and whenever Ssid or Csid runs
AKE on such keys these executions are outsourced to SIMAKE, while the game
emulates what FkhAKE would do in response to SIMAKE’s actions. In particular,
Game 4 initializes random function Rsid

P for every AKE session Psid invoked by
emulated FkhAKE. Whenever C and S run an AKE instance under keys
generated by AKE key generation the game, playing FkhAKE, triggers SIMAKE

with messages resp. (NewSession, sid,C,S,⊥) and (NewSession, sid,S,C,⊥).
When SIMAKE translates the real-world adversary’s behavior into Interfere

30

Initialize simulator SIMAKE, empty table TIC, and lists CPK ,PK C,PK S.

– On (StorePwdFile, uid, pwuid
S) to S: Initialize A and B via two Init calls to

SIMAKE, send (Compromise, A) and (Compromise, B) to SIMAKE, define a and b
as SIMAKE’s responses, add A to PK C, B to PK S, and both to CPK , pick(∗)

euid
S ←R Y , set(∗) x′ ←R map(a,B), add (pwuid

S , x′, euid
S) to TIC, set file[uid, S]←

(euid
S , b, A) and (Auid

S ,Buid
S)← (A,B)

– On new(!) (pw , x′) to IC.E: Output y ←R Y \ Tpw
IC .Y , add (pw , x′, y) to TIC

– On new(!) (pw , y) to IC.D: Initialize A and B via two Init calls to SIMAKE, send
(Compromise, A) to SIMAKE, define a as SIMAKE’s response, add A to CPK and
PK C, add B to PK S, set(∗) x′ ←R map(a,B) add (pw , x′, y) to TIC, output x′

– On (StealPwdFile,S, uid): Output file[uid, S]

– On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc,

output euid
S and send (NewSession, sid, S,C,⊥) to SIMAKE

– On (CltSession, sid, S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euid
S , set x′ ← IC.D(pw , euid

S), (a,B) ← map−1(x′), flag(Csid) ←
hbc(ga, B), send (NewSession, sid,C, S,⊥) to SIMAKE

2. If e ′ 6= euid
S , check if e ′ was output by IC.E on (pw , x′) for some x′ and:

(a) If not, set x′ ← IC.D(pw , e ′), (a,B) ← map−1(x′), flag(Csid) ←
hbc(ga, B), send (NewSession, sid,C,S,⊥) to SIMAKE

(b) If so, set (a,B)← map−1(x′), run Csid of AKE on (sid, S, a, B); If Csid

terminates with k , output τ ← prf(k , 1) and K1 ← prf(k , 0)

Responding to AKE messages:

– On (Interfere, sid, S): set flag(Ssid)← act

– On (Interfere, sid,C): if flag(Csid) = hbc(A,B) then change it to act(A,B)

– On (NewKey, sid,C, α):
1. If flag(Csid) = act(A,B) set k1 ← Rsid

C (A,B, α)
2. If flag(Csid) = hbc(A,B): If (A,B) = (Auid

S ,Buid
S) and Ssid outputted key k2

then copy this k2 to k1, otherwise pick k1 ←R {0, 1}κ
Output τ ← prf(k1, 1)

– On (NewKey, sid,S, α) and τ ′ to Ssid:
1. If flag(Ssid) = act, set k2 ← Rsid

S (Buid
S ,Auid

S , α)
2. If flag(Ssid) = hbc: If flag(Csid) = hbc(Auid

S ,Buid
S) and Csid outputted key k1

then copy this k1 to k2, otherwise pick k2 ←R {0, 1}κ
If τ ′ = prf(k2, 1) output (K2, γ)← (prf(k2, 0), prf(k2, 2)), else (K2, γ)← (⊥,⊥)

– On γ′ to Csid: If γ′ = prf(k1, 2) output K1 ← prf(k1, 0) else K1 ← ⊥
– On (SessionKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PK P, pk ′∈CPK

Fig. 12. Proof of KHAPE security: Game 4

31

actions on these sessions, the game emulates FkhAKE by marking these sessions
as actively attacked. If SIMAKE sends (NewKey, sid,P, α) on activey attacked
session, its output key k is set to Rsid

P (pkP, pkCP, α) where (pkP, pkCP) are the
keys this session runs under, which are (Buid

S ,Auid
S) for S, and keys (A,B)

defined by IC.D(pw , e ′) for C. The game must also emulate SessionKey interface
of FkhAKE and let SIMAKE evaluate Rsid

P (pk , pk ′, α) for any pk ∈ PK P and any
pk ′ ∈ CPK . (Note that all sessions emulated by SIMAKE run on public keys pk ′

which are created by the Init interface.) Set PK S contains only one key, Buid
S ,

while set PK C contains Auid
S and all keys A′ created by IC.D queries. Set CPK

consists of Auid
S ,Buid

S , because these were compromised in file[uid,S]
initialization, which used the corresponding private keys, and all client-side
keys A′ generated in IC.D queries, because each IC.D query creates and
immediately compromises key A′, since it needs to embed the corresponding
private key a′ into IC.D output. Finally, if SIMAKE sends NewKey on
non-attacked session, the game emulates FkhAKE by issuing random keys to
such sessions except if Csid runs under key pair (A′, B′) = (Auid

S ,Buid
S), which

matches the key pair used by Ssid, in which case the game copies the key
output by the session which terminates first into the key output by the session
which terminates second. The rest of the code is as in Game 3: C uses its key
k1 to compute authenticator τ = prf(k1, 1) and its local output K1 = prf(k1, 0),
while S uses its key k2 to verify the incoming authenticator τ ′ and outputs
K2 = prf(k2, 0) if τ ′ = prf(k2, 1) and K2 = ⊥ otherwise.

The one case where a party might not run AKE on keys generated via a
call to SIMAKE is client session C which receives e ′ which was output by
IC.E(pw , x′) for some x′ and pw matching the password input to Csid. In this
case Csid runs AKE on (a,B) = map−1(x′), and since wlog these keys are
chosen by the adversary and not by SIMAKE, we cannot outsource that
execution to SIMAKE. As we said above, functionality FkhAKE does not admit
honest parties running AKE on arbitrary private keys a, hence SIMAKE does
not have an interface to simulate such executions. In Game 4 such AKE
instances are executed as in Game 3: This is the case in step (2b) in Figure 12.

Since Game 4 and Game 3 are identical except for replacing real-world
AKE executions with the game emulating functionality FkhAKE interacting with
SIMAKE, it follows that |Pr[G4]− Pr[G3]| ≤ εZake(SIMAKE)

Game 5 (delay Auid
S ,Buid

S generation until password compromise): In
Game 4 keys Auid

S ,Buid
S are initialized and compromised in StorePwdFile, in

Game 5 we postpone these steps until password compromise. This change can
be done in several steps.
For the first step denoted as Game 5(a), we remove compromising Buid

S and
setting file[uid,S] in StorePwdFile, and delay them to StealPwdFile. Z cannot
notice this change because in Game 4, only StealPwdFile will use file[uid,S], and
compromising Buid

S to get buid
S is not needed except when generating file[uid,S].

In Game 5(b) we make a change in IC.D, that if y 6= euid
S then

x′ ←R X
′ \ Tpw

IC .X
′, while in Game 4, x′ ←R map(a,B) for randomly initialized

(a,B), with restriction that this x′ hasn’t been mapped before. The divergence

32

Initialize simulator SIMAKE, empty table TIC, and lists CPK ,PK C,PK S.

– On (StorePwdFile, uid, pwuid
S) to S: Pick euid

S ←R Y , mark pwuid
S as fresh

– On new(!) (pw , x′) to IC.E: Output y ←R Y \ Tpw
IC .Y , add (pw , x′, y) to TIC

– On new(!) (pw , y) to IC.D:
1. If y 6= euid

S for any (S, uid) then pick x′ ←R X
′ \ Tpw

IC .X
′

2. If y = euid
S for some (S, uid) then:

(a) If pwuid
S is fresh or pw 6= pwuid

S then record 〈offline,S, uid, pw〉, initialize
A and B via Init calls to SIMAKE, add A to PK C and B to PK S

(b) If pwuid
S is compromised and pw = pwuid

S set (A,B)← (Auid
S ,Buid

S)
In both cases (a) and (b), set pkuid

S (pw) ← (A,B), define a as SIMAKE’s
response to (Compromise, A), add A to CPK , and set x′ ←R map(a,B)

Add (pw , x′, y) to TIC and send back x′

– On (StealPwdFile,S, uid):Y: mark pwuid
S compromised and:

If ∃ record 〈offline, S, uid, pwuid
S 〉 then set (A,B)← pkuid

S (pwuid
S);

Else initialize A and B via Init calls to SIMAKE, add A to PK C and B to PK S;
In either case, set (Auid

S ,Buid
S) ← (A,B), define b as SIMAKE’s response to

(Compromise, B), add B to CPK , output file[uid, S]← (euid
S , b, A)

– On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc,

output euid
S and send (NewSession, sid, S,C,⊥) to SIMAKE

– On (CltSession, sid,S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euid
S then: (1) set flag(Csid) ← hbcuidS if pw = pwuid

S , otherwise set
flag(Csid)← rnd; (2) send (NewSession, sid,C, S,⊥) to SIMAKE

2. If e ′ 6= euid
S then:

(a) If e ′ was not output by IC.E or it was output on (pw ′, x′) for pw ′ 6= pw ,
then set flag(Csid)← rnd and send (NewSession, sid,C, S,⊥) to SIMAKE

(b) If e ′ was output by IC.E on (pw , x′) then set (a,B) ← map−1(x′),
run Csid of AKE on (sid, S, a, B); If Csid terminates with k , output
τ ← prf(k , 1) and K1 ← prf(k , 0)

Responding to AKE messages:

– On (Interfere, sid, S): set flag(Ssid)← act

– On (Interfere, sid,C): if flag(Csid) = hbcuidS then flag(Csid) ← actuidS if pwuid
S is

compromised, otherwise flag(Csid)← rnd

– On (NewKey, sid,C, α):
1. If flag(Csid) = actuidS set k1 ← Rsid

C (Auid
S ,Buid

S , α), output τ ← prf(k1, 1)
2. Otherwise output τ ←R {0, 1}κ

– On (NewKey, sid,S, α) and τ ′ to Ssid:
1. If flag(Ssid) = act and τ ′ = prf(k2, 1) for k2 = Rsid

S (B,A, α) where (A,B) =
pkuid

S (pwuid
S), then output (K2, γ)← (prf(k2, 0), prf(k2, 2))

2. If flag(Ssid) = hbc and τ ′ was generated by Csid where flag(Csid) = hbcuidS ,
then output K2 ←R {0, 1}κ and γ ←R {0, 1}κ

3. In all other cases output (K2, γ)← (⊥,⊥)

– On γ′ to Csid:
1. If flag(Csid) = actuidS and γ′ = prf(k1, 2), output K1 ← prf(k1, 0))
2. If flag(Csid) = hbcuidS and γ′ was generated by Ssid for Ssid s.t. flag(Ssid) =

hbc, output K1 equal to the key K2 output by Ssid

3. In all other cases output K1 ← ⊥
– On (SessionKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PK P, pk ′∈CPK

Fig. 13. KHAPE: Z’s view of ideal-world interaction (Game 7)
33

this change introduces is due to the statistical distance qICεmap between random
IC domain elements and images of map on random X elements.
Then in Game 5(c) we remove compromising Auid

S , setting x′ and adding
(pwuid

S , x′, euid
S) to TIC in StorePwdFile, and delay them to new(!) (pw , y) to IC.D.

