A PCP Theorem for Interactive Proofs and Applications

Gal Arnon Alessandro Chiesa Eylon Yogev
gal.arnon@weizmann.ac.il alessandro.chiesa@epfl.ch eylon.yogev@biu.ac.il
Weizmann Institute EPFL Bar-Tlan University

January 17, 2023

Abstract

The celebrated PCP Theorem states that any language in NP can be decided via a verifier that
reads O(1) bits from a polynomially long proof. Interactive oracle proofs (IOP), a generalization
of PCPs, allow the verifier to interact with the prover for multiple rounds while reading a small
number of bits from each prover message. While PCPs are relatively well understood, the power
captured by IOPs (beyond NP) has yet to be fully explored.

We present a generalization of the PCP theorem for interactive languages. We show that
any language decidable by a k(n)-round IP has a k(n)-round public-coin IOP, where the verifier
makes its decision by reading only O(1) bits from each (polynomially long) prover message and
O(1) bits from each of its own (random) messages to the prover.

Our result and the underlying techniques have several applications. We get a new hardness of
approximation result for a stochastic satisfiability problem, we show IOP-to-IOP transformations
that previously were known to hold only for IPs, and we formulate a new notion of PCPs
(index-decodable PCPs) that enables us to obtain a commit-and-prove SNARK in the random
oracle model for nondeterministic computations.

Keywords: interactive proofs; probabilistically checkable proofs; interactive oracle proofs



Contents

1 Introduction
1.1 Mainresults . . . . . . . . .. e e
1.2 A cryptographic application to SNARKs . . . . . ... .. .. ... ... .....
2 Techniques
2.1 Towards transforming IPs to IOPs . . . . . . ... .. ... .. ... .......
2.2 Local access to randomness . . . . . . . . ...
2.3 Index-decodable PCPs . . . . . . . . . . . . . . ...
2.4 Local access to prover messages . . . . . . . .. ..o u e e e e e e
2.5 Constructing index-decodable PCPs . . . . .. ... .. ... ... .. ......
2.6 Commit-and prove SNARKSs from index-decodable PCPs . . . . ... ... ...
2.7 Hardness of approximation . . . . . . . .. ... ... ...
3 Preliminaries
3.1 Relative distance . . . . . . . . . . e
3.2 Relations . . . . . . . ..
3.3 Interactive oracle proofs . . . . . . . ... L Lo
3.4 Round-by-round soundness for IPs . . . . . . ... ... ... ... ........
3.5 Error correcting codes . . . . .. ..o Lo
3.6 PCPs of proximity for nondeterministic computations . . . . .. ... ... ...
3.7 Extractors . . . . . . . . . e e e
4 Index-decodable PCPs
5 Basic construction of an index-decodable PCP from PCPPs
5.1 Building blocks . . . . . .. Lo
5.2 The construction . . . . . . . . . . ...
6 ID-PCPs with constant query complexity over a binary alphabet
6.1 Proof composition preserves index-decodability . . . . . .. ... ... ... ...
6.2 Robustification . . . . . . . ..
7 Transforming IPs into IOPs
7.1 Local access to randomness . . . . . . . . . . . ... ... Lo
7.2 Local access tO prover messages . . . . . . . . . .ot e e et e e
8 Application: commit-and-prove SNARKSs
8.1 Definition . . . . . . . . . e e
8.2 Construction from index-decodable PCPs . . . . . ... ... ... ... ......
8.3 Security . . . . . . e e e
9 Application: hardness of approximation
Acknowledgments
References

IS

10
13
15
17
21
24

26
26
26
26
27
28
28
29

30

32
32
35

40
40
43

47
47
ol

55
%)
96
o7

62

64

64



1 Introduction

Probabilistic proofs play a central role in complexity theory and cryptography. In the past decades,
probabilistic proofs have become powerful and versatile tools in these fields, leading to breakthroughs
in zero-knowledge, delegation of computation, hardness of approximation, and other areas.

As an example, interactive proofs (IPs) |[GMR89| allow proof-verification to be randomized
and interactive, which seemingly confers them much more power than their deterministic (and
non-interactive) counterparts. In a k-round IP, a probabilistic polynomial-time verifier exchanges
k messages with an all-powerful prover and then accepts or rejects; IP[k] is the class of languages
decidable via a k-round interactive proof. Seminal results characterize the power of IPs (IP[poly(n)] =
PSPACE) |[LFKN92; Sha92| and also achieve zero-knowledge |GMR89; GMW91]|.

The development of IPs, in turn, led to probabilistically checkable proofs (PCPs) |[BFLS91;
FGLSS96|, where a probabilistic polynomial-time verifier has query access to a proof string. Here
PCPJr,q] denotes the class of languages decidable by a PCP verifier that uses at most r bits of
randomness and queries at most q bits of the proof string. A line of works culminated in the
PCP Theorem [AS98; ALMSS98|, which can be stated as NP = PCP[O(logn), O(1)]; that is, every
language in NP can be decided, with constant soundness error, by probabilistically examining only a
constant number of bits in a polynomially long proof.

These advances in probabilistic proofs have reshaped theoretical computer science.

Interactive oracle proofs. More recently, researchers formulated interactive oracle proofs (I10Ps)
|IBCS16; RRR16|, a model of probabilistic proof that combines aspects of the IP and PCP models.
A k-round IOP is a k-round IP where the verifier has PCP-like access to each prover message: the
prover and verifier interact for k rounds, and after the interaction the verifier probabilistically reads
a small number of bits from each prover message and decides to accept or reject based on the
examined locations. The randomness used in the final phase is called decision randomness (which we
distinguish from the random messages that the verifier sends to the prover during the interaction).
Recent work has constructed highly-efficient IOPs [BCGV16; Ben+17; BCGRS17; BBHRI1S;
BCGGHJ17; BCRSVW19; BCGGRS19; BBHR19; BGKS20; COS20; RR20; BCG20; BCL20; BN21]|.
While the shortest PCPs known to date have quasi-linear length |[BS08; Din07|, IOPs can achieve
linear proof length and fast provers. These developments are at the heart of recent constructions of
non-interactive succinct arguments (SNARGs), and have facilitated their deployment in numerous
real-world systems. IOPs are also used to construct IPs for delegating computation [RRR16]|.

I0OPs beyond NP? Most research regarding IOPs has focused on understanding IOPs for languages
in NP (and more generally various forms of non-deterministic computations) while using the additional
rounds of interaction to achieve better efficiency compared to PCPs for those languages.

However, the power of IOPs for languages beyond NP is not well understood. We do know that
IPs can express all languages in PSPACE for sufficiently large round complexity |[LFKN92; Sha92|;
moreover more rounds lead to more languages because, under plausible complexity assumptions, it
holds that IP[k] Z IP[o(k)] (while restricting to polynomial communication complexity) [GVWO02|.
But what can we say about the power of IOPs with small query complezity (over the binary alphabet)??
Not much is known about the power of general k-round IOPs, which leads us to ask:

What languages have a k-round IOP where the verifier decides
by reading O(1) bits from each prover message and from each verifier message?

!An IP is an IOP where the verifier has large query complexity over the binary alphabet.



1.1 Main results

We answer the above question by showing that (informally) the power of IOPs with k rounds where
the verifier reads O(1) bits from each communication round (both prover and verifier messages)
is the same as if the verifier reads the entire protocol transcript (as in an IP). This can be seen
as extending the PCP Theorem to interactive proofs, interpreted as “you can be convinced by a
conversation while barely listening (even to yourself)”.

To achieve this, our main result is a transformation from IPs to IOPs: we transform any IP
into a corresponding IOP where the verifier reads O(1) bits from each communication round and
uses a total of O(logn) bits of decision randomness.? The round complexity is preserved, and other
parameters are preserved up to polynomial factors. (A round is a verifier message followed by a
prover message; after the interaction, the verifier’s decision is probabilistic.)

Theorem 1 (IP — IOP). Let L be a language with a public-coin IP with k rounds and constant
soundness error. Then L has an IOP with k rounds, constant soundness error, where the verifier
decides by using O(logn) bits of decision randomness and reading O(1) bits from each prover message
and each verifier message. All other parameters are polynomially related.

Prior work on IOPs beyond NP. The PCP Theorem can be viewed as a “half-round” IOP with
query complexity O(1) and decision randomness O(logn) for NP. For languages above NP, prior
works imply certain facts about k-round IOPs for extreme settings of k.

e For languages that have a public-coin IP with k = 1 round (a verifier message followed by a
prover message), Drucker [Drulla| proves a hardness of approximation result in the terminology
of CSPs. His result can be re-interpreted showing that these languages have a one-round IOP
where the verifier reads O(1) bits from each message and decides (using O(logn) bits of decision
randomness). However, Drucker’s result does not extend to arbitrary many rounds.?

e When k can be polynomially large, we observe that constant-query IOPs for PSPACE can be
obtained from [CFLS95; CFLS97|,* which in turn provides such an IOP for every language having
an IP. Other analogues of PCP have been given (e.g., [HRT07| applies to the polynomial hierarchy,
|Drullb| is also for PSPACE) but they do not seem to translate to IOPs.

e For general k, one can use the fact that AM[k] C NEXP, and obtain a PCP where the prover
sends a single exponentially-long message from which the (polynomial-time) verifier reads O(1)
bits. However, this does not help if we require the prover to send messages of polynomial length.

See Figure 1 for a table summarizing these results and ours.

1.1.1 Hardness of approximation for stochastic satisfiability

We use Theorem 1 to prove the hardness of approximating the value of an instance of the stochastic
satisfiability (SSAT) problem, which we now informally define.

SSAT is a variant of TQBF (true quantified boolean formulas) where the formula is in 3CNF and
the variables are quantified by alternating existential quantifiers and random quantifiers (the value

2After the interaction, the verifier uses O(logn) random bits to decide which locations to read from all k rounds.

3Round reduction [BM88| can reduce the number of rounds from any k to 1 with a blow-up in communication that
is exponential in k. This does not work when k is super constant; see Section 2.2.3 for further discussion.

4Their result shows that PSPACE has what is known as a probabilistically checkable debate system. In their system,
one prover plays a uniform random strategy. Thus one can naturally translate the debate system into an IOP.



complexity model proof alphabet query round

class length complexity complexity

|IBGHSVO05| NEXP PCP  exp(|x]|) {0,1} 0(1) 1

|CFLS97| PSPACE IOP  poly(|x|) {0,1} o(1) poly(|x|)
implied by [BGHSVO05| AMIK] PCP  exp(|x]|) {0,1} o(1) 1
[Bab85; GMR89) AM[K] P k {0, 1}Po(=D 1 per round k
[this work] AM[K] IOP  poly(|x|) {0,1} O(1) per round k
[Drulla] AM IOP  poly(|x|) {0,1} 0(1) 1
|[ALMSS98; AS98| NP PCP  poly(]x]) {0,1} o(1) 1

Figure 1: Classes captured by different types of probabilistic proofs (in the regime of constant soundness
error). Here, x denotes the instance whose membership in the language the verifier is deciding. Here, AM
stands for two-message public-coin protocols (a verifier random message followed by a prover message),
and AMJk] is a k-round public-coin protocol.

of the quantified variable is chosen uniformly at random). A formula ¢ is in the language SSAT
if the probability that there is a setting of the existential variables that cause ¢ to be satisfied is
greater than 1/2. The value of an SSAT instance ¢ is the expected number of satisfied clauses in ¢ if
the existential variables are chosen to maximize the number of satisfied clauses in ¢. We denote by
k-SSAT the SSAT problem when there are k alternations between existential and random quantifiers.

SSAT can be viewed as a restricted “game against nature” |Pap83| where all parties are binary,
and “nature’s” moves are made uniformly at random. Variations of SSAT are related to areas of
research in artificial intelligence, specifically planning and reasoning under uncertainty [LMPO1].
Previous research on SSAT has studied complexity-theoretical aspects | CFLS97; Drulla; Dru20| and
SAT-solvers for it (e.g., [LMPO1; Majo7; LWJ17]).

Our result on the hardness of approximation for k-SSAT is as follows.

Theorem 2. For every k, it is AM[K]-complete to distinguish whether a k-SSAT instance has value
1

1 or value at most 1 — oW

We compare Theorem 2 with prior ones about k-SSAT. For k = 1, our result matches that
of [Drullal who showed that the value of 1-SSAT is AM[1]-hard to approximate up to a constant
factor. Condon, Feigenbaum, Lund, and Shor |[CFLS97| show that there exists a constant ¢ > 1
such that for every language L in IP = PSPACE, one can reduce an instance x to a poly(|x|)-SSAT
instance ¢ such that if x € L then the value of ¢ is 1, and otherwise the value of ¢ is 1/c. The
approaches used in both prior works do not seem to extend to other values of k.

This state of affairs motives the following natural question:

How hard is it to approzimate the value of k-SSAT to a constant factor independent of k?

While PCPs have well-known applications to the hardness of approximation of numerous NP
problems, no similar connection between IOPs and hardness of approximation was known. (Indeed,
this possibility was raised as an open problem in prior work.) The works of Drucker |Drulla]
and Condon et al. [CFLS97| can be reinterpreted as giving such results for stochastic satisfiability
problems. In this paper we make this connection explicit and extend their results.



1.1.2 Transformations for IOPs

We obtain IOP analogues of classical IP theorems, as a corollary of Theorem 1. We show IOP-to-IOP
transformations, with small query complexity, and achieve classical results that were known for IPs,
including: a private-coin to public-coin transformation (in the style of [GS86]); a round reduction
technique (in the style of [BM88|); and a method to obtain perfect completeness (in the style of
[FGMSZ89]). A graphic of this corollary is displayed in Figure 2.

Corollary 1. Let L be a language with a k-round IOP with polynomial proof length over a binary
alphabet. Then the following holds:

1. private-coins to public-coins: L has a O(k)-round public-coin 10P;
2. round reduction: for every constant ¢ < k, L has a k/c-round I0P;
3. perfect completeness: L has a perfectly complete k-round IOP.

All resulting IOPs have polynomial proof length and O(1) per-round query complexity over a binary
alphabet; all other parameters are polynomially related to the original IOP.

Similar to the case with IPs, one can combine these transformations to get all properties at once.
In particular, one can transform any IOP to be public-coin and have perfect completeness while
preserving the round complexity.

private coin public-coin public-coin
[OP — |GS86| —— P —— Theorem 1 — 1OP
k-round k/c-round k/c-round
BMS88| —— e ore —
1OP | | P Theorem 1 0P
imperfectly perfectly perfectly
complete — [FGMSZ89] —— complete Theorem 1 — complete
10P 1P 10P

Figure 2: Corollary 1 provides IOP analogues of classical IP theorems.

1.2 A cryptographic application to SNARKSs

A building block that underlies Theorem 1 is a new notion of PCP that we call indez-decodable PCPs.
We informally describe this object in Section 1.2.1 below (and postpone the definition and a
comparison with other PCP notions to Section 2.3). Moreover, we prove that index-decodable
PCPs are a useful tool beyond the aforementioned application to Theorem 1, by establishing a
generic transformation from index-decodable PCPs to commit-and-prove SNARKs. We discuss these
SNARKs and our result in Section 1.2.2 below (and postpone further discussion to Section 2.6).

1.2.1 Index-decodable PCPs

An index-decodable PCP can be seen as a PCP on maliciously encoded data. The prover wishes to
convince the verifier about a statement that involves k data segments 1[1], ..., 1[k] and an instance x,



for example, that it knows a witness w such that (i[1],...,1[k],x, w) € R for some relation R. The
prover outputs a PCP string II for this statement. The verifier receives as input only the instance
x, and is given query access to an encoding of each data segment i[i] and query access to the PCP
string II. This means that the verifier has query access to a total of k 4+ 1 oracles.

The definition of an index-decodable PCP, to be useful, needs to take into account several delicate
points (which, in fact, are crucial for our proof of Theorem 1).

First, the encoding of each data segment must be computed independently of other data segments
and even the instance. (Though the PCP string II can depend on all data segments and the instance.)

Second, the verifier is not guaranteed that the k data oracles are valid encodings, in the sense
that “security” is required to hold even against malicious provers that have full control of all k 4 1
oracles (not just the PCP string oracle). In other words, we wish to formulate a security notion that
is meaningful even for data that has been maliciously encoded.

The security notion that we use is decodability. Informally, we require that if the verifier accepts
with high-enough probability a given set of (possibly malicious) data oracles and PCP string, then
each data oracle can be individually decoded into a data segment and the PCP string can be decoded
into a witness such that, collectively, all the data segments, the instance, and the witness form a
true statement. We stress that the decoder algorithms must run on each data oracle separately from
other data oracles and the instance (similarly as the encoder).

1.2.2 Commit-and-prove SNARKSs

A commit-and-prove SNARK (CaP-SNARK) is a SNARK that enables proving statements about
previously committed data, and commitments can be reused across different statements. CaP-
SNARKSs have been studied in a line of work |[EG14; CFHKKNPZ15; Lip17; CFQ19; BCFKLOQ21|,
where constructions have been achieved assuming specific computational assumptions (e.g., knowledge
of exponent assumptions) and usually with the added property of zero-knowledge.

We show how to use index-decodable PCPs to unconditionally achieve CaP-SNARKSs in the
random oracle model (ROM);? in more detail we need the index-decodable PCP to have efficient

indexing/decoding and certain proximity properties. Our transformation can be seen as an index-
decodable PCP analogue of the Micali construction of SNARKSs in the ROM from PCPs [Mic00].

Theorem 3. There is a transformation that takes as input an index-decodable PCP (that has an
efficient indezer and decoder and satisfies certain proximity properties) for a relation R with proof
length | and query complezity q, and outputs a CaP-SNARK in the ROM for R with argument size
Ox(q -logl). (Here X is the output size of the random oracle.)

We obtain a concrete construction of a CaP-SNARK in the ROM (for nondeterministic computa-
tions) by applying the above theorem to our construction of an index-decodable PCP system.

We conclude by noting that the ROM supports several well-known constructions of succinct
arguments that can be heuristically instantiated via lightweight cryptographic hash functions, are
plausibly post-quantum secure [CMS19], and have led to realizations that are useful in practice. It
is plausible that our construction can be shown to have these benefits as well — we leave this, and
constructing zero-knowledge CaP-SNARKSs in the ROM, to future work.

Remark 1.1. Ishai and Weiss [IW14| apply PCPs of proximity with zero-knowledge to achieve
a notion that is a relaxation of a CaP-SNARK that additionally satisfies a hiding property. A

°In this model, all parties (honest and malicious) receive query access to the same random function.



CaP-SNARK enables proving statements on committed data without decommitting to the data; in
contrast, for the construction in [TW14| the validity of statements can be verified only when the
commitment is opened. Nevertheless, the construction in [IW14| achieves a hiding property, whereas
we do not consider any hiding properties.



2 Techniques

We summarize the main ideas underlying our results.

We begin by discussing the question of transforming IPs to IOPs. In Section 2.1, we describe
a solution in |Drullal that works for a single round and explain why it is challenging to extend it
for multiple rounds. Then, we describe our transformation for many rounds in two steps. First, in
Section 2.2, we describe how to make a verifier query each of its random messages at few locations.
Next, in Section 2.3, we define our new notion of index-decodable PCPs and, in Section 2.4, describe
how to use these to make the verifier query each prover message at few locations (without affecting the
first step). In Section 2.5, we explain how to construct index-decodable PCPs with good parameters.

We conclude by describing applications of our results and constructions: (i) in Section 2.6, we
construct commit-and-prove SNARKSs in the random oracle model from index-decodable PCPs; and
(ii) in Section 2.7, we show that Theorem 1 has implications on the hardness of approximating the
value of certain stochastic problems.

Throughout, we call interaction randomness (or verifier random messages) the randomness sent
by the verifier to the prover during the interaction, and decision randomness the randomness used
by the verifier in the post-interaction decision stage.

2.1 Towards transforming IPs to IOPs

We discuss the problem of transforming IPs into IOPs. We begin by describing a solution in [Drullal
that transforms a single-round IP into a single-round IOP. Following that, we describe the challenges
of extending this approach to work for multi-round IPs.

