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Abstract. Game-theoretic analyses of cryptocurrencies and—more
generally—blockchain-based decentralized ledgers offer insight on their
economic robustness and behavior when even their underpinning cryp-
tographic assumptions fail. In this work we utilize the recently proposed
blockchain adaptation of the rational protocol design (RPD) framework
[EUROCRYPT ’18] to analyze 51% double-spending attacks against
Nakamoto-style proof-of-work based cryptocurrencies. We first observe
a property of the originally proposed utility class that yields an unnat-
ural conclusion against such attacks, and show how to devise a utility
that avoids this pitfall and makes predictions that match the observ-
able behavior—i.e., that renders attacking a dominant strategy in set-
tings where an attack was indeed observed in reality. We then propose
a generic remedy to the underlying protocol parameters that provably
deter adversaries controlling a majority of the system’s resources from
attacks on blockchain consistency, including the 51% double-spending
attack. This can be used as guidance to patch systems that have suffered
such attacks, e.g., Ethereum Classic and Bitcoin Cash, and serves as a
demonstration of the power of game-theoretic analyses.

1 Introduction

The classical cryptographic analysis of blockchain ledgers establishes worst-
case guarantees on their security either by proving central security proper-
ties [GKL15, PSs17], such as consistency/common-prefix—the stable parts of
the chains held by honest parties are prefixes of one-another—liveness—new
blocks with recent transactions keep being added–or by proving that the proto-
col realizes an ideal ledger functionality [BMTZ17a]. Typically such analyses rely
on an assumed limitation on the adversary’s influence/presence in the system. In
particular, the majority of an underlying resource—e.g., hashing power for proof-
of-work (PoW)-based protocols such as Bitcoin [Nak08] and Ethereum [But13]
(before version 2.0), or stake in Proof-of-Stake (PoS)-based protocols such as
Algorand, Ouroboros, and Snow White [KRDO17, BGK+18, CM19, DPS19]—is
owned/contributed by parties who honestly run the protocol.

Although such an analysis is instrumental for understanding the properties
and limitations of the analyzed ledgers and gaining confidence in their security,
it does not take into account a fundamental property of such systems, namely
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that the ledger’s state is often associated with some monetary value and there-
fore the protocol’s security might rely on how profitable an attack might be.
Thus, in addition to the classical cryptographic analysis of such systems, it is
useful to analyze their so-called economic robustness, namely their level of pro-
tection or susceptibility to attacks by an incentive-driven (also called rational)
attacker. Such an analysis can fortify the security of these systems by prov-
ing a fallback rational assumption, e.g., assuming an incentives model of the
attacker, security is maintained even when certain cryptographic assumptions
fail, or indicate that the proven security is fragile by pointing out natural incen-
tives that lead to violating the security assumptions. Additionally, it can offer a
higher resolution picture of the systems guarantees—e.g., its tendency to decen-
tralize [BKKS20]—and/or more realistic estimates of the parameters associated
with its security properties—e.g., relation between the density of honest blocks
(that is, the chain-quality parameter [GKL15]) and the properties of the commu-
nication network [ES14, NKMS16]. Perhaps, even more interesting, it can offer
insight on the system’s behavior when the main (cryptographic) assumption
fails, e.g., when the attacker controls a 51% fraction of the underlying resource
of the blockchain protocol.

Motivated by the recent (repeated) 51% double-spending attacks that have
drained millions of dollars from popular blockchain-based cryptocurrencies, we
devise a game-theoretic analysis of such attacks for Nakamoto-style systems, e.g.,
Bitcoin, Bitcoin Cash/Gold, Ethereum (Classic), etc. We use the adaptation of
the rational protocol design (RPD) framework by Garay et al. [GKM+13] to
blockchains, which was recently proposed by Badertscher et al. [BGM+18], to
analyze the utility of an attacker against these systems as a function of their
basic parameters.

A central question to the relevance for practice of any game-theoretic analysis
is to what extent the model and assumed utilities capture the incentives of real
world attacks. Indeed, if the utilities are disconnected from reality, they can lead
to counter-intuitive statements. We demonstrate an instance of such an artifact
in [BGM+18] and propose a different class of utilities which is both natural and
avoids this artifact. We validate our utility against a range of security parameters
matching those of Ethereum Classic, a PoW-based system that fell victim to 51%
double-spending attacks. We observe that when the payoff for double-spending
is high, attacking is indeed a dominating strategy. That is, predictions of our
utility choice match reality. We then use our framework to devise a generic tuning
of one of the core parameters of such blockchains—namely, the number cutOff
of most-recent blocks needed to be dropped to achieve the so-called common-
prefix property with parameter cutOff (cf. [BMTZ17a, BGM+18, GKL15])—to
deter any attacks on consistency by a rational attacker with our utility. Stated
differently, we show how an incentive model can serve, possibly in addition to
cryptographic assumptions, to find a robust protocol parameterization. This
thereby demonstrates how our model and analysis can be used to improve the
economic robustness of such blockchains, and offers a guide to how to “patch”
such protocols to avoid future occurrences.
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1.1 Related Literature

A number of works have focused on a rational analysis of decentralized ledgers
and cryptocurrencies (e.g., [Ros11, CKWN16, ES14, Eya15, SBBR16, SSZ16,
LTKS15, TJS16, NKMS16, PS17, GKW+16] to mention some). Typically, these
works abstract away the computational aspects of cryptographic tools (signa-
tures, hash-functions, etc.) and provide a game which captures certain aspects
of the execution that are relevant for the rational analysis. In contrast, RPD
uses a cryptographic simulation-based framework to incorporate these computa-
tional considerations into the analyzed game, ensuring that predictions about at-
tacker behavior hold for the actual protocol and not only for an idealized version
(unless the idealization is obtained via a cryptographic composition argument
such as UC). Incorporating such computational considerations within a rational
treatment is highly non-trivial (see [GKM+13, CCWrao20] for a discussion). We
discuss the RPD framework in more detail in the following section.

The term 51% (double-spending) attack is defined in [Inv] as an attack where
the adversary gains any majority (not necessarily just 51%) of mining power and
reverses transactions in order to double-spend its coins, often by creating a deep
fork in the chain. The site CoinDesk keeps track of news of 51% attacks [Coia],
of which there are quite many: most recently, Verge suffered an attack with
200 days worth of transactions erased in Feb, 2021. Also recently, Ethereum
Classic suffered three 51% attacks in the same month of August, 2020, prompting
a solution called MESS to mitigate such attacks which still may not provide
robust security [Coib]. Other recent victims of such attacks include well-known
coins such as Bitcoin Gold (Jan 2020), and Bitcoin Cash (May, 2019). A major
avenue of 51% double-spending attacks is the use of rented hash power [For]. The
site https://www.crypto51.app/ gives rough estimates on the vulnerability of
different coins, based on whether 51% of hashing power can be rented via a
service called Nicehash. In some cases, e.g. Bitcoin Gold, it is estimated to only
cost a few hundred dollars to have 51% of hashing power for 1 hour.

Previous works have considered the ability of blockchain protocols to recover
from 51% attacks. In [AKWW19], conditioned on honest majority being satis-
fied on expectation, Bitcoin was proven to be resilient against a (temporary)
dishonest majority. In [BGK+20], no such condition is assumed and the authors
give concrete recovery bounds as a function of the actual power of the adversary
(captured as a budget to go over majority hashing power). We use the latter work
for our analysis of the blockchain’s security against incentive-driven attackers.

The profitability of 51% double-spending attacks have also been analyzed in
previous works. The work of [Bud18] explores these attacks through an economics
perspective, and leaving the cost of the attack as a parameter that is computed
via simulations. The work of [JL20] computes probability of attack by modeling
attacks as random walk of two independent Poisson counting processes (PCPs).
In comparison, our rational analyses are done in the Rational Protocol Design
(RPD) framework, where a fork is formally defined as a command in a UC
ledger functionality. Another technique proposed is the Markov Decision Process
(MDP) model, which is used by both [GKW+16] and [HSY+21]. In this model,
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the adversary takes a series of actions relevant to double-spending: adopting or
overriding the honest party’s chain, waiting, or stopping. Solving the MDP allows
these works to reason about the optimal double-spending adversary. While we do
not analyze an optimal double-spending adversary, our model is more general.
We do not restrict the actions of the adversary, which allows us to analyze
conditions under which the protocol is secure against attacks on consistency by
any incentive-driven adversary. Moreover, since standard MDP solvers cannot
solve infinite state MDPs, the MDP is restricted to only consider situations
where the chain length is less than some length c [GKW+16].

1.2 Our Results

We start by devising a utility in RPD which naturally captures the incentives of
an attacker to provoke a double-spending attack. To this direction, we observe
that the utility considered in [BGM+18] does not capture such an incentive.
Intuitively, the reason is that the utility in [BGM+18] essentially only considers
incentives related to the consensus layer of the protocol. This means that an
attacker is rewarded when successfully mining a block, but is not rewarded de-
pending on the block contents—i.e. what kinds of transactions are in the block.
Their extension to a utility function to include transaction fees does not apply to
double-spending attacks. In this case, the (only) reason to attack the blockchain
stems from the existence of a super-polynomial transaction fee, and assuming
a moderate range of fees, no incentive to attack is present. We discuss why
super-polynomial quantities are generally problematic in Section 4. It follows
from [BGM+18] that the attacker with these utility functions (and assuming
moderate transaction fees) has no incentive to fork over mining honestly. Yet,
looking at real-life double-spending attacks, this is clearly not the case. To cap-
ture double-spending, we introduce a special payoff that the attacker receives
when successfully creating a deep-enough fork (i.e., orphans a sufficiently long
valid chain). Intuitively, this payoff corresponds to the utility that the attacker
receives when it double-spends by replacing the orphaned chain with his own.

Perhaps counter-intuitively, when analyzing Bitcoin 4 with this extended util-
ity function, the attacker is still indifferent between forking and honest mining.
We demonstrate this artifact and pinpoint the reason for it: Intuitively, the utility
function from [BGM+18] (with or without the extra payoff for forking) rewards
the attacker by the same amount in all rounds in which it creates (mines) a
block. This means that given any adversary that provokes a fork, there is always
an honest-mining adversary who achieves more utility without forking by simply
accumulating block rewards over a longer period of time. We distill the source
of this issue in a property which we call unbounded incentives, and demonstrate
that any utility which satisfies this property will make any deviation from passive
mining a weakly dominated strategy.
4 Our analysis uses Bitcoin as a representative example of Nakamoto-style

blockchain ledgers, but similarly any blockchain protocol which realizes the ledger
from [BMTZ17a, BGK+18] could be analyzed.
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We then devise a revision of this utility class which allows us to avoid the
above counter-intuitive artifact. This utility, which satisfies a property we term
limited horizons—a strong negation of unbounded incentives—has the property
that the (actual) rewards of an adversary mining a block diminish with time. This
is a natural way to avoid reasoning about extremely “long-lived” adversaries, i.e.,
that take decisions based on payoffs too far in the future, and captures features
which are well-known in utility theory [Ber54]—intuitively, earning $10 today is
more attractive than $1 million in 100 years, an example of the “St. Petersburg
Paradox”. We next turn in analyzing the profitability of 51% double-spending
attacks, by showing how our revised utility can actually capture them. We pro-
vide a range of payoffs for double-spending which would incentivize an attack.
Then we visualize our result using concrete parameters estimated from those of
Ethereum Classic, for which performing the attack is indeed a dominant strat-
egy. This demonstrates that the above result can explain, in a game-theoretic
framework, how recent victims of 51% attacks are vulnerable.

Finally, we discuss whether and how the blockchain protocol can be tuned
so that such 51% double-spending attacks are deterred. In fact, we provide a
much stronger tuning, which deters attacks on consistency by any incentive-
driven adversary. The tuning depends on the costs (e.g. electricity or cost to rent
hashing power), positive payoffs (e.g. block rewards and payoff for causing a fork,
from double-spending or otherwise), and protocol parameters (e.g. the difficulty
of creating a block). Intuitively, for any combination of these parameters, we
show how the window size of the underlying blockchain protocol can be adjusted
so that it is not rational for the attacker to perform this attack. At the core of
this results is a lemma that relates the incentive model to an attack pattern,
which coupled with the self-healing properties of Nakamoto-style PoW, leads to
the desired estimate of a safe parameter. We view this as a demonstration that
game theory can aid us in fortifying blockchains even when assumptions made
by the cryptographic analyses fail.

2 Preliminaries

2.1 The Bitcoin Backbone Protocol

The abstraction of the Bitcoin protocol that is used in the cryptographic lit-
erature is known as the Bitcoin backbone protocol [GKL15, PSs17, BMTZ17a]
which we denote by ΠB. In this abstraction, Bitcoin is modeled as a round-based
protocol, where a number of participants (the miners) are connected via a multi-
cast network with bounded delay ∆ (unknown to the protocol). In every round,
each party adopts the longest chain C = B0|| . . . ||Bk of block Bi (connected by
hash-pointers) it has received so far, where B0 is the unique genesis block of the
system. Each party tries to extend this longest chain an by additional block, via
running the PoW-lottery: an extension of chain C by a new block Bk+1 can only
be valid, if its hash H(Bk+1) belongs to a dedicated small portion of the output
domain of the function (typically, the hash must have a lot of leading zeros). In
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such analyses, the hash function is modeled using a random-oracle functionality
FRO that returns uniform values upon each query. Therefore, when extending
the chain, each party makes a certain number of mining queries per round (that
is, RO-queries with candidate blocks Bk+1 containing a random nonce to obtain
the hash) and we call a mining query successful, if the output is below the thresh-
old. In the setting with fixed PoW difficulty, we can assign a success probability
p to each such mining query. Finally, if a miner is successful, it will send the new
chain over the multicast network to all other miners.