After this change, in StorePwdFile we now only initialize (Auid
S ,Buid

S) and pick
euid
S . Since (pwuid

S , x′, euid
S) is no longer added to TIC in StorePwdFile, query

(pwuid
S , euid

S) is now new(!) to IC.D, and IC.D responds by compromising Auid
S ,

setting corresponding x′ and adding (pwuid
S , x′, euid

S) to TIC. For any other
queries, IC.D reacts same as in Game 5(b). Game 5(c) and Game 5(b) is
identical since we only postpone executing those steps removed from
StorePwdFile.
In Game 5(d) we further remove usage of (Auid

S ,Buid
S) when responding to AKE

messages, except for input to Rsid
P in actively attacked sessions. We change

hbc(A,B) in Game 5(c) to hbcuidS if (A,B) = (Auid
S ,Buid

S), and rnd otherwise.
Similarly we change act(A,B) in Game 5(c) to actuidS if (A,B) = (Auid

S ,Buid
S),

which corresponds to password compromise, and rnd otherwise.
Finally, in Game 5(e) we remove steps of initializing (Auid

S ,Buid
S) via SIMAKE in

StorePwdFile and delay them to StealPwdFile or IC.D(pwuid
S , euid

S), depending on
which happens first. In order to set IC.D(pwuid

S , euid
S) only after A finds pwuid

S

after successful offline dictionary attack, we first mark pwuid
S fresh in

StorePwdFile, and mark it compromised in StealPwdFile.
If A first runs (StealPwdFile,S, uid), we initialize (Auid

S ,Buid
S) via Init calls to

SIMAKE, add Auid
S to PK C and Buid

S to PK S, and later upon query
IC.D(pwuid

S , euid
S), since pwuid

S is marked compromised, we retrieve (Auid
S ,Buid

S)
and compromise Auid

S . In the other case, if IC.D(pwuid
S , euid

S) runs first, which
means at this moment pwuid

S must be fresh since StealPwdFile is not called yet,
we init (Auid

S ,Buid
S), record 〈offline,S, uid, pwuid

S 〉, and save this (Auid
S ,Buid

S) into

pkuid
S (pwuid

S), and later if A runs StealPwdFile and there exists record

〈offline,S, uid, pwuid
S 〉, then retrieve (Auid

S ,Buid
S) from pkuid

S (pwuid
S). In addition we

also record 〈offline,S, uid, pw〉 upon IC.D(pw , euid
S) if pw 6= pwuid

S . Game 5(e) is
identical to Game 5(d) since we only postpone (Auid

S ,Buid
S) initialization. Thus

we conclude: |Pr[G5]− Pr[G4]| ≤ qICεmap

Game 6 (replace prf output with random string in passive sessions): In
Game 5, in passive sessions k1 = k2 which equal to {0, 1}κ, and τ, γ,K2 are all
derived from prf of k1 or k2. In Game 6 we remove usage of prf and directly
assign random elements of {0, 1}κ to these values. In addition, we further
remove usage of k1 and k2, and instead copy K2 to K1 as in Game 5 where
K1 = K2(and k1 = k2). Since there’re at most qses such sessions, and from
security of prf, the difference between Game 5 and Game 6 is negligble to Z,
i.e. |Pr[G6]− Pr[G5]| ≤ qsesε

Z
kdf(SIMAKE)

Game 7 (Ideal-world game): This is the ideal-world interaction, i.e. an
interaction of environment Z with simulator SIM and functionality FaPAKE,
shown in Figure 13.

34

Observe that Game 6 is identical to the ideal-world Game 7. This completes
the argument that the real-world and the ideal-world interactions are
indistinguishable to the environment, and hence completes the proof of
Theorem 4.

7 Concrete aPAKE Instantiation: KHAPE-HMQV

• global hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

• group G of prime order p with generator g
• cipher (IC∗.E, IC∗.D) on space Zp ×G (see also page 25)

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks two fresh AKE keys (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B))
S stores file[uid, S]← (e, b,A) and discards all other ephemeral values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

x←R Zp , X ← gx y ←R Zp , Y ← gy

(a,B)← IC∗.D(pw , e) �e, Y
(e, b,A)← file[uid, S]

dC ← H′(sid,C, S, 1, X)
eC ← H′(sid,C, S, 2, Y)

σC ← (Y · BeC)x+dC·a

k1 ← H(sid,C, S, X, Y, σC)
τ ← prf(k1, 1) -τ , X

dS ← H′(sid,C, S, 1, X)
eS ← H′(sid,C, S, 2, Y)

σS ← (X ·AdS)y+eS·b

k2 ← H(sid,C, S, X, Y, σS)

γ ← ⊥ if τ 6= prf(k2, 1)
� γ

else γ ← prf(k2, 2)

K1 ← ⊥ if γ 6= prf(k1, 2) K2 ← ⊥ if τ 6= prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 14. KHAPE with HMQV: Concrete aPAKE protocol KHAPE-HMQV

We include a concrete aPAKE protocol we call KHAPE-HMQV, which
results from instantiating protocol KHAPE shown in Section 6 with HMQV as
the key-hiding AKE (as proved in Section 4). The resulting protocol is shown
in Figure 14. It uses only 1 fixed-base exponentiation plus 1 variable-base
(multi)exponentiation for each party, and 1 ideal cipher decryption for the
client. It has 3 flows if the server initiates and 4 if the client initiates. The
communication costs include one group element and a κ-bit key authenticator

35

for both sides plus an ideal cipher encryption of a field element a and another
group element B from server to client. Implementations of an ideal cipher over
field elements may expand the ciphertext by Ω(κ) bits and require a
hash-to-curve operation, see Sec. 8.

While we are showing the protocol with the encryption of credentials done
on the server side during password registration (initialization), this can be done
interactively by the server sending its public key and the user encrypting it
together with its private key under the password (or it can all be done on the
client side if the client chooses the server’s public key). It is important to highlight
that the server needs a random independent pair of private-public keys per user.
One optimization is to omit the encryption of the user’s private key, and instead
derive this key from the password. Our analysis can be adapted to this case.

We note that KHAPE can be made into a Strong aPAKE (saPAKE), secure
against pre-computation attacks, using the technique of [39]. Namely, running
an OPRF protocol on pw between client and server and deriving the credential
encryption key from the output of the OPRF. In addition to providing
saPAKE security, the OPRF strengthens the protocol against online client-side
attacks (the attacker cannot have a pre-computed list of passwords to try) and
it allows for distributing the server through a threshold OPRF. As discussed in
the introduction, the break of the OPRF in the context of KHAPE voids the
above benefits but does not endanger the password (a major advantage of
KHAPE over OPAQUE).

8 Curve Encodings and Ideal Cipher

8.1 Quasi bijections

Protocol KHAPE encrypts group elements (server’s public key pkS) using an
encryption function modeled as an ideal cipher which works over a space {0, 1}n
for some n. Thus, prior to encryption, group elements need to be encoded as
bitstrings of length n to which the ideal cipher will be applied. We require such
encoding, denoted map, from G to {0, 1}n to be a bijection (or close to it) so
that if e is an encryption of g ∈ G under password pw , its decryption under a
different pw ′ returns a random element in G. The following definition considers
randomized encodings.

Definition 1. A randomized ε-quasi bijection map with domain A, randomness
space R = {0, 1}ρ and range B consists of two algorithms map and map−1,
map : A×R→ B and map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;
2. map maps the uniform distribution on A×R to a distribution on B that is

ε-close to uniform.

The term ε-close refers to a statistical distance of at most ε between the
two distributions. It can also be used in the sense of computational

36

indistinguishability, e.g., if implementing randomness using a PRG. To
accommodate bijections whose randomized map from A to B may exceed a
given time bound in some inputs, one can consider the range of map to include
an additional element ⊥ to which such inputs are mapped. A simpler way is to
define that such inputs are mapped to a fixed element in B. The probability of
inputs mapped to that value is already accounted for in the statistical distance
bound ε. We use quasi bijection without specifying ε when we assume this
value to be negligible.

Quasi bijections from field elements to bitstrings. We are interested in
quasi-bijective encoding into the set {0, 1}n over which the IC encryption works.
Most mappings presented below have a field Zq as the range, in which case a
further transformation (preserving quasi-bijectiveness) may be needed. Note that
when representing elements of Zq as n-bit numbers for n = dlog qe, the uniform
distribution on Zq is ε-close to the uniform distribution over {0, 1}n for ε =
(2n mod q)/q. So when q is very close to 2n, one can use the bit representation
of field elements directly, and this is the case for many of the standardized elliptic
curves. When this is not the case, one maps u ∈ Zq to a (n+k)-bit integer selected
as u + tq for t randomly chosen as a non-negative integer < (2n+k − u)/q. The
resulting distribution is 2−k-close to the uniform distribution over {0, 1}n+k.

8.2 Implementing quasi-bijective encodings

We focus on the case where G is an elliptic curve. There is a large variety of
well-studied quasi-bijective encodings in the literature (cf. [52, 16, 28, 11, 55]).
We survey some representative examples for elliptic curve groups EC(q) over
fields of large prime-order q.

Note that we use both directions of these encodings in KHAPE: From pkS to
a bitstring when encrypting pkS at the time of password registration, and from
a bitstring to a curve point when the client decrypts pkS . This means that the
performance of the latter operation is more significant for the efficiency of the
protocol. Fortunately this is always the more efficient direction, even though the
other direction is quite efficient too for the maps discussed below.

Elligator-squared [55, 40]. This method applies to most elliptic curves and
accommodates ε-quasi bijections for the whole set of curve points with negligible
values of ε.

Curve points are encoded as a pair of field elements (u, v) ∈ Z2
q. There is a

deterministic function f from Zq to EC such that P ∈ EC is represented by
(u, v) if and only if P = f(u) + f(v). Given a point P there is a randomized
procedure Rf that returns such encoding (u, v).

In [55] (Theorem 1), it is proven that for suitable choices of f , Rf is an ε-
quasi bijection into (Zq)2, with ε = O(q−1/2) (see Definition 1). Since u, v are
field elements, a further bijection into bitstrings may be needed as specified in
Section 8.1.