2.1.1 The case of a single-round IP

The case of a single-round was settled by Drucker |[Drullal, whose work implies a transformation
from a public-coin single-round IP to a single-round IOP where the verifier reads O(1) bits from
the communication transcript (here consisting of the prover message and the verifier message). His
construction uses as building blocks the randomness-efficient amplification technique of [BGG90| and
PCPs of prozimity (PCPPs) [DR04; BGHSV06].° We give a high-level overview of his construction.
In a public-coin single-round IP, given a common input instance x, the verifier V| sends
randomness p, the prover P sends a message a, and the verifier V|, decides whether to accept by
applying a predicate to (x, p,a). Consider the non-deterministic machine M such that M (x,p) =1
if and only if there exists a such that Vi, accepts (x, p,a). The constructed IOP works as follows:

1. the IOP verifier sends Vp’s randomness p;
2. the IOP prover computes Pp’s message a and produces a PCPP string II for the claim “M (x, p) =
177;

3. the IOP verifier checks II using the PCPP verifier with explicit inputs M and x and implicit
input p.

This IOP is sound if the underlying IP is ‘randomness-robust”, which means that if x is not in
the language then with high probability over p it holds that p is far from any accepting input for

SA PCPP is a PCP system where the verifier has oracle access to its input in addition to the prover’s proof; the
soundness guarantee is that if the input is far (in Hamming distance) from any input in the language, then the verifier
accepts with small probability.



M (x, ). Drucker achieves this property by using an amplification technique in [BGG90| that achieves
soundness error 27171 while using O(|p|) random bits (standard amplification would, when starting
with a constant-soundness protocol, result in w(|p|) random bits). Thus, with high probability, p is
not only a “good” random string (which holds for any single-round IP) but also is §-far from any
“bad” random string, for some small constant § > 0. This follows since the ball of radius § around
any bad random string has size 2°'?1, for some small constant &’ that depends only on 4.

2.1.2 Challenges of extending the single-round approach to multi-round IPs

We wish to obtain a similarly efficient transformation for a public-coin k-round IP where k = poly(n).

One possible approach would be to reduce the number of rounds of the given IP from k to 1 and
then apply the transformation for single-round IPs. The round reduction of Babai and Moran |[BM88|
shows that any public-coin k-round IP can be transformed into a one-round IP where efficiency
parameters grow by n9®) | This transformation, however, is not efficient for super-constant values of
k. Moreover, it is undesirable even when k is constant because the transformation overhead is not a
fixed polynomial (the exponent depends on k rather than being a fixed constant).

Therefore, we seek an approach that directly applies to a multi-round IP. Unfortunately, Drucker’s
approach for one-round IPs does not generalize to multiple-round IPs for several reasons. First, the
corresponding machine M (x, p1,...,px) (which accepts if and only if there exist prover messages
ai,...,ax such that Vi accepts (x, p1,ai,..., pk, ax)) does not capture the soundness of the inter-
active proof because it fails to capture interaction (a protocol may be sound according to the IP
definition and, yet, for every x and p1, ..., pk it could be that M (x, p1,...,pk) = 1). Moreover, it is
not clear how to perform a randomness-efficient amplification for multiple rounds that makes the
protocol sufficiently “randomness robust” for the use of a PCPP. The main reason is that to get
soundness error 2~ (as in |Drullal), the techniques of [BGG90| add O(m) bits per round, which is
too much when the protocol has many rounds (see Section 2.2.3 for a more detailed discussion on
why this approach fails for many rounds).

We give a different solution that circumvents this step and works for any number of rounds. Our
transformation from k-round IP to an IOP in two stages. In the first stage, we transform the IP into
one in which the verifier reads only O(1) bits from each random message it sends. In the second
stage, we transform the IP into an IOP with O(1) per-round query complexity, simultaneously for
each prover message and each verifier message. We achieve this via a new notion of PCPs that we
call index-decodable PCPs, and we describe in Section 2.3. First, we explain how to achieve the
property that the verifier reads O(1) bits from each of its random messages to the prover.

2.2 Local access to randomness

We transform a public-coin IP (Pp, Vip) into an IP (P}, V|,) whose verifier (i) reads O(1) bits
from each of its random messages to the prover, and (ii) has logarithmic decision randomness (the
randomness used by the verifier in the post-interaction decision stage). For now, the verifier reads
in full every message received from the prover, and only later we discuss how to reduce the query
complexity to prover messages while preserving the query complexity to the verifier random messages.

2.2.1 Omne-round public-coin proofs

In order to describe our ideas we begin with the simple case of one-round public-coin interactive
proofs. Recall from Section 2.1 that this case is solved in [Drullal, but we nevertheless first describe

10



our alternative approach for this case and after that we will discuss the multiple-round case.

A strawman protocol. Recall that in a one-round public-coin IP the verifier sends a uniformly
random message, the prover replies with some answer, and the verifier uses both of these messages
to decide whether to accept. An idea to allow the verifier to not read in full its own random message
would be for the prover to send the received random message back to the verifier, and the verifier to
use this latter and test consistency with its own randomness. Given an instance x: V|, sends Vp's
random message p € {0,1}"; P/, replies with p' := p and the message a := Pp(x, p); and V|, checks
that p and p’ agree on a random location and that Vp(x, p/,a) = 1.

This new IP is complete, and its verifier queries its random message at one location to conduct
the consistency test. However, the protocol might not be sound, as we explain. Suppose that x ¢ L.
Let r be the length of p, 8 be the soundness error of the original IP, § € (0,1) be a small constant
to be specified later, and let v, 5 be the volume of the Hamming sphere of radius r- ¢ in {0,1}". A
choice of verifier message p is bad if there exists a such that Vip(x, p,a) = 1. By the soundness
guarantee of Vp, the fraction of bad choices of random verifier messages is at most 8. A choice of
verifier message p is ball-bad if there exist a bad p’ that is d-close to p. By the union bound, the
fraction of ball-bad coins is at most v = 3 - v 5.

Let E be the event over the choice of p that the prover sends p’ that is -far from p.

e Conditioned on E occurring, V|, rejects with probability at least 6 (whenever V|, chooses a location
on which p and p’ disagree).

e Conditioned on E not occurring, P, cannot send any p’ and a such that Vip(x, p’,a) = 1 unless p
is ball-bad, and so V7, rejects with probability at least 1 — ~.

Therefore, for the new IP to be sound, we need v = - v, 5 to be small. Notice that v, s = QH(é)-r

depends on r but not on 3 (here H is the entropy function H () := —dlogd — (1 — d)log(1l — 9)).

Thus we need to achieve log1/8 > H(J) - r. As in Drucker’s transformation, this can be done using

the randomness-efficient soundness amplification of [BGGI0|, but we deliberately take a different

approach that will generalize for multiple rounds.

Shrinking « using extractors. Let Ext be an extractor with output length r, seed length
O(logr+log1/8), and error 3; such extractors are constructed in [GUV09|. Assume that 8 = 1/0(r),
which can be achieved using O(log r) parallel repetitions, and so the seed length is O(log 1/3). Suppose
that the prover and verifier have access to a sample 2z from a source D with high min-entropy. Consider
the following IP: V|, sends s; Py, replies with s’ := s and a := Pp(x, Ext(z,s")); V|, checks that s
and s’ agree on a random location and that Vp(x, Ext(z,s'),a) = 1.

At most a 25-fraction of the seeds s are such that there exists a such that Vp(x, Ext(z, s),a) = 1,
because Ext is an extractor with error 5 and D is a distribution with high min-entropy. By an identical
argument to the one done previously, either P/, sends s’ that is far from s and so V|, rejects with
constant probability, or V|, rejects with probability at least v = 25 - vy s where r' = |s| = O(log 1/0).
Thus we have that vy = 2 - 2H(9)000g1/8) e can now set § to be a small enough constant such
that v = O(v/D).

Generating a source of high min-entropy. We describe how the prover and verifier can agree
on a sample from a high-entropy source by leveraging the following observation: if z is a uniformly
random string and 2’ is an arbitrary string that is close in Hamming distance to z, then z’ has high
min-entropy. Thus we can sample via similar ideas as above: V|, samples and sends z; P}, replies
with 2z’ := z; and V|, checks that z and 2’ agree on a random location. (So V|, reads one bit of its

A function Ext: {0,1}™ x {0,1}% — {0,1}™ is a (k, €)-extractor if, for every random variable X over {0,1}" with
min-entropy at least k, the statistical distance between Ext(X,Uq) and U, is at most ¢.

11



random message z.) If, with constant probability over z, Pj, sends 2’ that is far from z, then V|,
rejects with constant probability. Otherwise, we show that 2z’ has high min-entropy because with
high probability it agrees with z on most of its locations.

Putting it all together. Let (Pp, Vip) be a public-coin single-round IP with soundness error
B and randomness complexity r, and let Ext be an extractor with output length r, seed length
O(log1/B), and error . The new IP (Pj,, V},) is as follows.

Sample high min-entropy source: V|, sends z and P, replies with 2’ := 2.

Sample extractor seed: V|, sends s and P/, replies with s’ := s.

Prover message: P|, sends a := Pp(x, Ext(Z/, s')).

Verification: V|, checks that z and 2z’ agree on a random location, s and s’ agree on a random
location, and Vp(x, Ext(z/,s),a) = 1.

2.2.2 Extending to multiple rounds

In order to extend the previously described protocol to multiple rounds, we leverage the notion
of round-by-round soundness. An IP for a language L has round-by-round soundness error f,,, if
there exists a “state” function such that: (i) for x ¢ L, the starting state is “doomed”; (ii) for every
doomed state and next message that a malicious prover might send, with probability 3., over the
verifier’s next message, the protocol state will remain doomed; (iii) if at the end of interaction the
state is doomed then the verifier rejects.

In the analysis of the one-round case there was an event (called bad) over the IP verifier’s random
message p such that if this event does not occur then the prover has no accepting strategy. This
event can be replaced, in the round-by-round case, by the event that, in a given round, the verifier
chooses randomness where the transcript remains doomed. This idea leads to a natural extension of
the one-round protocol described in Section 2.2.1 to the multi-round case, which is our final protocol.

Let (Pp, Vip) be a public-coin k-round IP with round-by-round soundness error 3,,, and random-
ness complexity r, and Ext an extractor with output length r, seed length O(log1/8,.,.), and error

/Brbr-

e For each round j € [k] of the original IP:
1. Sample high min-entropy source: Vi, sends z; and Pj, replies with 2 := z;.
2. Sample extractor seed: Vi, sends s; and Pj, replies with s := s;.
3. Prover message: P|, sends a; := Pp(x, p1,. .., p;) where p; := Ext(z;, s;).
e V|, accepts if and only if the following tests pass:
1. Choose a random location and, for every j € [k], test that z; and 2, agree on this location.
2. Choose a random location and, for every j € [k], test that s; and s’ agree on this location.

J

3. For every j € [k, compute p; := Ext(2}, s}). Check that Vie(x, p1,a1,..., pk,ak) = 1.

S~~~

The soundness analysis of this protocol is similar to the one-round case. Suppose that x ¢ L.
Then the empty transcript is “doomed”. By an analysis similar to the one-round case, except where
we set “bad” verifier messages to be ones where the transcript state switches from doomed to not
doomed, if a round begins with a doomed transcript then except with probability v = O(y/B.:)
the transcript in the next round is also doomed. Thus, by a union bound, the probability that the
transcript ends up doomed, and as a result the verifier rejects, is at least 1 — O(k - /Bp,). As shown
in [CCHLRR18| round-by-round soundness error can be reduced via parallel repetition, albeit at a
lower rate than regular soundness error. Thus, by doing enough parallel repetition before applying

12



our transformation, the round-by-round soundness error ... can be reduced enough so that the
verifier rejects with constant probability.

The above protocol has 2k rounds. The verifier reads 1 bit from each of its random messages,
and has O(log|x|) bits of decision randomness (to sample random locations for testing consistency
between each z;. and z; and between each 39 and s;). To achieve kj rounds, we first apply the round
reduction of [BM88| on the original IP to reduce to kjp/2 rounds, and then apply our transformation.

2.2.3 Why randomness-efficient soundness amplification is insufficient

We briefly sketch why applying randomness-efficient soundness amplification in the style of [BGG90|
is insufficient in the multi-round case, even if we were to consider round-by-round soundness. Recall
that we wish for f3,,, - 29(1) 6 be small, where f3,,, is the round-by-round soundness of the protocol
and r is the number of random bits sent by the verifier in a single round. Bellare, Goldreich and
Goldwasser [BGGI0| show that, starting with constant soundness and randomness r, one can achieve
soundness error 2~ using r' = O(r + m) random bits; they do this via m parallel repetitions where
the randomness between repetitions is shared in a clever way. Using parallel repetition, achieving
round-by-round soundness error 27" requires m/k repetitions (see [CCHLRR18|). Thus, even if
we were to show that the transformation of |[BGG90| reduces round-by-round soundness error at
the same rate as standard parallel repetition (as it does for standard soundness), in order to get
round-by-round soundness error 2™, we would need r' = O(r + m - k) bits of randomness. This
would achieve B, - 20(") = 9=m . 20(r+mk) which, for super-constant values of k, is greater than 1
regardless of r.

2.3 Index-decodable PCPs

We introduce index-decodable PCPs, a notion of PCP that works on multi-indexed relations. A
multi-indexed relation R is a set of tuples (1[1],...,1[k],x, w) where (1[1],...,1[k]) is the index
vector, x the instance, and w the witness. As seen in the following definition, an index-decodable
PCP treats the index vector (1[1],...,1[k]) and the instance x differently, which is why they are not
“merged” into an instance x’ = (i[1],...,1[k],x) (and why we do not consider standard relations).

Definition 1. An index-decodable PCP for a multi-indezed relation R = { (1[1],...,1[k],x, w) }
is a tuple of algorithms (Ipcp, Ppcp, Ve, 1IDpcp, WDpep), where Iocp is the (honest) indexer, Ppcp the
(honest) prover, Vecp the verifier, iDpcp the index decoder, and wDpcp the witness decoder. The
system has (perfect completeness and) decodability bound kpcp if the following conditions hold.

e Completeness. For every (i[1],...,1k],x,w) € R,
1 — Ipcp(ﬂ[l])
Pr | Vi ™l (x; p) = 3 =1.
p

e = Locp (i[K])
I < Pocp(i[1], - .., 1[K], x, w)

e Decodability. For every x, indezer proofs 1, ..., 7k, and malicious prover proof I, if

Pr| Vil ™ (axip) = 1| > roeo((x)
then (iDpcp(ﬁ'l), ey iDpcp(frk), X, WDpcp (ﬁ)) € R

13



The indexer Iycp separately encodes each index, independent of indices and the instance, to
obtain a corresponding indexer proof. The prover Ppep gets all the data as input (index vector,
instance, and witness) and outputs a prover proof. The verifier Vpep gets the instance as input and
has query access to k + 1 oracles (k indexer proofs and 1 prover proof), and outputs a bit.

The decodability condition warrants some discussion. The usual soundness condition of a PCP for
a standard relation R has the following form: “if VIL (x) accepts with high-enough probability then
there exists a witness w such that (x,w) € R”. For a multi-indexed relation it could be that for any
given instance x there exist indexes a[1],...,1[k] and a witness w such that (i[1],...,1[k],x, w) € R.
Since we do not trust the indexer’s outputs, a soundness condition is not meaningful.

Instead, the decodability condition that we consider has the following form: “if V,’fgg“ffk’“ (x)
accepts with high-enough probability then (i[1],...,1[k],x, w) € R where 1[1],...,1[k] and w are
the decoded indices and witness respectively found in 71, ..., 7k and II”. It is crucial that the index
decoder receives as input the relevant indexer proof but not also the instance, or else the decodability
condition would be trivially satisfied (the index decoder could output the relevant index of the
lexicographically first index vector putting the instance in the relation). This ensures that the proofs
collectively convince the verifier not only that there exists an index vector and witness that place
the instance in the relation, but that the prover encoded a witness that, along with index vector
obtainable from the index oracles via the index decoder, places the instance in the relation.

We do not require the indexer or the decoders to be efficient. However, in some applications, it
is useful to have an efficient indexer and decoders, and indeed we construct an index-decodable PCP
with an efficient indexer and decoders.

Remark 2.1 (comparison with holography). We compare index-decodable PCPs and holographic
PCPs, which also work for indexed relations (see [CHMMVW20| and references therein). In both
cases, an indexer produces an encoding of the index (independent of the instance). However, there
are key differences between the two: (i) in an index-decodable PCP the indexer works separately on
each entry of the index vector, while in a holographic PCP there is a single index; moreover, (ii) in a
holographic PCP the indexer is trusted in the sense that security is required to hold only when the
verifier has oracle access to the honest indexer’s output, but in an index-decodable PCP, the indexer
is not trusted in the sense that the malicious prover can choose encodings for all of the indices.
Both differences are essential properties for our transformation of IPs into IOPs.

We construct a binary index-decodable PCPs with O(1) query complexity per oracle.

Theorem 4. Any multi-indexed relation R = {(i[1],...,1[k],x, w)} to which membership can be
verified in nondeterministic time T has a non-adaptive index-decodable PCP with the following
parameters:

14



Index-Decodable PCP for (i[1],...,ilk],x,w) € R
Indexer proof length (per proof) O(|i[i]])
Prover proof length poly(T)
Alphabet size 2
Queries per oracle 0O(1)
Randomness O(log |x|)
Decodability bound o(1)
Indexer running time O(|i[i]])
Prover running time poly(T)
Verifier running time poly(|x|, k,logT)
Index decoding running O(|i[i])
Witness decoding time poly(T)

Our construction achieves optimal parameters similar to the PCP theorem: it has O(1) query
complexity (per oracle) over a binary alphabet, and the randomness complexity is logarithmic,
independent of the number of indexes k. Achieving small randomness complexity is challenging and
useful. First, it facilitates proof composition (where a prover writes a proof for every possible random
string), which is common when constructing zero-knowledge PCPs (e.g., [IW14]). Second, small
randomness complexity is necessary for our hardness of approximation results (see Section 2.7).

A similar notion is (implicitly) considered in [ALMSS98| but their construction does not achieve
the parameters we obtain in Theorem 4 (most crucially, they do not achieve small randomness).

2.4 Local access to prover messages

We show how to transform an IP into an IOP by eliminating the need of the verifier to read more
than a few bits of each prover message. This transformation preserves the number of bits read by
the verifier to its own interaction randomness. Thus, combining it with the transformation described
in Section 2.2, this completes the proof (overview) of Theorem 1.

We transform any public-coin IP into an IOP by using an index-decodable PCP. In a public-coin
k-round IP, the prover P\, and verifier Vp receive as input an instance x and then, in each round 7, the

verifier Vp sends randomness p; and the prover replies with a message a; < Ppp(x, p1, ..., p;); after
the interaction, the verifier Vp runs an efficient probabilistic algorithm with decision randomness py.
on the transcript (x, p1,a1, ..., pk, ak) to decide whether to accept or reject.

The IP verifier Vi defines a multi-indexed relation R(V ) consisting of tuples

(]'1[1], . .,ﬁ[k],x’,w) = (al, cee, Qi (X,pl,...,pk,pdc),J_)

such that the IP verifier Vp accepts the instance x, transcript (p1,a1,-.., pk, ak), and decision
randomness py.. (Here we do not rely on witnesses although the definition of index-decodable PCPs
supports this.)

From IP to IOP. Let (Ipcp, Ppcp, Vicp, iDpep, WDpep) be an index-decodable PCP for the relation
R(Vp). We construct the IOP as follows. The IOP prover and IOP verifier receive an instance x.
In round 7 € [k|, the IOP verifier sends randomness p; (just like the IP verifier Vi) and the (honest)
IOP prover sends the indexer proof 7; := Ipcp(a;) where a; — Pp(x, p1,...,pi). In a final additional
message (which can be sent at the same time as the last indexer proof 7y ), the IOP prover sends IT :=
{I1,,. } ps. Where, for every possible choice of decision randomness pq, Il is an index-decodable PCP

15



prover proof to the fact that (al, ey, (X, 0144y PR Pae) s J_) € R(Vp). After the interaction, the

IOP verifier samples IP decision randomness py. and checks that V::rcl,;""ﬁk’n” de (x, Pls -y Pks Pdc) =1.

Proof sketch. Completeness follows straightforwardly from the construction. We now sketch a proof
of soundness. Letting L be the language decided by (Pp, Vip), fix an instance x ¢ L and a malicious

IOP prover Por. Given interaction randomness P1,---, Pk, consider the messages 71, ..., T output
by Piop in the relevant rounds (7; depends on p1, ..., p;) and the message II = {f‘[Pdc}Pdc output by
Por in the last round (this message depends on p1, ..., pk). We consider two complementary options
of events over the IOP verifier’s randomness (p1, .. ., Pk, Puc)-

1. With high probability the proofs 7y, ..., 7 and pr .. generated while interacting with Pop using
randomness p1, ..., px and py are such that

(iDPCP(ﬁ-l)a e 7iDPCP(ﬁ-k)a (X7 pla e 7pk7 pdc)v J—) ¢ R(VIP) .