Cryptographic security. The main security guarantee5 proven for the Bitcoin
protocol is eventual consistency: every block that is deep enough can be con-
sidered immutable and only the most recent, cutOff number of blocks might
be transient. This cutOff-consistency (where the cutoff parameter is often left
implicit if clear from context) guarantee states that at any point in time, the
prefix of C consisting of |C| − cutOff blocks is common to all honest miners:

Definition 1 (Consistency). Let C1 4 C2 denote the prefix-of relation, then
the consistency guarantee (with parameter cutOff) states that at any two points
in time a ≤ b in an execution, where party P at round a holds chain C1 and party
P ′ at round b holds chain C2, we have that C1|cutOff 4 C2, where the notation C|k
denotes the prefix of C obtained by removing the most recent k blocks (and if k
exceeds the length of C, it is defined to correspond to the genesis block).

In the cryptographic setting (without incentives), such a guarantee only holds
if we restrict the adversary to have a minority of mining power. That is, given
n

(r)
a and n

(r)
h denote the numbers of adversarial and honest mining queries in

round r, respectively, then the protocol ΠB is secure if in any round r the
inequality n

(r)
a < θpow · n(r)

h holds, with θpow := (1 − p)(2∆+1)Tub being the
well-established security threshold for Bitcoin (often stated in its linear approx-
imation 1− 2(∆+ 1)pTub) [GKL15, PSs17, BMTZ17a], where the quantity Tub
denotes the upper bound on the number of mining queries per round. Through-
out this work, we work in the so-called flat model of Bitcoin for notational sim-
plicity [GKL15, BGM+18], where each miner gets one mining query per round
(and the adversary’s power is the number of corrupted miners). We note that
sometimes it is convenient to assume a lower bound Tlb on the number of mining
queries (a.k.a. participation) per round, in particular when arguing about the
guaranteed growth of the blockchain over time in combination with the security
threshold. Finally, we point out that even if there are no adversarial players, an
upper bound Tub on the number of queries is necessary for security in the fixed
difficulty setting, when aiming for a common prefix guarantee for some target
parameter cutOff. As the failure probability of Bitcoin becomes negligible as a
function of cutOff (more precisely, the relevant factor is of the order 2−Ω(cutOff)),
we often treat it as a (of course polynomial-bounded) function cutOff(κ) of a

5 While other security guarantees exist, such as chain quality, our focus in this paper
is consistency.
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security parameter κ, and (in symbolic notation) cutOff = ω(log(κ)) is at least
required to obtain a negligible probability of a failure.

Bitcoin backbone and UC. The RPD framework is based on the UC framework.
As such, the above Bitcoin backbone protocol ΠB is seen as a UC protocol as
in [BMTZ17a], where it is proven to UC-realize a strong transaction ledger func-
tionality Gledger under the honest majority assumption. We give here just the
explanation of how the ideal consistency guarantee looks like: the functionality
Gledger ensures that at any point in time, there is only one unique ledger state
(sequences of transactions packed in blocks), where the state is append-only (that
is, whatever appears as a block in the state is immutable). Furthermore, different
honest parties see different prefixes of this state, with the guarantee that these
views are increasing and within a window of windowSize (a ledger parameter)
blocks from the tip of the state. Note that the cut-off parameter of Bitcoin cor-
responds exactly to the size of that window in the realized ledger Gledger. More
precisely, whenever Bitcoin satisfies Definition 1, then the above mentioned cor-
respondence holds and the ledger state is a single chain of blocks [BMTZ17a].

In UC, the protocol ΠB assumes a couple of hybrid functionalities. First,
the round-based structure is achieved using UC-synchronous tools (assuming a
clock functionality), a network, and a random oracle, where restrictions on the
mining queries can be captured by functionality wrappers restricting the num-
ber of RO evaluations, e.g. [BMTZ17a, GKO+20]. One extremely helpful aspect
of UC in the context of RPD is the compatibility with the composition theo-
rem [GKM+13]. In this work this is leveraged as follows. The Bitcoin backbone
ΠB admits a modular structure that isolates the lottery aspect as a submodule
of the system. Technically, the proofs in [BMTZ17a, PSs17] show that whenever
the PoW-lottery UC-realizes the state exchange functionality FStX (in [PSs17]
the related concept is called Ftree), the Nakamoto-style longest chain rule proto-
col (under the above honest-majority security threshold) realizes the ledger. This
intermediate step is important due to two things: first, it models an idealized
mining process where each mining query is an independent Bernoulli trial with
success probability p (and hence abstracts away those real-life negligible prob-
ability events that would destroy independence), and second it abstracts away
the low-level details of the chain structure (where e.g., “hash collisions” could
cause disruptions). It is proven in [BMTZ17a] that the proof-of-work layer of
Bitcoin (in the random oracle model) UC-realizes FStX. Moreover, since it only
abstracts the lottery part of the system, this realization does not depend on any
security threshold. We can therefore leverage composition when analyzing the
utilities of Bitcoin and work with the idealized lottery directly.

2.2 Rational Protocol Design

The Rational Protocol Design framework (RPD) allows us to analyze the security
of the blockchain without assuming honest majority. Although consistency and
other security properties are lost if an attacker can arbitrarily break honest
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majority, assuming attackers are rational offers an alternate method of limiting
his actions. That is, although the attacker is free to act in any way (e.g. corrupt
more than majority hashing power), he will only do so if it is profitable. Building
on [BGM+18], our analysis is based on the Rational Protocol Design (RPD)
framework introduced in [GKM+13]. RPD analyzes the security of protocols,
such as Bitcoin, with respect to an incentive-driven adversary. In this model,
a protocol designer D plays an attack game G with an attacker A. First, the
designer D comes up with a protocol Π. Then, the attacker A—who is informed
about Π—comes up with an adversarial strategy A to attack Π. The utility of
the attacker (resp. designer) is then defined on the strategy profile (Π,A), and
is denoted uA(Π,A) (resp. uD(Π,A)). In this work, we focus on the attacker’s
utility uA(Π,A).

The game G is defined with respect to an attack modelM = (F, 〈F〉, vA, vD).
F is the functionality which the designer would like to implement such as a
ledger that provides certain ideal guarantees as described above. However, when
certain assumptions, e.g. honest majority for Bitcoin, are not met (which as
stated above we explicitly do not want to demand a priori), we cannot hope
to get F. Instead, the designer D’s protocol Π (in our case, the Bitcoin proto-
col ΠB) only implements a weaker functionality. This weaker functionality that
Bitcoin implements when lifting the honest majority assumption is proven to
be GB

weak-ledger in [BGM+18] and provided in App. C.2 for completeness. In-
tuitively, the weak ledger is derived from the stronger version [BMTZ17a] by
introducing a few weaknesses. For example, it allows the adversary to fork the
ledger state and hence allows it to break consistency (this event corresponds
to a deep reorganization of the blockchain in the real world). This is allowed
by the fork command in GB

weak-ledger. Given the views of the simulator and
environment in an ideal world execution, the value functions vA and vD assign
payoffs to the attacker and designer respectively, when certain events happen
in the views, such as when the simulator forks the blockchain via GB

weak-ledger.
Finally, utilities uA and uD are functions of payoffs (defined with vA and vD) of
simulators that can simulate A in Π in the environment Z. Looking ahead, the
goal of RPD is to find conditions under which a rational attacker would not in-
voke the weaknesses of GB

weak-ledger (e.g., it is too costly to perform an attack).
For example, if under a class of utilities, no rational attacker invokes the fork
command, then we essentially obtain a stronger ledger (i.e., the same except
that this command is absent and hence the ledger state remains a unique chain)
against attackers incentivized by this class of utilities.

2.3 Utility of the Attacker from [BGM+18]

We detail the attacker’s utility in [BGM+18], which in the RPD framework
captures the expected payoff of a particular adversarial strategy A in a given
protocol Π (in our case Π = ΠB). This payoff is calculated based on different
events that occur in the real execution and the corresponding ideal experiment
where a black-box simulator is attempting to simulate this adversarial strategy.

Specifically, the work of [BGM+18] considers the following events:

8



1. Event W A
q,r, for each pair (q, r) ∈ N2: The simulator simulates q mining

queries by the adversary in round r of the simulated execution.
2. Event IA

b,r, for each pair (b, r) ∈ N2: The simulator inserts b blocks into the
state of the ledger in round r, such that all these blocks were previously
queries to the (simulated) random oracle by the adversary. Informally, this
event occurs when an honest party views these blocks as “confirmed” (part
of his own ledger state).
A different payoff is associated with each event. In order to make q mining

queries and invoke event W A
q,r, the attacker must pay q · mcost, where mcost is

the cost of making a mining query (e.g. electricity cost per hash query). When b
blocks made by the adversary are inserted into the ledger and event IA

b,r occurs,
the attacker receives payoff b · breward · CR. Here breward is the reward for
making a block in the currency of the blockchain (e.g. Bitcoins), and CR is an
exchange rate to the same currency used for mcost (e.g. USD).

Then, [BGM+18] defines the following attacker’s utility for a strategy profile
(Π,A). Let CA denote the set of simulators that can emulate an adversary A in
the ideal world with access to the weaker ledger functionality GB

weak-ledger, and Z
denote an environment. The real payoff of an adversary A attacking the protocol
is defined as the minimum payoff over all simulators in CA . If CA = ∅ (there are
no simulators that can simulate A) then uA(Π,A) =∞ by definition. Then, the
utility uA(Π,A) is the real payoff, maximized over all possible environments Z
(we assume for simplicity that environments are closed and run in polynomial
time in the security parameter [Can01]).

uA(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

(
b · breward · CR · Pr[IA

b,r]
)

(1)

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]
}}

.

The work of [GKM+13] introduces the following notion of security against
incentive-driven adversaries: No matter the utility achieved by an adversary A
running the protocol Π in the real world, there exists an adversary A′ running
the dummy protocol with access to the ideal functionality F that achieves the
same or better utility. In other words, even the best adversary attacking Π,
cannot achieve better utility than one who does not invoke any of the “bad
events” in 〈F〉. Note that here F can be any strengthening of its weaker version.
For example, the weak ledger without the option to break consistency would be
a strengthening of GB

weak-ledger in which case attack-payoff security implies that
there is no incentive (even for a majority-controlling adversary) to create a fork
(that is, a deep reorganization) even though he technically could be able to.

Strictly speaking, the utilities are also functions in the security parameter κ
(the environment obtains the parameter as input in UC) but we omit it for
notational simplicity. We note that as functions in the security parameter κ, the
asymptotic behavior of the involved functions is the relevant aspect.
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Definition 2 (Attack payoff security [GKM+13]). Let M =
(F, 〈F〉, vA, vD) be an attack model inducing utility uA, and let ΦF be the
dummy F-hybrid protocol. A protocol Π is attack-payoff secure for M if for all
A, there is an A′ such that uA(Π,A) ≤ uA(ΦF ,A′) + negl(κ)

This notion of attack-payoff security does not necessarily mean an incentive-
driven adversary will honestly follow the protocol—there is no restriction on the
honestly of the actions of A′ in the above definition. To capture this stronger
requirement in the context of Bitcoin, we also consider a stronger notion in-
troduced by [BGM+18]: the attacker is incentivized to always choose a front-
running, passive-mining adversary over any (potentially malicious) strategy. In-
formally, this passive adversary behaves exactly like an honest party (mining
with all his hashing power and releasing a block he has found immediately),
except the adversary’s messages are always delivered before the honest parties’
(front-running). Front-running gives the adversary an advantage since if an ad-
versary’s block is concurrently competing with an honest party’s block to be
appended to the longest chain, the adversary always wins.

Definition 3 (Front-running, passive-mining adversary [BGM+18]).
The front-running adversarial strategy A ∈ Afr is specified as follows: Upon
activation in round r > 0, A activates in a round-robin fashion all its (pas-
sively) corrupted parties, say p1, . . . , pt. When corrupt party pi generates some
new message to be sent through the network, A immediately delivers it to all
its recipients. In addition, upon any activation, any message submitted to the
network FN-MC by an honest party is maximally delayed.

ΠB was proved to be strongly attack-payoff in [BGM+18] for the utility in
Equation 1. Informally, a protocol is strongly attack-payoff secure if there is
always a passive adversarial strategy that is at least as good as any malicious
strategy. In this work, we are also interested in the case where security does
not hold: we say an adversary A breaks strong attack-payoff security if uA(Π,A)
exceeds uA(Π,A′) for any A′ ∈ Afr, by a non-negligible amount.