In [40], the above construction is improved by allowing both u and v to
be represented directly as bit strings: u as a string of bqc bits and v can be

37

be shortened even further (the amount of shortening increases the statistical
distance for the quasi bijection from EC to the distribution of bitstrings (u, v)).
This encoding uses two functions f, g where a point P is recovered from (u, v)
as P = f(u) + g(v) (in this case, function g can be simply g(v) = v · P).

The performance of Elligator-squared depends on the functions f, g whose
cost with typical instantiations (e.g., Elligator, SWU) is dominated by a single
base-field exponentiation at the cost of a fraction (≈10-15%) of a scalar
multiplication. Implementing g(v) = v · P is also a low-cost option (also
allowing to shorten v [40]). The cost of the inverse map, from a curve point to
its bitstring encoding, for the curves analyzed in [55] is 3 base-field
exponentiations.

Elligator2. This mapping from [11] is of more restricted applicability than
Elligator-squared as it applies to a smaller set of curves (e.g., it requires an
element of order 2). Yet, this class includes some of the common curves used in
practice, particularly Curve25519. Eligator2 defines an injective mapping
between the integers {0, . . . , (q − 1)/2} and (about) half of the elements in the
curve. To be used in our setting, it means that when generating a pair
(skS , pkS=gskS) for the server during password registration, the key generation
procedure will choose a random skS and will test if the resultant pkS has a
valid encoding under Elligator2. If so, it will keep this pair, otherwise it will
choose another random pair and repeat until a representable point is found.
The expected number of trials is 2 and the testing procedure is very efficient
(and only used during registration, not for login).

The advantages of Ellligator2 include the use of a single field element as a
point representation (which requires further expansion into a bit string only if
q is not close to 2n) and the map is injective, hence quasi-bijective with ε = 0
over the subset of encodable curve elements. Both directions of the map are very
efficient, costing about a single base-field exponentiation (a fraction of the cost
of a scalar multiplication).

Detailed implementation information for the components of the above
transforms is found in [27, 11, 56]. See [7] for some comparison between
Elligator2 and Elligator-squared.

8.3 Ideal Cipher Constructions

Protocol KHAPE uses an ideal cipher to encrypt group elements, specifically a
pair (skC, pkS) where both elements are encoded as bitstrings to fit the ideal
cipher interface as described in previous subsections. Thus, we consider the
input to the encryption simply as a bitstring of a given fixed length, and
require implementations of ideal ciphers of sufficiently long block length. For
example, the combined input length for curves of 256 bits ranges between 512
and 1024 bits. Constructions of encryption schemes that are indifferentiable
from an ideal cipher have been investigated extensively in the literature.
Techniques include domain extension mechanisms (e.g., to expand the block
size for block ciphers, including AES) [21], Feistel networks and constructions

38

from random oracles [25, 34, 22], dedicated constructions such as those based
on iterated Even-Mansour and key alternating ciphers [24, 6, 26, 26], and basic
components such as wide-input (public) random permutations [13, 12, 23]. A
recent technique by McQuoid et al. [48], builds a dedicated transform that can
replace the ideal cipher in cases where encryption is “one-time”, namely, keys
(or cipher instances) are used to encrypt a single message (as in our protocols).
They build a very efficient transform using a random oracle with just two
Feistel rounds. A dedicated analysis for the use of this technique in our context
is left for future work.

Acknowledgments. We thank the anonymous referees for their insightful
comments.

References

1. Facebook stored hundreds of millions of passwords in
plain text, https://www.theverge.com/2019/3/21/18275837/

facebook-plain-text-password-storage-hundreds-millions-users.
2. Google stored some passwords in plain text for fourteen

years, https://www.theverge.com/2019/5/21/18634842/

google-passwords-plain-text-g-suite-fourteen-years.
3. M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally

composable relaxed password authenticated key exchange. In Advances in
Cryptology - CRYPTO 2020, pages 278–307, 2020.

4. M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party
password-based key exchange protocols in the UC framework. In Topics in
Cryptology – CT-RSA 2008, pages 335–351. Springer, 2008.

5. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In Topics in Cryptology – CT-RSA 2005, pages 191–208. Springer, 2005.

6. E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On the
indifferentiability of key-alternating ciphers. In Advances in Cryptology – CRYPTO
2013, pages 531–550, 2013.

7. D. F. Aranha, P.-A. Fouque, C. Qian, M. Tibouchi, and J.-C. Zapalowicz. Binary
elligator squared. In SAC, 2014.

8. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key privacy in public-key
encryption. In Advances in Cryptology – ASIACRYPT 2001. Springer, 2001.

9. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology – EUROCRYPT 2000, pages
139–155. Springer, 2000.

10. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy – S&P 1992, pages 72–84. IEEE, 1992.

11. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In ACM Conference on
Computer and Communications Security – CCS 2013, 2013.

12. D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier. Gimli: a
cross-platform permutation. Cryptology ePrint Archive, Report 2017/630, 2017.
http://eprint.iacr.org/2017/630.

39

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
http://eprint.iacr.org/2017/630

13. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In Advances in
Cryptology – EUROCRYPT 2013, pages 313–314, 2013.

14. T. Bradley, J. Camenisch, S. Jarecki, A. Lehmann, G. Neven, and J. Xu. Password-
authenticated public-key encryption. In ACNS, volume 11464 of Lecture Notes in
Computer Science, pages 442–462. Springer, 2019.

15. T. Bradley, S. Jarecki, and J. Xu. Strong asymmetric PAKE based on trapdoor
CKEM. In Advances in Cryptology - CRYPTO 2019, pages 798–825, 2019.

16. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient
indifferentiable hashing into ordinary elliptic curves. In Advances in Cryptology –
CRYPTO 2010, 2010.

17. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In IEEE Symposium on Foundations of Computer Science – FOCS 2001,
pages 136–145. IEEE, 2001.

18. R. Canetti. Universally composable signature, certification, and authentication. In
CSFW 2004. IEEE, 2004.

19. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology – EUROCRYPT 2001, pages
453–474. Springer, 2001.

20. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and
secure channels. In Advances in Cryptology – EUROCRYPT 2002, pages 337–351.
Springer, 2002.

21. J.-S. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A domain extender for the ideal
cipher. In Theory of Cryptography Conference – TCC 2010, pages 273–289, 2010.

22. D. Dachman-Soled, J. Katz, and A. Thiruvengadam. 10-round Feistel is
indifferentiable from an ideal cipher. In Advances in Cryptology – EUROCRYPT
2016, pages 649–678, 2016.

23. J. Daemen, S. Hoffert, G. V. Assche, and R. V. Keer. The design of Xoodoo and
Xoofff. 2018:1–38, 2018.

24. Y. Dai, Y. Seurin, J. P. Steinberger, and A. Thiruvengadam. Indifferentiability of
iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are
necessary and sufficient. In Advances in Cryptology – CRYPTO 2017, 2017.

25. Y. Dai and J. P. Steinberger. Indifferentiability of 8-round Feistel networks. In
Advances in Cryptology – CRYPTO 2016, pages 95–120, 2016.

26. Y. Dodis, M. Stam, J. P. Steinberger, and T. Liu. Indifferentiability of confusion-
diffusion networks. In Advances in Cryptology – EUROCRYPT 2016, pages 679–
704, 2016.

27. A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing to
elliptic curves draft-irtf-cfrg-hash-to-curve, https://datatracker.ietf.org/doc/
draft-irtf-cfrg-hash-to-curve/, June 2020.

28. P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In
Australasia Conference on Information Security and Privacy – ACISP 2013, 2013.

29. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In Advances in Cryptology – CRYPTO
2006, pages 142–159. Springer, 2006.

30. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Transactions on Information and System Security (TISSEC), 2(3):230–268,
1999.

31. F. Hao and S. F. Shahandashti. The SPEKE protocol revisited. Cryptology ePrint
Archive, Report 2014/585, 2014. http://eprint.iacr.org/2014/585.

40

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
http://eprint.iacr.org/2014/585

32. J. Hesse. Separating symmetric and asymmetric password-authenticated key
exchange. In C. Galdi and V. Kolesnikov, editors, Security and Cryptography for
Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September 14-
16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages
579–599. Springer, 2020.

33. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.
https://eprint.iacr.org/2017/604.

34. T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In STOC 2011, 2011.

35. J. Y. Hwang, S. Jarecki, T. Kwon, J. Lee, J. S. Shin, and J. Xu. Round-reduced
modular construction of asymmetric password-authenticated key exchange. In
Security and Cryptography for Networks – SCN 2018, pages 485–504. Springer,
2018.

36. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC’89, pages 44–61, 1989.

37. D. P. Jablon. Extended password key exchange protocols immune to dictionary
attacks. In 6th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 1997), pages 248–255,
Cambridge, MA, USA, June 18–20, 1997. IEEE Computer Society.

38. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Applied Cryptology and
Network Security – ACNS 2017, pages 39–58. Springer, 2017.

39. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: an asymmetric PAKE
protocol secure against pre-computation attacks. In Advances in Cryptology
- EUROCRYPT 2018, pages 456–486, 2018. IACR ePrint version at
http://eprint.iacr.org/2018/163.

40. T. Kim and M. Tibouchi. Invalid curve attacks in a GLS setting. In International
Workshop on Security (IWSEC 2015), 2015.

41. H. Krawczyk. SKEME: A versatile secure key exchange mechanism for internet.
In 1996 Internet Society Symposium on Network and Distributed System Security
(NDSS), pages 114–127, 1996.

42. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In Advances in Cryptology – CRYPTO
2003, pages 400–425. Springer, 2003.

43. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Advances in Cryptology – CRYPTO 2005, pages 546–566. Springer, 2005.

44. H. Krawczyk, D. Bourdrez, K. Lewi, and C. Wood. The opaque
asymmetric pake protocol, draft-irtf-cfrg-opaque, https://datatracker.ietf.

org/doc/draft-irtf-cfrg-opaque/, 2021.
45. P. MacKenzie. On the security of the SPEKE password-authenticated key exchange

protocol. Cryptology ePrint Archive, Report 2001/057, 2001. http://eprint.

iacr.org/2001/057.
46. M. Marlinspike. Simplifying OTR deniability, https://signal.org/blog/

simplifying-otr-deniability/, 2013.
47. M. Marlinspike and T. Perrin. The X3DH key agreement protocol, https://

signal.org/docs/specifications/x3dh/, 2016.
48. I. McQuoid, M. Rosulek, and L. Roy. Minimal symmetric PAKE and 1-

out-of-n OT from programmable-once public functions. In J. Ligatti, X. Ou,
J. Katz, and G. Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on

41

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
http://eprint.iacr.org/2001/057
http://eprint.iacr.org/2001/057
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/

Computer and Communications Security, Virtual Event, USA, November 9-13,
2020. https://eprint.iacr.org/2020/1043.