If this is true, then, by the decodability property of the index-decodable PCP, the IOP verifier
must reject with high probability over the choice of randomness for Vpcp.

2. With high probability the proofs 71, ..., T and l:Ip .. generated while interacting with Pop using
randomness p1, ..., px and pg are such that

(iDPCP(ﬁ-l)a s 7iDPCP(ﬁ-k)a (Xa PLy- -5 Pk pdc)a J—) € R(VIP) .

We prove that this case cannot occur by showing that it contradicts the soundness of the original
IP. Suppose towards contradiction that the above is true. We use P op and the index decoder of
the index-decodable PCP, iDpcp, to construct a malicious IP prover for the original IP as follows.

In round 4, the transcript (p1,a1,...,pi—1,a;—1) has already been set during previous interaction.
The IP verifier sends randomness p;. The IP prover sends a; := iDpep(7;) to the IP verifier,
where 7; := Piop(p1, - . ., pi). Recall that (Decp(71), .- -, Dpcr(Fk), (X, p1, - -« Pks pac)s L) € R(Vip)
if and only if the IP verifier accepts given instance x, randomness (p1, ..., pk, Puac), and prover
messages Dpcp(71), .. ., Dpep(7k), which is precisely what the IP prover supplies it with. Since the
event that (DPCP (T1)y+ -+, Docp (k)5 (X, 015« -+ Pks Pac)s J_) € R(Vp) happens with high probability,
this implies that with high probability the IP verifier will accept, contradicting soundness of
the original IP. Here we crucially used the fact that the decoder Dpcp does not depend on the
instance of the index-decodable PCP (which consists of x and all of the IP verifier’s randomness
P1y- -+ Pks Pac) OF on the other indexer messages.

The resulting IOP has k rounds, exactly as in the original IP. The IOP verifier uses as much
randomness as the original IP verifier with the addition of the randomness used by the index-
decodable PCP. The query complexity is that of the underlying verifier of the index-decodable PCP.
The proof length and alphabet are the same as those of the index-decodable PCP.

Preserving local access to randomness. The transformation described above can be modified
to preserve the query complexity of the verifier to its own interaction randomness if the verifier is
non-adaptive with respect to its queries to its random messages (i.e., the choice of bits that it reads
depends only on x and p,.). We can redefine the multi-indexed relation R(Vyp) to have as explicit
inputs the instance x, decision randomness pq., and the bits of p1, ..., px that the verifier needs to
read to decide whether to accept or reject (rather than the entire interaction randomness strings).

16



In more detail, suppose that the verifier reads q bits from its own interaction randomness. Then the
new multi-indexed relation consists of tuples:

(ﬁ[l],...,ﬁ[k],x’,w) — (al,...,ak,(x,bl,...,bq,pdc),J_)

such that given decision randomness py the IP verifier V|, accepts given instance x, decision
randomness pq., prover messages (ai, ..., ax), and (b1, ..., bq) as answers to its q queries to p1, ..., pk.

Given a multi-indexed PCP for this relation, the IP to IOP transformation is identical to the one
described above, except that after the interaction, the IOP verifier samples IP decision randomness,
queries its own interaction randomness to get answers by,...,bq, and these replace p1,...,px as
explicit inputs to the index-decodable PCP verifier Vpcp.

2.5 Constructing index-decodable PCPs

We describe how to construct index-decodable PCPs: in Section 2.5.1 we outline a randomness-
efficient index-decodable PCP that makes O(1) queries to each of its oracles, where the indexer proofs
are over the binary alphabet and the prover proof is over a large alphabet; then in Section 2.5.2 we
use proof composition to reduce the alphabet size of the latter.

2.5.1 Basic construction from PCPPs

We outline a construction of an index-decodable PCP with O(1) query complexity to each indexer
proof and to the prover proof, and where the prover proof is over a large alphabet (of size 2¥). For a
later proof composition while preserving polynomial proof length, here we additionally require that
the verifier has logarithmic randomness complexity.

Building blocks. In our construction we rely on variants of PCPPs. Recall that a PCPP is a
PCP system where the verifier has oracle access to its input in addition to the prover’s proof; the
soundness guarantee is that if the input is far (in Hamming distance) from any input in the language,
then the verifier accepts with small probability.

We use PCPPs that are multi-input and oblivious. We explain each of these properties.

e A PCPP is multi-input if the verifier has oracle access to multiple (oracle) inputs. The soundness
guarantee is that, for every vector of inputs that satisfy the machine in question, if at least
one input oracle is far from the respective satisfying input, then the verifier accepts with small
probability.

e A (non-adaptive) PCPP is oblivious for a family of nondeterministic machines M = {M;};¢q if
the queries made by the verifier to its oracles depend only on M and its randomness. In particular
they do not depend on . This property will be used later to facilitate bundling queries. We will
have k PCPs, each with a different M;, but the verifier will use the same randomness in each test.
Since the PCPPs are oblivious, this means that the verifier makes the same queries for every test.
Thus we can group together the k proofs into a single proof with larger alphabet and maintain
good query complexity on this proof. This property is important in order to achieve our final
parameters.

See Section 5.1 for definitions for the above notions, and how to obtain them from standard PCPPs.
Henceforth, all PCPPs that we use will be over the binary alphabet and have constant proximity,
constant soundness error, constant query complexity, and logarithmic randomness complexity.

17



The construction. We construct an index-decodable PCP for a multi-indexed relation R =
{(a[1],...,1]k],x, w)} whose membership can be verified efficiently.

The indexer encodes each index via an error-correcting code with (constant) relative distance
greater than the (constant) proximity parameter of the PCPP used later. The prover uses PCPPs to
prove that there exist indexes and a witness that put the given instance in the relation and adds
consistency checks to prove that the indices are consistent with those encoded by the indexer. The
verifier checks each of these claims. The index decoder decodes the indexer proofs using the same
code.

In slightly more detail, the index-decodable PCP is as follows.

e I, (ifi]): Encode the index i[i] as m; using an error-correcting code.

o Pooo(i[l],...,1[k],x, w):

1. Encoding the indexes. Compute II,, an encoding of the string (a[1], ..., i[k], w).

2. Membership of encoding. Compute a PCPP string I1,,.,, for the claim that M, (x,II,) = 1 where
M, checks that II, is a valid encoding of indexes and a witness that put x in R.

3. Consistency of encoding. For every j € [k], compute a PCPP string II; for the claim that
M;(mj,11,) = 1 where M; checks that m; and II, are valid encodings and that the string i[j]
encoded within 7; is equal to the matching string encoded within II..

4. Output (I, II,m, IL;) where II; are the proofs Iy, ..., IIx “bundled” together into symbols of k
bits such that II;[q] = (II1[¢], . .., IIk][q]).

° Vgcl,;”"ﬁk’(n*’nme’"’ni)(x): Check that all the tests below pass.

1. Membership. Run the PCPP verifier on the claim that M. (x,IL,) = 1 using proof oracle II, ..

2. Consistency. For every j € [k], run the PCPP verifier on the claim that M;(7;,1I,) = 1 using
proof oracle f[j. These k tests are run with the same randomness. Since the PCPP is oblivious
and randomness is shared, the queries made by the PCPP verifier in each test are identical,
and so each query can be made by reading the appropriate k-bit symbols from IT;.

o iDpcp(7;): output the codeword closest to 7; in the error-correcting code.

o WDpep(II,, e, I1): Let (2[1], ..., 1[k], @) be the codeword closest to II, in the error-correcting
code and output w.

Completeness follows straightforwardly from the construction. We now sketch decodability

Decodability. Fix an instance x, indexer proofs 71, . . . , @, and prover proof (IL., I, II;). Suppose
that the verifier accepts with high-enough probability We argue that this implies that there exists
w such that (iDPcp(frl), e oo, 1Dpep(Tk), x, WDpep (1T )) € R. Specifically, we argue that II, encodes
indices 1[1],...,1[k] and witness @ that place x in R and, additionally, each 7; is an encoding of 1[j].
This completes the proof of decodability because iDpcp decodes each 7; to ﬁ[j], and these strings
together with w put x in the multi-indexed relation R.

Let dpcpp be the PCPP’s proximity and decc the code’s (relative) distance; recall that dpcpp < Ogcc.

e Membership: We claim that there exist strings 1[1],...,1[k] and W that place x in R and whose
encoding has Hamming distance at most dpcpp from 1~L; since Opcpp < Ogcc, this implies that
I1, decodes to (i[1],...,1[k], ). Suppose towards contradiction that there are no such strings.
In other words, for every codeword II, that is close in Hamming distance to II, we have that

18



M. . (x, ﬁ*) = 0. As aresult the PCPP verifier must reject with high probability, which contradicts
our assumption that Vpe (which runs the PCPP verifier) accepts with high probability.

e Consistency: We claim that there exist strings 1[1],...,1[k] and % such that their collective
encoding is close to II, and that, for every j € [k], 7; is close to the encoding of i[j]. As before,
since the proximity parameter of the PCPP is smaller than the distance of the code, this implies
that TI, decodes to (i[1], ..., 1[k], %) and that 7; decodes to 1[j]. Suppose towards contradiction
that for some j € [k| the above condition does not hold: for every 7; and IT such that 7j is close
to 7; and IL. is close to II, it holds that M; (75, I.) = 0. By the soundness of the (multi-input)
PCPP, the PCPP verifier must reject with high probability, which contradicts our assumption
that Vpep (which runs the PCPP verifier) accepts with high probability.

Complexity measures. The above construction is an index-decodable PCP with polynomial-length
proofs and where the verifier makes O(1) queries to each indexer proof and makes O(1) queries
to the prover proof. Moreover, the prover proof has alphabet size 2% since the prover bundles the
PCPP consistency test proofs into k-bit symbols; this bundling is possible because the verifier shares
randomness between all of the (oblivious) PCPPs in the consistency test. Since the PCPPs are
oblivious to the index ¢, and they share randomness, they all must make the same queries to their
oracles. The verifier uses O(log |x|) bits of randomness: O(log |x|) for the membership test, and
O(log |x|) for all k consistency tests combined.

2.5.2 Achieving constant query complexity over a binary alphabet

We describe how to achieve an index-decodable PCP with constant query complexity per proof over
the binary alphabet. The main tool is proof composition. In order to apply proof composition, we
define and construct a robust variant of index-decodable PCPs.

Proof composition. Proof composition is a technique to lower the query complexity of PCPs
[AS98] and IOPs [BCGRS17|. In proof composition, an “inner” PCP is used to prove that a random
execution of the “outer” PCP would have accepted. The inner PCP needs to be a PCPP, which
is a PCP system where the verifier has oracle access to its input in addition to the prover’s proof,
and the soundness guarantee is that if the input is far from any input in the language, then the
verifier accepts with small probability. To match this, the outer PCP must be robust, which means
that the soundness guarantee ensures that when the instance is not in the language then not only
is a random local view of the verifier rejecting but it is also far (in Hamming distance) from any
accepting local view.

Typically the robust outer PCP has small proof length but large query complexity, while the
inner PCPP has small query complexity but possibly a large proof length. Composition yields a
PCP with small query complexity and small proof length.

We observe that proof composition preserves decodability (see Section 6.1): if the outer PCP in
the composition is index-decodable, then the composed PCP is index-decodable. This is because the
composition operation does not change the outer PCP proof and only adds a verification layer to
show that the outer verifier accepts.

We thus apply proof composition as follows: the outer PCP is a robust variant of the index-
decodable PCP from Section 2.5.1; and the inner PCP is a standard PCPP with polynomial proof
length. This will complete the proof sketch of Theorem 4.

19



Defining robust index-decodable PCPs. Our goal is to perform proof composition where the
outer PCP is index-decodable. As mentioned above, this requires the PCP to be robust. Our starting
point is the index-decodable PCP from Section 2.5.1. This PCP does have large query complexity
over the binary alphabet (O(k) queries to the prover proof). However, the fact that its queries to
the prover proof are already bundled into a constant number of locations over an alphabet of size 2K
implies that we do not have to worry about a “generic” query bundling step and instead only have to
perform a (tailored) robustification step prior to composition. Accordingly, the robustness definition
below focuses on the prover proof, and so is the corresponding construction described after.

Definition 2. A non-adaptive® index-decodable PCP (Ipcp, Ppcp, (Vide, ViS4, iDpcp, WDpcp) for a
multi-indezed relation R is prover-robustly index-decodable with decodability bound Kece and
robustness opcp if for every x and proofs II; = (71, ...,7k) and II if

(Qia Q*)NF VgrcyP(X7p)
A:={lg[qe@.}

then (iDpcp(frl), .. ,iDpcp(frk),x,WDpcp(ﬁ)) € R. Above Q; and Q. are the queries made to the
indexer proofs the prover proof respectively and A(A’, A) is the relative distance between A’ and A.

I;r FA 5.t VI (x, p, IL[Q:], A) =1 A A(A, A) < oper(|x]) > Kpep(]x])

In other words, if (iDPcp(frl), ee o, 1Dpep(Tk), X, WDpep (fI)) ¢ R then with high probability not
only will the verifier reject but also any set of answers from the prover proof that are close in
Hamming distance to the real set of answers will also be rejecting.

Robustification. We outline how we transform the index-decodable PCP constructed in Sec-
tion 2.5.1 into a robust index-decodable PCP. The techniques follow the robustification step
in [BGHSVO06]. The transformation preserves the verifier's randomness complexity O(log |x|),
which facilitates using this modified PCP as the outer PCP in proof composition.

We apply an error-correcting code separately to each symbol of the prover proof. When the
verifier wants to read a symbol from this proof, it reads the codeword encoding the symbol, decodes
it, and then continues. It reads the indexer proofs as in the original PCP. This makes the PCP
robust because if a few bits of the codeword representing a symbol are corrupted, then it will still be
decoded to the same value. The robustness, however, degrades with the number of queries. If the
relative distance of the error-correcting code is 6 and the original verifier reads ¢ symbols from the
prover proof, then the resulting PCP will have robustness O(4/q).

Indeed, let c1, ..., ¢4 be the codewords read by the new PCP verifier from the prover proof, and
let ai,...,aq be such that a; is the decoding of ¢;. In order to change the decoding into some other
set of strings af, ..., a; that, when received by the verifier, may induce a different decision than
ai,...,aq, it suffices (in the worst case) to change a single codeword to decode to a different value.
Since the relative distance of the code is J, to do this, one must change at least a J-fraction of the
bits of a single codeword, ¢;. A d-fraction of a single codeword is a §/g-fraction of the whole string
of ¢ codewords, ci,...,¢,.

In sum, to achieve constant robustness, we need to begin with an indez-decodable PCP with a
small number of queries to the prover proof, but possibly with a large alphabet. It is for this reason
that we required this property in Section 2.5.1.

8A PCP verifier is non-adaptive if it can be split into two algorithms: V&, chooses which locations to query
without accessing its oracles; and V¢, receives the results of the queries and decides whether to accept or reject.

20



2.6 Commit-and prove SNARKSs from index-decodable PCPs

We outline the proof of Theorem 3 by showing how to generically transform an index-decodable
PCP into a commit-and-prove SNARK. First, we review the Micali transformation from PCPs to
SNARGs. Then, we define commit-and-prove SNARKSs and explain the challenges in constructing
them. Finally, we outline how we overcome these challenges in our construction.

Review: the Micali construction. The SNARG prover uses the random oracle to Merkle hash
the (long) PCP string into a (short) Merkle root that acts as a commitment; then, the SNARG prover
uses the random oracle to derive randomness for the PCP verifier’s queries; finally, the SNARG
prover outputs an argument string that includes the Merkle root, answers to the PCP verifier’s
queries, and Merkle authentication paths for each of those answers (acting as local openings to the
commitment). The SNARG verifier re-derives the PCP verifier’s queries from the Merkle root and
runs the PCP verifier with the provided answers, ensuring that each answer is authenticated.

The security analysis roughly works as follows. Fix a malicious prover that makes at most ¢
queries to the random oracle and convinces the SNARG verifier to accept with probability . First,
one argues that the malicious prover does not find any collisions or inversions for the random oracle
except with probability u := O(;—i) Next, one argues that there is an algorithm that, given the
malicious prover, finds a PCP string that makes the PCP verifier accept with probability at least
% - (6 — p). This enables to establish soundness of the SNARG (if the PCP has soundness error Spcp
then for instances not in the language it must be that % (6 — ) < Bpep and thus that the SNARG
has soundness error ¢ - fpcp + 1) and also to establish knowledge soundness of the SNARG (if the
PCP has knowledge error xpcp then the PCP extractor works provided that % (0 — ) > Kpep and
thus the SNARG is a SNARK with knowledge error t - kpep + 11).

The aforementioned algorithm that finds the PCP string is known as Valiant’s extractor (it was
used implicitly in |Val08| and formally defined and analyzed in |[BCS16|). Given the query/answer
transcript of the malicious prover to the random oracle, Valiant’s extractor finds the partial PCP
string that the malicious prover “had in mind” when producing the SNARG: any location that
the malicious prover could open is part of the partial PCP string (and has a unique value as we
conditioned on the prover finding no collisions); conversely, any location that is not part of the partial
PCP string is one for which the malicious prover could not generate a valid local opening. Crucially,
the malicious prover, in order to cause the SNARG verifier to accept, must generate randomness by
applying the random oracle to the Merkle root, and answering the corresponding PCP queries with
authenticated answers. Hence the partial PCP string output by Valiant’s extractor causes the PCP
verifier to accept with the same probability as the malicious prover, up to (i) the additive loss p due
to conditioning on no inversions and collisions, and (ii) the multiplicative loss of ¢ due to the fact
that the malicious prover can generate up to t different options of randomness for the PCP verifier
and then choose among them which to use for the output SNARG. Overall, while Valiant’s extractor
cannot generate an entire PCP string, it finds “enough” of a PCP string to mimic the malicious
prover, and so the PCP string’s undefined locations can be set arbitrarily.

Commit-and-prove SNARK. A CaP-SNARK (in the ROM) for an indexed relation R =
{(1,x,w)} is a tuple ARG = (C,P, V) of deterministic polynomial-time oracle machines, where
C = (Com, Check) is a succinct commitment scheme,” that works as follows. The committer sends

9A pair of algorithms C = (Com, Check) is a succinct commitment scheme if: (1) it is hard for every query-bounded
adversary to find two different messages that pass verification for the same commitment string; and (2) the commitment
of a message of length n with security parameter A has length poly()\, logn).

21



a short commitment cm := C.Com(1) to the verifier. Subsequently, the prover sends a short proof
pf := P(i,x, w) attesting that it knows a witness w such that (i,x,w) € R and 1 is the index
committed in cm. The verifier V receives (cm,x, pf) and decides whether to accept the prover’s
claim. Completeness states that, if all parties act honestly, the verifier always accepts.

The security requirement of a CaP-SNARK is (straight-line) knowledge soundness. Informally,
knowledge soundness says that if a query-bounded malicious prover convinces the verifier to accept
the tuple (cm,x, pf) with large enough probability, then the prover “knows” an index i opening
cm and a witness w such that (1,x,w) € R. In more detail, we say that ARG = (C,P,V) has
knowledge error € if there exists a deterministic polynomial-time machine E (the extractor) such
that for every A € N, n € N, and deterministic -query (malicious) prover P,

Vé(em,x,pf) =1 A |x| =n A CeUQ)

. . cm, x, pf; tr =P¢ | <e(\n,t),
((n,x,\w) ¢ R V C.Check®(cm,1,0p) = 0) (i, op Wg :: E([c):m xz of 1) ( )

Pr

where () is the uniform distribution over functions ¢: {0,1}* — {0,1}* and tr := (j1, a1, . .., ji, ar)
are the query/answer pairs made by P to its oracle.

First construction attempt. At first glance, constructing CaP-SNARKs using index-decodable
PCPs seems like a straightforward variation of Micali’s construction of SNARGs from PCPs.

C.Com: Apply the ID-PCP indexer Ipcp to the index 1 and output the Merkle root rt; of its output.
C.Check: Given a Merkle root rt; and index 1, check that C.Com(1) = rt;.