Definition 4 (Strongly attack-payoff secure [BGM+18]). A protocol Π
is strongly attack-payoff secure for attack model M if there is a A′ ∈ Afr such
that for all A, uA(Π,A) ≤ uA(Π,A′) + negl(κ)

In our work, we will follow the approach from [BGM+18] that simplifies the
proofs when analyzing the utilities from mining in the protocol ΠB by utilizing
the composition theorem of RPD. As explained above, instead of analyzing the
probabilities of payoff-inducing events for ΠB which uses the random oracle
as the lottery, one can analyze probabilities for the modular ledger protocol
w.r.t. an idealized lottery that makes use of the state exchange functionality
FStX (Figure C.1, App. C.1). In more detail: when a party (or the adversary
in the name of a corrupted party) wishes to extend a chain, they would invoke
FStX with a submit-new command, which performs a coin toss and informs him
whether he is successful. If the party is successful, the functionality includes this
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new chain into a tree data structure and allows the party to multicast this new
chain with a send command; this multicasting is done automatically for honest
parties. Due to the correspondence of RO queries in the Bitcoin protocol and
the submit-new-commands in the modularized Bitcoin protocol [BMTZ17a],
the events defined for uB

A (Π,A) (for the full Bitcoin protocol) above remain
valid and meaningful also in this hybrid world, because the black-box simulator
for the overall Bitcoin protocol simulates one RO-query (as a reaction to an input
by a corrupted party) whenever the (black-box) simulator for the modular ledger
protocol simulates one submit-new-command,as a reaction to the corresponding
input by the same party [BGM+18].

3 Artifacts of Unbounded Incentives

In this section, we discuss an artifact of the utility function Equation 1, which
we will eliminate in the next section. Concretely, we prove that this RPD utility
is inappropriate to capture the most realistic situation of attackers that attack
the system, e.g., attempt a fork to profit from double-spending. To do so, we
prove Lemma 1 and 2, which roughly show this surprising fact: if running the
protocol (semi-)honestly is profitable in expectation, then there is no incentive
for an adversary to fork. The intuitive reason for this is clear: Any fixed payoff for
forking incurred by the adversary can be offset by an adversary who runs slightly
longer (and still polynomially long) but does not fork. This, however, is an arti-
fact of the asymptotic definition and does not reflect real-world incentive-driven
attack scenarios, where mining is anticipated to be profitable—otherwise no one
would mine—but attackers still perform forking attacks (in particular, in order
to double-spend coins). We distill a property of the utility from [BGM+18] that
is the reason this artifact, which we call unbounded incentives, and prove that
any utility satisfying this property will suffer from the same artifact. Looking
ahead to the following section, we will propose a natural adaptation of this util-
ity function that does not suffer from the above artifact (and where in particular
the duration of an attack actually starts to matter).

3.1 Demonstrating the Artifact

Let us first consider the straightforward adaptation of the utility from Equation 1
to model the payoff (e.g. double-spending) an adversary gains by forking the
ledger. Define the event K as: There is a round r where the simulator uses the
fork command of the weak ledger functionality GB

weak-ledger (App. C.2) that
allows the simulator to invoke a fork. Let fpayoff be the payoff for invoking the
fork. Then, the utility uf becomes:
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uf(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r] + fpayoff · Pr[K]

}}
. (2)

Below, we show that for the the utility function uf above, the Bitcoin pro-
tocol ΠB is strongly attack-payoff secure as long as mining is profitable. Our
proof takes advantage of the artifact of unbounded incentives: informally, first
we show that the payoff of any polynomial-run-time adversary A is bounded by
a polynomial p(κ) of the security parameter; then, we show that there is a pas-
sive, front-running adversary whose run-time is also polynomial (albeit bigger
than that of A), and who achieves at least p(κ) utility.6

Lemma 1 (Attack payoff security with forking). Let Tub > 0 be the upper
bound on total number of mining queries per round, p ∈ (0, 1) be the proba-
bility of success of each mining query, and cutOff = ω(log(κ)) be the consis-
tency parameter. Let M be a model whose induced utility uf has parameters
fpayoff, breward, CR, mcost ≥ 0. The Bitcoin protocol ΠB is strongly attack-
payoff secure in M if p · breward · CR− mcost > 0.

3.2 A First Attempt to Eliminate the Artifact

Although we proved that Bitcoin is strongly attack payoff secure even with a
payoff for forking, this is actually not a good sign, as this result does not reflect
reality. In reality, attackers do fork blockchains to gain profit via e.g. double-
spending transactions. Thus, the fact that we can prove Lemma 1 means that
there must be a problem with our assumptions.

Why were we able to prove Lemma 1? It turns out the utility function we
used has the weakness that it considers an attacker who does not care about
the ephemeral payoff for forking—he can simply obtain more utility via block
rewards if he just put in a bit more hashing power for mining. Thus, somewhat
counter-intuitively, to model incentives for forking attacks, we must consider
utilities that limit the amount of mining an attacker can do.

A first natural instinct may be to incorporate in the utility the (often sub-
stantial) initial investment (e.g. cost of buying mining rigs) an attacker must
make before being able to participate in the blockchain protocol. This turns out
to be not only a natural extension, but also a very simple one. Concretely, we
capture this investment as cost of party corruption: in order to use party for
6 We note that for the simple utility function presented in [BGM+18] other proof

techniques could conclude attack-payoff security without the runtime-extension ar-
gument. The main point here is to demonstrate the importance of considering the
attack duration in the utility function.
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mining, the adversary needs to corrupt him, which corresponds to acquiring its
mining equipment. Formally, for each g ∈ N define CA

g as follows: The maximum
number of corrupted parties at any round is g. Let ccost(g) be the cost of event
CA
g , i.e. corrupting g parties. Then we define the utility function:

uf,c(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]
}}

. (3)

Interestingly, as we see below, this natural extension is still insufficient to
align the model with the reality that forking attacks occur. Indeed, even with
this additional cost, we can still prove a result similar Lemma 1. Concretely, the
following lemma shows that for uf,c above, we can prove the statement as the
one in Lemma 1 about ΠB being attack-payoff secure by again exploiting the
artifact of unbounded incentives.

Lemma 2 (Attack payoff security with forking, with cost of corrup-
tion). Let Tub > 0 be the upper bound on total number of mining queries
per round, p ∈ (0, 1) be the probability of success of each mining query,
and cutOff = ω(log(κ)) be the consistency parameter. Let M be the model
whose induced utility uf,c has parameters fpayoff, breward, CR, mcost ≥ 0,
ccost(·) : N → R+. The Bitcoin protocol is strongly attack-payoff secure in
M if p · breward · CR− mcost > 0.

3.3 The Source of the Artifact: Unbounded Incentives

Distilling the issue in above lemmas, we observe that that as long as the adversary
keeps accumulating rewards as rounds are added to the protocol—i.e., mining
remains profitable—he does not care about the payoff for forking: there always
exists a polynomial-time, passively mining strategy that simply gains the same
amount of utility by mining a bit more. However, not only do real-life attackers in
fact profit from forks, even the assumption on the profitability of mining forever
is unrealistic: any attacker is at least limited in time by e.g. the anticipated age
of the universe, and cannot, in practice, keep accumulating utility in perpetuity.

Thus, to make accurate prediction about the attackability of a blockchain
protocol the utility function must exclude the eternal profitability of passive
mining. We generalize this intuition, by defining the notion of unbounded in-
centives: a utility function has unbounded incentives if there is an adversarial
strategy A ∈ Afr such that for any polynomial h(κ), A can gain better payoff
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than h(κ). (Conversely, we will say that a utility has bounded incentives if there
there is no such passive adversary.).

It is straightforward to verify that the utilities we have seen so far have
unbounded incentives, which explains the effect of the artifact exploited in the
above lemmas. In fact, in the following there is a simple argument for a generic
statement about the strong attack-payoff security of utility functions that have
unbounded incentives.

Lemma 3. Let M be a model inducing a utility function uA. Assume for any
adversary A, in any real execution of the protocol his payoff is polynomially-
bounded. 7If uA has unbounded incentives for a protocol Π, then Π is strongly
attack-payoff secure for M.

Proof. Suppose uA has unbounded incentives. Then let A ∈ Afr be the adversary
in the definition of unbounded incentives. Then A is a witness for strong attack-
payoff security: For every real execution of another adversary A′, the passive
adversary A can gain better payoff than A′. ut

4 An RPD Analysis of Forks

In this section, we will tune our utility function to avoid the issue of unbounded
incentives isolated in the previous section. A straw man approach would be
to make fpayoff a super-polynomial function of the security parameter. But
this would imply a very unnatural assumption, which, intuitively, corresponds
to ensuring that the polynomially-bounded adversaries are always incentivized
to fork. This would have the opposite effect and introduce a different artifact:
it would make attack-payoff security impossible, and making a 51% attack al-
ways a dominant strategy no matter the systems parameters, contradicting the
observable fact that many blockchains have not fallen to 51% attacks.

Instead, we make breward a function of time, which captures e.g., inflation,
or simply that the adversary only plans to stay in the system for a limited
amount of time. We refer to this adaptation of uf,c as ubuy:

ubuy(Π,A) := sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r) · CR · Pr[IA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]
}}

. (4)

7 This is true for the utility function uB
A in Equation 1 (as well as the utility functions

we will consider)—no adversary can get payoff that is superpolynomial in the run
time of the execution.
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We also define a version of this utility urent , formally defined in Ap-
pendix A.4, which models the attacker renting hashing queries by replacing
mcost with parameter rcost (rent cost) and setting ccost(·) = 0. Renting
especially has been observed in real attacks, such as the August 2020 attacks on
Ethereum Classic [For].

Note that while breward is a function of time, we let the cost of a mining
query, that is mcost/rcost, remain constant. We do so to model the attacker’s
anticipated monetary budget to launch and maintain an attack, such as the costs
for renting a certain amount of hashing power (which are generally paid up-
front), or cost of electricity (which realistically appears to be relatively stable).
Further, the parameter fpayoff should be seen as an abstract excess payoff
for the attacker arising from forking that is able to capture various use-cases.
In the prototypical (double-spend) example where the attacker sells some coins
for fiat currency and later tries to regain the coins with a successful attack, it
corresponds to this extra fiat inflow gained prior to attacking the blockchain.
We note that the utility functions could be tweaked to allow for all parameters
to be time-dependent without changing the results qualitatively as long as the
relations among the parameters required by the definitions and theorems (which
are time-dependent in our treatment already) still hold.

To capture realistic utilities, we restrict to instances of our utility function
which satisfy what we call limited horizons (Definition 5). Roughly, limited hori-
zons constrains utilities by requiring that passive mining eventually becomes
unprofitable. Recall that in light of the St. Petersburg Paradox discussed in
the introduction, rational parties become increasingly reluctant to invest some
monetary budget for potential rewards gained only later in a randomized process
(e.g. due to uncertainty about the future or other specific utility-relevant consid-
erations like relative inflation between several quantities). We cast this general
idea as a rather simple condition based on our utility function.

After defining limited horizons, in Section 4.1, we will first address a techni-
cal challenge imposed when payoff-parameters in the utility functions are non-
constant. Then, in Section 4.2 we show that limited horizons implies bounded
incentives (i.e., the opposite of unbounded incentives) through Lemma 5. More
precisely, limited horizon is a strong negation8 of unbounded incentives. Looking
ahead, we will prove that when utilities have limited horizons, there is always a
large enough payoff for forking such that (strong) attack-payoff security is bro-
ken. Informally, a utility function ubuy (resp. urent) has limited horizons if there
is a time limit after which passive mining becomes unprofitable.

Definition 5 (Limited Horizons). We say ubuy in Equation 4 (resp. urent,
formally defined in Equation 5), parameterized by breward(·) : N → R≥0,
mcost, fpayoff ≥ 0, and non-decreasing function ccost(·) : N → R≥0 (resp.
breward(·) : N → R≥0, rcost, fpayoff ≥ 0) satisfies limited horizons (resp.
limited horizons with renting) if breward(·) is a non-increasing function such
that ∃x ∈ N : p · CR · breward(x) < mcost.
8 Note that the strong negation of an assertion A is one which implies ¬A, but is not

necessarily implied by ¬A.
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Remark. Technically, urent is a special case of the case of ubuy (since the utilities
are the same if we set mcost = rcost and set ccost(·) = 0); however seman-
tically they are different: rcost represents the cost of renting a hashing query,
which usually is much higher than mcost which represents the cost (e.g. elec-
tricity) of an adversary mining with his own equipment. Nevertheless, to reduce
redundancies in the technical sections, we will analyze the utility ubuy in Equa-
tion 4 (with a general ccost(·), including when ccost(·) = 0), and state the
results for the renting case as corollaries.

4.1 Addressing Technical Issue of Non-Constant Payoff for Block
Rewards

In this section, we address a technical issue with considering a non-constant
breward—recall that in limited horizons, breward is a non-increasing function
of time/round number. By our definition (which follows that of [BGM+18]),
the event IA

b,r happens when b blocks are placed into the ledger of some honest
party. This is intuitive—the block reward should be given only when the block
is “confirmed” to be in the ledger. However, there is a delay between when
a block is broadcasted, and when it makes it into the common prefix of an
honest chain. This delay is a random variable which depends on the amount
of (honest and corrupt) hashing power in the protocol, the network delay, and
the adversary’s strategy. Fortunately, we can lower and upper bound such a
delay (which we denote by tlb, tub respectively), as we show in the following
lemma. This will in turn allow us to avoid the complication of analyzing when
blocks enter the ledger state and instead analyze when locks broadcasted by
the adversary to honest parties (whose events are easier to analyze). Note that
we choose to analyze time-of-block-broadcast, instead of time-of-block-creation,
since the adversary may choose to withhold successfully-mined blocks instead
of broadcasting them immediately, making time-of-broadcast more suitable for
incorporating such adversarial strategies.