49. NIST Information Technology Lab. Post-quantum cryptography, https://csrc.
nist.gov/projects/post-quantum-cryptography.

50. D. Pointcheval and G. Wang. VTBPEKE: Verifier-based two-basis password
exponential key exchange. In ASIACCS 17, pages 301–312. ACM Press, 2017.

51. J. Schmidt. Requirements for password-authenticated key agreement (PAKE)
schemes, https://tools.ietf.org/html/rfc8125, Apr. 2017.

52. A. Shallue and C. van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In ANTS, 2006.

53. V. Shoup. Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch., 2020:313,
2020.

54. N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. Opaque with
tls 1.3, draft-sullivan-tls-opaque, https://datatracker.ietf.org/doc/

draft-sullivan-tls-opaque/, Feb. 2021.
55. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as

uniform random strings. In Financial Cryptography – TCC 2014, pages 139–156,
2014.

56. R. S. Wahby and D. Boneh. Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. 2019(4):154–179, 2019. https://tches.iacr.org/index.php/

TCHES/article/view/8348.

A Standard AKE with Entity Authentication

We show that adding key confirmation to a protocol that realizes the UC
key-hiding AKE functionality, defined in Section 2, converts such protocol into
a secure UC AKE protocol with explicit entity authentication (AKE-EA). In
particular, this result applies to the 3DH and HMQV protocols analyzed in
Sections 3 and 4, respectively. We model AKE-EA as UC functionality FAKE-EA

shown in Figure 16 extending prior UC formulations of AKE (cf., [20, 18]). In
addition to explicit entity authentication and forward secrecy, AKE-EA
captures properties such as KCI security, AKE executions on incorrect public
keys, and adaptive compromise of the long-term private keys, all elements that
are inherited from our kh-AKE modeling.

A compiler from kh-AKE to AKE-EA is in Figure 15. The proof of the
following theorem should not be difficult to make, and it is on our “TBD” list:

Theorem 5. Protocol of Figure 15 realizes the UC AKE-EA functionality
FAKE-EA assuming that prf is a secure PRF and that the underlying key-hiding
AKE protocol realizes the UC kh-AKE functionality FkhAKE.

B Definition of UC aPAKE with entity authentication

We recall a notion of UC aPAKE defined by Gentry, Mackenzie, and Ramzan [29],
shown in Figure 17. We present the functionality of [29] with a few notational
modifications, and a simple security “upgrade” that makes the resulting notion

42

https://eprint.iacr.org/2020/1043
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://tools.ietf.org/html/rfc8125
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348

P1 on (NewSession, sid,CP1, pk1, pk ′1): P2 on (NewSession, sid,CP2, pk2, pk ′2):

(assume P1 <lex CP1) (assume CP2 <lex P2)

-(NewSession, sid,CP1, pk1, pk ′1) �(NewSession, sid,CP2, pk2, pk ′2)

FkhAKE

� k1 -k2

τ = prf(k1, 1) -τ � γ
γ = prf(k2, 2)

output ⊥ if γ 6= prf(k1, 2) output ⊥ if τ 6= prf(k2, 1)

else output K1 ← prf(k1, 0) else output K2 ← prf(k2, 0)

Fig. 15. Compiler from kh-AKE protocol to AKE-EA protocol.

implement explicit entity authentication as part of the aPAKE protocol. We
explain these changes below, and discuss the assumptions necessary for this
functionality to appropriately model adversarial offline dictionary attack queries.

Changes in password file and session identifiers. The first modification
we make is to rename what [29] calls a session identifier sid as a user account
identifier uid, and rename what [29] calls a sub-session identifier ssid as a
session identifier sid. The sid, ssid terminology of [29] complies with the general
UC conventions established by Canetti [17], where the top-level state of some
cryptographic application, e.g. long-term keys of an encryption or a signature
scheme, is referred to as its “session”, while particular instances which use
these long-term keys, e.g. an authentication scheme instance, is referred to as
its “sub-session”. The downside of this terminology is that its
application-obliviousness can unintentionally obscure the consequences of these
conventions for a given application. Moreover, in many applications of UC
framework the sid and ssid strings are thought of as nonces, and their
implications to correctness, security, and privacy, are often overlooked.

In the context of asymmetric PAKE the sid of [29] is effectively a pointer
to a password file, a.k.a. a password hash, stored by some server S for some
user U. In the aPAKE functionality of [29] the user must know this sid to start
the protocol, but as was pointed out by Hesse [32], the goal of (a)PAKE is
to facilitate password authentication in the password-only setting, hence it is
not clear whether it is applicable to assume that the user has to remember
also this password-file-identifying string sid. On the other hand, to run aPAKE
authentication, an aPAKE user U must know at least two things in addition
to her password, namely (1) an identifier S of the server to which U wants to
authenticate, e.g. the server’s domain name, and (2) the user ID by which S
identifies U. The UC syntax demands that identity S is the client’s input in an
aPAKE instance, and our terminology makes it explicit that the second necessary
input is simply the user account identifier, denoted uid. A secondary effect of

43

– PK is the list of all public keys created via Init, initially empty
– PK P is the list of all public keys created by P, initially empty for all P
– CPK is the list of all compromised keys in PK , initially empty

Keys: Initialization and Attacks

(same as in FkhAKE, Figure 1)

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, pk , pkCP) from P:

If pk ∈ PK P and there is no prior session record 〈sid,P, ·, ·, ·, ·〉 then:

– create session record 〈sid,P,CP, pk , pkCP,⊥〉 marked fresh
– send (NewSession, sid,P,CP, pkP, pkCP) to A

On (Interfere, sid,P) from A:

If session record 〈sid,P,CP, pk , pkCP,⊥〉 is fresh then do the following: If pkCP ∈
CPK or pkCP 6∈ PK then re-label it compromised, else re-label it interfered

Login Sessions: Key Establishment

On (NewKey, sid,P, k∗) from A:

If ∃ session record rec = 〈sid,P,CP, pk , pkCP,⊥〉 then:

– If rec is marked compromised then set k ← k∗

– If rec is marked interfered then set k ← ⊥
– If rec is marked fresh then:

• If there is record 〈sid,CP,P, pkCP, pk , k ′〉 marked fresh then:

∗ If k ′ 6= ⊥ then set k ← k ′

∗ If k ′ = ⊥ then set k ←R {0, 1}κ

• Otherwise set k ← ⊥
– Update rec to 〈sid,P,CP, pk , pkCP, k〉 and output (sid, k) to P

Fig. 16. Functionality FAKE-EA: AKE with Entity Authentication

renaming sid as uid is that the word “session” can now be used in a way that
matches standard KE terminology, i.e. it is an on-line authentication protocol
instance. Each such instance is identified by a session identifier nonce, denoted
sid, effectively replacing what in [29] was called ssid.

These changes bring up to the fore another salient issue in the formalization
of [29], inherited from the conventions of [17]), namely that identifiers sid, ssid are
assumed to be public. As we have seen in the case of key-hiding AKE in Section
2, the UC session identifiers can identify long-term authentication tokens, and
their privacy might be a concern. Since the aPAKE session identifier of [29] is a
de-facto user account identifier uid, it matters whether or not this user account
identifier is public and e.g. revealed in every authentication attempt. The aPAKE
protocol KHAPE of Section 6 seems to protect uid privacy in the same way as it
protects password privacy (the two are hashed together to form the AKE-layer
key identifiers, see Figure 8). Our functionality FaPAKE of Figure 17, just like

44

Password Registration

– On (StorePwdFile, uid, pw) from S create record 〈file, S, uid, pw〉 marked fresh.

Stealing Password Data

– On (StealPwdFile, S, uid) from A, if there is no record 〈file, S, uid, pw〉, return
“no password file”. Otherwise mark this record compromised, and if there is a
record 〈offline, S, uid, pw〉 then send pw to A.

– On (OfflineTestPwd, S, uid, pw∗) from A, then do:

• If ∃ record 〈file, S, uid, pw〉 marked compromised, do the following:
If pw∗ = pw then return “correct guess” to A else return “wrong guess.”

• Else record 〈offline, S, uid, pw∗〉

Password Authentication

– On (CltSession, sid, S, pw) from C, if there is no record 〈sid,C, ...〉 then record
〈sid,C, S, pw , 0〉 marked fresh and send (CltSession, sid,C, S) to A.

– On (SvrSession, sid,C, uid) from S, if there is no record 〈sid, S, ...〉 then retrieve
record 〈file, S, uid, pw〉, and if it exists then create record 〈sid, S,C, pw , 1〉
marked fresh and send (SvrSession, sid, S,C, uid) to A.

Active Session Attacks

– On (TestPwd, sid,P, pw∗) from A, if there is a record 〈sid,P,P′, pw , role〉
marked fresh, then do: If pw∗ = pw then mark it compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess.”

– On (Impersonate, sid,C, S, uid) from A, if there is a record 〈sid,C, S, pw , 0〉
marked fresh, then do: If there is a record 〈file,S, uid, pw〉 marked compromised
then mark 〈sid,C, S, pw , 1〉 compromised and return “correct guess” to A; else
mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid,P,K ∗) from A, if there is a record rec = 〈sid,P,P′, pw , role〉
not marked completed, then do:

• If rec is marked compromised set K ← K ∗;
• Else if role = 0, rec is fresh, there is record 〈sid,P′,P, pw , 1〉 s.t. FaPAKE

sent (sid,K ′) to P′ while that record was marked fresh, set K ← K ′;
• Else if role = 1, rec is fresh, there is record 〈sid,P′,P, pw , 0〉 which is

marked fresh, pick K ←R {0, 1}`;
• Else set K ← ⊥.

Finally, mark rec as completed and send output (sid,K) to P.

Fig. 17. FaPAKE: asymmetric PAKE with explicit C-to-S authentication

45

the aPAKE functionality of [29], does not model this privacy protection (e.g.
CltSession and SvrSession messages reveal uid to A), and we leave extending it
so that to capture this property to future work.

Other notational changes. Since we view uid as a pointer to a long-term
secret material on the server, we put it as a last parameter in several FaPAKE

commands. However, once sessions are established we use the (party,sessionID)
pair (P, sid) as the unique pointer to any aPAKE session Psid, while in [29]
these handles were (sid, ssid), aligned with conventions of [17]. In other cosmetic
changes [29] identifies password files by (S,U, sid) tuple, which in our notation
would be (S,U, uid), but it is not clear identity U is meaningful: If party identity
P in a UC protocol is interpreted as a domain name or an IP address, either
of these identities would be unstable for a web used authenticating to a web
service, and in our notation uid is the sole long-term identifier, for a given server
S, of a user, hence in FaPAKE in Figure 17 we identify password files by (S, uid)
tuple.