P: Compute the ID-PCP prover proof and a corresponding Merkle root; then use the random
oracle to derive randomness for the ID-PCP verifier’s queries; finally, output an argument string
pf that includes the Merkle root, answers to the verifier’s queries, and authentication paths for
each answer relative to the appropriate Merkle root (for the indexer proof or for the prover proof).
e V: Re-derive the ID-PCP verifier’s queries from the Merkle root and run the ID-PCP verifier with
the provided answers, ensuring that each answer is authenticated.

The main issue with this strawman construction is that we need to handle malicious provers that
have a partial tree in their query trace. Consider a malicious prover that, for some (i,x,w) € R,
computes honestly the indexer proof for i as 7 := Ipep(i) and then generates as its “commitment” a
Merkle tree root rt; obtained by computing a partial Merkle tree that ignores a small number of
locations of 7 (i.e., for a small number of locations it begins deriving the tree from a level other
than the leaves). While this malicious prover cannot open this small number of locations of 7, it can
still open all other locations of 7. Next, the malicious prover generates honestly an argument string
pf, opening the required locations of 7 from rt;. This malicious prover makes the argument verifier
accept (w.h.p.) since the ID-PCP verifier queries the small subset of locations that the prover cannot
open with small probability.

Howewver, the only way to find a string 7' that (honestly) hashes to rt is to find inversions in the
random oracle, which is infeasible. Thus, there is no efficient extractor that, given rt and all of the
queries that the prover made, outputs 1’ whose indexer proof hashes to rt.

Solving the problem via proximity. We solve the above difficulty by modifying the commitment
scheme C = (Com, Check) and requiring more properties from the underlying index-decodable PCP.

e C.Com: Compute 7 := Ipp(1) (apply the ID-PCP indexer to the index i) and output the
commitment cm := rt; that equals the Merkle hash of 7 and output the opening information op
that consists of the list of authentication paths for each entry in .

22



e C.Check: Given a commitment cm = rt;, index 1, and opening information op, check that op is a
list of valid authentication paths for a number of entries that is above a certain threshold, and that
the partial string specified by them decodes into 1 (when setting the unspecified values arbitrarily).

Now C.Check allows partial specification of the string under the Merkle root, so to preserve the
binding property of the commitment scheme we require that (Ipcp,iDpcp) is an error correcting code.
The threshold of the number of authentication paths required is related to the distance of this code.

In the security analysis, Valiant’s extractor finds a partial PCP string that makes the ID-PCP
verifier accept with probability related to the SNARG prover’s convincing probability, as well
as authentication paths for each entry of that partial PCP string. To ensure that the number of
authenticated entries is large enough to pass the threshold in C.Check, we add another requirement: if
7 and II make the ID-PCP verifier accept an instance x with probability larger than the decodability
bound then 7 is close to a codeword of the code (Ipcp,iDpcp) (in addition to the fact that the
decodings of # and II put x in the relation as is the case in the definition considered so far).

Our construction of index-decodable PCP supports these new requirements.

From an index-decodable PCP to a CaP-SNARK. Let (Ipcp, Pocp, Vpcp, iDpep, WDpep) be
an index-decodable PCP system where (Ipcp, iDpcp) is an error correcting code with relative distance

0 and where indexer proofs are guaranteed to be ¢/8-close to valid codewords (when Vpep accepts
above the decodability bound). We construct a CaP-SNARK ARG = (C,P, V) as follows.

e C.Com: Given as input an index i, compute the indexer proof 7 := Ipep(1), compute the Merkle
root rt; of a Merkle tree on 7 (using the random oracle as the hash function), and output the
commitment cm := rt; and the opening op containing all authentication paths.

e C.Check: Given as input a commitment cm := rt;, an index i, and an opening op containing
authentication paths, do the following:

— check that op contains a list of authenticated entries relative to the Merkle root rt;;

— check that op represents at least a (1 — g)—fraction of all possible entries for a string under rt;;
— let 7 be the string induced by the authenticated entries in op, setting arbitrarily other entries;
— check that Ipep(1) is 6/4-close to .

e P: Given as input (1,x,w), do the following:

— compute the commitment rt; to the index 1 as the committer does;

— compute the PCP string I := Ppep (1, x, w);

— compute the Merkle root rt,, of a Merkle tree on II;

— apply the random oracle to the string (rt:||x||rt,,) to derive randomness for the index-decodable
PCP verifier Vpep, and compute the answers to the verifier’s queries to both 7 and II;

— collect authentication paths from the Merkle trees for each of those answers; and

— output a proof pf containing rt,,, query answers for m and II and their authentication paths.

e V: Check the authentication paths, re-derive randomness, and run the index-decodable PCP
verifier with this randomness and given these answers.

The tuple C = (Com, Check) is a binding commitment scheme, as we now explain. Consider an
attacker that outputs cm := rt, two distinct messages m, m’, and two openings op := S and op’ := S’
such that C.Check’(cm, m,op) = 1 and C.Check®(cim, m’,op’) = 1. Condition on the attacker not
finding collisions or inversions of the random oracle ¢ (as this is true with high probability). Since S

23



and S’ each pass the checks in C.Check, each set covers at least (1 — §/8) of the possible openings
for a string. Therefore, their intersection covers at least (1 — d/4) of the possible openings. Since
there are no collisions or inversions, S and S’ agree on all of these locations. Thus, letting = and
7’ be the strings defined using S and S’ respectively (as computed by C.Check), we have that
A(m,7') < 6/4. Additionally, we have that that A(Ipep(m),7) < §/4 and A(Tpep(m’), 7)) < §/4
since C.Check accepts the commitments to m and m’, and this is one of the checks it does. Putting
all of this together, we have that A(Ipep(m), Ipce(m’)) < §/2 which implies that m = m’ since §/2
is the unique decoding distance.

Completeness of the CaP-SNARK is straightforward. Below we outline the extractor E, which
receives as input a commitment cm := rt;, an argument string pf (containing the commitment rt,,,
query answers for 7w and II, and corresponding authentication paths with respect to rt; and rt,,), and
the list tr of query/answer pairs made by the malicious prover P to the random oracle.

Use Valiant’s extractor to compute the set S; of all valid local openings of rt; that the
prover could generate and similarly extract S, from rt,,. Let 7 be the string whose entries
are defined by the local openings generated of rt; (and whose undefined entries are set
arbitrarily to 0). Let II be defined similarly from the openings of rt,,. Compute the index
i := iDpcp(7) and the witness w := wDpcp(II), and set op := S;. Output (i,0p, w).

We show the following lemma. See Section 8 for a proof.

Lemma 1. Let kpep be the decodability bound othhe index-decodable PCP, t € N be a bound on the

number of queries made by a malicious prover P, and A € N be a security parameter. Then the
t2

knowledge extractor E above has knowledge error t - kpcp + O(5x)-

2.7 Hardness of approximation

We outline our proof of Theorem 2 (it is AM[k]-complete to decide if an instance of k-SSAT has value
1 or value at most 1 — ﬁ); details are in Section 9. See Section 1.1.1 for the definition of k-SSAT.

First we explain how an AM[k] protocol can distinguish whether a k-SSAT instance has value 1
or value 1 — O%' On input a k-SSAT instance ¢, the prover and verifier take turns giving values
to the variables: the verifier sends random bits p11, ..., p1 e, the prover answers with a1 1,...,a1,
the verifier sends pa1,...,p2¢, and so on until all of the variables of ¢ are given values. The verifier
then accepts if and only if all of the clauses of ¢ are satisfied. For completeness, if ¢ has value 1,
then for any choice of verifier messages there exists some strategy for the prover that will make the

verifier accept. For soundness, when the value of ¢ is at most 1 — ﬁ, no matter what strategy

the prover uses, the probability that the verifier accepts is at most 1 — ﬁk) (which can be made
constant using parallel repetition).

Next we show that, for every language L € AMIk], a given instance x can be reduced in
deterministic polynomial time to a k-SSAT formula ¢ such that:

e if x € L then the value of ¢ is 1;

e if x ¢ L then the value of ¢ is at most 1 — ﬁ.

By Theorem 1, L has a k-round public-coin IOP with a non-adaptive verifier, polynomial proof
length, and logarithmic decision randomness where the IOP verifier reads q = O(k) bits of its
interaction with the IOP prover. We stress that in the following proof it is crucial that Theorem 1

24



achieves an IOP with both logarithmic decision randomness complexity and small query complexity
to both the prover and verifier messages.

Let V. be the circuit that computes the decision bit of the verifier given as input the q answers
to the q queries made by the IOP verifier, for the instance x and decision randomness py.. By
carefully following the proof of Theorem 1, we know that the IOP verifier’s decision is the conjunction
of O(k) computations, each of which takes O(1) bits as input. Therefore d := |V, | = O(k).

Via the Cook-Levin theorem we efficiently transform V,,,_into a 3CNF formula ¢,,_: {0,1}970) —
{0,1} of size O(d) the satisfies the following for every by,...,bq € {0,1}:

o if V,Udc(b17 e ,bq) =1 then Jzq,... yZO(d) € {0,1} ¢pdc(b1’ ooy bgy 71, ,Zo(d))
o if Vpdc(b17 .. ,bq) = 0 then Vz,... » ZO(d) € {O, 1} (bpdc(bl, .. .,bq,Zl, .. ,Zo(d))

)

1
0.

Next we describe the k-SSAT instance ¢.

The variables of ¢ correspond to messages in the IOP as follows. For each i € [k], the ran-
dom variables p; 1,..., p;r represent the verifier’'s message in round ¢ and the existential variables
a;1,-..,a;) represent the prover’s message in round 4. To the final set of existential variables we
add additional variables 7,1 ..., %,, o) for every ps. € {0, 1}O(log"‘|), matching the additional
variables added when reducing the boolean circuit V,, to the boolean formula ¢, .

The k-SSAT instance ¢ is the conjunction of the formulas ¢, for every py € {0, 11000 =) where
each ¢,, has as its variables the variables matching the locations in the IOP transcript that the
IOP verifier queries given x and p4, and additionally the variables added by converting V,, into a
formula, zpy.1- .-, %p, 0(d)-

By perfect completeness of the IOP, if x € L then there is a prover strategy such that, no matter
what randomness is chosen by the verifier, every V,, is simultaneously satisfied, and hence so are
the formulas ¢,, , implying that the value of ¢ is 1.

By soundness of the IOP, if x ¢ L then (in expectation) at most a constant fraction of the
circuits {V,,.} pacc{0,1}0Uog [x|) Are simultaneously satisfiable, and thus this is also true for the formulas
{bps } pacc{0,1}000z =) - Every formula ¢, that is not satisfied has at least one of its O(d) clauses not

satisfied. Thus, the value of ¢ is at most 1 — ﬁ =1- ﬁ.

25



3 Preliminaries

3.1 Relative distance

Let f,g: X1 — X9 be functions. The relative distance between f and g, denoted by A(f,g) is equal
to the relative number of locations in which f and ¢ disagree:

{z € X1 | f(z) # g(x)}]
|21 '

A(f,9) =

We say that f and g are o-far if A(f,g) > 0, and if A(f,g) < ¢ then the functions are J-close.
Similarly, the relative distance between two strings z,y € X" is the relative distance between
the functions f, g: [m] — X such that f(i) = x; and g(i) = y;.

3.2 Relations
We consider proof systems for binary relations and for multi-indezed relations.

e A binary relation R is a set of tuples (x, w) where x is the instance and w the witness. The
corresponding language L(R) is the set of x for which there exists w such that (x,w) € R.

e A multi-indexed relation R is a set of tuples (2[1], ..., 1[k],x, w) where 1[1],...,1[k] are the indexes,
x the instance, and w the witness.

3.3 Interactive oracle proofs

Interactive Oracle Proofs (I0Ps) [BCS16; RRR16| are information-theoretic proof systems that
combine aspects of Interactive Proofs |[Bab85; GMRS89| and Probabilistically Checkable Proofs
IBFLS91; FGLSS91; AS98; ALMSS98|, and also generalize the notion of Interactive PCPs [KR0S|.
Below we describe public-coin 10Ps.

A kjop-round public-coin IOP works as follows. For each round i € [kp], the verifier sends a
uniformly random message p; to the prover; then the prover sends a proof string II; to the verifier.
After kiop rounds of interaction, the verifier makes some queries to the proof strings Iy, ..., Iy,
sent by the prover, and then decides if to accept or to reject.

In more detail, let IOP = (Pop, Viop) be a tuple where Pop (the prover) is an interactive
algorithm, and Vg (the verifier) is an interactive oracle algorithm. We say that 0P is a public-coin
IOP for a binary relation R with k,op rounds and soundness error Sop if the following holds.

e Completeness. For every (x,w) € R,

Hl — PIOP(Xu w, )01)

Pr VH17"'7Hk|OP 3PL5e->Pkiop

10P (% pac) = 1 =1.
P17~~~:Pk|0pvpdc

Hk|op — PlOP(X, W, 01, .- 7Pk|op)
e Soundness. For every x ¢ L(R) and unbounded malicious prover Pop,

a I~Il — I~)|0P(P1)
Pr Vigp " HOPPEPHOP (50 ) = 1 : < Bior(|x|) -

1:[k|o|> «— PlOP(pla cee 7Pk|op>

26



Complexity measures. We consider several complexity measures beyond soundness error. All of
these complexity measures are implicitly functions of the instance x.

proof length liop: the total number of alphabet symbols in IIy, ..., Il (for a given alphabet X).
proof queries Qiop,r: the number of locations read by the verifier from Iy, ... I ;.

interaction randomness length riop.: the total number of bits in p1, ..., pkep-

interaction randomness queries Qiopn: the number of bits read by the verifier from p1,..., pyep-

decision randomness length rop «: The number of bits in pq..
prover time ptp: Plop Tuns in time pt,gp.
verifier time vtiop: Vop runs in time vtgp.
PCPs and IPs. A probabilistically checkable proof (PCP) is an IOP where the prover sends
a single message and then the verifier probabilistically reads it (it is not exactly the case where
kiop = 1, as the prover goes first, where we defined the verifier to speak first).

An interactive proof (IP) is an IOP in which the verifier reads every symbol of the proofs sent to
it by the prover. More formally, it is an IOP with proof length l,op = poly(|x|) and query complexity
equal to ligp. Unless explicitly stated otherwise, we assume that IPs have no decision randomness.

Notation. We sometimes denote with bold letters a combination of proofs. For example, we let
IT = (my,..., 7k, II) denote the set of oracles received by the verifier. Given a set of queries @ to
these oracles, IT[Q)] is the set of symbols written in the appropriate oracles.

Non-adaptive verifiers. A public-coin IOP is non-adaptive if the algorithm run by V op after the
interactive phase can be written as two algorithms Vi55” and Vi, such that:

e V557 Given x and randomness p, outputs @, the set of queries made to the oracles of V op on
the same instance and randomness.

e Vis: Given x, p and a set A of query answers, outputs the decision that V op makes given instance
x, randomness p and A as the set of answers to its queries.

e Efficiency: Running Vigi” and V& one after the other has identical running time to running Vep

on the same instance and randomness.

That is, for every instance x, randomness p1, ..., Pkop, Pac and oracles I = (... ) -

VEP(X7 Pl,--- 7pk|op7pdc) = Vfg; (Xa Ply.-- 7pk|op7 Pdcs II [V?Ou;ry (X, Ply--- 7pk|op7pdc)]>

3.4 Round-by-round soundness for IPs

Definition 3.1 (State function). Let (Pp, Vip) be an IP for a relation R. A state function for
(P, Vip) is a (possibly inefficient) Boolean function state that receives as input an instance x and a
transcript tr and outputs a bit for which the following holds.

e Empty transcript: if tr = () is the empty transcript then state(x,tr) = 0 if and only if x ¢ L(R).

e Prover moves: if tr is a transcript where the prover is about to move and state(x, tr) = 0, then for
any potential prover message a, state(x, tr||a) = 0.

o Full transcript: if tr is a full transcript and state(x,tr) = 0, then Vp(x,tr) = 0.

Definition 3.2 (Round-by-round soundness). An IP (P, Vp) with ke rounds for a relation R has
round-by-round soundness error B ., if there exists a state function state such that for all x ¢ L(R),

27



every i € |kop], and every transcript tr of the first i rounds where the verifier is about to move and
state(x, tr) = 0 it holds that

Pr[state(x, tr||p) = 1] < B -

)

Fact 3.3 (|CCHLRRI18|, Corollary 5.7). Let IP be an interactive proof with soundness error O(1) and
kip rounds. Then the m-fold parallel repetition of IP has round-by-round soundness error 0(2_7”/""’).

3.5 Error correcting codes

A pair of efficient deterministic algorithms ECC = (Enc,Dec) is a (r, dgcc)-code if for every k:
(i) Enc: {0,1}* — {0,1}7®); (ii) Dec: {0,1}"® — {0,1}*; (iii) for every m and C’ such that
A(Enc(m),C") < dgcc it holds that Dec(C’) = m.

For m = (my,...,my) € ({0,1}%)¢ we denote Enc(m, ¢) = Enc(m1),...,Enc(m,) and similarly
for C = (Cy,...,Cy) € ({0,1}"" )¢ with, Dec(C, ) = Dec(C}),...,Dec(Cy). We call 7 the rate of
ECC. The following theorem follows from various previous works (e.g., |GI05]).

Theorem 3.4. There exists a (1, decc)-code where (k) = O(k) and decc = 1). Encoding and
decoding k-bit strings takes time O(k).

3.6 PCPs of proximity for nondeterministic computations

Let PCP = (Ppcp, Vicp) be a tuple where Ppep is a deterministic algorithm and Vpep is a randomized
oracle algorithm. We say that PCP is a PCP of proxzimity (PCPP) for nondeterministic compu-
tations with soundness error fpcp and proximity parameter dpep if the following holds for every
nondeterministic Turing machine M, instance x, time bound 7', and candidate witness w.

e Completeness. If M(x,w) =1 in T time steps then

Pr [V‘;’g’E(M,x,T) — 1| I = Poeo(M, %, Tyw) | =1 .

e Soundness. If w is dpcp-far from any w’ such that M (x,w’) =1 in T time steps then for every I

Pr [V,‘fé’Pﬁ(M,x,T) - 1} < Bocp -

Theorem 3.5 (|Mie09]). There exists a non-adaptive PCPP for nondeterministic computations such
that:

PCPP for M(x,w) =1 in T time steps
Proof length O(T)

Alphabet size 2

Queries 0(1)
Randomness O(logT)
Proximity 0(1)

Soundness error o(1)

Prover running time  poly(7T)
Verifier running time poly(|x|,logT)

28



3.7 Extractors

Definition 3.6. The min-entropy of a random variable X is

Hmin (X) = mGSIElpiF?(X) - log PI‘[X = aj]

Definition 3.7. A function Ext: {0,1}" x {0, 1} — {0,1}™ is a (k, )-extractor if for every X with
min-entropy at least k, SD(Ext(X,Uy), Up,) < € (where SD is the statistical distance). An extractor
1s explicit if it is computable in polynomial time.

We use the following explicit construction of extractors with tight parameters.

Theorem 3.8 (|GUV09|). For every constant o > 0, and all positive integers n,k and all € > 0,
there is an explicit construction of a (k,e)-estractor Ext: {0,1}" x {0,1}¢ — {0,1}™ with d =
O(logn +1log(1/¢)), and m > (1 — a)k.

Setting specific parameters, we will use this simpler version of the theorem.

Theorem 3.9. For all positive integers m, and £ > logm there is an explicit construction of a
(2m, 279 -eatractor Ext: {0,1}*™ x {0,1}¢ — {0, 1}™ with d = O(¥).

Fact 3.10. For alln € N, all z € {0,1}" and 0 < § < 1 we have that
{a' € {0,1}" : A(z,2’) < )} < 2mHO

(here H is the entropy function H(p) = —plog(p) — (1 — p)log(1l —p)).

29



4 Index-decodable PCPs

Let PCP = (Ipcp, Pocps Viocp, iDpcp, WDpep) be a tuple where Ipep (the indexer) is a deterministic
algorithm, Ppep (the prover) is a deterministic algorithm, Vpep (the verifier) is a randomized oracle
algorithm, iDpcp (the index decoder) and, wDpcp (the witness decoder) are (possibly inefficient)
deterministic algorithms. PCP is an indezx-decodable PCP for a multi-indexed relation R with
decodability bound kpcp if the following holds.

e Completeness. For every (i[1],...,1k],x, w) € R,
Pr | Vi ™ll(x; p) = | =1.
P Tk — Ipcp(ﬂ[k])

I Poep(i[1], .. ., 1[K], x, w)

e Decodability. For every x and strings 71, ..., Tk, I, if
71Tl
Pr| Vie ™ p) = 1| > fncs(fx)

then (iDPCP(ﬁ_l% ) iDPCP(ﬁk)a X, WDPCP<1:I)) € R.