We first define a useful quantity t∆δ (q). As we will see, this quantity, which
is derived from the chain growth property of Nakamoto-style blockchains, is the
maximum time for honest chains to grow by cutOff blocks, given that in each
round there are at least q honest mining queries.

Definition 6 (Maximum time to grow cutOff blocks). For network delay
∆, and p, δ ∈ (0, 1), we denote t∆δ (q) := cutOff

(1−δ)γ , where γ := h
1+h∆ and h :=

1− (1− p)q.

Let tlb := 0 and tub := t∆δ (Tub). Let BA
b,r denote the event: At round r, the

adversary broadcasts b blocks made by parties that are corrupted at the time
of the blocks’ creation, and which are part of the longest chain at round r. Let
uhbuy be ubuy except

∑
(b,r)∈N2 b ·breward(r) ·CR ·Pr[IA

b,r] (which considers time of
block confirmation) is replaced with

∑
(b,r)∈N2 b · breward(r + tlb) · CR · Pr[BA

b,r]
=
∑

(b,r)∈N2 b·breward(r)·CR·Pr[BA
b,r] (which considers time of block broadcast).
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Similarly, let ulbuy replace the same term in ubuy with
∑

(b,r)∈N2 b · breward(r +
tub) · CR · Pr[BA

b,r]. We define them formally in App. A.5.
The following lemma tells us that instead of analyzing the utility function

defined on when a block is confirmed in the ledger we can instead approximate
by only analyzing when a block is broadcasted. This will be helpful in our proof
of Lemma 5 on the utility of the optimal front-running, passive adversary.

Lemma 4 (Translating time-of-block-confirmation to time-of-block-
broadcast: uhbuy and ulbuy). For any utility function satisfying limited horizons
(in fact, we only require that breward(·) is a non-increasing function), satisfies
the following: For all adversaries A, and front-running, passive A′,

ubuy(ΠB,A) ≤ uhbuy(ΠB,A) + negl(κ) and

ubuy(ΠB,A′) + negl(κ) ≥ ulbuy(ΠB,A′).

Proof. The first inequality is obvious: By limited horizons, giving block rewards
using time-of-block-broadcast (i.e., uhbuy) gives the attacker a higher payoff.

The second inequality: Let the environment be one which maintains Tub
parties in each round after r. The bound follows then from the chain-growth
lower bound which states the minimum chain length increase during a time
period, depending on the honest parties’ hashing power and the network delay
(cf. [BMTZ17b, PSs17]). This concludes the proof. ut

4.2 Optimal Utility of Front-running, Passive Adversaries

We show in this section if a utility satisfies limited horizons, then it also satis-
fies bounded incentives. We do so by proving the following optimal utility of a
passive, front-running adversary. We define uh

honest and ul
honest which, as we will

see in Lemma 5 below, are the upper and lower bounds on the optimal utility
obtained by a front running, passive adversary in ΠB.

Definition 7 (Bounds uh
honest and ul

honest for optimal front-running,
passive adversary). We define the quantity

uh
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1
[breward(x+ tlb)− mcost]− ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x+ tlb) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1
(p · CR · breward(x+ tlb)− mcost) ,
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and the quantity

ul
honest(breward, CR, mcost, ccost)

:= g · p · CR ·
t∑

x=1
[breward(x+ tub)− mcost]− ccost(g)

with

t := arg max
x∈N

(p · CR · breward(x+ tub) ≥ mcost),

g := arg max
g∈[0,Tub]

(mg − ccost(g)) ,

for m :=
t∑

x=1
(p · CR · breward(x+ tub)− mcost) .

We simplify the above upper and lower bounds on the optimal front-running,
passive adversaries as uh

honest and ul
honest, when the parameters to the utility

function are clear from context. As discussed before, although we prove the
optimal passive adversary for ubuy, the renting case for utility urent is a direct
corollary by setting ccost(·) = 0 and mcost = rcost.

Intuitively, the following lemma is established by proving that (1) due to
limited horizons, there is a fixed time t after which an optimal passive adversary
will not mine, and (2) it is optimal for a passive adversary to corrupt parties
statically. Then, we can re-write the utility of a front-running, passive adversary
as a function of his running time t, and the number of parties he corrupts g.
Optimizing for t and g gives us the optimal utility of this passive adversary.

Lemma 5 (Optimal utility of a front-running passive adversary, for
incentives with limited horizons). Let Tub > 0 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Given
parameters such that ubuy satisfies limited horizons and protocol ΠB, for A the
optimal adversary in Afr, ubuy(ΠB,A) ≤ uh

honest + negl(κ) and ubuy(ΠB,A) +
negl(κ) ≥ ul

honest

This lemma directly implies that any utility with limited horizons also has
bounded incentives.

Proof. We show the proof for the upper bound. The lower bound can be proven in
the exact same way by constructing an optimal front-running, passive adversary
for ulbuy, except replacing breward′(x) with breward′′(x) := breward(x+ tub).

Let breward′(x) = breward(x + tlb). By Lemma 4, we can prove the upper
bound on utility in the lemma by constructing an optimal front-running, passive
adversary A for the utility function uhbuy.

We first show that, at any round, the optimal passive adversary A for uhbuy
is the one who either mines with all his corrupted parties, or does not mine at
all.
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Claim (1). There is a round t where it is optimal for a passive adversary to
do the following: For all rounds x ≤ t, the adversary does not de-register any
party. That is, he mines with all parties corrupted at round t. At round t + 1,
the adversary de-registers all his corrupted parties and stops execution.

Proof of Claim (1): Let gx be the number of corrupted parties at round x in
a given protocol execution. Suppose the adversary mines (queries the random
oracle with blocks) with g ≤ gx corrupted parties. Then the payoff for mining
at round x is (up to negligible difference)∑

b∈N
b · breward′(x) · CR · Pr[BA

b,x]−
∑
q∈N2

q · mcost · Pr[W A
q,x]

= g · p · breward′(x) · CR− g · mcost

= g · (p · breward′(x) · CR− mcost) .

Since we assume cutOff = ω(log(κ)) and the adversary is passive, the probabil-
ity and thus payoff for a fork is negligible. The first equality holds since when
the adversary is front-running and passive, all successfully-mined blocks will be
added to the ledger. Thus, both BA

b,x and W A
q,x only depend on the number of

queries made at round x.
We see that if (p · breward′(x) · CR− mcost) ≥ 0 he gains the optimal utility

by mining with all his rigs. On the other hand, when (p · breward′(x) · CR −
mcost) < 0, then he obtains optimal utility by not mining at all. Thus, he does
not lose utility by de-registering his parties. There exists a round t described in
the claim by assumption of the utility function parameters satisfying bounded
mining incentives. �

Our second claim says that the optimal adversary is the one who statically
corrupts parties at the first round. That is, adaptive corruption does not increase
his payoffs.

Claim (2). Let G be the total number of parties corrupted by an adversary
in a protocol execution and PG be the associated distribution. Then, (1) given
any front-running, passive adversary where g = maxSupp(G), an environment
Z which spawns g + 1 parties gives the optimal payoff. Moreover, (2) given an
environment which spawns at least g + 1 parties at the first round, the optimal
front-running, passive adversary who corrupts at most a total of g parties, is to
statically corrupt them at the first round.

Proof of Claim (2): The first statement (1) is given by the fact that the payoff of
the passive adversary only depends on the number of successful blocks inserted
into the ledger. Since the adversary is front-running, it does not matter how many
honest parties there are, as long as the environment spawns enough parties to
allow for at least one honest party (for the technical reason that the ledger state
is accepted by some honest party). The second statement follows from the fact
that Claim (1) implies the adversary’s mining strategy at any round does not
depend on the number of corrupt parties nor view of the protocol execution.
Thus, an adversary corrupting a party at some round x always gains equal or
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better payoff by corrupting the party at the first round. It is possible for the
adversary to corrupt statically first round since we assumed the environment
spawns enough parties. �

Finally, we show that the optimal front-running, passive adversary A for uhbuy
will corrupt a deterministic number of parties at the first round. By Claims 1
and 2, it suffices to analyze the utility of a front-running, passive adversary A
who corrupts some g parties statically at the first round and mines for t rounds.

ubuy(ΠB,A) ≤ uhbuy(ΠB,A)

=
∑
b∈N

∑
x≥1

(
b · breward′(x) · CR · Pr[BA

b,x]
)
− g · t · mcost− ccost(g) + negl(κ)

= CR
∑
b∈N

(
b · Pr[BA

b,1] ·
t∑

x=1
breward′(x)

)
− g · t · mcost− ccost(g) + negl(κ)

= CR

(
t∑

x=1
breward′(x)

)(∑
b∈N

b · Pr[BA
b,1]
)
− g · t · mcost− ccost(g) + negl(κ)

= CR

(
t∑

x=1
breward′(x)

)
· g · p− g · t · mcost− ccost(g) + negl(κ)

= g · p · CR ·
t∑

x=1
(breward′(x)− mcost)− ccost(g) + negl(κ)

To go from line 2 to line 3: for x ∈ [1, t], Pr[BA
b,x] = Pr[BA

b,x′ ] = Pr[BA
b,1], and

for x > t, Pr[BA
b,x] = 0. To go from line 4 to line 5: we see

∑
b∈N b · Pr[BA

b,1] is
the expected number of blocks made in each round, which is gp. We next find
the g, t that maximize the above expression. We see that from Claim 1, and that
ubuy satisfies limited horizons:

t = arg max
t∈N

(
t∑

x=1
(p · CR · breward′(x)− mcost)

)
= arg max

x≥1
(p · CR · breward′(x) ≥ mcost)

Let m be the mining profit defined by

m =
t∑

x=1
(p · CR · breward′(x)− mcost)
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Then the optimal number of corruptions g is the following (recall Tub is the
maximum hashing power per round).

g = arg max
g∈[0,Tub],g∈N

(mg − ccost(g))

ut

5 Analyzing 51% Attacks

We can now utilize our above framework to analyze one of the most common
types of forking attacks, known as 51% double-spending attack [Inv]. We analyze
a range of parameters for utility functions with limited horizons, for which a 51%
double-spending adversary breaks the strong attack-payoff security of protocol
ΠB (formalized by Theorem 1). In more detail, first we will show a general lemma
relating the number of honest/adversarial hashes per round, to the time it takes
to fork with a 51% double-spending attack (Lemma 6). Then, in Theorem 1
we will show that if the payoff for a successful attack (fpayoff) satisfies certain
conditions, then an adversary performing a 51% double-spending attack achieves
better utility than any passive-mining strategy. This fpayoff is quantified as a
function of the parameters of the protocol and the utility function.

We call the following strategy a 51% double-spending attack: The adversary
obtains any majority fraction (“51%” is just a colloquial name) of the hashing
power, and uses it to secretly mine an extension of the currently longest chain
(i.e., keeping successful blocks private to himself), and which he will release after
some time. We say that a 51% double-spending attack is successful if, when
released, the adversary’s secret chain is at least as long as the honest chain, and
causes the ledger state of some honest party to fork (which in reality corresponds
to a roll-back of more than cutOff blocks, in order to adopt the released attack
chain). If this happens, some transactions on the reversed blockchain ledger
state may become orphaned (no longer part of the ledger state), thus allowing
the attacker to double-spend his coins.

5.1 Time to Fork

We start by showing a general lemma that relates the amount of honest and
adversarial hashing power in a system, to the time to cause a fork via a 51%
double-spending attack. That is, how long it takes for an adversary with majority
hashing power to secretly create a chain that, when released, would cause an
honest party to roll back, or discard, more than cutOff blocks of his own chain
in order to adopt the new one.

Definition 8. We say that an adversary A causes a fork in a protocol Π if,
except with negligible probability in κ, all simulators SA ∈ CA (i.e. those which
in fact simulate A according to UC emulation) use the fork command9.
9 If CA = ∅, then in any case by definition the utility of A is infinite.
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The fork command, which allows forking the confirmed ledger state (and
hence corresponds to rolling back more than cutOff blocks in the real world
world), is necessary and sufficient to simulate an adversary who succeeds in a 51%
double-spending attack. We compute the (upper bound) time for a 51% double-
spending adversary to fork, which is obtained by the time for honest parties
to grow their chain by cutOff blocks (for which we can use guaranteed chain-
growth of Nakamoto-style blockchains. Since the adversary has more hashing
power (and thus more random oracle queries that can be issued sequentially)
than the honest party, and since we assume cutOff = ω(log(κ)) and that the
adversary does not interfere with the honest parties’ mining, this implies that the
adversary’s secretly-mined chain will be longer than the honest parties’ chain,
and be the only source for a large rollback, with overwhelming probability in κ.

Lemma 6 (Time to Fork with 51% Attack). Let cutOff = ω(log(κ)),
[r, r + t] be any time interval (starting from some round r ≥ 0) of t ≥ 1 rounds,
∆ ≥ 1 be the network delay, p ∈ (0, 1) the success probability of one mining
query.