Entity authentication. Our AKE-to-aPAKE compiler, protocol KHAPE of
Section 6, requires both parties to send a key confirmation message for security,
but this message also upgrades the functionality of the resulting aPAKE by
implementing explicit entity authentication within the protocol. To capture this
aPAKE property we modify the aPAKE mode of [29] by incorporating entity
authentication. This results from the following modification of the FaPAKE key-
establish rules, as modeled by the NewKey query: A fresh session Ssid outputs
key K which is not a rejection symbol ⊥ only if session Csid runs on the same
password, and Csid can output a non-⊥ key only by copying key K ′ which was
output by a fresh session Ssid which runs on a password file for the same password
pw . The functionality in Figure 17 is customized to protocols, like ours, where
S terminates first, but that assumption is used only to simplify FaPAKE syntax
in NewKey query handling.

Modeling password file compromise and offline password queries. [29]
attempted to model both password file compromise and offline password
queries in a way akin to the way UC framework models party corruption [17].
Several subsequent works [39, 32, 53] have pointed out that this treatment
poses non-standard requirements on the communication between the
environment and the real-world and ideal-world security games. The main issue
is that one of the main goals of a UC aPAKE model is to impose a tight bound
on the amount (and timing!) of local computation of a real-world adversary
performing offline dictionary attacks. First thing to note is that such goal
seems realizable only in an idealized computation model, e.g. assuming ROM
or IC, where adversary’s local computation can be modeled as an interaction
with an oracle. Moreover, this oracle must have some “back-channel” to the
environment, to allow the environment to monitor offline password tests in the
real-world (or, more precisely, in a hybrid world where e.g. a hash function or
symmetric cipher are modeled as ideal oracles, respectively RO or IC). Finally,
if the real-world and ideal-world executions are to be indistinguishable, then

46

the ideal-world model FaPAKE must allow for the same environmental
monitoring of offline password tests.

In this work we adopt a simplified convention for how the above is enforced
by essentially following the formal conventions of [29], but with the following
caveats. In the FaPAKE model in Figure 17 the ideal-world adversary can freely
request password file compromises, via StealPwdFile and offline commands to
FaPAKE. However, this convention makes sense only if we assume that these
commands are “environmentally controlled”, i.e. that FaPAKE (or the
ideal-world adversary) has a back-channel to the environment informing it of
compromised files and offline dictionary queries, or that FaPAKE services these
queries only if the environment sends an explicit permission for it. In the
security proof of the aPAKE protocol KHAPE, in Section 2, we assume that
StealPwdFile is a message sent by the real-world adversary, see Fig. 9, but the
proof would not change if the simulator received (the permission to issue) this
message instead from FaPAKE or directly from the environment. Likewise, an
offline dictionary query pw against password file tagged by (S, uid) is equated
with a query to RO hash oracle H on inputs (S, uid, pw , s). In the KHAPE proof
the simulator then sends (offline,S, uid, pw) to FaPAKE, and here again the proof
would not change if this message was sent instead directly to the environment
and/or the simulator had to wait to process it if it receives an environmental
“permit” to do so.

C Proof of HMQV as Key-Hiding AKE

We present the proof of Theorem 2 from Section 4.

Proof. We describe how the security proof for 3DH should be adapted to the
case of HMQV. The two proofs follow the same template. In particular, the
HMQV simulator algorithm SIM, shown in Figure 18, acts very similarly to the
3DH simulator in Figure 3. The proof shows the indistinguishability between the
real-world game (Game 0) shown in Figure 19, which captures an interaction with
parties running the HMQV protocol, and the ideal-world game (Game 7) shown
in Figure 20, which is defined by a composition of SIM and functionality FkhAKE.
The sequence of games which shows this indistinguishability is exactly the same
as the sequence used in the proof of theorem 1, and below we sketch where
the match is exact and how we deal with the HMQV-specific differences when
they occur. In particular, in the discussions below we often re-use the notation
introduced used in the proof of theorem 1.

As in the case of 3DH, for each AKE session Psid we define function
Rsid

P (pk , pk ′, Z) which is used by session Psid to compute its session key given
counterparty’s message Z. The definition of Rsid

P is exactly the same as in the
case of 3DH, i.e. equation (2), except the last argument, σ, is now defined
using the HMQV function, σ = HMQVsid

P (pk , pk ′, Z). Below we define function
HMQVsid

P for session Psid running on inputs (sid,CP, pk , pk ′), i.e. pk is its own
public key and pk ′ is the public key of the intended counterparty. Function

47

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :

if ∃ (sk , pk) ∈ KLP send sk to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , store 〈sid,P,CP, role, w〉, send W = gw to A

On A’s message Z to session Psid (only first such message counts):

if ∃ record 〈sid,P,CP, ·, w〉:
if ∃ no record 〈sid,CP,P, ·, z〉 s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (st, σ) to random oracle H, for st = (sid,C, S, X, Y):

if ∃ 〈(st, σ), k〉 in TH then output k , otherwise pick k ←R {0, 1}κ and:

if ∃ record 〈sid,C,S, 1, x〉, (a,A) ∈ KLC, and tuples 〈(sid,C, S, 1, X), d〉,
〈(sid,C,S, 2, Y), e〉 in TH′ s.t. (X,σ) = (gx, (Y · Be)x+da) for some B :

send (SessionKey, sid,C,A,B , Y) to F , if F returns k∗ reset k ← k∗

if ∃ record 〈sid, S,C, 2, y〉, (b,B) ∈ KLS, and tuples 〈(sid,C, S, 1, X), d〉,
〈(sid,C,S, 2, Y), e〉 in TH′ s.t. (Y, σ) = (gy, (X ·Ad)y+eb) for some A:

send (SessionKey, sid,S,B ,A, X) to F , if F returns k∗ reset k ← k∗

add 〈(st, σ), k〉 to TH and output k

On query (sid,C, S, n, Z) to random oracle H′:

if ∃ 〈(sid,C, S, n, Z), r〉 in TH′ then output r
else pick r ←R Zp , add 〈(sid,C,S, n, Z), r〉 to TH′ , and output r

Fig. 18. Simulator SIM showing that HMQV realizes FkhAKE (abbreviated “F”)

HMQVsid
P can be defined separately for cases for Psid playing the client-role,

denoted P = C, and Psid playing the server-role, denoted P = S, as follows:

HMQVsid
C (pk , pk ′, Y) = cdhg(X,Y) · cdhg(pk ′, X)e · cdhg(Y, pk)d · cdhg(pk , pk ′)ed

for X = Xsid
C and d = H′(st, 1, X), e = H′(st, 2, Y), st = sid|C|S

HMQVsid
S (pk , pk ′, X) = cdhg(X,Y) · cdhg(pk , X)e · cdhg(Y, pk ′)d · cdhg(pk , pk ′)ed

for Y = Y sid
S and d = H′(st, 1, X), e = H′(st, 2, Y), st = sid|C|S

Game 0 (real world): The real-world game is shown in Figure 19.

Game 1 (past H queries are irrelevent to new sessions): We add an abort if
session Psid starts with W which appeared in some prior inputs to H. As in the
case of 3DH, |Pr[G1]− Pr[G0]| ≤ (2qH)/p.

Game 2 (programming Rsid
P values into H outputs): We make the same

change of using random but pair-wise correlated functions Rsid
P , i.e. correlated

48

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP then output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if P <lex CP then set role← 1 else set role← 2; if ∃ (skP, pkP)∈KLP, pick
w ←R Zp , write 〈sid,P,CP, role, skP, pkCP, w〉, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record 〈sid,P,CP, role, skP, pkCP, w〉:
if role = 1:

set d← H′(sid, {P,CP}ord, 1, gw) and e← H′(sid, {P,CP}ord, 2, Z)

set σ ← (Z · pkeCP)w+d·skP

if role = 2:
set d← H′(sid, {P,CP}ord, 1, Z) and e← H′(sid, {P,CP}ord, 2, gw)

set σ ← (Z · pkdCP)w+e·skP

set k ← H(sid, {P,CP,W,Z, σ}ord) and output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k
else pick k ←R {0, 1}κ, add 〈(sid,C,S, X, Y, σ), k〉 to TH, and output k

On H′ query (sid,C,S, n, Z):

if ∃ 〈(sid,C, S, n, Z), r〉 in TH′ then output r
else pick r ←R Zp , add 〈(sid,C,S, n, Z), r〉 to TH′ , and output r

Fig. 19. HMQV: Environment’s view of real-world interaction (Game 0)

as in equation (3), and programming Rsid
P (pk , pk ′, Z) values into outputs of

H(sid, {C,S,W,Z}ord, σ) if W matches the value sent by Psid and
σ = HMQVsid

P (pk , pk ′, Z). As in the case of 3DH we need to argue that if the
same hash query (sid,C,S, X, Y, σ), for (X,Y) = (Xsid

C , Y sid
S), matches both the

client-side equation and the server-side equation, i.e. if

σ = HMQVsid
C (A,B′, Y) = HMQVsid

S (B,A′, X)

where A ∈ PK C, B
′ ∈ PK +(Csid), B ∈ PK S, A

′ ∈ PK +(Ssid), as defined in the
3DH proof, then either condition programs the same value into H output.

In the case of 3DH the corresponding equation implied that both parties
must use correct counterparty keys, i.e. that (A′,B ′) = (A,B), in which case
constraint (3) on Rsid

C and Rsid
S implies that either condition programs H to the

same value.
In the case of HMQV the above equation can hold even if (A′,B ′) 6= (A,B),

but it can occur with only negligible probability. The constraint above implies:

(Y ·B′e)x+da
= (X ·A′d)

y+eb
(4)

49

Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:

set sk ←R Zp , pk ← gsk , send (Init, pk) to P, add pk to PK and (sk , pk) to KLP

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP add pk to CPK and output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (sk , pkP) ∈ KLP then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , write 〈sid,P,CP, pkP, pkCP, role, w,⊥〉 as fresh, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record rec = 〈sid,P,CP, pkP, pkCP, role, w,⊥〉:
if ∃ record rec′ = 〈sid,CP,P, pk ′CP, pk ′P, role′, z, k ′〉 s.t. gz = Z

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk ′CP), and k ′ 6= ⊥:
then k ← k ′

else k ←R {0, 1}κ
else set k ← Rsid

P (pkP, pkCP, Z) and re-label rec as interfered
update rec to 〈sid,P,CP, pkP, pkCP, role, w, k〉, output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

1. if ∃ record 〈sid,C, S, ·, ·, 1, x, ·〉, 〈(sid,C,S, 1, X), d〉 and 〈(sid,C, S, 2, Y), e〉 in
TH′ s.t. (X,σ) = (gx, (Y ·Be)x+d·a) for some (a,A) ∈ KLC and B s.t.
B ∈ CPK or B 6∈ PK , then reset k ← Rsid

C (A,B , Y)