The proofs 71, ..., m¢ are called indexer proofs and the proof II is called the prover proof. We refer
to Section 2.3 for an intuitive overview of this notion and further discussion.

Complexity measures. In addition to the standard complexity measures mentioned in Section 3.3
we consider several additional measures for index-decodable PCPs. All of these complexity measures
are implicitly functions of the instance x.

Indexer proof length lpcp 1 the number of symbols in a single indexer proof ;.

Indexer proof alphabet Ypcpp: the alphabet of the indexer proofs.

Prover proof length lpcp p: the number of symbols in a single indexer proof II.

Prover proof alphabet ¥pcp p: the alphabet of the prover’s proof.

Indexer time itpcp: Ipcp runs in time itpep.

Index decoding time idtpcp: 1Dpep Tuns in time idtpep.

Witness decoding time wdtpcp: WDpep runs in time wdtpep.

We sometimes refer separately to the number of queries done to the indexer proofs (per proof) and
and prover proof. If these are not listed separately, then the number is asymptotically identical.

Remark 4.1 (index-decodable IOPs). The definition of index-decodable PCPs can be extended in
a straightforward way to allow interaction, thereby obtaining index-decodable IOPs. While not used
in this paper, this extended notion is likely to achieve better parameters (e.g., linear proof length)
via interactive tools (e.g., interactive proof composition [BCGRS17] instead of non-interactive proof
composition as in Section 6.1) and is likely to be of further interest (perhaps especially so towards
constructions of concretely efficient CaP-SNARKSs by building on the approach in Section 8). We
leave the exploration of this notion to future work.

Remark 4.2 (comparison with decodable PCPs). Despite the similar names, index-decodable PCPs
and decodable PCPs [DH13| are different notions: a decodable PCP is a standard PCP with a “PCP
decoder” that list-decodes a random location in the NP witness from a given PCP string.

30



Prover-robust index-decodable PCPs. Let PCP = (Ipep, Ppcp, (Vige, Vs, ), iDpep, WDpep) be a
non-adaptive index-decodable PCP for a multi-indexed relation R. We say that PCP is prover-robust

with decodability bound kpcp and robustness opcp if for every x and proofs 1:Ii = (71,...,7k) and I
if

/ de 5 ' ' iy & Vids(x,
lj)r JA s.t. Vi (x, p, IL[Q:], A) =1 AN A(A,A) < opep([x]) ;Q::Q{ )1:[[:] g E(Q*p; > rpcp(|x])

where @; are the queries made to the indexer proofs and (), are the queries made to the prover
proof. Then there exists w such that (iDpep(71), - - -, 1Dpep(7k), X, WDpcp(ﬁ)) € R.

The notion of robustness essentially says that for any set of proofs whose decoding is not in the
relation, with probability kpcp the Hamming ball of radius opcp around the answers to the verifier’s
queries to the prover proof do not make the verifier accept.

31



5 Basic construction of an index-decodable PCP from PCPPs

We describe a construction of an index-decodable PCP from PCPPs where we achieve query
complexity O(1) per oracle, the indexer proofs are over the binary alphabet, and the prover proof are
over a large alphabet. Later, in Section 6, we additionally achieve a binary alphabet for all proofs.

Theorem 5.1. Let R = {(i[1],...,1[k],x, w)} be a multi-indexed relation decidable in NTIME(T).
Then R has a non-adaptive indez-decodable PCP PCP = (Ipcp, Pecp, Vpcp, iDpep, WDpep) for R with
the parameters below.

Index-Decodable PCP for (i[1],...,1k],x,w) € R
Indexer proof length (per proof)  O(|i[i]|)
Prover proof length poly(T)
Indexer alphabet size 2
Prover alphabet size 2k
Queries to proofs O(1
Randomness O(logT)
Decodability bound 0O(1)
Indexer running time O(|i[i]])
Prover running time poly(T)
Verifier running time poly(k, |x|,logT)
Index decoding time O(|i[i]])
Witness decoding time poly(T)

The construction relies on slight variations of the notion of PCPPs. In Section 5.1 we define
and construct these notions (based on standard PCPPs), and then in Section 5.2 we describe the
index-decodable PCP. Theorem 5.1 follows by plugging in Theorem 5.7 the following two ingredients:
(i) the oblivious multi-input PCPP of Lemma 5.5; and (ii) the constant-rate and constant-distance
error-correcting code in Theorem 3.4.

5.1 Building blocks

Definition 5.2 (Multi-witness PCP of proximity). A PCP of prozimity system for nondeterministic
computations is multi-witness for (k 4 1)-input machines if the soundness condition is replaced with
the following: Let M be a (k + 1)-input nondeterministic Turing machine, x be an instance, T be a
bound on the running time of M, and w1, ..., wy be candidate witnesses. Suppose that for every set
of inputs wi, ..., w) such that M(x,w),...,w}) = 1 there exists i such that w; is Opcpp-far from
w). Then for every I1:

Pr | Vi " (M, 5,T) = 1| < focp -

Definition 5.3 (Oblivious PCP of proximity). Let M = {M.}.c(,1ym be a family of nondeterministic
Turing machines and suppose that there exists a machine M’ such that for every x and wy, ..., wg
and z: M'(x,w1,...,Wg,2) = M,(x,w1,...,wg). An oblivious multi-input PCP of prozimity system
for M is a PCPP that is complete and sound for proving satisfiability of every M,, z € {0,1}™.
Additionally, the verifier’s queries depend only on M and on the verifier’s randomness. In particular,
its queries do not depend on z, or on its oracles.

We now show how to construct these PCPPs from standard PCPPs (with minimal overhead).

32



Lemma 5.4 (Existence of multi-input PCPPs). There ezists a multi-input PCP of proximity for
(k + 1)-input nondeterministic computations where k is a constant with the following parameters:

Multi-input PCP of Proximity for M (x,wy,...,w,) = 1 in T time steps
Proof length poly(T)

Alphabet size 2

Queries o(1)

Randomness O(logT)

Proximity o(1)

Soundness error o(1)

Prover running time  poly(T)

Verifier running time  poly(|x|,logT')

Proof. Let (Ppcpp, Vpcpp) be the PCPP system of Theorem 3.5 with soundness error [Bpepp and
proximity parameter dpcpp, Where SBpepp and dpcpp are small enough constants satisfying dpepp - k& < 1/3.
If this is not the case, one can first improve proximity using standard techniques (e.g., [RR20, Lemma
8.6]) with minimal overhead. For a witness w;, let wfi be the t;-wise repetition of wy;.

For a set of witnesses wy, ..., w, let n,,, := max{n;} where n; is the length of witness i. For
every i € [k] let t; := nn,/n;. Assume without loss of generality that these values are integers
(otherwise, padding each input to the next power of 2 will suffice).

Consider the machine M’ that on inputs x and (W1, ..., %) € {0,1}¥m outputs 1 if and only
if the following tests pass:

1. Encoding validity: For every i, there exists a string w; such that w = \WfZ
2. Satisfiability: Let wi, ..., wy be the strings from the previous test. Test that M (x, wy ..., wg) =

1.

The running time of M’ is T = O(k - max; |w;|) + 7. We now describe the PCPP. On input a
(k + 1)-input machine M, x and (wy,...,wg) € {0,1}™ x --- x {0,1}" and time-bound 7"

e The prover sends II := PPCPP(M,,X,T/,W?, . ,WZ’“).
e The verifier, given oracle access to the input x and witnesses wy, ..., w; and to I emulates the
verification of:
th Wtk fI
Vee N O, T = 1

as follows: Queries to II are forwarded to the relevant oracle. For a query ¢ € [t; - |w;|] to wh,
return w; at location (¢ mod ;).

Completeness is immediate by the perfect completeness of the PCP of proximity and the fact
that the verifier correctly returns queries to \Wfl We show soundness by proving the contrapositive.
Assume that the verifier accepts with high probability. We show that there must exist strings
that satisfy the machine and are individually close to each input. Fix inputs x and wy,...,wg
and (possibly malicious) proof II such that the verifier, given these inputs and proof, accepts with
probability greater than Spcpp. Then we have that with probability greater than Bpcpp:

o -
V:ﬁ""’w’“k’n(M’,x,T’) =1.
This implies, by soundness of the PCPP, that there exist W}, ..., W) such that M'(x,w},...,w}) =1
and
AW Wik, (. @) < Secpp -

33



Since M'(x, W,...,W}) = 1, we have that for every i there exists w; such that w, = \W . Moreover
M(x,w),...,w)) =1
Notice that for every i: [w'| = |w}*| = n,.,. Therefore, by a counting argument,

AW W), (Wit W) < Seere

implies that for every i: A(Wfi, \W;ti) < k - Opcpp. It follows that A(w;, w}) < k- dpcpp = O(1) since if
A(w;, w;) = m, then every one of the differences between the two strings propagates ¢; times, and
so the relative number of times it occurs is still m: A(w}, w*) = m.

We now analyze the parameters of the new PCPP. The running time of M’ is O(k-max; |w|)+7T =
O(T). Thus the new prover has running time poly(|x|,T"), and the proof length is poly(T) is also
the proof length. The verifier uses the same number of random bits as Vpepp, and runs in time
poly(|x|,log T'). If the original verifier was non-adaptive, then so is the new verifier. O

Lemma 5.5 (Existence of oblivious multi-input PCPPs). Let M = {M.},c(0,1y» be a family of
(k + 1)-input nondeterministic machines for constant k and suppose there exists nondeterministic
machine M’ that runs in time T" such that for every x,wi,...,wg and z: M'(x,w1,...,Wg,2) =
M, (x,wi,...,wg). There exists an oblivious multi-input PCP of prozimity for M with the following
parameters:

Oblivious PCP of Proximity for M, (x, wy,...,wy) = 1 where M’ runs in 7" time steps
Proof length poly(T")

Alphabet size 2

Queries o(1)

Randomness o(Tr)

Proximity o(1)

Soundness error o(1)

Prover running time  poly(7”)

Verifier running time  poly(|x|,logT")

Proof. Let (Ppcpp, Vpcpp) be the multi-input system of Lemma 5.4 and (Enc,Dec) be the error-
correcting code of Theorem 3.4.
Consider the (k + 2)-input machine M” that on inputs x, wy, ..., w; and Z outputs 1 if and only
if the following tests pass:
1. Encoding validity: Enc(Dec(2)) = Z.
2. Satisfiability: M'(x, w1, ..., wg, Dec(2)) = 1.
Notice that M” runs in time 7" = T" 4+ O(|z|).
We now describe the PCPP. On explicit inputs M, x and T', and oracle inputs xi, ..., Xxg:
e The prover sends Il := Ppepp (M, x, T", (w1, ..., w, Enc(z))).
e The verifier, given M., instance x, T and oracle access to wy, ..., ws and to II computes Enc(z)

and verifies 5
VSCAQ,..,,Wk,Enc(z)),H(M//’ X, Tl/) -1 .

Completeness is immediate by the perfect completeness of the multi-input PCPP and the fact
that the verifier correctly returns queries to z. We show that multi-input soundness holds with
respect to the machine M,. We do this via the contrapositive: we show that if the verifier accepts
with high probability, then the witnesses w1, ..., w; are close to satisfying M, along with x.

34



Fix x, z, witnesses wi,...,w; and a proof II. Suppose that, given x and z explicitly and
oracle access to wi, ..., wy, and II, the verifier accepts with probability greater than Bpep. Then we
have that there exist w{,...,wj, and 2’ such that: (i) M"(x,w},...,w},2’) =1, (ii) For every i:
A(wi, w}) < dpepp and, (iii) A(Z,2’) < dpcpp. This must be true since otherw1se we have a contradiction
to the soundness of the multi-input PCPP. This, in turn, implies that M’(x, w}, ..., w}, Dec(z’)) = 1.
Since dpcpp < decc, we have that Dec(Z') = Dec(z) =

We now analyze the parameters of the new PCPP. Notice that M” runs in time 7" = T'+O(|z|) =
O(T"). Thus the new prover has running time poly(|x|,7”), and the proof length is poly(7”). The
verifier uses the same number of random bits as Vpepp, and runs in time poly(|x|,log7”). Since
Vicpp is non-adaptive, the queries it makes do not depend on its oracles. This includes the oracle to
z, and so the new verifier’s queries do not depend on z. O

5.2 The construction

We begin by giving a construction that achieves all of the parameters of our final index-decodable
PCP except that the number of queries made by the verifier to the prover proof is O(k) rather
than O(1). We define the machine M, and family of machines M = {M;};cq. Later on, in the
construction, we will have a (standard) PCPP proof for satisfiability of M,, and a proof for an
oblivious multi-input PCPP for satisfiability of each of the machines M; € M.

Definition 5.6. Let R = {(i[1],...,1[k],x,w)} be a multi-indezed relation decidable in nondeter-
ministic time T, and (Enc,Dec) be an error-correcting code. Let x be an instance. Define Turing
machines M, and a family of machines M = {M;};cpq as follows:

o M, (x,I1,) = 1 if and only if the following tests pass:
1. Encoding validity: Check that Enc(Dec(IL,)) = II,.
2. Membership: Check that (1.[1],...,1.[k],x,w.) € R, where (1.[1],...,1.[k],w.) := Dec(IL,).

The machine M, runs in time O(T).

o M;(L,m II,) =1 if and only if the following tests pass:

1. Encoding validity: Check that:

— Enc(Dec(n)) = 7.

— Enc(Dec(IL,)) = I1..
2. Consistency: Let 1[i] := Dec(r) and (i,[1],...,1.[k],w.) := Dec(IL,). Check that 1[i] = 1,[i].
From the definition it is easy to see that there exists M such that M'(L, 7, 11,,4) = M;(L, =, 11,) for

every , I1, where the running time of M is equal to that of M;, which is O(|w|+| 3 |i[i]]) = O(T).
This facilitates using this family of machines with an oblivious PCPP.

Theorem 5.7. Let R = {(i[1],...,1[k],x, w)} be a multi-indezed relation. Let PCPP = (Ppcpp, Vipcpp)

be a (oblivious multi-input) PCP of proximity for nondeterministic computations with prozimity pa-
rameter Opcpp using a binary alphabet and (Enc, Dec) be an error-correcting code with distance dpcpp <
decc. Then Construction 5.8 is a non-adaptive indez-decodable PCP PCP = (Ipcp, Ppcp, Vper, iDpcp, WDpcp)
for R with the parameters below.

35



PCPP for satisfiability of machines M and M,

Proof length locpp

Alphabet size 2 Error correcting code
Queries Qpcpp Distance Occc
Randomness Focpp +| Rate rtece
Proximity Opcpp Encoding time  etgc
Soundness error Bocep Decoding time  dtecc
Prover running time  ptycp

Verifier running time  Vtpcpp

Index-Decodable PCP for (i[1],...,ilk],x,w) € R
Indexer proof length (per proof) rtecc (J1[2]])
Prover proof length 2 locpp + rtecc(Jw| + 2521 [1[4]])
Indexer alphabet size 2
Prover alphabet size 2k
Queries to indexer proof (per proof)  gecee
N Queries to prover proof 2 - Qpcpp
Randomness 2 - rpcpp
Decodability bound Beocep
Indexer running time etecc([1[4]])
Prover running time etecc(|w| + Z:Zl [1[7]]) + (k 4+ 1) - ptocep
Verifier running time (k4 1) - Vtpcpp
Index decoding time dtecc (|2[4]])
Witness decoding time dtecc (Jw] + 25:1 [1[¢]])

We now describe the construction (see Section 2.5.1 for an overview), and then prove the theorems.

Construction 5.8. We describe the index-decodable PCP for R. Let T, and T; be the running
times of T, and T; respectively.

o I.»(2[7]): Output m; := Enc(1[d]).

o Pop(1[1],...,1k], x, w):

1. Compute II, := Enc([1],...,1k], w).

2. Proof of membership: Generate a proof Il := Ppcpp (M., x,T,,I1,) (using a standard PCPP).

3. Proofs of consistency: For every i € [k], compute II; := Ppepp(M;, L, T;, (m;,11,)) where
i := Ipcp(1[i]) (using the oblivious PCPP for M).

4. Query bundling: Let II; := {IL; };c| be a proof such that II;[q] = (II1[g], ..., IIk[g]). That is, in
location g of II; write a k-bit symbol consisting of the g-th bit of each of the proofs {II;};c(y-

5. Output (IL,, II,em, I15).

° Vfcl,;“"ﬁk’n*’nme”"ni‘ (x): Accept if and only if all of the following test accept.

1. Membership test: VEC*P’,{[":E”’ (M., x,T.) = 1.
2. Consistency test: Parse Il = {Il; };ciy. Choose PCPP verifier randomness p. For every i € [k]

test that V,(,’E,i;ﬁ*)’ﬁi(Mi, 1,T;;p) = 1. (Using the verifier of the oblivious PCPP for M).
[ ] iDpcp(fri): Dec('ﬁ-l)

o WDpep(IL,, I pem, 11 ): Let (2[1],...,1[k], @) be the codeword closest to II,. Output w.

36



Proof. We prove completeness, then decodability, and finally analyze complexity measures.

Completeness. Fix (i[l],...,1[k],x,w) € R. We show that both of Vpe's tests pass with
probability 1 and therefore Ve always accepts. Let mq,...,m and II,, II,.., II; be the proofs
generated by the indexer and prover respectively where II; := {I1; };¢[q-

1. Membership test: Since (i[1],...,1[k],x,w) € R and II, = Enc(i[l],...,1[k],w) we have
that M,(x,II,) = 1. By the perfect completeness of the PCP of proximity, since II,., =
Pecpp (M, ,x,T,,11,), we have that

Pr [V&*P’Emem(M*,x,T*) —1]=1.

2. Consistency test: Since II, = Enc(i[1],...,1[k], w) and for every i € [k], m; = Enc(1[i]), we have
that for every i, M;(m;,II,) = 1. Hence, since II; = Ppcpp(M;, L, T;, (1, 11,)), by the perfect
completeness of the PCP of proximity:

Pr[ v, LTy =1 =1

Decodability. Fix x, 71, ..., 7k, L, O, and I, = {ﬁi}z‘e[k]- Suppose that:
Pr | Vil ) — 1] > Bocep

We show that (iDpcp(71), .. ., iDpcp(Tk), X, WDpCp(ﬁ*, e, 1:[1-1)) € R. To do so we give two claims,
each relating to a different test done by the verifier. The first says that the verifier’s membership
test implies that II, encodes strings that put x in R.

Claim 5.9. There ezist i[l],;. ., 1[k] and w such that:
1. Valid encoding: (i[1],...,i[k], W) = Dec(IL,).
2. Membership: (1[1],...,1[k],x, w) € R.

Proof. We show that there exist i[1],...,i[k] and @ such that A(IL,,II.) < Opcpp where IL, :=
Enc(i[1],...,1[k], %) and which place x in the relation. This will imply the claim since the distance
of the error-correcting code is at most dpcpp < dgcc, and so ﬁ and IZI* decode to the same value.

Suppose towards contradiction that for every 1[1],...,1[k] and W such that A(TI,,T1,) < Spcpp
(where II, is defined as before) we have that (i[1],...,1[k],x, W) ¢ R. This means that IL. has
distance greater than dpcpp from every ﬁ such that M, (x,ﬁ*) = 1. Hence by soundness of the
PCPP system:

Pr |:V££Z*P7I£Imem (M., x,T,) =1 } < Becep -

Vpep runs this test in Item 1 and hence will accept with probability at most Bpcpp in contradiction
to the assumption that

] yeney T ,ﬁ*,ﬁmemyﬁi
Pr [V,Z.rclp Tk (x)=1 } > Becep -

We now show that the indexer proofs 71,..., T must be consistent with the encoding I0..

Claim 5.10. There exist 1[1],...,1[k] and W such that:

37



1. Valid encoding: (a[1],...,1[k |, W) = Dec(1IL,).

2. Consistency: For every i € [k], i[i] := Dec(7;).

Proof. We show that there exist i[1],...,1[k] and W such that A(IL,,TL,) < Spcpp where II.
Enc( [1],...,1[k], %). Additionally we have that for every i € [k|, A(7;, 7i) < Opcpp Where 7; :=

Enc(i[i]). Thlb will imply the claim since the distance of the error-correcting code is at most
Opcpp < Ogcc, and so H and TI, decode to the same value. Similarly 7; and 7; decode to the same
value.