Then for all δ, δ′ ∈ (0, 1), α ≥ 1+δ
1−δ , and q ≥ 1 such that t ≥ t∆δ′(q) (Defi-

nition 6) the following holds. Suppose in time interval [r, r + t], (1) the honest
parties make at least q mining queries per round, and (2) in total they make at
most qt queries. Then, the adversary A who performs a 51% double-spending
attack for at least αqt queries during the time interval and then releases his
secretly-mined chain, causes a fork in the protocol ΠB. 10

Proof. As usual we analyze in the state exchange functionality (FStX) hybrid-
world, which ignores negligible-probability bad event like hash collisions that
break the tree structure of chains (and in any case can only serve to help the
adversary as the honest parties do not take advantage of such bad events).

Let the adversary’s strategy be the following: He does nothing before some
round r. Let C be the longest known chain at the beginning of round r (since the
adversary knows all the chains, he knows the longest chain). During [r, r+ t], the
adversary mines secretly (i.e., mines without releasing any successful blocks),
starting from C (for αqt queries). After mining in round r + t, the adversary
releases his secretly-mined chain.

Let ca be the random variable (r.v.) that is the number of blocks made by
the adversary’s secret mining, and ch the r.v. that is the length of the longest
chain fragment made by honest parties, during [r, r + t].

First we claim that the adversary causes a fork if, except with negligible
probability in κ, the following conditions hold:

(1) ca ≥ ch and (2) ch > cutOff.

10 More concretely, he succeeds except with probability at most exp
(
− δ

2αµ
2+δ

)
+

exp
(
− δ

2µ
2

)
+ exp

(
− δ
′2tγ
2+δ

)
.
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By (1) and the fact C is the longest chain at round r, the adversary’s secret
chain is at least as long as the longest honest chain, so his chain will be adopted
by honest parties when he releases it. In addition, by (2), the honest parties must
roll back more than cutOff blocks to adopt the adversary’s secret chain after
it is released, which breaks consistency. In this case, any simulator successfully
simulating A must use the command fork.

Let bh and ba be the total number of blocks made by the honest and corrupt
parties during the time interval. Then ch ≤ bh and E(ch) ≤ E(bh) = µ = qtp.
Moreover ca = ba since the adversary does mine his own blocks sequentially, and
E(ca) = E(ba) = αµ.

We recall the Chain Growth Lemma [BMTZ17a, GKL15, PSs17] (formally
defined in App A.3) that relates the time it takes an honest chain to grow by
some T blocks with the honest parties’ hashing power and the network delay.
We are in particular interested in T = cutOff—that is, how long it takes for the
honest chain to grow by cutOff blocks. This lemma tells us that if t ≥ cutOff

(1−δ)γ
(implied by our assumption) then ch ≥ cutOff except with probability at most
negl(γt). Since cutOff = ω(log(κ)), we have negl(γt) = negl(κ).

We analyze below the probability that either condition (1) or (2) above fail.
To get from line 1 to line 2: By α ≥ 1+δ

1−δ , we have αqpt(1 − δ) ≥ qtp(1 + δ);
moreover ch ≤ bh. To get line 3 to line 4: We apply Chernoff bound and Chain
Growth Lemma.

Pr [(ca < ch) ∨ (ch ≤ cutOff)]
≤Pr [(ca ≤ αqtp(1− δ)) ∨ (bh ≥ qtp(1 + δ)) ∨ (ch ≤ cutOff)]
≤Pr [ca ≤ αqtp(1− δ)] + Pr [bh ≥ qtp(1 + δ)] + Pr [ch ≤ cutOff]

≤ exp
(
− δ

2αµ

2 + δ

)
+ exp

(
−δ

2µ

2

)
+ exp

(
− δ
′2tγ

2 + δ

)
where µ = qtp. Since we assume µ = qtp ≥ w = ω(log(κ)), exp(−cµ) =
exp(−ω(log(κ))) is negligible in κ for any constant c.11 ut

A visualization. In Figure 1, the (upper-bound) time to fork with exactly 51%
corruption, is graphed against the total number of rigs in the system. The graph
uses the formula from Lemma 6. We use current parameters for Ethereum Classic
as the source of the concrete parameters for this figure, and refer the reader to
App. B for more details.

5.2 Payoff of 51% Double-Spending Attacks

In this section, we prove Theorem 1 and its corollary Theorem 2, which quantify
the size of the payoff for double-spending, under which a 51% double-spending
attack can break strong attack-payoff security. That is, the attacker achieves
11 To prove that it is negligible, for contradiction suppose there is a polynomial xd that

is asymptotically larger than eg for some g = ω(log(κ)). But xd = ed log(x) which
implies g = O(log(x)) which is a contradiction.
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Fig. 1. Time to create a fork via 51% attack, versus the total number of mining rigs.
Here the adversary corrupts exactly 51%.

better utility than any passive mining strategy. While one may think that it is
always profitable to attack if there is no assumption on the honest majority of
hashing power, there are a few things that may deter an attacker. For example,
the costs of buying or renting mining equipment for the attack may become too
high compared to the diminished block rewards as time goes on. Our statement
below quantifies an amount of payoff for forking (e.g. how much an attacker
can double-spend) to incentivize a 51% double-spending attack. Intuitively, the
result below says that as long as the payoff for forking (fpayoff) is larger than
the loss of utility from withholding blocks and corrupting a large number of
parties to perform the attack, then there is a 51% attack strategy that is more
profitable than any front-running, passive adversary.

Theorem 1 (51% Double-Spending Attacks that Break (Strong)
Attack-Payoff Security (ubuy)). Let Tub > 2 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Then,
the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in any
attack model M whose induced utility function ubuy satisfies limited horizons, if
for some δ ∈ (0, 1), α > 1 and g = Tub

1+α the following holds:

fpayoff > uh
honest − α · g · t∆δ (g)

(
p · CR · breward(t∆δ (g) + tub)− mcost

)
− ccost(αg).

Proof. First we show an upper bound on the utility of an optimal passive adver-
sary A1. Then, we show that there is a 51% attacking adversary A2 who achieves
better utility than A1.

We show the former, by showing the optimal payoff of any pair (Z,A1), where
Z is the environment and A1 a front-running and passive adversary in ΠB. This
is directly from Lemma 5, which shows that ubuy(ΠB,A1) ≤ uh

honest +negl(κ) for
any utility function ubuy that satisfies limited horizons.
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Then, we show that there is an environment under which an (malicious) ad-
versary A2 obtains non-negligibly more utility than A1. Consider the adversary
that corrupts αg = αTub

1+α parties, and mines a secret chain for t∆δ (g) rounds (so
he will make α · g · t∆δ (g) mining queries) before releasing his secret chain and
then deregisters his corrupted parties. By Lemma 6, he successfully causes a fork
with overwhelming probability in κ. However, by withholding blocks (in order to
create a fork), he also loses some block rewards. This is because his blocks would
end up in an honest party’s ledger at a later time than if he just broadcasted suc-
cessful blocks immediately after creating them. Consider an environment which
spawns Tub parties (which are honest as the adversary does not corrupt them)
after he releases his secret chain, which will reduce the time between when the
adversary broadcasts his secret chain and when the chain becomes confirmed as
part of the ledger to at most tub (Lem. 4). This means the adversary A2 achieves
utility of:

ubuy(ΠB,A2) ≥ α · g · t∆δ (g)
(
p · CR · breward(t∆δ (g) + tub)− mcost

)
− ccost(αg) + fpayoff.

We ignore negligible probability/utility loss from an unsuccessful attack. We
also recall that tub is the upper bound from Lemma 4 on the time between a
block is created, and the block enters a honest party’s ledger (we also recall
the utility is computed using the optimal environment for the adversary). Since
breward(·) is a non-increasing function, this lower-bounds the payoff the adver-
sary obtains from creating blocks. Given the conditions on fpayoff it then holds
that A2 breaks strong attack-payoff security. Because the attack provokes the
fork-command, also attack-payoff security cannot hold. ut

We state the case where the adversary mines with rented equipment (and
uses utility function urent), as a direct corollary to Theorem 1.

Theorem 2 (51% Double-Spending Attacks that Break (Strong)
Attack-Payoff Security (urent)). Let Tub > 2 be the upper bound on total
number of mining queries per round, p ∈ (0, 1) be the probability of success of
each mining query, and cutOff = ω(log(κ)) be the consistency parameter. Then,
the protocol ΠB is not attack-payoff secure/strongly attack-payoff secure in any
attack model M whose induced utility function urent satisfies limited horizons,
if for any δ ∈ (0, 1), α > 1 and g = Tub

1+α the following holds:

fpayoff > uh
honest − α · g · t∆δ (g)

(
p · CR · breward(t∆δ (g) + tub)− mcost

)
.

5.3 Visualizations with Concrete Values

We will visualize Theorems 1 and 2 through Figures 2 and 3. We consider two
utility functions, one where the adversary buys mining equipment, and one where
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the adversary rents. We then graph the utilities of passive/non-passive adver-
saries, against the maximum fraction of corrupted parties. The concrete param-
eters are based on current (as of writing, Feb. 2021) parameters for Ethereum
Classic. The outline is given in Appendix B.

Fig. 2. Utility of the passive/51% double-spending attacker who rents hashing power,
versus the fraction of adversarial parties. Here we consider an expensive cost to rent
hashing power (1.96 BTC/TH/day, at $50, 000/BTC).

Fig. 3. Utility of the passive/51% double-spending attacker versus the fraction of ad-
versarial parties. We consider an attacker who runs for a short duration (1 week) and
a long duration (40 weeks).

In Figure 2, we consider the incentives of a 51% attacker who rents his hashing
power, using the price for renting of 1.96 BTC/TH/day (Bitcoin per terahash per
day), at $50, 000/BTC. In this case, it is in fact not profitable to mine passively
(and thus the optimal passive strategy is to not mine at all). However, when
the adversary corrupts more than majority of hashing power, it may become
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profitable to mine in order to create a fork. It is less profitable for the adversary
to corrupt a larger fraction of the parties, as cost of renting becomes too high.
We remark that even when it is not profitable to mine (passively) using rented
rigs, this does not exclude incentivizing honest parties from mining with e.g.,
bought equipment.

In the next two examples in Figure 3, we compare the utility of the attacker
who mines with purchased rigs, and one who mines with rented rigs. For the
attack who buys hashing power, each rig costs $3000, and mining (electricity)
costs $0.000047/s. For the attacker who rents, for more interesting comparisons
we consider a cheaper cost to rent hashing power (1.96 BTC/TH/day, at a
cheaper $22, 000/BTC). We consider two scenarios: the attacker either (1) only
plans to mine for a short duration of one week, or (2) plans to mine for a longer
duration of 40 weeks (time is expressed in seconds in the code). For the purposes
of the graphs, we account for the possible variance of Bitcoin-USD exchange rates
by using an average exchange rate over the relevant period of time. In either case,
to more closely model reality, we restrict the duration of the attack, where the
adversary may obtain a majority of hashing power, to 3 days (which, in the
code, simply means we do not show attacks that last longer than 3 days). We
see a big difference between the two scenarios. In the short duration case, it is
much more profitable to mine or attack with rented rigs. In fact, it is not even
profitable to fork using purchased rigs, as the cost of purchase is higher than the
payoff for double-spending. The long duration case is the opposite. Although it
may be profitable to mine in both cases, it is vastly more profitable to mine and
attack with purchased rigs than rented rigs. This agrees with our intuition and
reality: the high initial investment of buying mining equipment is offset in the
long run by the lower cost of mining. Moreover, an attacker who is only interested
in mining in order to perform a 51% attack for a short time is incentivized to
use hash renting services.

6 Mitigating 51% Attacks

In previous sections, we studied utility functions with limited horizons, in which
an attacker is incentivized to perform a 51% double-spending attack and break
(strong) attack-payoff security. In this section, we turn to analyzing how to
defend against 51% attacks. Specifically, given an attacker’s utility function with
limited horizons, and a cut-off parameter cutOff that achieves security in the
honest majority setting, we show a way to amplify cutOff to obtain security
against a rational (and possibly dishonest majority) attacker.

To show attack payoff security, one must show that for any adversarial strat-
egy attacking the protocol, there is another adversary who attacks the dummy
protocol with access to the ideal ledger functionality Gledger

12, which achieves
the same or better utility.
12 Recall this is the ledger functionality that ensures consistency and liveness, but since

we will amplify the cut-off parameter cutOff, we only achieve worse overall chain
growth and chain quality parameters for the ledger (cf. [BMTZ17a, BGK+20]).
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Even more difficult, we place very few restrictions on the adversary: he may
corrupt any fraction of parties (e.g. more than majority) and perform any cur-
rently known (e.g. block withholding) or unknown strategy. The only restriction
we place on the attacker is that he is incentive-driven. Fortunately, a rational
attacker is limited by his utility function. As we show, given a utility func-
tion satisfying limited horizon, we are able to bound the amount of mining an
incentive-driven adversary will do, even in presence of a payoff for forking. Then,
by choosing a large enough consistency parameter cutOff, we ensure that at-
tackers are disincentivized from creating a fork.