2. if ∃ record 〈sid, S,C, ·, ·, 2, y, ·〉, 〈(sid,C, S, 1, X), d〉 and 〈(sid,C,S, 2, Y), e〉 in
TH′ s.t. (Y, σ) = (gy, (X ·Ad)y+e·b) for some (b,B) ∈ KLS and A s.t.
A ∈ CPK or A 6∈ PK , then reset k ← Rsid

S (B ,A, X)

add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

On H′ query (sid,C, S, n, Z):

if ∃ 〈(sid,C, S, n, Z), r〉 in TH′ then output r
else pick r ←R Zp , add 〈(sid,C,S, n, Z), r〉 to TH′ , and output r

Fig. 20. HMQV: Environment’s view of ideal-world interaction (Game 7)

50

where d = H′(st, 1, X) and e = H′(st, 2, Y) and (X,Y) = (gx, gy). Note that
equation (4) holds if and only if (y+ eb′)(x+da) = (x+a′d)(y+ eb), where a′, b′

are the discrete logarithms of resp. A,B. This can hold even if (a′, b′) 6= (a, b),
hence in the case of HMQV we will add an abort in the case equation (4) holds
and (A′, B′) 6= (A,B). Note that the adversary must choose the counterparty
key pk ′ = B′ for session Csid before Csid starts and picks x. Likewise pk ′ = A′

for session Ssid must be chosen before Ssid picks y. Therefore the last value to be
chosen is either x or y, i.e. either x or y are randomly sampled after (a, b, a′, b′)
are all fixed. If x is chosen after (a, b, a′, b′, y) then its choice determines d =
H′(st, 1, gx), but since H′ is a random oracle, the probability that d satisfies
equation (4) is 1/p. Since a symmetric argument holds in the case y (and e) are
chosen last, it follows that:

|Pr[G2]− Pr[G1]| ≤ qses/p

Game 3 (direct programming of session keys using random functions Rsid
P):

This step is identical as in the case of 3DH, and Pr[G3] = Pr[G2]

Game 4 (abort on H queries for passive sessions): As in the case of the proof
for 3DH we add an abort whenever oracle H triggers evaluate of Rsid

P (pk , pk ′, Z)

for any pk , pk ′ and Z = W sid
CP where CPsid is a matching session of Psid, and

likewise define as Bad the event that such query is made. W.l.o.g. we can consider
these sessions using arbitrary pk ′s, e.g. B′ for Csid and A′ for Ssid, which might
or might not equal to the correct public key of the intended counterparty on the
respective session.

As in the case of 3DH we show that solving Gap CDH can be reduced to
causing event Bad in this game, but the full reduction R′ that exihbits that
uses rewinding over two executions of a subsidiary reduction R, which works as
follows. We argue reduction R assuming that event Bad occurs for a client-side
function Rsid

C , because the case for a server-side function Rsid
S is symmetric.

Reduction R takes a CDH challenge (X̄, Ȳ) and embeds it in a randomized
way in the messages of all simulated parties, i.e. it sends X = X̄s and Y = Ȳ t

for random s and t shifts on behalf of resp. Csid and Ssid sections, just like in
the 3DH case. Otherwise it emulates the security game, in particular it knows
all the key pairs (a,A) and (b, B). Although R does not know x = s · x̄ and
y = t · ȳ corresponding to these messages, where x̄ = dlogg(X̄) and ȳ = dlogg(Ȳ),
reduction R can use the DDH oracle to emulate H queries, i.e. to test if

σ = HMQVsid
C (A,B′, Y) = (Y (B′)e)x+da = cdhg(X,Y (B′)e) · (Y (B′)e)ad

for any key B′, any key A = ga of Csid, and (X,Y) = (X̄s, Ȳ t) sent by resp. Csid

and Ssid. Symmetrically R can test if σ = HMQVsid
S (B,A′, X).

Since R emulates Game 3 perfectly, event Bad occurs with the same
probability as in Game 3, in which case R can compute v = cdhg(X,Y (B′)e),
assuming Bad occurs for a client-side equation. Denote this (e, v) pair as
(e1, v1), i.e. v1 = cdhg(X,Y (B′)e1). By the rewinding argument, as in [43], if
the probability of the (client-side) Bad is ε, the second-layer reduction R′ can

51

run R against the adversary/environment twice, providing a fresh random
output e2 on hash query H′(sid,C,S, 2, Y). If event Bad occurs in that second
execution for the same Y then R would extract v2 = cdhg(X,Y (B′)e2), in
which case R′ can compute cdhg(X,Y) = (ve21 /v

e1
2)1/(e2−e1), and consequently

solve for cdhg(X̄, Ȳ) = (cdhg(X,Y))1/(st). By the standard rewinding
argument, the probability R′ succeeds is at least (1/crwnd)ε

2/qH for a small
constant crwnd, which implies

|Pr[G4]− Pr[G3]| ≤ (crwnd · qH · εZg-cdh)1/2

Game 5 (random keys on passively observed sessions): This game change is
the same as in the case of 3DH, and Pr[G5] = Pr[G3]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): This game change is the
same as in the case of 3DH, and Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): As in the
proof for 3DH, we restrict handling H queries to only those that correspond to
counterparty key pk ′ being either compromised or adversarial. Consequently, as
in the case of 3DH, Game 7 diverges from Game 6 if event Bad occurs, defined
as H query on (sid, {P,CP,W sid

P , Z}ord, σ) for σ = HMQVsid
P (pk , pk ′, Z) where

pk ∈ PK P and pk ′ ∈ PK \CPK . Let Badn be Bad where Psid plays role = n. As
in the case of the 3DH proof we will argue only for n = 1 because the other case is
symmetric. Also, we will focus on sub-event Bad1[i] which denotes Bad1 occuring
where Psid uses the i-th key as pk ′, i.e. pk ′ was a non-compromised public key
in PK created in the i-th key initialization query. Note that Bad1[i] corresponds
to σ = (Y · (pk ′)e)x+d·a where a is some private key of C and x is used on
session Csid, pk ′ equals to the honestly-generated and non-compromised public
key corresponding to the i-th key record, and an arbitrary Y which adversary
specifies in the hash inputs.

As in the 3DH proof we show a reduction R that solves a Gap Square DH
if Bad1[i] occurs. Square DH is a variant of CDH where the challenge is a single
value X̄ and the goal is to compute cdhg(X̄, X̄). It is well-known that Square
DH is equivalent to CDH. As in the reduction to Gap CDH used in Game 4
above, here too we will use a subsidiary reduction R which computes CDH on a
problem related to the Square DH challenge, and a top-level reduction R′ which
solves the Square DH challenge using rewinding over two executions of R. We
show the bound on the probability that R succeeds in terms of the probability
ε of event Bad[i], and then we show the overall bound using a union bound and
a symmetry of client-side and server-side equations.

Reduction R takes a Square DH challenge X̄ and embeds it as pk ′ ← X̄
where pk ′ is the public key in the i-th key record, and also embeds X̄ into
messages X = X̄s sent on behalf of all client-role sessions, for random s. As in
the case of 3DH R picks all other long-term key pairs (sk , pk) as in the original
security game, and it also picks ephemeral state y of all server-side sessions. As
long as pk ′ is not compromised, R can emulate Game 6 because it can respond
to a compromise of all other keys, and it can service H queries as follows: To

52

test client-side σ’s, i.e. if σ = (Y · (pk ′)e)x+d·skC where pk ′ is an arbitrary public
key, Y is an arbitrary value input into the hash, x = s · x̄ is an ephemeral
state of Csid unknown to R, and skC w.l.o.g. can correspond to the i-th public
key X̄, hence also unknown to R (the case of any other key, where R knows the
corresponding key skC is strictly easier), reductionR uses the DDH oracle to test
if σ = cdhg(Y ·(pk ′)e, X̄s+d). To test server-side σ’s, i.e. if σ = (X ·(pk ′)d)y+e·skS ,
for arbitrary X, pk ′, a known ephemeral state y, and skS which again w.l.o.g.
can correspond to the i-th public key X̄, reduction R uses the DDH orace to
test if σ = (X · (pk ′)d)y · cdhg(X · (pk ′)d, X̄e).

As in the case of 3DH proof this emulation is perfect, so Bad1[i] occurs with
the same probability as in Game 6, and if does then the client-side equation for
σ involves pk ′ = X̄, which means that R computes σ1 = cdhg(Y · X̄e1 , X̄s+d),
where as in the rewinding reduction in the case of Game 4 above we use e1 to
denote H′(sid,C,S, 2, Y) in the first execution of R. Let w = cdhg(Y, X̄) and
z = cdhg(X̄, X̄), and note that σ1 = ws+d · ze1(s+d). If the second run of R
hits the event for the same Y and embeds fresh e2 into H′(sid,C,S, 2, Y) then it
computes σ2 = ws

′+d′ · ze2(s′+d′). Since R′ knows all the coefficients, it can solve
these relations for w, z and output z = cdhg(X̄, X̄).

If i is randomly chosen and w.l.o.g. Bad1 is at least as likely as Bad2 then
the probability of Bad[i] is at least ε/(2qK). Therefore, by the standard
rewinding argument, R succeeds with probability at least (1/crwnd)(ε/2qK)2/qH,
which implies

|Pr[G7]− Pr[G6]| ≤ (2qK) · (crwnd · qH · εZg-cdh)1/2

which concludes the proof.

D Proof of SKEME as Key-Hiding AKE

In this section we present the proof of Theorem 3. We first introduce definitions
for several notions used in the formulation of the theorem.

Following the notions of key-hiding PKE [8], we define general key-privacy
and perfect key-privacy property of KEM:

Definition 2. [KPKEM] Let KEM = (Gen,Enc,Dec) be a key-encapsulation
mechanism. Let b ∈ {0, 1}. Let A be the adversary. Now we consider the
following experiment:
Experiment Expkpkem−bKEM,A

(pk0, sk0)← KEM.Gen; (pk1, sk1)← KEM.Gen
(c,K)← KEM.Enc(pk b)
b′ ← A(sk0, pk0, sk1, pk1, c)
Return b′

We define the advantage of the adversaries as:

AdvkpkemKEM,A =
∣∣∣Pr[Expkpkem−1

KEM,A = 1]− Pr[Expkpkem−0
KEM,A = 1]

∣∣∣
53

KEM is key-private if AdvkpkemKEM,A is negligible for any ppt adversary A.

Definition 3. [perfect KPKEM] Let KEM = (Gen,Enc1,Enc2,Dec) be a
key-encapsulation mechanism. Let b ∈ {0, 1}. Let A be the adversary. Now we
consider the following experiment:
Experiment Expperfect−kpkem−bKEM,A

(pk0, sk0)← KEM.Gen; (pk1, sk1)← KEM.Gen
c, r ← KEM.Enc1(κ), K ← KEM.Enc2(pk b, r)
b′ ← A(sk0, pk0, sk1, pk1, c)
Return b′

We also define perfect key-private KEM, which is a stronger notion of general
key-private KEM where c, r ← KEM.Enc1(κ) and K ← KEM.Enc2(pk b, r), and

it’s clear that for such KEM AdvkpkemKEM,A = 0. We assume KEMs used in the
following SKEME security proof all have such property.