Suppose towards contradiction that there exists i € [k| such that for every pair 7; and II, such
that M;(L, 7, ﬁ) = 1 (which implies that they have the required consistency), at least one of the
following holds: (1) A(7;, ;) > Jpcpp, (ii) A(ﬁ*, 1:[*) > Opcpp. Then by the soundness property of the
multi-input PCPP system:

Pr Vé’é;ﬁp ) (M, L, T;) = < Bpcrr 5

in contradiction to the assumption that Ve, that runs the above test in Item 2, accepts with
probability greater than Bpcpp. O

We now prove decodability. Under the assumption that the verifier accepts with probability
greater than Secpp, by Claim 5.9 and Claim 5.10, there exist i[1],...,1[k] and & such that:
1. (a[1],...,1[k],x, W) € R.
2. (1[1],... ,ﬁ[k],\ﬁv) = Dec(IL,).
3. For every i € [k]: 1[i] = Dec(#;).
Putting the above items together with the definition of the decoders we have that:

(iDpcp (1), - - - , iDpep (k) X, WDPCP(ﬁ*a 1:Imerm ﬁn)) = (Dec(71), ..., Dec(7y), x, W)
= (1[1],...,1[k],x, W) € R .

Efficiency. We analyze the efficiency parameters of the PCP:
e [ndexer alphabet. The indexer alphabet size is 2.

e Prover alphabet. The prover writes its proof in groups of k bits. The alphabet size is 2K.
e Indexer proof length. Ipce uses Enc on a bit-string of length |i[¢]|, so the proof length is rtecc(|i[7]]).

e Prover proof length. Ppcp outputs the encoding of the string 1[1], ..., i[k], w, and outputs k + 1
proofs for the PCP of proximity. The proofs in the consistency test part are interleaved into
symbols. Thus the proof has length 2 - lpcpp + rtecc(|Jw| + Zli‘zl |2[4]]).

o Query complexity. Vpep makes qpepp queries to each of the indexer proofs in the consistency tests.
The consistency check is done k times with the same randomness, and the same family of machines
M. The PCPP system is oblivious, and so all of these PCPPs make queries to exactly the same
locations — which are bundled together into one symbol by the prover. Thus this test makes only
gecpp queries. The verifier additionally makes qpepp queries to the prover proof in the membership
test — a total of 2 - gpcpe.

o Randommness complexity. Vpcp runs the membership test with randomness rpepp, chooses new
PCPP randomness and runs each of the consistency checks with the same randomness. Therefore
it uses 2 - rpcpp random bits.

38



Indezer running time. Ipcp encodes 1fi] in time etecc(|1[d]]).

Prover running time. Ppep encodes a string of length |w| +Zif:1 |1[é]| in time etecc(|w] —I—Z;le [1[4]])

and computes k + 1 PCP of proximity proofs, each in time pt,pp. All together time etecc(|w| +
K fer.

> izt [8d]]) + (k4 1) - ptocep.

Verifier running time. Vpcp runs the PCPP verifier k 4+ 1 times, taking time (k 4+ 1) - Vtpcpp-

Decoder running time. The running time of iDpcp is dtecc(|[i]]). The runnign time of wDpep is
K~ jer.
dtecc([w| + > i [8[i]]).

Adaptivity. If Vpepp is non-adaptive then so is Vpcp.

39



6 ID-PCPs with constant query complexity over a binary alphabet

We construct index-decodable PCPs that make O(1) queries to every oracle, over the binary alphabet.
We begin in Section 6.1 by showing that proof composition preserves index-decodability when the
outer index-decodable PCP is prover-robust. Then, in Section 6.2, we show how to transform the
index-decodable PCP constructed in Section 5 into a prover-robust index-decodable PCP. Combining
these, we prove the following theorem.

Theorem 6.1 (restatement of Theorem 4). Let R = {(1[1],...,1[k],x, w)} be a multi-indezed relation

decidable in NTIME(T). Then R has a non-adaptive indez-decodable PCP PCP = (Ipcp, Ppcp, Vipep, iDpcp, WDpep)
with the parameters below.

Index-Decodable PCP for (i[1],...,ilk],x,w) € R
Indexer proof length (per proof) O(|i[i]])
Prover proof length poly(T)
Alphabet size 2
Queries per oracle o1
Randomness O(logT)
Decodability bound o(1)
Indexer running time O(|i[i]])
Prover running time poly(T)
Verifier running time poly(|x/|, k,logT)
Index decoding time O(|i[i]|)
Witness decoding time poly(T)

Proof. We take the robust index-decodable PCP of Theorem 6.4 and compose it using Theorem 6.2
with the PCP of proximity achieved by Theorem 3.5. O

6.1 Proof composition preserves index-decodability

We show that, in proof composition of PCPs [AS98|, if the outer PCP of the proof is index-decodable
then the composed PCP is also index-decodable (given the outer index-decodable PCP has good
enough prover-robustness).

Theorem 6.2. Let PCPoyt = (Loue, Pows, (VI, V&) iD,,., WD,,.) be a non-adaptive indez-decodable
PCP for a relation R with prover-robustness oo, and PCPi, = (P, Vi) be a non-adaptive PCP of
proximity for NP with proximity 6, < 0o. Then Construction 6.3 is a non-adaptive index-decodable

PCP PCP = (Ipcp, Prcp, Vicp, iDpcp, WDpep) for R with the parameters below.

40



Index-Decodable PCP for (i[1],...,ilk],x,w) € R

Indexer proof length lout 1

Proof length lout, P PCPP for V&
Alphabet size Aout Proof length o )
Queries to indexer proof iq,, Alphabet size )\“
Queries to prover proof  pq., . "
Randomness Foue 1 g;fliilsrsnness ?_‘“
Prover-robustness O out Proximity 5
Decodability bound Kout Soundness error B‘“‘
Indexer running time itou Prover running time p‘t‘.]
Pro.ver runniig tlme PLo Verifier running time vtn
Verifier running time Vi,

Index decoding time idt,,.

Witness decoding time wdt,,,

Index-Decodable PCP for (i[1],...,1ik],x,w) € R

Indexer proof length lout.1
Prover proof length lowe,p + 270 - [,
Alphabet size max{ A, Ain |

Queries to indexer proof iq,,
Queries to prover proof  q;,

— | Randomness Fowe + T
Decodability bound Fow + (1 = Kow) * Bin
Indexer running time itou
Prover running time pt,,. + 2" - (v, + pt,,)
Verifier running time Vi, + Vi,
Index decoding time idt,,.

Witness decoding time wdt,,,

Construction 6.3. We construct the index-decodable PCP PCP = (Ipcp, Pocp, Viecp, iDpcp, WDpep)
below.

Iocp(1[]): Output 7; := L. (1[7]).

Pecr(1[1], ..., 1[k],x, w):

1. For every i € [k], compute the indexer proof m; := Ipcp(i[i]).

2. Compute the prover proof Il := P, (i[1],...,1[k],x, w) and set ITI; := (m,..., 7).

3. For every p,: € {0,1}", compute (Q;,Q.) := VI(X, pou) and set xj, := I[Q.]. Compute
the PCPP string I1,,[pow) := Pia (Vgﬁt, (X, Pout, IL; [Qs]), vtout,xin) (i.e., generate a proof that the
machine M;, := V& (x, pou, IL[Q:], -) accepts xip).

4. Output II := (I, IT;,) where II;, := {II;, [pout]}poute{(),l}'out'

1 yeens k11
Ve ™ (x):

1. Parse II = (ﬁout, {ﬁm [Pout]}poute{o,l}fout) and set IT, := (71, ...,7k) for convenience.
2. Sample randomness p,,; < {0, 1}t and compute the query sets (Q:, Q.) := VI(X, Pout)-

3. Check that Vi@l (yee (e o TLQ1) Vi) = 1.
iDpcp(’f[’j): Output iDout(ﬁ—j)'

WD PCP (ﬁouh l:[in) : OUtPUt WDout (ﬁout) .

41



Proof of Theorem 6.2. First we argue completeness, then argue decodability, and, finally, analyze
efficiency measures of the resulting PCP.

Completeness. Fix (i[l],...,ik],x,w) € Rand let IT; = (w1, ..., k), How and {Ii [Poue] } pouee{0,1}7out
be the proofs output by the honest indexer Ipcr and prover Ppcp. By the (perfect) completeness of
the outer PCP,

Pr [ VL (5 pous TLIQI] o [Q]) =1 [ (@1, Q.) <= Vi (x,0) =1 .

Hence, for every po. € {0, 1}, by the (perfect) completeness of the inner PCP (of proximity), for
IT;,,[powe) output by Py, given V& & (X, pour, ILi[Q:]), Vto (which upper bounds the running time of

out?

Ve ) and IL,,[Q.], it holds that

out

Er Vinout[Q*]vnin[pout] (ngw (X, pout7 Hi [Qi])) Vtout; pin) = 1 :| g 1 .

We conclude that the composed PCP also has perfect completeness:

Pr [Vgé,;""”"’n(x) — 1] 1.

Decodability. Fix x and malicious proofs IT, = (71, ...,7) and = (f[out, {f[in[pout]}). Suppose
that:

Pr [Vgcll;“’ﬁhn(x) =1 ] > Ko + (1 = Kou) * Bin -

For every choice of randomness po, € {0, 1} let (Q;, Q.) := VIX(X, pon) and set flpout =11, [Q.].
We consider the two possibilities for A,,,.

1. There exists some A’ such that A(A", A, ) < 0o and VE,(x, pou, IL[Q;], A’) = 1. In this case,

we cannot rule out that V, accepts with high probability. So we can trivially write

];I' [Véﬂoutvnin[Pout} (Vgﬁtv (X, Pouts Hi[Qi])a Vtout; pin) =1 :| S 1.

2. There does not exist a set A’ such that A(A’, A, ) < 0, and V&

out

(X7 pouh Hi [Q]‘Ja A/) — ]. SinCe
Oin < Oouts Apyy, is far enough from any true claim that the proximity soundness property of V;,
applies:

Pr | Vi B (VE (56 s TLIQU) VHasi ) = 1] < B

Hence, letting p be the probability that p,, induces a choice of queries whose answers flpout are
such that Item 1 occurs, we have that Vpe accepts with probability at most p + (1 — p) - 5i.. By
assumption, the probability that Ve accepts is greater than ko, + (1 — Kow) - Bin. From this we

can infer that p > k... By the prover-robust decodability of the outer (index-decodable) PCP, we
deduce that:

(iDPCP(ﬁ-l)J R iDPCP(frk)a Xa WDPCP(]-:-[)) - (iDout(ﬁ-l)) ] iDout(ﬁ-k)J Xa WDout(Hout)) E R .

Efficiency. We analyze the efficiency parameters of the resulting PCP.

42



e Alphabet. The new PCP involves the alphabet of the outer index-decodable PCP, which has size
Aout, and the alphabet of the inner PCP of proximity, which has size A,,. One can use the same
alphabet to write both, in which case its size would be max{ A, Ain }-

o Indexer proof length. Ipcp outputs the same indexer proofs as I, which are of length I 1.

e Prover proof length. Ppcp sends the proof (of length I, p) of the index-decodable PCP and also,
for every p... € {0, 1}, sends a proof (of length I;,) for the inner PCP for randomness p,,.. Hence
the total proof length is I, p + 27t - I;,,.

o Query complexity. Vpcp makes as many queries as Vy,, which is q;,.
e Randomness complexity. Vpcp samples randomness for V,,, and V,,, using r,, + r;,, random bits.
o Indexer running time. Ipcp runs runs I, and so its running time is it.,,.

e Prover running time. Ppcp runs P, once and VI, P, a total of 2™ times, and so its running
time is pt,, + 2" - (Vo + pt,,)-

o Verifier running time. Vpep runs VI to compute its query locations and runs Vi, to decide,
thereby running in time at most vty + vt;,.

e Decoder running time. The decoders have the same running time as the outer PCP decoders.

O

6.2 Robustification

We now show how to get a prover-robust index-decodable PCP with a binary alphabet and large
number of queries to the prover proof. This is later reduced by using proof composition.

Theorem 6.4. Let R = {(1[1],...,1[k],x,w)} be a multi-indexed relation decidable in NTIME(T).
Then R a non-adaptive prover-robust indez-decodable PCP with the following parameters:

Prover-robust Index-Decodable PCP for (i[1],...,1[k],x,w) € R
Indexer proof length (per proof)  O(]i[i]])
Proof length poly(T)
Alphabet size 2

Queries to indexer proof 0(1)
Queries to prover proof O(k)
Randomness O(logT)
Prover-robustness Q(1)
Decodability bound 0(1)
Indexer running time D(|1[i]])
Prover running time poly(T)
Verifier running time poly(x, k,T)
Index decoding time O(|i[d]])
Witness decoding time poly(T')

We first describe the construction, and then prove Theorem 6.4.

43



Construction 6.5. Let PCP = (Ipep, Pocp, (Vige, Vi), iDpep, WDpep) be a non-adaptive index-
decodable PCP for a relation R and ECC = (Enc, Dec) be a (r, dgcc)-code with r(k) = ¢ - k for
constant c. Let lpcp p and Xp be the prover proof length and alphabet respectively.

e P(i[l],...,1[k],x,w): Compute II' := Ppcp(i[1],...,1[k],x,w) and output II := Enc(Il’, lpcp p ).

° Vfrl,...,frk,ﬁ(x):

1. Sample randomness p and generate (Q;, @.) < V&b (x, p) the queries the PCP verifier makes
given instance x and randomness p. @; are the queries made to the indexer proofs and @, are
the queries made to the prover proof.

2. Let A := {II[q] | q € Q.} and Apcp := {Dec(a) [ a € A}. Let IL = (71,..., 7). Accept if and
only if Vi, (x, p, IL[Qi], Apce) = 1.

e iD(7;): output iDpcp(IT).
° wD(fI): output WDPCP(DeC(ﬁ, locpp))-

Proof of Theorem 6.4. We use Construction 6.5 where the index-decodable PCP used is the one
of Theorem 5.1. We use an error correcting code with parameters as in Theorem 3.4. We first
argue completeness, then decodability and, finally, we analyze the other complexity measures of the
resulting PCP.

Completeness. Fix (i[1],...,1[k],x,w) € R. Let m,...,mc and II be the proofs generated by

the indexer and the prover respectively. Since the prover is honest, Pocp(i[l],...,1[k],x,w) =
Dec(I1, lpcp p). Hence, letting 11" := Ppep(i[1], ..., 1[k], x, w) and II; = (71, ..., 7k), we have:
< Vid(x,p)
P V7T1,...,7'rk,l_[ —11="Pr Vdc 7 A — (Qn) Q ) PCP &y
g [ () ] P pee (3%, [Q] ver) Apcp == { Dec(Il[g]) | ¢ € Q. }

- lzr VgCCP(X p, 11 [Q] Apcp) = (@i, Q.) < Vig(x,p) ]

APCP:_{H/[]|q6Q*}

— Pr [ V;rclé...,ﬂk,l_[ (X) -1 }
=1.

Prover-robust decodability. Fix an instance x and proofs II, = (1, ...,7) and II. Denote by
kpcp = O(1), and gpep = O(1) the decodability bound and number of queries to the prover proof
respectively. Let decc = (1) be the distance of the error correcting code such that decc = Q(1).

4apcp
Denote by V¥ and V* the query generation and decision predicate of V respectively. Suppose that

5ECC i) (x,
FA st VE(x, p, IL[Q, A) = 1 A A(A,A) < 4dpcp f(lQ ?T)I[ ] \‘; E(Z*p;

> Kpcp -

We show that this implies that:

(iD(7),...,iD(7k),x,wD(II)) € R .

44



Notice that

; e < ’ / 5ECC (Qﬁa Q*) — Vqry(x p) :|
[HA st VE(xp, TL[Q], A) =1 A A(AA) < dgper | A:={1I[q] | ¢ € Q. }
is equal to
5ECC iy VngyP X,
Pr [aA’st Vi, (x,0,T[Q1], {Dec(a) | a € A}) =1 A A4, 4) < rer (AQ_Q{ iIT] yqe(Q*p; }

Fix randomness p. Let (Q;, Q.) < Vi (x,p) and A= {II'[¢] | ¢ € Q. }. Suppose that A’ is the
set closest to A such that V(x, p, IL;[Q:], A’) = 1 and that A(A’, A) < &< By a simple counting

— 4qpcp’

argument it must be that for every i, A(A'[i], A[i]) < 5ECC < 55“ , and so Dec(A[i]) = Dec(A’[i]).
Moreover, since A[i] = 1:[[@*[1]], it follows that Dec(A’[i ]) Dec(H[Q[* ]]). Hence, considering the
decoded proof II" = Dec(I, lpcp ), we have:

Pr[EIA’st Ve, <x p, IL[Q.], {Dec(a )|a€A’}> S A AW, A) < O

4qpcp
(Qin Q’L) — Vqry(x7 p) :|
Apcr = {'[g] | g € Q. } ’

(Q:,Q.) « V™ (x, p) ]
A={1l[gl|qeQ.}

< Pr [V (2 FLIQU Are) = 1

and so

(@i
Apcp

Vide(x, p)

Pr [V?&é”"ﬁk,n () } Pr |:V(;CCP(X P IL[Qs], Apcp) =1 Ci %—'I dlgeQ} ] > Kpcp -

By decodability of the index-decodable PCP, it follows that

(iD(71), .. .,iD(7y), x,wD(f[)) = (iDpep(71), - - .,iDPCP(frk),x,prcp(ﬁ')) cR .

Efficiency. We analyze the efficiency parameters of the resulting PCP.

e Alphabet. The alphabet used by the system is binary as the error correcting code returns strings
of bits.

e Indexer proof length. The indexer proof is of length O(|1[é]]).

e Prover proof length. The prover wraps an error-correcting code with constant rate around its
proofs. Therefore the proof length is preserved up to constant factors and is poly(T).

e Query complexity. Queries to the indexer proofs remain unchanged. For each of the O(1) queries
made to the prover proof of the original PCP, the verifier queries O(k) bits. Hence it makes O(k)
queries to the prover proof.

e Randomness complexity. The verifier uses the same number of random bits as the original verifier,
O(logT).

e Indexer running time. The indexer simply runs Ipcp and so has running time O(a[d]|).

e Prover running time. The prover runs Ppep and encodes every k-bit symbol of the proof in time
that is quasi-polynomial in k. Hence it runs in time poly (7).

45



o Verifier running time. The verifier runs the original verifier in time poly(x, k,logT"), and the
efficient decoding procedure of the error correcting code to decode O(1) symbols of length k bits.
This takes time O(k). Thus, the verifier runs in time poly(x, k, log T').

e Decoder running time. The index decoder runs the original index decoder and so runs in time
O(]1[¢]]). The witness decoder first applies the ECC decoder, and then uses the original witness
decoder. It therefore runs in time poly(T).

e Adaptivity. The original index-decodable is non-adaptive, and all that this transformation does is
to error-correct queries to the prover proof. Thus the queries are still independent of the proof,
and the resulting PCP is non-adaptive.

O

46



7 'Transforming IPs into IOPs

We show how to use index-decodable PCPs to transform public-coin IPs into IOPs. We then combine
this with the index-decodable PCP from Section 6 to obtain our main theorem. Unless otherwise
stated, all of the interactive proofs in this section are assumed to have no decision randomness.

Theorem 7.1 (restatement of Theorem 1). Let IP = (P, Vip) be a public-coin IP for a relation

R = {(x,w)}. Then there exists a public-coin IOP 10P = (Pop, Viop) for R with the parameters
below.

IOP (Piop, Viop) for R
IP (Pp, Vi) for R Rounds Kip
Rounds kip Proof length poly(|x], lp)
Prover-to-verifier communication |, __ | Queries per round O(1)
Total randomness re Interaction randomness  poly(|x], rp)
Soundness error o(1) Decision randomness O(log |x|)
Verifier running time Vi Soundness error o(1)
Verifier running time poly(vtp)

Proof. We begin by using the round reduction technique of [BM88| to reduce the number of rounds
of the protocol to kp/2 (assuming that kep > 2, as otherwise Drucker’s result can be applied). Then,
we modify the IP using Theorem 7.2 to have the verifier read little of its own randomness. This
yields a kp-round IP whose parameters are polynomially related to the original proof, that has
O(log |x]|) bits of decision randomness, and in which the verifier randomness query complexity is
O(1) (per-round). We then plug in the resulting IP into Theorem 7.7 using the index-decodable

PCP of Theorem 6.1, noting Remark 7.8 to get the final result. O

7.1 Local access to randomness

We prove that any interactive proof can be transformed into an interactive proof in which the verifier
reads O(1) bits from the randomness generated by it during interaction with the prover.