More specifically: We first present in Section 6.1 a result that shows that if an
adversary’s hashing resources are limited by a budget B, then there is a bound
on the interval of rounds where the blockchain is at risk of a consistency failure
(Lemma 7). For this, we apply a result from [BGK+20] that, roughly, shows how
fast a blockchain’s consistency can recover after an attack by an adversary with
a given budget (the self-healing property of Bitcoin). Based on this fundamental
property, we present in Section 6.2, the main result of the section: Given a utility
function with limited horizons, we show a condition on the parameter cutOff,
depending only on the utility function and protocol parameters, such that ΠB is
attack-payoff secure. To do so, we show that an adversary who spends too much
budget will begin to lose utility (Lemma 8), and then combine this result with
that of Section 6.1.

6.1 Budget to Vulnerability Period

Assume an instance of the Bitcoin backbone protocol with cut-off parameter `.
We distinguish here between ` and cutOff for clarity, since we will eventually
amplify ` to obtain our final cut-off parameter cutOff.

Under the honest majority condition, we know that a consistency failure
(expressed as the probability that blocks which are ` deep in an honest par-
ties adopted chain can be reverted) appears with probability negligible in `
(and consequently also in any security parameter κ as long as ` = ω(log(κ)).
We now recall (and state a simple corollary from) the result from [BGK+20],
which defines a relationship between an adversary’s violation of honest-majority
(measured as a so-called budget B by which it can violate the honest-majority
condition) and the time until Bitcoin (and more generally, Nakamoto-style PoW
chains) self-heals after the adversary returns to below 50% hashing power. That
is, until Bitcoin can again guarantee consistency for the part of the chain that is
at least ` blocks deep in a longest chain held by an honest party. The self-healing
time depends on the budget and the parameter `. Recall that θpow is the usual
security threshold for Bitcoin as explained in Section 2.1.

Definition 9 ((θpow, ε, Tlb, Tub, B)-adversary [BGK+20]). Let θpow, ε ∈
(0, 1), Tlb, Tub, B ∈ N. A (θpow, ε, Tlb, Tub, B)-adversary is an adversary13 satisfy-
ing the following: At every round i, let nia and nih be the mining queries made by
13 Here the environment is also included in this statement.
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corrupt and honest parties in this round. Then, (1) For all i, Tlb ≤ nia+nih ≤ Tub,
and (2) For all i, nia ≤ (1− ε) · θpow · nih +Bi, where Bi ≥ 0 and

∑
iBi = B.

We say the adversary attacks between rounds a < b if Bi = 0 for any i < a
or i > b (i.e. he spends all his budget between rounds a and b).

We say an adversary spends budget B over t rounds, if the adversary has
budget B, and only spends it in rounds r1 < r2 < · · · < rt, such that

∑
iBri

= B.

The behavior of a blockchain protocol under an attack by an
(θpow, ε, Tlb, Tub, B)-adversary is described by a vulnerability period. The vulner-
ability period is an upper bound on number of rounds before and after an adver-
sary performs the attack, such that protocol is still at risk of a (non-negligible)
consistency failure.

Definition 10 (Consistency self-healing property and vulnerability pe-
riod [BGK+20]). A protocol is self-healing with vulnerability period (τl, τh) with
respect to consistency, and against a (θpow, ε, Tlb, Tub, B)-adversary who attacks
between rounds (a, b), if the consistency failure event ConsFail`(r) occurs except
with at most negligible probability unless r ∈ [ρα − τl, ρβ + τh]. ConsFail`(r) is
defined as the event that `-consistency is violated in an execution for rounds
(r, r′), w.r.t. some round r′ > r, and any two pairs of honest parties.

In other words, outside of these “dangerous” rounds [a − τl, b + τh], chains
adopted by honest parties are guaranteed to diverge by at the most recent `
blocks. Below, [BGK+20] gives a characterization of the vulnerability period in
terms of the budget B.

Theorem 3 ([BGK+20]). A Nakamoto-style PoW blockchain with an up-
per bound Tub of hashing queries per round, maximum network delay ∆, suc-
cess probability p, and cut-off parameter ` satisfies the consistency self-healing
property with vulnerability period (τl, τh) = (O(B), O(B) + O(`)) against any
(θpow, ε, Tlb, Tub, B)-adversary, for any ε, Tlb > 0.

The vulnerability period only bounds the number of “bad” rounds before
the attack, and after all the budget is spent. For our treatment, we consider a
more applicable version of the vulnerability period. In Lemma 7, we show the
maximum number of consecutive rounds where ConsFail may occur, by applying
the above theorem in a piece-wise fashion. For example, if the adversary spends
his budget over a long period of time (e.g., spend a bit of the budget, wait for
2 years, then spend more of his budget), the theorem is not directly suitable for
our needs, but it is possible to isolate those “spending” rounds and applying the
theorem to each such region. Then, since the total hashing power in the system
is bounded, we can use this maximum consecutive “bad” rounds to bound the
maximum number of blocks that can be rolled back at any given round.

Lemma 7 (Max consecutive consistency failure rounds and associated
number of blocks and rollback). In the same setting as above in Theorem 3,
except with negligible probability the following holds: for any adversary with bud-
get B, spent over t rounds (that is, for t different rounds i it holds that Bi > 0),
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there is a maximum number R(B, t, `) = O(B) +O(`t) of consecutive rounds rj
where ConsFail`(rj) occurs, during which at most W (B, t, `) = 2Tubp ·R(B, t, `)
blocks are created.

Proof. To show R(B, t, `) we note that the rounds where ConsFail` occurs, are
either (1) rounds where adversary spends his budget (i.e., when adversary has
majority) (2) some number of rounds before some amount of budget is spent,
bound by τ` in Theorem 3 (3) some number of rounds after some amount of
budget is spent, bound by τh in Theorem 3. For (1), there are exactly t rounds
by definition. For (2), we observe that this is at most O(B), regardless of how the
adversary spends his budget. For (3), we see that this is at most O(B) +O(`t),
since τh gives the adversary at most O(`) rounds (where ConsFail` may occur)
each time the budget is spent, and there are exactly t such rounds. Summing the
above, we get R(B, t, `) = O(B) +O(`t). We obtain W (B, t, `) through Chernoff
bound (and for simplicity using 2 instead of (1 + δ)), given that there are at
most Tub hashes per round. ut

Looking ahead, this means that at any point in time, prefixes of honest parties’
chains must agree (except with negligible probability) when dropping the most
recent W (B, t, `)+` blocks. Here, we omit the dependency on p because we treat
it as a constant parameter of the protocol.

6.2 Attack-Payoff Security

In this section we will show the following: For any utility function with limited
horizons, we give a characterization of how to adjust the consistency parameter
(depending on the protocol parameters and those of the utility function) such
that ΠB is attack payoff secure. To do so, we will first upper bound the utility
of adversaries who spends a total budget B over some time t, given a utility
function ubuy with limited horizons (Lemma 8, and Corollary 1 for utility func-
tion urent). In Theorem 4, we then combine this lemma with the result of the
previous subsection, and present our characterization of parameters for which
ΠB is attack-payoff secure—i.e. for which forks are disincentivized.

Below, we quantify an upper bound uub
buy(B, t) on the utility of any adversary

spending budget of at least B over exactly t rounds, assuming the utility func-
tion satisfies limited horizons. Why are we interested in this quantity? Recall
W (B, t)—which informally represents an interval of blocks where consistency
might fail—increases with B and t. Looking ahead, we will find a large enough
W (B, t) that disincentivizes attacks (i.e., uub

buy(B, t) < 0). To show that the
upper-bound uub

buy(B, t) is useful, later we will show that it is possible use it to
derive a maximum B, t, which we denote by B̄, t̄.

Lemma 8 (Upper bound utility of adversary spending budget at least
B, over time t).

Suppose ubuy(ΠB,A) satisfies limited horizons. Then an adversary A with
budget at least B > 0, and who spends it over exactly t ≥ B

Tub−n̄a
rounds, achieves
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utility at most ubuy(ΠB,A) ≤ uub
buy(B, t) where

uub
buy(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x)− mcost)

+
t∑

x=th+1
(n̄a + 1) · (p · CR · breward(x)− mcost)

− ccost
(
n̄a + B

t

)
+ fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ mcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow

.
If t < B

Tub−n̄a
(in this case it is not possible to spend budget B over t rounds)

or B ≤ 0, then uub
buy(B, t) is undefined.

Proof. We first note that if t < B
Tub−n̄a

then it is by definition not possible for
an adversary to spend at least budget B over t rounds: In each round, at most
Tub hash queries can be made, and given a lower bound of Tlb mining queries in
each round, the adversary must make more than n̄a queries in order to spend
budget.

Thus, let A be any adversary who spends at least budget B, over exactly t
rounds for t > B

Tub−n̄a
. Let T be the maximum running time ofA in some environ-

ment Z. Let q1, · · · , qT be the random variables where qi is the number of queries
A makes in round i. Let g = maxi∈[1,T ] qi be the maximum number of parties A
corrupts at any given round. Let th = maxx∈N x : p · CR · breward(x) ≥ mcost,
which exists as ubuy satisfies limited horizons. Then,

ubuy(ΠB,A) ≤
T∑
x=1

qi · (p · CR · breward(x)− mcost)− ccost(g) + fpayoff

=
th∑
x=1

qi · (p · CR · breward(x)− mcost)

+
T∑

x=th+1
qi(p · CR · breward(x)− mcost)− ccost(g) + fpayoff.

Now by construction p · CR · breward(x) ≥ 0 for x ≤ th so it is optimal
to make as many queries as possible in these rounds. Thus,

∑T
x=1 qi · (p · CR ·

breward(x) − mcost) ≤
∑T
x=1 g · (p · CR · breward(x) − mcost). On the other

hand, p · CR · breward(x) < 0 for x > th so it is optimal to make as few queries
as possible in these rounds. Thus,

∑T
x=th+1 qi · (p · CR · breward(x) − mcost) ≤∑t

x=th+1 n̄a · (p · CR · breward(x) − mcost). The latter statement is because by
assumption that A spends his budget for t rounds, we have T ≥ t and he must
make at least n̄a + 1 queries when he spends his budget. Note we are ignoring
whether a fork can be obtained this way, as in the upper-bound we give fpayoff
to the adversary “for free”.
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In addition, it must be that g ∈ [n̄a+B
t , Tub]—he must corrupt enough parties

to spend B budget in t time, but corrupting more than Tub (the upper bound on
total hashing power in the system) parties does not increase his hashing power.
This gives us the bound in the lemma (due to limited horizons, ccost is a non-
decreasing function of g). ut

As a corollary, by setting ccost(·) = 0 and mcost = rcost, we obtain an upper
bound on the utility of any adversary who spends at least budget B, assuming
the utility function satisfies limited horizons with renting.
Corollary 1. Suppose urent(ΠB,A) satisfies limited horizons with renting.
Then an adversary A who spends budget of at least B > 0 over exactly t ≥ B

Tub−n̄a

rounds, achieves utility at most urent(ΠB,A) ≤ uub
rent(B, t) where

uub
rent(B, t) :=

th∑
x=1

Tub · (p · CR · breward(x)− rcost)

+
t∑

x=th+1
(n̄a + 1) · (p · CR · breward(x)− rcost) + fpayoff

and where th := arg maxx∈N(p · CR · breward(x) ≥ rcost), n̄a := (1−ε)·θpow·Tlb
1+(1−ε)·θpow

.

A natural question is whether the upper bound uub
buy(B, t) and uub

rent(B, t) will
be useful for bounding B, t. We remark that it is not even trivially clear whether
they bounded, as the budget does not limit how many rounds (when honest
majority is satisfied) the adversary can mine. Below, we show that there indeed
exist a maximum B, t for which uub

buy(B, t) ≥ 0 (resp. uub
rent(B, t) ≥ 0, which we

denote by B̄, t̄.
Lemma 9. B̄ := arg maxB>0

(
uub

buy(B, ·) ≥ 0
)

and t̄ := arg maxt>0
(
uub

buy(·, t) ≥ 0
)

exist, or ∀t > 0, uub
buy(·, t) < 0. The same is true when replacing uub

buy with uub
rent

in the statement.
Proof. We prove for uub

buy then the case for uub
rent follows. Let bmax =

∑th
x=1 Tub ·

(p ·CR ·breward(x)−mcost) where th = arg maxx∈N(p ·CR ·breward(x) ≥ mcost)
(exists by limited horizons), Let n̄a = (1−ε)·θpow·Tlb

1+(1−ε)·θpow
.

Suppose there is a t > 0 such that uub
buy(·, t) ≥ 0; we will show that (1) There

is a t ≥ th such that uub
buy(B, t) ≥ 0, and (2) t̄ := arg max

(
uub

buy(·, t) ≥ 0
)

exists.
For (1),
uub

buy(B, t)

≤ bmax +
t∑

x=th+1

(n̄a + 1) · (p · CR · breward(x)− mcost)− ccost (n̄a + 1) + fpayoff

≤ bmax +
t=th∑

x=th+1

(n̄a + 1) · (p · CR · breward(x)− mcost)− ccost (n̄a + 1) + fpayoff.
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The second line is by limited horizons: ccost is a non-decreasing function,
so ccost

(
n̄a + B

t

)
> ccost (n̄a + 1). The third line is by assumption p · CR ·

breward(x) − mcost < 0 for x > th, and taking t = th makes this term zero.
Since there are no other terms with t, and by assumption that there exists t > 0
such that uub

buy(·, t) ≥ 0, this means uub
buy(·, t) ≥ 0 for some t ≥ th.