We also assume KEM we use suffices the security property of One-Wayness
under Plaintext-Checking-Attack, abbreviated as OW-PCA[33], where a
Plaintext-Checking Oracle PCOsk (K, c) is defined to output a bit on whether
KEM.Dec(sk , c) = K:

Definition 4. [OW of KEM under PCA] Let KEM = (Gen,Enc,Dec) be a
key-encapsulation mechanism. Let A be the adversary. Now we consider the
following experiment:
Experiment Expow−pcaKEM,A

(pk , sk)← KEM.Gen
c∗, r ← KEM.Enc1(κ),K∗ ← KEM.Enc2(pk , r)
K ′ ← APCOsk (.,.)(pk , c∗)
Return PCOsk (K ′, c∗)

We define the advantage of the adversaries as Advow−pcaKEM,A , and scheme KEM is

said to be OW-PCA secure if Advow−pcaKEM,A is negligible for any ppt adversary
A.

Fortunately many KEMs suffice above two requirements, including plain El
Gamal KEM, where the encryption generates c = gr and K = pkr. And this
El Gamal encryption scheme is OW-PCA secure based on GapDH problem,
since given a public key pk = gsk and (c,K) = (gr, pkr) a PCO simply checks
whether (pk = gsk , c = gr,K = pkr) is a DH-triple, which is exactly a DDH
Oracle. It’s also perfect KPKEM based on its definition.

Proof of Theorem 3

Proof. We use the following definitions for any Psid, for P ∈ {C,S}, which
always uses intended counterparty public key, i.e. ∃ pkCP s.t. Psid runs on
(sid,CP, pkP, pkCP):

54

Initialization: Initialize empty global list KL and empty lists KLP for each P

On (Init,P) from F :

set (sk , pk)← KEM.Gen, add (sk , pk) to KL and KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :

if ∃ (sk , pk) ∈ KLP send sk to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , set (e, r)← KEM.Enc1(κ)
store 〈sid,P,CP, role, w, e, r〉 and send (W = gw, e) to A

On A’s message (Z, f) to session Psid (only first such message counts):

if ∃ record 〈sid,P,CP, ·, w, e, ·〉:
if there is no record 〈sid,CP,P, ·, z, f ′, ·〉 s.t. gz = Z and f = f ′ then:

send (Interfere, sid,P) to F
send (NewKey, sid,P, (Z, f)) to F

On query (st,A,B , X, c, Y, d, σ) to random oracle H, for st = (sid,C, S):

if ∃ 〈(st,A,B , X, c, Y, d, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

if ∃ record 〈sid,C, S, 1, x, c, r〉 and (a,A) ∈ KLC s.t.
(X,σ) = (gx, (KEM.Enc2(B , r),KEM.Dec(a, d), Y x)):

send (SessionKey, sid,C,A,B , (Y, d)) to F , if F returns k∗ reset k ← k∗

if ∃ record 〈sid, S,C, 2, y, d, r〉 and (b,B) ∈ KLS s.t.
(Y, σ) = (gy, (KEM.Dec(b, c),KEM.Enc2(A, r), Xy)):

send (SessionKey, sid, S,B ,A, (X, c)) to F , if F returns k∗ reset k ← k∗

add 〈(st,A,B , X, c, Y, d, σ), k〉 to TH and output k

Fig. 21. Simulator SIM showing that SKEME realizes FkhAKE (abbreviated “F”)

Suppose that e, rsidP ← KEM.Enc1(κ),M ← KEM.Enc2(pkCP, r
sid
P) and

f, rsidCP ← KEM.Enc1(κ), N ← KEM.Enc2(pkP, r
sid
CP) are generated by Psid and

CPsid correspondingly. We use rsidP ,esidP and M sid
P to represent r, e,M locally

generated by Psid under some (pkP, pkCP).
Let KL be the list of all key pairs generated so far, and KLP be the set of key
pairs generated for P, KL+(Psid) stands for KL ∪ {(skCP, pkCP)} where pkCP is
the counterparty public key used by Psid and skCP is corresponding sk which
doesn’t necessarilly need to be known or verified. (If (skCP, pkCP) ∈ KL then
KL+(Psid) = KL). Using these notions, we define following functions for every
Psid:

SKEMEsid
C (pk , pk ′, Y, d) = (KEM.Enc2(pk ′, r),KEM.Dec(sk , d), Y x) for

r = rsidC , x = xsidC , (sk , pk) ∈ KLC, (·, pk ′) ∈ KL+(Csid)

SKEMEsid
S (pk , pk ′, X, c) = (KEM.Dec(sk , c),KEM.Enc2(pk ′, r), Xy) for

r = rsidS , y = ysidS , (sk , pk) ∈ KLS, (·, pk ′) ∈ KL+(Ssid)

55

Rsid
C (pk , pk ′, (Y, d)) = H(sid,C,S, pk , pk ′, Xsid

C , csidC , Y, d,SKEMEsid
C (pk , pk ′, Y, d))

Rsid
S (pk , pk ′, (X, c)) = H(sid,C,S, pk , pk ′, X, c, Y sid

S , dsidS ,SKEMEsid
S (pk , pk ′, X, c))

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP then output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if P <lex CP then set role← 1 else set role← 2
if ∃ (skP, pkP)∈KLP:

pick w ←R Zp , set (e, r)← KEM.Enc1(κ) and M ← KEM.Enc2(pkCP, r)
write 〈sid,P,CP, skP, pkP, pkCP, role, w, e,M〉 and output (W = gw, e)

On message (Z, f) to session Psid (only first such message is processed):

if ∃ record 〈sid,P,CP, skP, pkP, pkCP, role, w, e,M〉:
set N ← KEM.Dec(skP, f) and σ ← (M,N,Zw)
set k ← H(sid, {P,CP, pkP, pkCP, g

w, e, Z, f, σ}ord) and output (sid,P, k)

On H query (st,A,B , X, c, Y, d, σ) for st = (sid,C, S):

if ∃ 〈(st,A,B , X, c, Y, d, σ), k〉 in TH then output k
else pick k ←R {0, 1}κ, add 〈(st,A,B , X, c, Y, d, σ), k〉 to TH, and output k

Fig. 22. SKEME: Environment’s view of real-world interaction (Game 0)

Game 0 (real world): This is the real-world interaction of environment Z
(and its subroutine A) with the SKEME protocol, shown in Fig. 22.

Game 1 (past H queries are irrelevent to new sessions): We add an abort if
session Psid starts with W which appeared in some prior inputs to H. As in the
case of 3DH, |Pr[G1]− Pr[G0]| ≤ (2qH)/p.

Game 2 (programming Rsid
P values into H outputs): Define sessions Csid,Ssid

to be matching if CPsid
C = S and CPsid

S = C. By correctness of SKEME for any
matching sessions and any public keys A,B it holds that
Rsid

C (A,B , (YS, dS)) = Rsid
S (B ,A, (XC, cC)). In Game 2 we set H outputs using

functions Rsid
P . For every pair of matching sessions (Csid,Ssid) we consider a pair

of random functions Rsid
C , Rsid

S : ({0, 1}∗)3 → {0, 1}κ s.t. for all A,B

Rsid
C (A,B , (Y sid

S , dsidS)) = Rsid
S (B ,A, (Xsid

C , csidC)) (5)

Since they’re matching sessions, above equation satisfy csidS = csidC , d
sid
C = dsidS .

More precisely, for any session Psid with no matching session Rsid
P is set as a

random function, and for Psid for which a matching session exists Rsid
P is set as a

56

random function subject to constraint (5). Consider an oracle H which responds
to each new query (sid,C,S,A,B , X, c, Y, d, σ) as follows:

1. If ∃Csid s.t. (S, X) = (CPsid
C , X

sid
C), and ∃ A,B s.t. (·, A) ∈ KLC, (·, B) ∈

KL+(Csid) and σ = SKEMEsid
C (A,B, Y, d): Set k ← Rsid

C (A,B, (Y, d))

2. If ∃Ssid s.t. (C, Y) = (CPsid
S , Y

sid
S), and ∃ B,A s.t. (·, B) ∈ KLS, (·, A) ∈

KL+(Ssid) and σ = SKEMEsid
S (B,A,X, c): Set k ← Rsid

S (B,A, (X, c))
3. In any other case pick k ←R {0, 1}κ

Since the game knows each key pair (skP, pkP) generated for each P,
randomness r used in KEM.Enc, and the ephemeral state w of each session Psid,
it can decide for any Z, f, pk ′ whether σ = SKEMEsid

P (pkP, pk ′, Z, f) if pk ′ is
honestly generated, i.e. (sk ′, pk ′) ∈ KL. Moreover, even if pk ′ is adversarially
generated, i.e. (sk ′, pk ′) ∈ KL+(Psid) \ KL, the game can still decide, since it
records r and can generate M via KEM.Enc2(pk ′, r), it can instead check
whether the corersponding part of σ equals to M . Note that each value of Rsid

P

is used to program H on at most one query. Also, if H query
(sid,C,S,A,B , X, c, Y, d, σ) satisfies both conditions then (X,Y) = (gx, gy) and
(c, d) = (csidC , d

sid
S), and ∃ A′, B′, a, b s.t.

SKEMEsid
C (ga, B′, Y, d) = (KEM.Enc2(B′, rsidC),KEM.Dec(a, d), Y x)

= (KEM.Dec(b, c),KEM.Enc2(A′, rsidS), Xy) = SKEMEsid
S (gb, A′, X, c)

Since by security of KEM.Enc2 the above equations imply that (A′, B′) =
(A,B)(e.g.KEM.Dec(b, c) = KEM.Enc2(B, rsidC) = KEM.Enc2(B′, rsidC)), and by
(5) we already know that Rsid

C (A,B, (Y sid
S , dsidS)) = Rsid

S (B,A, (Xsid
C , csidC)), it

follows that if both conditions are satisfied then both program H output to the
same value. Thus we conclude:

Pr[G2] = Pr[G1]

Game 3 (direct programming of session keys using random functions Rsid
P):

As in 3DH, in Game 3 we make the following changes: We mark each initialized
session Psid as fresh, and when A sends (Z, f) to Psid then it re-labels Psid as
interfered unless (Z, f) equals to the message sent by the intended counterparty
of P. In other words, Csid is re-labeled interfered if Zsid

C 6= Y sid
S or f sidC 6= dsidS and

Ssid is re-labeled interfered if Zsid
S 6= Xsid

C or f sidS 6= csidC . Secondly, we say session
Psid runs “under keys (pkP, pkCP)” if it runs on its own key pair (skP, pkP) and
intended counterparty public key pkCP. Using this notation Game 3 computes
k sid
P as follows:

1. If Psid and CPsid are matching, both are fresh, CPsid runs under (pkCP, pkP),
and k sid

CP 6= ⊥, then k sid
P ← k sid

CP

2. In all other cases set k sid
P ← Rsid

P (pkP, pkCP, (Z, f))

We argue that this change makes no difference to the environment. In Game 2
value k sid

P is derived from H(sid, {P,CP, pkP, pkCP,W, e
sid
P , Z, f}ord, σ), where

57

σ = SKEMEsid
P (pkP, pkCP, Z, f). However, H is programmed in Game 2 to

output Rsid
P (pkP, pkCP, (Z, f)) if ∃ (Z, f) s.t. σ = SKEMEsid

P (pkP, pkCP, Z, f) for
any (·, pkCP) ∈ KL+(Psid). Since pkCP used by Psid must be in set KL+(Psid),
setting k sid

P directly as Rsid
P (pkP, pkCP, (Z, f)) only short-circuits this process.