Theorem 7.2. Let IP = (P, Vip) be a public-coin interactive proof system for a relation R with
(per round) randomness complexity rp, communication complexity li,. Then, R has a public-coin
interactive proof system \P" = (P|,, V1) with the parameters indicated below.

1P

Rounds kp

Prover-to-verifier communication | .

Randomness (per round) e

Soundness error o(1)

Verifier running time Vit

P’

Rounds 2kp
Prover-to-verifier communication poly(lp)
Interaction randomness (per round) poly(|x| + rp)
Interaction randomness queries (per round) O(1)
Decision randomness O(log |x| + log k)
Soundness error o(1)
Verifier running time poly(vt,)

47



Moreover, the verifier is non-adaptive with respect to its queries to its interaction randommness.

Proof. On input x, with parameters n.,ns € N the protocol (P},, V|,) works as follows, given an

extractor Ext: {0,1}" x {0,1}" — {0,1}"" with error eg.

1. Augment IP such that it has round-by-round soundness error B, < 1/4(|x|+ k2), and per
round randomness complexity rl, = poly(|x| + kp). This can be achieved by O(ke - log(|x| + ki))
parallel repetitions (see Fact 3.3).

(a) Vip(x, (21,81,a1), ..., (2j_1,8j_1,aj-1)): Send to the prover a random string z; < {0, 1}"=.
(b) Pl(x, w,21,51,...,2;): Respond with 2% € {0,1}"s where (honestly) 2} := z;.

(c) Vip(x, (21,581,a1), ..., (25_1,8j_1,aj-1), 2): Send to the prover a random seed s; < {0, 1}"=.
(d) Pro(x,w,21,51,...,2,8j):

i. Compute p; := Ext(z}, s;).
ii. Compute aj < Pp(x,w,p1,...,p;).
iii. Send (sj,a;) to the verifier.

121,81 e ves 2k S
3. VTR (215 81,01)5 - -+, (2l Skipr Thip)):

a) Sample a random m; < [n;] and check that, for every j € [kip], 2j[m.] = 2%[m.].
b) Sample a random m; < [ns] and check that, for every j € [ki], 5j[ms] = s} [ms].
c

(c) For every j € [kip], compute p; := Ext(z}, s’) .

(
(
(d) Accept if and only if Vip(x, p1,a1, ..., pkp, Gkp) = 1.

The parameters n,, ns and g, will be fixed during the analysis. Let 6 > 0 be a small constant
that will specified later.
Completeness. Fix (x,w) € R. For every j, let z;, 55, z;., s;, p; and a; be the strings specified in a
random execution of the protocol. Since the prover is honest, we have that z§ = z;j and 39 = s, and
so the verifier’s tests in Item 3a and Item 3b pass with probability 1. Moreover, since the original
interactive proof has perfect completeness, and for every j, a; := Pjp(x, w, p1, ..., pj), we have that
(always) Vip(x, p1,01, .- -, Pk, 0kp) = 1. Therefore, the new IP verifier accepts with probability 1.

Soundness. Fix x ¢ L(R) and a malicious prover P. Let E be the event over the verifier’s

random coins, (21,51, ..., 2kp, Skp), that there exists some j € [kjp| such that at least one of the
following is true: (i) A(2},2j) > 0 or; (ii) A(s}, s5) > d, where 2} 1= Pip(21,81,. .., 2j-1,8j-1, 2j)

and 3; = 15.,;(21, S1,..-52j—1,8j—1, %j,5;). We first show that if E is true with probability 1/2 (i.e.,
with probability 1/2, P, gives some z;- or s;- which is far from the matching string sent by the
verifier), then the verifier rejects with constant probability.

Claim 7.3. Suppose that

Pr [ (#1,81,- -5 2kpsSkp) €EE] >1/2 .

(21581 5+-52kp »Skpp )

Then V|, accepts with probability at most 1 — §/2 when interacting with Pp.

48



Proof. For every choice of verifier randomness (21, 51, ..., 2kp, Skp) € E, there exists some round j
in which either A(z;,2}) > d or A(s;,8}) > d. As a result, one of the tests made by Vi, in Item 3b
and Ttem 3a, causes the verifier to reject with probability at least §. The verifier rejects if both
(21,81, -+, Zkp» Skp) € E and the test fails, and so rejects with probability at least 1/2-6 =6/2. [

We now show that if E does not happen with probability 1/2; then the prover’s messages z;- have
high min-entropy.

Claim 7.4. Suppose that

Pr [ (21,8155 2Kkp>Skp) EE] < 1/2 .

(21,5150 2kgp k)

Then for every j, Hm;n(Z]’- | =E) > 0.5n,, where ZJ’- 1s the random variable describing the output z§

of Py in a random interaction with V', on input x.

Proof. Fix a round number j, and some string z;. We have that

Pr[Z;=2|-E|=Pr[Zj=2 N —-E]|/Pr[-E]

j
§2~Pr[A(z;-‘,zj)<(5] (1)
zj
=2-|{2' €{0,1}" : A(z,2") < § }|/2™
< g netnHE) (2)
< 2705ms (3)

Above, Equation (1) is due to the fact that whenever (21, s1, ..., Zkp, Skp) ¢ E, we have by definition
that the output zg of P, given (z1,51,. .., 2kp, Skp), has Hamming distance at less than ¢ from
z;j. Equation (2) true due to Fact 3.10 and Equation (3) is true for a small enough constant 6. Then,

we get that
Huin(Z} | =E) = min —log Pr[Z} = 27 | =E] > 0.5n. .
z*
J

O

Claim 7.5. Let state be the state function of the original interactive proof. Then for every transcript
tr where the verifier is about to make its j-th move such that state(x,tr) = 0:

Pr[ state(x,terj) =1 ‘ _‘E] < (BIP,rbr + €Ext) : 2n5-H(6) ,
where p; is drawn as in the protocol description.

Proof. Fix some j and a transcript as in the claim statement. In the following, for convenience,
we do not write the condition on —E but all of our random variables have this added conditioning.
By Claim 7.4, we have that z} has min-entropy at least 0.5n,. Thus, by definition of the extractor,

| Pr[ state(x, tr||[Ext(z}, Up,)) = 1] — Pr[ state(x, tr||Uy,) = 1]| < €g.e

where U, and U, are the uniform distributions over bit strings of length ns and rp respectively.
Furthermore, by round-by-round soundness of the original interactive proof, we have that

Pr|state(x, tr||Urp) = 1] < Bpawr -

49



Therefore the fraction of seeds that cause the state function to change from 0 to 1 is at most
€& + Biopmr- Recall that in the protocol, pj := Ext(zz-, s;-), i.e., the seed of the extractor is s;- rather
than a uniformly random seed. Since we have that —E, we know that the message 39 chosen by the
prover has A(s}, s;) < d. We say that a seed s; is bad if there exists some s} with A(s}, s;) < such
that state(x, tr|[Ext(2}, s%)) = 1. Every point s’ that inhibits changing of the state function has a
ball of size 2"H(9) of random seeds that have distance at most & from it (see Fact 3.10). The total
probability of landing on a bad seed is at most the probability that a random seed s; falls within
one of these balls. Therefore the probability that s; bad is at most (e« + Biop i) - ons-H(9), O

Recall that log 1/8p = O(log([x| +k?)) > O(log(|xx + k|)) = log r’. Therefore, setting n, = 4r},
by Theorem 3.9, there exists an extractor with error eg, = Bip 1r, O & source with min entropy 0.5n, =
2r), which extracts r/, bits of randomness. The seed length is ny = O(log 1/eg.) = O(log(1/Bp ror))-

If E happens with probability less than 1/2 then we have that:

4
5
6
7

Pr[(Pop, V/,(x)) = 1] < Pr[E] + Pr[ 3j : state(x, tr]|p;) = 1 | —E ]
< 1/2 + kip - (/BIP,rbr + EExt) : 2n5'H(6)
< 1/2+ K - 2Bpp iy - 200081/ Biproe))-H(9)

S 1/2 + kIP Y/ 5|P,rbr < 9/10 .

Equation (4) follows from the fact that the verifier V|, accepts only if Vp accepts given x, prover
messages a1, . .., ak, and verifier randomness p1,....px,. By the round-by-round soundness of the
original IP, since state(x, )) = 0 (which follows from the fact that x ¢ L), in order for the verifier to
accept, it must be that the value of the state function changed from 0 to 1 in some round. Equation (5)
is true by applying the union bound and Claim 7.5. We have Equation (6) by noting that we set
eee = B and ng = O(log(1/Bp:)). Finally, Equation (7) holds for a small enough constant
0 >0.

If the probability that E happens is greater than 1/2, then by Claim 7.3 the verifier rejects with
constant probability 1 — /2 (with the same setting of § as before).

Thus we have that in both options for the probability that E occurs the verifier rejects with
constant probability.

(4)
()
(6)
(7)

Complexity measures. We analyze the efficiency parameters of the IP:

e Prover-to-verifier communication. We first amplify the protocol, giving polynomial overhead to

all messages. In addition to the original prover messages, the prover also sends 23 and s;-. This

adds at most polynomial overhead to the prover-to-verifier communication complexity.
o Query complexity to randomness. The verifier queries each s; and z; in O(1) locations.
e Randomness complexity. V|, generates n, + ng = poly(rp, |x|) bits in every round.
e Decision randomness. V|, uses logn, + logns = O(log x| + log ki) bits of decision randomness.

e Verifier running time. V|, runs the original IP verifier for polynomially many repetitions, generates
a few random strings and runs the extractor. Its running time is therefore polynomially related to
the running time of Vip.

e Adaptivity. V|, makes non-adaptive queries to its interaction randomness.

50



7.2 Local access to prover messages

Definition 7.6. Given a kp-round public-coin IP IP = (P, Vip), define the multi-indezed relation

\I](VIP) = {(alv---aak|p7(xyplv'”apkm)a—]-) ’ VlP(valaala"‘7pk|P7ak|P):1} .

Here x corresponds to the common input instance to the IP prover and IP wverifier, p1,..., Pkp
correspond to verifier (random) messages, and ay, ..., ay, correspond to prover messages.

Theorem 7.7. Suppose that:

o IP=(Pp, Vi) is a public-coin IP for a relation R; and

e PCP = (Incp, Prcp, Viocp, iDpcp, WDpep) is an index-decodable PCP for the multi-indexed relation
U(Vip).

Then Construction 7.9 is a (kp + 1)-round public-coin IOP for R with the parameters below.

IP (Pp, V) for R Index-Decodable PCP for U(V,)
Rounds kp Indexer proof length  lpep ¢
Prover-to-verifier communication | Proof length lpce o
Interaction randomness M | T | Queries per proof Jecp
Decision randomness Mp.ac Randomness Ibcp
Soundness error B Decodability bound Kpcp
Verifier running time vt Verifier running time  vtpep
IOP (Pyop, Viop) for R
Rounds kp
Proof length kip - lpcp.1 + lpep p - 271Pde
__| Queries per round Jrcp
Total round randomness  fp ;.
Decision randomness Foce + Mp ac
Soundness error B + Kpcp
Verifier running time Vipep

Moreover, if iDpcp is efficient then the transformation maintains computational soundness (if IP has
computational soundness error B, then IOP has computational soundness error B + Kpcp ).

Remark 7.8. The transformation in Theorem 7.7 can be modified to preserve the verifier’s ran-
domness query complexity if the verifier is non-adaptive with respect to the queries it makes to its
interaction randomness. Suppose that the verifier reads q bits from its own messages. Then we
define a multi-indexed relation that consists of tuples:

(ﬁ[l], .. ,ﬁ[k},x,w) = <a17 ceyag, (x,01, . ,bq,pdc),J_)

such that given decision randomness p, the IP verifier V|, accepts given instance x, decision
randomness pg, prover messages (ai,...,ax), and (by,...,bq) as answers to queries to its own
interaction randomness. Given a multi-indexed PCP for this relation, the IP to IOP transformation
is identical to the one in Construction 7.9, except that at the end, after the verifier chooses decision
randomness, it also queries its own randomness to get bits by, ..., bq, and these replace p1, ..., pip
as explicit inputs to the index-decodable PCP verifier.

We now prove Theorem 7.7; we describe the construction and then analyze it.

51



Construction 7.9. The IOP verifier V op receives an instance x and the (honest) IOP prover P gp
receives x and a witness w. They interact as follows.

1. For every round i € [kip):
(a) Viop sends a uniformly random string p; as sampled by Vp;

(b) Pop computes a;  Pp(x,w,p1,...,p;) and sends m; := Ipcp(a;).
2. Piop sends, for every pge € {0, 1}, T1,, 1= Ppcp(ai, ..., akp, (55, 015 - - - 5 Plyp s Pac)s L)
3. Viop (given oracle access to 71,..., 7y, and II = {II,, },, ) samples decision randomness p4. and

PCP randomness ppcp and checks that

1w Tl o L1 c
Ve P (0, p1, - - y Pkip Pac); Prcp) = 1 .
Proof of Theorem 7.7. First we argue completeness, then argue soundness, and finally analyze
efficiency measures.

Completeness. Fix (x,w) € R. The strings a1, ..., ax, are computed by running the honest

IP prover Py given (x, w). By the (perfect) completeness of the IP, Vip(x, p1, a1, . .., pip, Gkp; Pac) = 1

with probability 1 over Vp’s randomness p1, . .., pkp, pac. Hence, (a1, ..., axp, (X, 01, Pkps Pac)s L) €
U(Vp) with probability 1 over pi, ..., pkp, ps. Moreover, by the (perfect) completeness of the index-
decodable PCP, Vpep accepts with probability 1 (over ppep) when given access to the indexer proofs

m; obtained from the indexes a; via Ipcp and the prover proof II,, output by the PCP prover Ppcp.
We conclude that V,qp accepts with probability 1, as desired.

Soundness. Fix x ¢ L(R) (L(R) is the language implied by the relation R) and let Py be a

malicious IOP prover. In the following, we let p = (p1,..., pPkp, Pac) denote a list of kp verifier

messages and p; = (p1,...,p;) a prefix of length i. Let E be the event over the verifier’s coins p that

(iDpce (71, - - -, iDper(Fip ), (x, ), L) € U(Vip) |

where 7; := Piop(p;) for any i € {1,..., kp—1} and (7, 1) := f’mp(pklp) where IT = {ﬁpdc}pdCE[np,dc}'
By the definition of ¥(Vp), (p1, ..., pkp, Psc) € E if and only if the proofs 71, ..., 7k, can be decoded
into messages that make the IP verifier accept:

VlP(Xv P1;s iDPCP(ﬁ—l)v <o Pkipy iDPCP<7~rk|P); pdC) =1.

Using the following claims, by the law of total probability we conclude that V,op accepts with
probability at most kpcp + Bip as desired.

Claim 7.10. We have that:
T 4= f)IOP(Pl)

7}17"'7ﬁk|p7H

Pr | Vi (x,p;ppcp) =1 N E| - : < B -
prpce Thp—1 P|O~P(pk|pfl>

(ﬁ-kIP7H) «— PIOP(pk";,)

Proof. Consider the malicious IP prover f’.P that simulates 15|op by passing it the verifier’s messages,
decoding the proof that Pop sends in return, and sending the decoded message to the IP verifier.
More formally, in round 1 < ¢ < kp, letting p1, ..., p; be the verifier messages up to this point, Py
computes m; := f’|op(p1, ..., p;) and sends a; := iDpep(7;) as its message to the IP verifier (in round
Kip, P.op(pl, ..., Pkp) outputs in addition to 7y, also a proof II, but this proof is ignored by 15|p).

52



Let e be the probability that the IP verifier V|, accepts when interacting with 15|p:

ay <— ]-SIP (,01)

Ep = Pr VlF’(plaa/lu"'7pk|p7ak|p;pdc) =1
p17"'7pk|p7pdc

ak|p — PIP(plv LR 7pk|p)

By definition, whenever p € E the IP verifier accepts given messages (a1, ..., ak,) decoded from
the proofs that the prover sent given instance x and verifier messages p = (p1,...,pkp) (i-e,
a; := iDpep(7;) where 7; := Piop(p1, ..., pi)). This is precisely how the malicious IP prover computes

its own messages. Hence, for every instance x and verifier messages p for which simultaneously
the IOP verifier accepts and also p € F, the malicious IP prover P, makes the IP verifier accept.
By soundness of the IP, the verifier accepts x ¢ L(R) with probability at most S over its random
messages regardless of what the malicious IP prover does. Thus we conclude that:

T 4 PN’IOP(Pl)

T N | :
Pr VlolP P (X7p; chp) =1AFE R - ’ <ep < ,8": .
prpee Tkp—1 = Piop(Pyp—1)

(7~Tk|P7H) A PIOP(pk|p)

Claim 7.11. We have that:
T PIOP(pl)

ey Thgn 11
PI‘ Vlolp kip (X, l)7 pPCP) e 1 A\ _|E _ ~
P,PPCP 7Tk|P—1~<_ P|O~P (pk|p71)

(ﬁk”:n ]-_-[) < PlOP(pk”:)

< I{pcp(|X‘ + Fip,int + r|P,dC) .

Proof. Assume towards contradiction that the claim does not hold. There must exist p ¢ E such
that

T f)lop(Pl)
Pr V@i""’ﬁk’n(&l’; pece) = 1| . : > Fece ([%] + ipne + Nipac) -
PPCP 7Tk|P71~<_ P|O~P (pk”:—l)

(ﬁ-kIP7H) <_ PIOP(kaP)

The IOP verifier accepts if and only if the underlying PCP verifier accepts. This means that the
PCP verifier accepts with probability greater than xecp(|x| + rip.ine + fp.ac) (the knowledge bound of
the PCP). Thus, by decodability of the index-decodable PCP, we get that:

(iDPCP(ﬁ—l)a s 7iDPCP(ﬁ-k|p)7 (Xv p)a J—) € \II(VIP> .
This contradicts the assumption that p ¢ E. O

Notice that the prover P> above simply runs the malicious IOP prover P or and the index decoder
iDpep. If both Pop and iDpep run in polynomial time, then so does Pjp. Hence if this is the case, and
the IP is computationally sound (sound against efficient adversaries) then so is the resulting IOP.

93



Complexity measures. The number of rounds is kjp. The IOP verifier uses rpp ;. during interaction
and rpcp + rp g random bits in the decision phase. The IOP verifier makes gpcp queries to its oracles
when running the PCP verifier. The IOP verifier’s running time is vtpep since it runs the PCP verifier.
The IOP prover generates kjp indexer proofs each of length lpcp;, and 2"« prover proofs of length

|PCP,P~

O

54



8 Application: commit-and-prove SNARKSs

We describe how index-decodable PCPs generically imply commit-and-prove SNARKSs in the random
oracle model, and thereby, via our construction from Section 6, an efficient commit-and-prove
SNARK for nondeterministic computations. We begin by some simple definitions of random oracles,
commitment schemes and commit-and-prove SNARKS in the random oracle model.

8.1 Definition

Random oracles. We denote by U()) the uniform distribution over functions ¢: {0,1}* — {0, 1}*
(implicitly defined by the probabilistic algorithm that assigns, uniformly and independently at
random, a A-bit string to each new input). If ¢ is sampled from U()), we call { a random oracle.
The random oracle model (ROM) is the model where all parties have access to a random oracle.

Definition 8.1. A pair of deterministic polynomial-time oracle algorithms C = (Com, Check) is
a succinct (non-interactive) commitment scheme in the ROM with binding error [ if the
following holds.

e Correctness. For every A € N and m € {0,1}*,

¢ U

(cm,op) := C.Com¢(1*,m) | — L

Pr C.Checkc(l)‘,cm,ﬂn,op) =1

e Binding. For every A € N and deterministic malicious sender S that makes at most t € N queries,

m # m’
Pr C.Check®(1*, cim, m, op) = 1

2 < BAT) -
C.Check¢ (1%, cim, m’, op’) = 1

(CFn’ m7 m/’ Op7 op/) = S

e Succinctness. For every A € N, ¢ € U()), and message m, the commitment cm := Com®(m) has
at most poly (A, log |m|) bits.