For (2), We bound t̄ first, then B̄ < t̄ (Tub − n̄a) follows from condition
t < B

Tub−n̄a
. By limited horizons, there is a constant (in the security parameter)

δ > 0 such that for all x ≥ th + 1, mcost− p · CR · breward(x) > δ. Thus,

t̄ := arg max
t>0

(
uub

buy(·, t) ≥ 0
)

≤ arg max
t>0

(
bmax + fpayoff− δ · (n̄a + 1)(t− th − 1)− ccost(n̄a + 1) ≥ 0

)
=
(
bmax + fpayoff + δ · (n̄a + 1)(th + 1)− ccost(n̄a + 1)

)/(
δ · (n̄a + 1)

)
.

The second line is from minimizing the term ccost(n̄a+B/t) as ccost(n̄a+
1) (by limited horizons, ccost is a non-decreasing function) and minimizing∑t
x=th+1(n̄a + 1) · (p · CR · breward(x)− mcost) = −

∑t
x=th+1(n̄a + 1) · (mcost−

p · CR · breward(x)) as −δ · (n̄a + 1)(t − th − 1) (given what we showed in (1),
we have t ≥ th). The third line is positive since we showed there is a t > th such
that uub

buy(·, t) > 0. ut

Concrete examples of B̄, t̄. We give example estimate values of t̄, which we
recall is the upper bound on the period of time where the attacker is incentivized
to spend budget. These values are obtained using the equation from proof of
Lemma 9, and from them B̄ can be computed easily as B̄ = t̄ · (Tub − n̄a).

In more detail: In the case there is no t such that uub
buy(·, t) ≥ 0 (resp.

uub
rent(·, t) ≥ 0) ; i.e., it is not profitable to perform a 51% attack at all), we

display t̄ = 0. We use Tlb · (1− ε) ≈ 1 to compute parameter n̄a, which requires
an attacker to corrupt at least ∼ 50% of the total hashing power. For simplicity
we assume that the total hashing power is relatively stable during the period of
attack, and thus we set Tlb = Tub. We refer to App. B for details on the other
parameters used (e.g., electricity costs, cost per mining rig, block rewards, etc.),
which are estimates from Ethereum Classic at the time of writing (Feb. 2021).

In the case of bought mining rigs, we see that t̄ = 0 for th ≤ 89 days (recall
that th is the length of time an attacker expects passive-mining to be profitable).
Then, we estimate t̄ = 96 days if th = 90 days, and t̄ = 196 days if th = 100
days. However, the estimated cost to buy a majority of mining rigs can be in
the order of tens of millions in USD (using our estimated per-rig cost, around
$27 million). This high cost of attack, coupled with the difficulty of purchasing
and maintaining such a large number of rigs, may suggest why a 51% attacker
might be incentivized to rent mining rigs instead.

In the case of rented mining rigs, we see that the estimated cost of attack
becomes more reasonable. Below, we show estimated values of t̄, varying both
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over th (Table 1) and the price of renting rcost (Table 2, Fig. 4). In particular,
we see that for a realistic (see App. B for source of parameters) renting price of
$0.00045/unit of hashing power, the estimated t̄ is around 3 days—on par with
the 2-day interval of attack on Ethereum Classic, which we base our numbers
on, in August, 2020.

th (days) t̄ (days)
0.33 5.9
0.66 6.3

1 6.6
2 7.7
3 8.7
6 11.9
9 15.1

Table 1. t̄ varying over anticipated
profitable mining time th, price/rented
rig 0.00023/unit of hashing power (=
435MH), which is $179,592 per day.

rcost (USD) t̄ (days) Cost/day (USD)
$0.0001 24.0 $78,084
$0.0002 10.5 $156,167
$0.0003 4.3 $234,251
$0.0004 3.2 $312,334
$0.0005 2.6 $390,418
$0.0006 2.1 $468,501

Table 2. Estimated t̄ and cost of at-
tack per day, varying over price per rented
mining rigs per second. If passive-mining
is profitable at all, we set th = 3 days, and
otherwise th = 0 by default.

Fig. 4. Graph representation of Table 2.

Finally, we can make a general statement about the attack payoff security
of protocol ΠB for any utility function satisfying limited horizons. Informally:
our utility function limits how much budget B (spent over how many rounds
t) any incentive-driven attacker could reasonably have. Then, if the the window
size is large enough to accommodate the largest of such budgets, the protocol is
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attack-payoff secure. In the following, uub
buy(B, t), ul

honest, and W (B, t) are from
Lem. 8, Lem. 5, and Lem. 7 respectively. The equivalent statement for utility
function urent can be obtained by using the corollaries of the results above for
the case of renting.

Theorem 4. Let Tub, Tlb > 0 be the upper and lower bounds on total number of
mining queries per round and p ∈ (0, 1) be the probability of success of each min-
ing query and let ` = ω(log(κ)). Then, ΠB with consistency parameter cutOff is
attack-payoff secure in any model M, whose induced utility ubuy satisfies limited
horizons, whenever the condition holds that

cutOff > ` + max
(B,t):uub

buy(B,t)>ul
honest

W (B, t, `).

The same statement is true replacing ubuy with urent and uub
buy with uub

rent.

Proof. We prove for ubuy and uub
buy, and the renting case follows. We showed

that for any (B, t) there is an upper bound uub
buy(B, t) on the utility of any ad-

versary who spends at least budget B over exactly t rounds (Lemma 8). From
Lemma 5, we obtain a lower bound on the utility ul

honest of an optimal pas-
sive adversary. Since ul

honest ≥ 0, by Lemma 9 the maximum in the theorem
statement exists. Then, we eliminate any incentive for adversaries to fork by
letting cutOff > ` + max(B,t):uub

buy(B,t)>ul
honest

W (B, t, `), since no adversary can
create a fork of more than ` blocks except within a period of R(B, t, `) rounds
(Lemma 7), without his utility being lower than an passive adversary’s. We
achieve consistency by using the consistency parameter of W (B, t, `) blocks, the
number of blocks created within this period of rounds. Liveness (that is, chain
growth and chain quality ensured by the ledger) follows from [BGK+20]. Now
the only parameters affecting our adversary’s utility are the block rewards, cor-
ruption costs, and mining costs, as we have eliminated forks. Again we work in
the FStX hybrid which abstracts mining for blocks as an ideal lottery. The cost
of playing such a lottery is mcost and the reward for winning the lottery and
inserting the block into the ledger at round r is breward(r) · CR. Importantly,
one cannot get this block reward twice, as attacks that cause forks have been
eliminated. In this case, all payoff-inducing events made by the adversary in the
real world can be matched by an adversary who invokes an equivalent event in
the dummy world with the same payoffs (corruption, mining, and block reward).
This implies attack-payoff security. ut

We remark the protocol is not strong attack-payoff secure: Recall a front-
running adversary always maximally delays honest parties’ messages. Intuitively,
this reduces the mining power in the system, which delays the time between a
block is broadcasted, and when it becomes part of the ledger. In effect, this
reduces the payoff for block rewards for utilities with limited horizons.

Acknowledgments Yun Lu and Vassilis Zikas acknowledge support from Sun-
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35



References
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A Deferred Proofs and Definitions

A.1 Proof of Lemma 1

Proof (Proof of Lemma 1). Similar to [BGM+18] we analyze the modular Bitcoin
protocol with access to the state exchange functionality FStX (Appendix C.1),
which abstracts the proof-of-work puzzle of Bitcoin. Instead of parties querying
the hash function, they mine by querying FStX, which tells them whether the
mining attempt was successful.

Consider a real world execution with a front-running, passive adversarial
strategy A1, who makes q∗ queries to FStX in total (note that the code of this
adversary is in fact static, and the number of queries increases as it is executed
for more rounds by the environment), and who does not attempt to fork the
chain. Let Xi be the random variable where Xi = 1 if and only if his ith query
successfully mines a block. Then, the real world payoff of A1 is

RA1 =

 q∗∑
i=1

Xi

 breward · CR− q∗ · mcost

Now, consider any adversary A2 in the real world. Let Q denote the number
of queries made by A2 in an execution of the protocol under the environment Z,
and let PQ be the associated distribution. Then we define q := maxSupp(PQ)
(where Supp is the support). The expected real world payoff of A2 is

E(RA2) ≤ q · breward · CR + fpayoff

We want to show that A1 gains more payoff than A2. We do this by showing
that for an appropriate choice of q∗, the payoff of A1 exceeds the expected payoff
of A2 with overwhelming probability.

Now, let X =
∑q∗

i=1Xi, then E(X) = q∗p. Let δ be such that (1 − δ)p ·
breward·CR−mcost > 0 (this exists by assumption of p·breward·CR−mcost > 0
and that p, breward, CR, mcost are constants). We have

Pr(RA1 < E(RA2)) = Pr
(
X <

q∗mcost + q · breward · CR + fpayoff
breward · CR

)
We can use Chernoff bound to upper-bound this probability, if
q∗mcost+q·breward·CR+fpayoff

breward·CR < (1 − δ)E(X) = (1 − δ)q∗p. This inequality is
satisfied if we set q∗ = (q·breward·CR+fpayoff)κ

(1−δ)breward·CR−mcost , which is still a polynomial in κ.
Thus, by Chernoff bound,

Pr
(
X <

q∗mcost + q · breward · CR + fpayoff
breward · CR

)
≤ exp

(
−δ2q∗p

2

)
= negl(κ)

To show that analysis of the real world utility is sufficient, we have to prove that
this utility is the payoff in the ideal world, minimized over simulators that can
simulate the adversary (A1 or A2), and maximized over all environments. This
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is true following the same argument as [BGM+18]: A successful simulator must
answer the same number of queries as the adversary. Moreover, the number of
mining successes must be the same (up to a negligible difference). Otherwise,
the environment can distinguish the real and ideal world. ut

A.2 Proof of Lemma 2
Proof (Proof of Lemma 2). The proof goes the same way as in Lemma 1 except
here we consider the front-running, passive adversary A1 who corrupts exactly
one party. Let Xi be the random variable where Xi = 1 means the ith query
yields a succesfully-mined block. Then, the payoff of A1 is

RA1 =

 q∗∑
i=1

Xi

 breward · CR− q∗ · mcost− ccost(1)

We want to show that the passive strategy gains more payoff than any adversarial
strategy A2. For any adversary A2: If he corrupts no one, then he has exactly
the same payoff as an front-running, passive adversary who corrupts no one so
the lemma trivially holds. Thus, let us consider the case if the adversary A2
corrupts at least one party. Let Q denote the number of queries made by A2
in an execution of the protocol under the environment Z, and let PQ be the
associated distribution. Then we define q := maxSupp(PQ). Then, the expected
payoff of A2 is

E(RA2) ≤ q · breward · CR + fpayoff− ccost(1)

Then, the probability

Pr(RA1 < E(RA2)) = Pr
(
X <

q∗mcost + q · breward · CR + fpayoff
breward · CR

)
which is the same negligible probability as in the proof of Lemma 1 and the
proof follows. ut

A.3 Chain Growth Lemma
The above proof referred to the chain-growth lemma, we state one version here
for completeness:
Lemma 10 (Chain growth, Lemma 7.11 [BMTZ17a] ). For any miner pi,
round number r ≥ 0, t ≥ 1, success probability of one mining query p ∈ (0, 1),
network delay ∆, and δ ∈ (0, 1), let γ := h

1+h∆ where h := 1 − (1 − p)q and q
is the minimum total number of honest mining queries in any round during the
interval [r, r + t].

Suppose pi is honest in round r, and the longest state received or stored by
pi in round r has length `. Then, in round r+ t, it holds, except with probability
at most negl(γt)14, that the length of the longest state (received or stored) of at
least one honest miner pj in that round has length at least `+ T if t ≥ T

(1−δ)·γ .
14 In fact, at most exp

(
− δ

2tγ
2+δ

)
.
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A.4 Formal Definitions of urent from Section 4

urent(Π,A) = sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r) · CR · Pr[IA
b,r]

−
∑

(q,r)∈N2

q · rcost · Pr[W A
q,r]

+ fpayoff · Pr[K]
}}

. (5)

A.5 Formal Definitions of uh
buy and ul

buy from Section 4

uhbuy(ΠB,A) = sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r + tlb) · CR · Pr[BA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]
}}

.

and

ulbuy(ΠB,A) = sup
Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward(r + tub) · CR · Pr[BA
b,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

+ fpayoff · Pr[K]

−
∑
g∈N

ccost(g) · Pr[CA
g ]
}}

.

B Concrete Values Used in Graphs

We discuss the parameters used in the figures. Utility is computed in US dol-
lars (USD). While our results are stated for the Bitcoin protocol, our analyses
are in fact quite general, and work for Nakamoto-style PoW blockchains such
as Ethereum (Classic) among others. Our graphs use numbers for the popu-
lar currency Ethereum Classic, as it has been the victim of several major 51%
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double-spending attacks whereas Bitcoin was not. For the numbers to be more
accurate, we use recent (as of writing, Feb. 2021) data.