Moreover, since Rsid
C and Rsid

S are correlated by equation (5), setting k sid
C as k sid

S

or vice versa, in the case both are fresh, does not change the game. Thus we
conclude:

Pr[G3] = Pr[G2]

Game 4 (abort on H queries for passive sessions): We add an abort if
oracle H triggers evaluation of Rsid

P (pk , pk ′, (Z, f)) for any pk , pk ′ and

(Z, f) = (W sid
CP , e

sid
CP) where CPsid is a matching session of Psid. Note that if Psid

is passively observed, then value (W sid
CP , e

sid
CP) either has been delivered to Psid,

i.e. (Zsid
P , f sidP) = (W sid

CP , e
sid
CP), or Psid is still waiting for message Z. By the code

of oracle H in Game 2 the call to Rsid
P (pk , pk ′, (W sid

CP , e
sid
CP)) is triggered only if H

query (sid, {P,CP, pkP, pkCP,W, e, Z, f, σ}ord) satisfies the following for
Z = W sid

CP and f = esidCP:

σ = SKEMEsid
P (pk , pk ′, Z, f)

As in proof of 3DH, the hardness of computing σ relies on hardness of computing
cdhg(W,Z), which is the last element in σ. We show that solving Gap CDH can
be reduced to causing event Bad, defined as event that such query happens. The
reduction R takes a CDH challenge (X̄, Ȳ) and embeds it in a message of all
simulated parties in a randomized way: on NewSession to P, if role = 1 then R
sends X = X̄s as the message from Csid for s← Zp , and if role = 2 then R sends
Y = Ȳ t as the message from Ssid for t← Zp . Otherwise it emulates the security
game, in particular it knows all of the key pairs (a,A) and (b,B). Let KL be the
list of all key pairs generated so far, and KLP be the set of key pairs generated
for P.
Although R doesn’t know x = s · x̄ and y = t · ȳ, where x̄ = dlogg(X̄) and

ȳ = dlogg(Ȳ), R can use DDH oracle to emulate the way Game 3 services

H queries: To test if H input (sid,C,S, A,B,X, c, Y, d, σ) for X = X̄s satisfies
σ = SKEMEsid

C (A,B , Y, d), because R knows all (sk , pk) ∈ KL and records locally
generated r, it can check first two part of σ = (K,L, V).Then to test if V = Y x,
reduction R checks if V = cdhg(X̄, Y

s). Symmetrically on server side, to test
if H input (sid,C,S, A,B,X, c, Y, d, σ) for Y = Ȳ t satisfies V = Xy, reduction
R checks if V = cdhg(X

t, Ȳ). Since R emulates Game 3 perfectly, event Bad
occurs with the same probability as in Game 3, and if it does R detects it
because it occurs if both above conditions hold, in which case R outputs V 1/(st)

as cdhg(X̄, Ȳ). It follows that Pr[Bad] ≤ εZg-cdh, thus we conclude:

|Pr[G4]− Pr[G3]| ≤ εZg-cdh

Game 5 (random keys on passively observed sessions): Same as in 3DH,
if session Ssid remains fresh when A sends (Z, f) to Psid then instead of setting

58

k sid
P ← Rsid

P (pkP, pkCP, (Z, f)) as in Game 3, we now set k sid
P ← {0, 1}κ. Since

by Game 4 oracle H never queries Rsid
P (pkP, pkCP, (Z, f)) on (Z, f) sent from

Psid’s counterparty, which is a condition for Psid to remain fresh, it follows by
randomness of Rsid

P that the modified game remains externally identical, hence:

Pr[G5] = Pr[G4]

Game 6 (decorrelating function pairs Rsid
C , Rsid

S): This game is same as in
3DH, and

Pr[G6] = Pr[G5]

Game 7 (hash computation consistent only for compromised keys): Recall
that in Game 6, as in Game 2, H(sid, {P,CP, pkP, pkCP, ·, ·,W sid

P , Z, σ}ord) is

defined as Rsid
P (pkP, pkCP, (Z, f)) if σ = SKEMEsid

P (pkP, pkCP, Z, f) for some
(skP, pkP) ∈ KLP,(skCP, pkCP) ∈ KL+(Psid). In Game 7 we add a condition that
this programming of H can occur only if (1)(skCP, pkCP) is honestly generated
and compromised or (2)(skCP, pkCP) is adversarially generated and pkCP is the
counterparty key Psid runs under. In both cases adversary can know skCP.
Let CPKL be the list of generated key pairs that were compromised so far,
Game 7 diverges from Game 6 if bad event occurs where H is queried on inputs
as above for σ = SKEMEsid

P (pkP, pkCP, Z, f) and (skCP, pkCP) ∈ KL \ CPKL,
i.e. honestly generated but compromised key pairs, while in Game 6, as in
Game 2, this programming was done whenever (skCP, pkCP) ∈ KL+(Psid). As in
the case of 3DH proof we only argue for client side since the other case is
symmetric. We define event Bad, where in client side’s H query value
σ = (KEM.Enc2(B , r),KEM.Dec(a, d), Y x) for some (a,A) ∈ KLC and
(b,B) ∈ KL \ CPKL which is fresh.
We show a reduction R that breaks OWPCA security if Bad occurs. On input
a OWPCA challenge (B̄, c∗), R has access to PCOsk (., .) whose inner sk
corresponds to B̄, and R doesn’t know randomness r used to generate c∗. R
sets each Xsid

C as gx for random x and each Y sid
S as gy for random y. R also

picks all key pairs except that in the i-th session, for a chosen index
j ∈ [1, . . . , qK], where R set the j-th public key pkCP as B̄, and sets c as c∗. Let
Badi,j denote Bad occurring for this j-th public key in the i-th session, i.e.
pkCP = B̄.
As long as the corresponding skCP is not compromised, R can emulate Game 6
because it can respond to compromise of all other keys, and serve H queries as
follows: To test server side H query input (sid,P,CP, A,B,X, c, Y, d, σ), i.e. if
σ = (K,L, V), R tests as in Game 6 except for b that corrsponds to the public
key B̄, in which case R tests if K = KEM.Enc2(pk , r) = KEM.Dec(sk , c) via
checking if PCOsk (K, c) returns 1. To test client side, i.e. if σ = (K,L, V) for
any pk including pk = B̄, R also tests as in Game 6, except for the case that
sk is the private key corresponding to the public key B̄, in which case R
replaces testing K = KEM.Enc2(pk , r) with checking if PCOsk (K, c) returns 1.

Badi,j can happen only before (skCP, pkCP) used in that session is
compromised, so it occurs in reduction with same probability as in Game 6. R

59

can detect event Badi,j because it occurs if H query involves the j-th credential
and on client side, given c and B̄, it can output correct K that satisfies
K = KEM.Enc2(B̄, r) = KEM.Dec(b, c), without knowing the value of r and b,
in which case it outputs correct K corresponding to c∗ and breaks OWPCA
security. If R picks index i and j at random it follows that
Pr[Bad] ≤ qK · qses ·Advow−pcaKEM,A .
Since a symmetric argument holds also for server side, we conclude:

|Pr[G7]− Pr[G6]| ≤ (2qK) · qses ·Advow−pcaKEM,A

Observe that Game 7 is identical to the ideal-world game shown in Figure 22:
By Game 6 all functions Rsid

P are random, by Game 5 the game responds to (Z, f)
messages to Psid as the game in Figure 22, and after the modification in oracle H
done in Game 7 this oracle also acts as in Figure 22. This completes the argument
that the real-world and the ideal-world interactions are indistinguishable to the
environment, and hence completes the proof of Theorem 3.

60

Initialization: Initialize empty lists: PK , CPK , KL and KLP for all P

On message Init to P:

set sk ←R Zp , pk ← gsk , send (Init, pk) to P, add pk to PK and (sk , pk) to KL
and KLP

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP add pk to CPK and output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (sk , pkP) ∈ KLP then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , set (e, r)← KEM.Enc1(κ)
write 〈sid,P,CP, pkP, pkCP, role, w, e, r,⊥〉 as fresh, output (W = gw, e)

On message (Z, f) to session Psid (only first such message is processed):

if ∃ record rec = 〈sid,P,CP, pkP, pkCP, role, w, e, r,⊥〉:
if ∃ record rec′ = 〈sid,CP,P, pk ′CP, pk ′P, ·, z, f ′, ·, k ′〉 s.t. gz = Z and f = f ′

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk ′CP) and k ′ 6= ⊥:
then k ← k ′

else k ←R {0, 1}κ
else set k ← Rsid

P (pkP, pkCP, (Z, f)) and re-label rec as interfered
update rec to 〈sid,P,CP, pkP, pkCP, role, w, e, r, k〉 and output (NewKey, sid, k)

On H query (st,A,B , X, c, Y, d, σ) for st = (sid,C, S):

if ∃ 〈(st,A,B , X, c, Y, d, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

1. if ∃ record 〈sid,C, S, ·, ·, 1, x, c, r, ·〉 s.t.
(X,σ) = (gx, (KEM.Enc2(B , r),KEM.Dec(a, d), Y x)) for some (a,A) ∈ KLC

and B s.t. B ∈ CPK or B /∈ PK : reset k ← Rsid
C (A,B , (Y, d))

2. if ∃ record 〈sid, S,C, ·, ·, 2, y, d, r, ·〉 s.t.
(Y, σ) = (gy, (KEM.Dec(b, c),KEM.Enc2(A, r), Xy)) for some (b,B) ∈ KLS

and A s.t. A ∈ CPK or A /∈ PK : reset k ← Rsid
S (B ,A, (X, c))

add 〈(st,A,B , X, c, Y, d, σ), k〉 to TH and output k

Fig. 23. SKEME: Environment’s view of ideal-world interaction (Game 7)

61

	KHAPE: Asymmetric PAKE from Key-Hiding Key Exchange