Let time be measured in seconds and fiat currency be measured in USD for
simplicity. Even basic mining rigs can make millions of hashes per second, thus we
model each party/mining rig as capable of 435MH/s (mega hashes per second),
the approximate hashing power of a rig with eight AMD RX 5700 XT graphic
cards, which costs about $3000 and uses about 1300W. We use a electricity cost
of $0.13/kWh (average cost in the US) to compute the cost of mining with this
rig as mcost = $0.000047. From the Nicehash marketplace we obtain the cost
to rent 435MH (our basic unit of hashing power per party), which is about 1.96
BTC/TH/day (TH is terahash) at the time of writing. Since the price of Bitcoin
(BTC) fluctuates wildly, we consider two cases: the “expensive” case, of $50,000
USD/BTC (rcost = $0.00045), and the “cheap” case, of $22,000 USD/BTC
(rcost = $0.00022). We consider utility functions with limited horizons; here
consider an attacker who is only incentivized to make blocks before some time t.
Thus, we set the payoff for making blocks as breward(x) = $54.4 (which is the
block reward given price of ETC at $17) if x < t and breward(x) = 0 otherwise.
We set the payoff for double-spending to $1 million, a relatively modest amount
(e.g., the equivalent of 5.6 million dollars in Ethereum Classic had been stolen
from an exchange on August 1, 2020).

In our figures we will consider a maximum total hashing power in the sys-
tem of 18091 mining rigs (each with hashing power 435MH/s), which is the
approximate current hashrate of Ethereum Classic. The probability of mining
success for one rig per second is p = 0.00000435, computed via the current dif-
ficulty of the blockchain. We set network delay ∆ = 100ms and set window size
cutOff = 500 blocks using the deposit and withdrawal confirmation time of the
OKEx exchange for ETC (100 and 400 blocks respectively).

C Details on the Bitcoin RPD Model

We refer to [BGM+18] for the full details. Here we recap the core elements of
the model for the sake of self-containment.

C.1 Ideal Lottery: The State Exchange Functionality FStX

For sake of completeness, we include the state exchange functionality F∆,pH ,pA

StX
as defined in [BMTZ17a]. Here, ∆ is the network delay, pH and pA are the
probabilities for successfully creating a block for each mining attempt—in the flat
model, as is our case, pH = pA = p (which is a protocol parameter that relates
to the difficulty of the blockchain). Roughly, the state exchange functionality
manages a tree structure containing successfully-mined chains (thus eliminating
issues with hash collisions when using hash pointers in the chain), and abstracts
mining with random oracle (RO) queries as coin tosses with probability of success
p. It also manages the multicasting of successfully-mined chains, and allows the
adversary to influence the network via network delay.
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Note that in this hybrid world, defining restrictions on the range of the
allowed number of mining queries in the system is straightforward by introducing
some wrapperWTub

Tlb
that will enforce an upper bound on the queries submit-new

and ensure that the system only advances to the next round if at least Tlb queries
have bee submitted. We refer to [BMTZ17a, GKO+20] for details.

The functionality is parametrized with a set of parties P. Any newly registered
(resp. deregistered) party is added to (resp. deleted from) P. For each party p ∈ P
the functionality manages a tree Tp where each rooted path corresponds to a valid
state the party has received. Initially each tree contains the genesis state. Finally,
it manages a buffer M which contains successfully submitted states which have
not yet been delivered to (some) parties in P. It also manages a buffer Nnet of
adverbially injected chunk messages (that might not correspond to valid states).

Submit/receive new states:

• Upon receiving (submit-new, sid, st, st) from some participant ps ∈ P, if
isvalidstate(st||st) = 1 and st ∈ Tp do the following:
1. Sample B according to a Bernoulli-Distribution with parameter pH (or pA if

ps is dishonest).
2. If B = 1, set stnew ← st||st and add stnew to Tps . Else set stnew ← st.
3. Output (success, sid, B) to ps.
4. On response (continue, sid) where P = {p1, . . . , pn} choose n new unique

message-IDs mid1, . . . ,midn, initialize n new variables
Dmid1 := DMAX

mid1 := . . . := Dmidn := DMAX
midn

:= 1 set
M := M ||(stnew,mid1, Dmid1 , p1)|| . . . ||(stnew,midn, Dmidn , pn), and send
(submit-new, sid, stnew, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

• Upon receiving (fetch-new, sid) from a party p ∈ P or A (on behalf of p), do
the following:
1. For all tuples (st,mid, Dmid, p) ∈M ,Nnet update value Dmid := Dmid − 1.
2. Let Mp

0 denote the subvector of M including all tuples of the form
(st,mid, Dmid, p) where Dmid = 0 (in the same order as they appear in M).
For each tuple (st,mid, Dmid, p) ∈Mp

0 add st to Tp. Delete all entries in
Mp

0 from M and send Mp
0 to p. If p is corrupted, provide additionally Nnet

to the adversary.

• Upon receiving (send, sid, st, p′) from A on behalf some corrupted p ∈ P, if
p′ ∈ P and st ∈ Tp, choose a new unique message-ID mid, initialize D := 1, add
(st,mid, Dmid, p

′) to M , and return (send, sid, st, p′,mid) to A. If st 6∈ Tp,
then conduct the same steps except that (st,mid, Dmid, p

′) is added to Nnet.

Further adversarial influence on the network:

Functionality F∆,pH ,pA
StX
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• Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-IDs
registered in the current message buffers, swap the corresponding tuples in the
buffer. Return (swap, sid) to A.

• Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a
message-ID for a tuple (st,mid, Dmid, p) in a message buffer and
DMAX

mid + T ≤ ∆, set Dmid := Dmid + T and set DMAX
mid := DMAX

mid + T .

C.2 The Weak Bitcoin Ledger for the RPD Framework

For sake of completeness we include the Bitcoin ledger functionality GB
weak-ledger

that allows forks from [BGM+18] and does not enforce many of the other security
relevant features (although consistency is the one we focus on). The ledger has
the following defining features:

State Tree: Instead of storing a single ledger state state, GB
weak-ledger stores a

tree state-tree of state blocks where for each node the direct path from the
root defines a ledger state. The functionality maintains for each registered
party pi ∈ P a pointer pti to a node in the tree which defines the current-
state view of pi which the adversary can set. The pointer of a honest party
can only be set to a node which has a at least the distance to the root of the
current pointer node.

Adding Transactions: Submitted transactions are simply collected in buffer
without any additional check. Transactions in buffer which are added to
state-tree are not removed as they could be reused at an other branch of
state-tree.

Adding Blocks and Forking: The command next-block which allows the
adversary to propose the next block takes additionally a leaf of state-tree
as input which defines where the next block will be added. By default
the next block is added to the longest branch of state-tree. To add the
next block to an intermediate node of state-tree the adversary may use
the command fork which otherwise provides the same functionality as
next-block.

Extend-Policy: The weak extend-policy weakExtendPolicy that is invoked
when the ledger extends one of its branches checks a few simple validity
validity conditions. It takes a state-tree state-tree and pointer pt as in-
put. It first computes a default block Ndf which can be appended at the
longest branch of state-tree without rendering the state invalid. Then it
checks if the proposed blocks (by the adversary) N can be safely appended
at the node pt without violating the validity of the chain. If this is the case it
returns (N , pt). Otherwise it returns the Ndf and a pointer to the leaf of the
longest branch in state-tree. In contrast to strong ledger in [BMTZ17a],
the weak extend-policy does not check if the adversary inserts too many or
too few blocks, does not give guarantees whether old transactions will be
included, and does not enforce a fraction of honest blocks.
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The ledger further obtains time-stamps from a clock functionality. We refer
to [BMTZ17a] for its specification as it is a simple functionality.

General: The functionality is parametrized by four algorithms, Validate,
weakExtendPolicy, Blockify, and predict-time, along with two parameters:
windowSize, Delay ∈ N. The functionality manages variables state-tree, NxtBC,
buffer, and τL, where state-tree is a tree of state blocks. The variables are
initialized as follows: state-tree = gen, NxtBC := ε, buffer := ∅, τL = 0. For each
party pi ∈ P the functionality maintains a pointer pti (initially set to the root of
state-tree) which defines the current-state view statei of pi. The functionality
also keeps track of the timed honest-input sequence in a vector ITH (initially
ITH := ε).

Party Management: The functionality maintains the set of registered parties P,
the (sub-)set of honest parties H ⊆ P, and the (sub-set) of de-synchronized honest
parties PDS ⊂ H (following the definition of de-synchronized of [BMTZ17a]). The
sets P,H,PDS are all initially set to ∅. When a new honest party is registered, if it
is registered with the clock then it is added to the party sets H and P and the
current time of registration is also recorded; if the current time is τL > 0, it is also
added to PDS . Similarly, when a party is deregistered, it is removed from both P
(and therefore also from PDS or H). The ledger maintains the invariant that it is
registered (as a functionality) to the clock whenever H 6= ∅. A party is considered
fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , t)
set τL := t and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been
registered (continuously) since time τ ′ < τL − Delay (to both ledger and clock).
Set PDS := PDS \ P̂. On the other hand, for any synchronized party
p ∈ H \ PDS , if p is not registered to the clock, then PDS ∪ {p}.

2. If I was received from an honest party pi ∈ P:
(a) Set ITH := ITH ||(I, pi, τL);
(b) Evaluate R= ((N pt1 , pt1, . . . , (N ptk

, ptk)) :=
weakExtendPolicy(ITH , state-tree, NxtBC, buffer)

(c) For each pointer pti such that N pti
6= ε add path

Blockify(N pti,1), . . . ,Blockify(N pti,`) to state-tree starting at node pti.
(d) Reset NxtBC := ε.

3. Depending on the above input I and its sender’s ID, GB
weak-ledger executes the

corresponding code from the following list:
• Submiting a transaction:

Functionality GB
weak-ledger
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If I = (submit, sid, tx) and is received from a party pi ∈ P or from A (on
behalf of a corrupted party pi) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)
(b) Set buffer := buffer ∪ {BTX} and send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a fully registered party pi ∈ P return
(read, sid, statei) to the requestor. If the requestor is A then send
(state-tree, buffer,ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party
pi ∈ P and (after updating ITH as above) predict-time(ITH) = τ̂ > τL then
send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, pt, hFlag, (txid1, . . . , txid`)) is sent from the adversary,
update NxtBC as follows:

(a) Check that pt points to a leaf of state-tree and set listOfTxid← ε
(otherwise, ignore command)

(b) For i = 1, . . . , ` do: if there exists
BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then set
listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC[pt] := NxtBC[pt]||(hFlag, listOfTxid) and output
(next-block, ok) to A.

• The adversary proposing a fork:
If I = (fork, pt, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC
as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists
BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then set
listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC[pt] := NxtBC[pt]||(0, listOfTxid) and output (fork, ok)
to A.

• The adversary setting state-slackness:
If I = (set-pointer, (pi1 , p̂ti1 ), . . . , (pi` , p̂ti` )), with
{pi1 , . . . , pi`} ⊆ H \ PDS is received from the adversary A do the following:

(a) If for all j ∈ [`] : p̂tij has greater distance than ptij from the root
state-tree, setptij := p̂tij for every j ∈ [`] and return (set-slack, ok)
to A.

(b) Otherwise set ptij to the leaf with greatest distance from the root of
state-tree.

• The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′

i1 ), . . . , (pi` , state′
i`

)), with
{pi1 , . . . , pi`} ⊆ PDS is received from the adversary A, set
stateij := state′

ij
for each j ∈ [`] and return (desync-state, ok) to A.
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The extend policy for GB
weak-ledger from [BGM+18] is the following:

function weakExtendPolicy(ITH , state-tree, NxtBC, buffer)
Let τL be current ledger time (computed from ITH)
// The function must not have side-effects: Only modify copies of relevant

values.
Create local copies of the values buffer, state-tree, pt and τ state.
// First, create a default honest client block as alternative:
Set ptD to the leaf of the longest branch of state-tree and denote by

stateD the corresponding state.
Set N df ← txcoin-base

minerID of an honest miner
Sort buffer according to time stamps.
Let tx = (tx1, . . . , tx`) be the transactions in buffer
Set st← blockifyB(N df)
repeat

Let tx = (tx1, . . . , tx`) be the current list of (remaining) transactions
for i = 1 to ` do

if ValidTxB(txi, stateD||st) = 1 then
N df ← N df ||txi
Remove txi from tx
Set st← blockifyB(N df)

end if
end for

until N df does not increase anymore
// Now, parse the proposed block by the adversary
// Possibly more than one block should be added, possibly at several places
R← ε // Result variable
for each pt such that NxtBC[pt] 6= ε do

Set state to the state corresponding to pointer pt (i.e., a path in
state-tree)

Parse NxtBC[pt] as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
N pt ← ε // Initialize Result
for each list NxtBCi of transaction IDs do

// Compute the next state block
N i ← ε
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return (N df , ptD)
else

N i ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB(N i)
if ValidTxB(txj , state||sti) = 0 then

return (N df , ptD)

Algorithm weakExtendPolicy for GB
weak-ledger
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end if
N i ← N i||txj

end for
Set sti ← blockifyB(N i)

end if
N pt ← N ||N i

state← state||sti
τ state ← τ state||τL

end for
R← R||(N pt, pt)
Update (the local copy of) state-tree to include the extended

path state
end for
return R

end function
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