Definition 8.2. Let ARG = (C,P,V) be a tuple where C = (Com, Check) is a succinct commitment
scheme and P and V are deterministic polynomial-time oracle algorithms.'® ARG is a commit-
and-prove SNARK in the ROM for an indezed relation R with knowledge error € if the following
holds.

e Completeness. For every A € N and (1,x,w) € R,
(U

Pr | VS(1}, em,x,pf) = 1|  cm:= C.Com‘(i) | =1 .
pf := PC(1M, 1, x, w)

e Straight-line knowledge soundness. There exists a deterministic polynomial time machine E
such that for every A € N, n € N, and deterministic (malicious) prover P that makes at most t
queries,

VM em,x,pf) =1 A |x|=n A C+UN)

. CrA . _ (cm,x, pf;tr) :=P¢ | <e(\,n,t) ,
((n,x,w) ¢ R vV C.Check®(1*,cm,1,0p) ()) (1, 0p, w) 1= B(1*. cm, , pf, tr)

Pr

10The prover can be probabilistic for the purpose of achieving zero-knowledge.

95



where tr := (j1,a1,...,Jt,a¢) are the query/answer pairs made by P to its oracle.

e Succinctness. For every A€ N, ( €¢U(N) and (i,x,w) € R, the size of pf := P*(1*,1,x,w) is
at most poly (A, log |1], log |x|, log |w]).

8.2 Construction from index-decodable PCPs

We show how to construct commit-and-prove SNARKSs (in the random oracle model) given an
index-decodable PCP.

Merkle trees. We rely on Merkle trees where the hash function used is the random oracle. We
describe the relevant algorithms and properties below.

e Merkle.Com: This algorithm receives as input a message m € {0, 1}K , and outputs a corresponding
Merkle root rt € {0,1}* (which acts as a succinct commitment to the message). Informally, the
message is placed at the leaves of a binary tree, and the commitment algorithm iteratively hashes
the values of two sibling nodes to obtain the value of a parent node; the value of the root is rt.

e Merkle.LocalOpen: On inputs m € {0, 1} and index j € [/], this algorithm outputs the authenti-
cation path p for location j (the list of values of the nodes that are siblings of nodes in the path
from the j-th leaf to the root).

e Merkle.LocalCheck: On inputs a Merkle tree root rt, index j € [¢], value a, and authentication
path p, this algorithm outputs 1 if and only if p is a valid authentication path showing that the
j-th symbol of the string under the commitment rt is a.

The algorithms above satisfy the natural correctness property that states that an honestly com-
puted Merkle root rt for a message m can be locally opened at any location (in such a way that
Merkle.LocalCheck accepts). They also satisfy the following binding property, which states that no
location can be opened to two different values (up to a small error).

Lemma 8.3 (Merkle trees are binding). For every adversary A that makes at most t queries to the
random oracle,

a#ad 2
t
Pr | Merkle.LocalCheckS(rt, j,a,p) = 1 (rt.j.a a’C f)_g(jl\g =0 <2)\>
Merkle.LocalCheck® (rt, j,a’,p/) = 1 &P @D

Distance and proximity for index-decodable PCPs. We rely on additional proximity properties
for the index-decodable PCP (which our construction satisfies). We say that an index-decodable
PCP (Ivcp, Pocpy Vipcp, iDpep, WDpep) with decodability bound kpep has distance dpep € [0, 1] and
proximity vecr € [0, 1] if the following holds.

e Error correction. (Ipep,iDpcp) is an error-correcting code with relative distance dpcp.

e Proximity decodability. For every x and strings 71, . .., 7k, LI, if

:Ppr {Vgéé’ﬁk’H(X, p) =1 :| > K/pcp(|X|)

then (iDPCP(frl), oo oy 1Dpep (7)), X, WDPCP(ﬁ)) € R and for every i € [k| there is a codeword C; of
the COde (Ipcp, iDpcp) Wlth A (Cla 7?1) S ’}/pcp.

56



The “basic” definition in Section 4 corresponds to the special case where dpcp = 0 and Ypcp = 1.

Commit-and-prove SNARKSs from ID-PCPs. Let R = {(i,x,w)} be the target indexed
relation for the commit-and-prove SNARK. Let (Ipcp, Ppcp, Vpep, iDpcp, WDpep) be an index-decodable
PCP system for the indexed relation R with proof length | over an alphabet ¥ and query complexity
q. We model the random oracle ¢ as two separate oracles: (i) an oracle (; to be used for generating

commitments; and (ii) an oracle {2 to be used to generate the verifier’s randomness. We construct a
commit-and-prove SNARK for R.

e C.Com‘(1*,m): Compute 7 := Ipcp(m) and (rt, L) := Merkle.Com®! (7). Let

§.— {(j,ﬂ[j],pj) | 5 € [locpa)s pj := Merkle.LocalOpen¢! (ﬂ,j)}
Output the commitment cm := rt and opening information op := S.

e C.Check®(1*,cm, m,op): Parse cm := rt and op := S where S := { (j,a,p) }.
1. Halt and output 0 if any of the following conditions is hold.
(a) Opening collision: The set S contains (j,a,p) # (5',d’,p’) with j = j'.
(b) Illegal opening: There exists (4, a,p) € S with Merkle.LocalCheck(rt, j, a, p) = 0.

I|S| <1-— 5P8cp_
PCP,I

2. Let 7 be the string of length lpcp; such that, for every (j,a,p) € S, 7[j] := a and the entries
not defined by S are set to 0 (or some default symbol).
3. Output 1 if and only if A(Ipep(m), ) < ‘Sﬁ%.

(¢) Insufficient number of openings:

o PC(1M 1, x, w):
1. Compute 7 := Tpep(i), (rt;, L) := Merkle.Com®! (), II := Ppep(i,x, w), and (rt,, L) :=
Merkle.Com®! (II).
2. Let p := Co(rts||x||rt,.) and simulate Vigh (x; p). This execution induces q query/answer pairs
(Ji,a1),- .., (Jq. aq) to the verifier’s oracles.
3. Output pf := (rt,, (j1,a1,p1),- .-, (4q: @q: Pq)) Where p1, ..., pq are the authentication paths for
the query-answer pairs (ji,a1),. .., (jq, aq) using the appropriate root.

e V¢(1*, ¢, x, pf):

1. Parse rt, := cin and pf := (rt,,, (j1,a1,p1); - - - » (Jq, Gq, Pq)) and compute p := Co(rty||x]|rt,,).

2. Check that the PCP verifier Vpep accepts on input (x;p) and when answering a query to j,
with a,.

3. Check that p1,...,pq are valid authentication paths of (ji,a1),..., (jq,aq) that hash into the
appropriate roots rt; and rt.,.

8.3 Security

Theorem 8.4 (restatement of Theorem 3). Let PCP = (Ipep, Ppcp, Viocp, iDpep, WDpep) be an index-
decodable PCP for an indexed relation R = {(1,x,w)}, with an efficient indexer and decoders. Then
there exists a commit-and-prove SNARK for R with the parameters below.

57



Index-Decodable PCP for R

Indexer proof length  locp s CaP.SNARK for B

Prover proof length loco p

Queries per oracle Qecr Argument length poly (A, gecp, 10g locp 1, 10g locp p)
Decodability bound Kpcp . Knowledge error t- kpep + O (;—i)

Distance Jpcp Committer running time  poly (], itecp)

Proximity o fSPCP/ 8 Prover running time poly (), ptocp)

Indexer running time  itec, Verifier running time poly (X, Vtpep)

Prover running time  pt.
Verifier running time  vtpep

Proof. First we first show that C is a succinct commitment scheme and and then we show that the
CaP-SNARK has (straight-line) knowledge soundness.

The commitment scheme. We explain how C is a succinct commitment scheme with binding
error O(;—i) The algorithms C.Com and C.Check run in polynomial time, due to the efficiency of
the underlying Merkle scheme and the indexer algorithm. The succinctness property comes from the
succinctness of the underlying Merkle commitment scheme (a single tree root is short).

We turn to correctness. Consider the commitment of a message m. Notice that the set S output
by the honest committer contains valid local openings for all of 7 := Ipe(m), and no collisions.
Therefore |S|/lpcpr = 1 > 1 — dpep/8. Together, this implies that S passes the checks done by the
commitment checking algorithm in Item 1. This implies that the honest committer can generate
enough valid local openings to pass the commitment checking algorithm’s checks. Since S contains
definitions for every symbol of w, the commitment checking algorithm generates 7 from S. The
committer generates 7 := Ipcp(m), and so the commitment checking algorithm outputs 1 after the
check in Item 3.

We are left to show that the binding error is O(;—i) Consider a commitment cm := rt, two messages
m, m’, and corresponding openings op := S and op’ := S’ where C.Check¢(1*,cm, m,op) = 1 and
C.Check®(1*, cin,m’, op’) = 1. Since both openings pass Item 1 in C.Check, we know that S and S’
contain no duplicates, are entirely verified, and each defines at least 1 — 5"% of the locations of their
respective proofs m and 7’ (defined as in Item 2 by filling in values from the sets and filling in the
rest with zeroes). Due to the (local) binding of the Merkle scheme, except with probability O(;—i),
there are no openings in S and S’ on which they disagree. Notice that [S N S| > 1 — dpcp/4, and
so A(m, ") < dpcp/4. Since the openings passed the checks with messages m and m’, we have that
A(Ipep(m), 7) < dpep/4 and A(Ipep(m’), ') < dpcp/4. Thus, by the triangle inequality we conclude
that A(Ipcp(m), Ipcp (m’)) < dpcp/2 which, since (Ipcp, iDpep) is an error correcting code with unique
decoding distance dpcp/2, implies that m = m’.

Knowledge soundness. Completeness of the CaP-SNARK follows directly from the construction.
We sketch the proof of (straight-line) knowledge soundness for it. Before constructing the CaP-
SNARK extractor, we define an algorithm Merkle.Extract known as Valiant’s extractor, used implicitly
in [Val08| and formally defined and analyzed in [BCS16|. The algorithm Merkle.Extract receives as
inputs a Merkle tree root rt, committed message length ¢, and query/answer transcript tr and finds
all authentication paths for locally opening a string of length ¢ relative to rt contained in tr that
pass the test in Merkle.LocalCheck.!!

1 |BCS16]| use slightly different notation for Merkle.Extract. In their case, the algorithm receives as input the
malicious prover and a bound on the number of queries it is allowed to make, rather than the query/answer pairs. It
additionally outputs a message that is consistent with the local openings that the prover could generate.

o8



We define the commit-and-prove SNARK extractor E as follows:

E(1*, cm, x, pf, tr):

Parse rt; := cm and pf := (rt,,, (j1,a1,p1),- -, (Jg,aq:2q))-

Compute S; := Merkle.Extract(rt;, lpcp 1, tr).

Compute S,, := Merkle.Extract(rt,,, lpcp p, tr).

Let 7 be the string of length lpcp; such that, for every (j,a,p) € S;, 7[j] := a (undefined
locations are set to 0). Let II be constructed similarly from S,,. If there is any collision in
the definition of either string, halt and output L.

5. Output the index 1 := iDpep(7), opening information op := S;, and witness w := WDPCP(f[).

W=

Fix n € N, A € N, and a t-query malicious prover P; assume, without loss of generality, that P is
deterministic and always outputs (cm, x, pf) with |x| = n.

Let E; be the event that P finds at least one collision or inversion. A collision consists of two
or more distinct inputs that map to the same output, and an inversion is an input that maps to a
target value or list of values that were not answers to previous queries. By the birthday bound, one

can show that: )
t
PrEi| ¢+ UN) ] :0<2A>

In the rest of the proof, we condition on the event E; not occurring. In this case, one can show
that any valid local opening that the malicious prover P can generate is found by Merkle.Extract: P
cannot output a SNARK proof pf containing a valid authentication path not output by Merkle.Extract;
moreover, there are no two valid paths to the same location with different values (otherwise this
would be a collision). See |BCS16| for a detailed proof about the properties of Merkle.Extract.

Next we consider the event Ey that

IZT [foclp_[(x p)=1|> kecr ,

where 7 and II are computed from S; and S, as done by the SNARK extractor (using P’s queries).
Letting (cm, x, pf;tr) := P¢ and (i, S;, w) := E(1*, cm, x, pf, tr), we argue that =E; A Ey implies the

following conditions:
(a) the set S; does not contain distinct triples (j,a,p) and (5',d’,p’) with j = j/;
(b for every (j,a,p) € S, Merkle.LocalCheck®! (rt;, j, a, p) = 1;

)
)
() — g
) (
)

o

|PCPI_
(d) (i,x,w) € R;

() ATpce(1),7) < dpce/4.

These conditions together imply that the extractor E succeeds (that is, it outputs (1, 0p, w) such
that (1, x, w) € R and C.Check®(1*,cm, 1,0p) = 1).

e The set S; is generated via Merkle.Extract. Because —E; holds, S; satisfies Items (a) and (b).

e We now show that Item (c) holds due to the assumption that .S; defines enough of 7 to make the
PCP verifier accept with probability greater than kpcp (even when discounting undefined entries).
We argue that the accepting local views of Vipep of the string 7 contain at least 1 — dpcp/8 of the
entries of 7. By the (proximity) decodability property of the index-decodable PCP with proximity
dpcp/8, there exists a codeword C' with A(C,7) < dpcp/8. Let 1 be the fraction of bits of 7 that

99



are read by the PCP verifier in all of its accepting views combined. Assume towards contradiction
that n < 1 — dpcp/8. Then there must be a (1 —n — A(C,7))-fraction of the locations where
C and 7 agree that are not read. Let 7’ be identical to 7 except these locations are changed
to different symbols. We now have A(C,7') = A(C,7) + (1 —n — A(C, 7)) > dpcp/8. By the
proximity decodability property of the index-decodable PCP, this implies that

f;f [Vﬁc’pH(X;p) =1|<kecr

in contradiction to the assumption that 7 and 7’ agree on the bits that cause the PCP verifier to
accept a kpcp-fraction of the accepting local views.

e Define 1 := iDpcp(7) and w := wDpep(II). Since Prp[V;rc’E(x;p) = 1] > Kpcp (we condition on Eg),
we have, by the decodability of the index-decodable PCP, that (1,x,w) € R (this is Item (d)) and
there is a codeword C' where A(C, ) < dpcp/8 (this is Item (e)); in fact, since the distance is well
within unique decoding, we have that C' = Ipcp(1).

We have shown that if the event =E; A Eo holds then the extractor E succeeds. We are left to analyze
the probability that this event occurs.

Given x and Merkle roots rt; and rt,, from the prover, the SNARK verifier uses the string
p = Ca(rt;||x||rt,,) as the PCP verifier’s randomness. If =E;, then the prover found no collisions or
inversions in the random oracle, and so the only way for it to cause the verifier to accept is to have
partially defined strings # and II “in its head” whose entries it can open, and hope that p will be
chosen such that Vpep(x; p) queries only at the defined locations and accepts. If =E; A —Eg, then, by
definition, the probability that the random oracle returns p such that the prover can authenticate all
local openings required by the verifier and simultaneously cause the verifier to accept is at most k.
The prover makes at most ¢ queries to its random oracle and therefore has at most ¢ chances to find
p that is “good” for it (i.e., makes the verifier accept). This means that whenever —=E; A —Eg, the
prover cannot cause the SNARK verifier to accept with probability greater than t - kpcp.

To conclude, the success probability of the extractor is the same as the malicious prover’s
probability of convincing the verifier, conditioned on —E; A Eo. The probability that =E; A Es occurs
is at most the sum of the probability that —=E; occurs (which is O(;—i)) and the probability that

—E; A —Eg occurs (which is at most ¢ - kpep). This gives a loss of as most ¢ - kpep + O(;—i) O

Corollary 8.5. Let R be an indexed relation that is decidable in NTIME(T). For every t € N and
e € (0,1), R has a CaP-SNARK against t-query malicious provers with the parameters below.

CaP-SNARK for (1,x,w) € R
Communication poly(log(t/e€),logT)
Knowledge error €
Committer running time  poly(|i],log(t/€))
Prover running time poly(log(t/€), T)
Verifier running time poly(|x|,log(t/€),log T')

Proof. By following the construction of Theorem 7.1 we notice that the indexer and the index
decoder are the application of an error-correcting code with constant relative distance dpcp = 2(1).
By choosing the PCPP proximity parameter in Section 5.2 to be dpcp/8 (rather than dpcp as done
there) we ensure that the proximity of the index-decodable PCP is dpcp/8. This achieves distance
dpcp = (1) and proximity Yecp = dpcp/8 = O(1) for the index-decodable PCP.

60



We modify our index-decodable PCP to achieve decodability bound pcp < 57, by repeating the
verifier O(log(t/€)) times with fresh decision randomness (and accepting if and only if all executions of
the verifier accepted). This preserves all proof lengths, increases the query complexity to O(log(t/¢))
per oracle, increases the verifier running time to poly(|x/|,logt,log(1/€),logT). This modification
does not change the indexer or decoders, which remain efficient.

The indexer of the index-decodable PCP constructed above has efficient decoders. Therefore,
we can plug this index-decodable PCP into Theorem 8.4. When this theorem is applied to an
index-decodable PCP with decodability bound kpcp and a random oracle with security parameter
A, the resulting CaP-SNARK has knowledge error ¢ - Kpcp + O(;—i) The index-decodable PCP has
decodability bound kpcp < 53, s0 that ¢ - Kpcp < 5. To make the knowledge error at most ¢, we are

left to set the security parameter A := log (2£) + O(1), which ensures that O(;—i) <5s. O

Remark 8.6 (extending Definition 8.2 to multiple commitments). Our definition of index-decodable
PCP allows any number of index oracles (and the verifier may query any of them). In the construction
above, we used only two oracles (one for an index proof and one for the prover proof).

One can leverage the full power of our notion of index-decodable PCPs to achieve a stronger
CaP-SNARK definition, which is about statements with multiple commitments, possibly obtained
from different parties. The parties do not need to communicate or share any information (beyond
the common random oracle); they only need to run the commitment algorithm as defined in our
construction (while the prover follows the prover of the PCP with respect to an oracle for each
commitment). This extended definition allows for a broader class of applications. For example, one
could imagine a distributed system where many commitments are broadcasted through a network;
then, different claims regarding different subsets of the commitments can be easily verified via
different CaP-SNARK proofs.

61



9 Application: hardness of approximation

We describe a connection between our Theorem 7.1 and the hardness of approximation for SSAT,
the stochastic satisfiability problem.

Definition 9.1. A k-SSAT instance with £ variables per quantifier is a boolean formula ¢ in
conjunctive normal form, with 3 variables per clause, over 2 -k - £ boolean variables split into two
groups: (i) random variables {pi:j}ie[k],je[e} ; and (i1) existential variables {ai,j}ie[k],je[z}'

The instance ¢ is in the language k-SSAT if for random p11,...,p1 there is a choice of
aij,-..,a1, such that for random pa1,...,pae, and so on, the probability that the following holds is
greater than 1/2:

¢(Pl,17- -y P11 --,01.0,5 - 'apk,lv"')pk,fvak,lv"')ak,Z) =1.

Definition 9.2. The value of a k-SSAT instance ¢ is the expected number of satisfied clauses in ¢
if the existential variables are chosen to maximize the number of satisfied clauses in ¢.

Theorem 9.3 (restatement of Theorem 2). For every k, it is AM[k]-complete to distinguish whether
1

a k-SSAT instance has value 1 or value at most 1 — oW

We prove a lemma that connects any k-round IOP (having certain parameters) with the hardness
of approximating k-SSAT, and then establish Theorem 9.3 by invoking this lemma on our IP-to-IOP
transformation from Section 7.

Definition 9.4. Let (P, V) be a non-adaptive IOP with query complezity q. Given an instance x
and decision randomness py., we can view V(X; pg.) as outputting a set Q of query locations and and
a predicate 'V, (represented as a circuit) that receives as inputs by, .. .,bq where V,, (bi,...,bq) =1
if and only if V(x; pa.) accepts given by,...,bq as the answers to its queries to its oracles. The
decision complexity of the IOP is defined as max,, |V .|

Lemma 9.5. Suppose that a language L has a k-round public-coin IOP (P, V) with a non-adaptive
verifier, soundness error 3, proof length | = poly(|x|) over the binary alphabet, r = poly(|x|) bits
of interaction randomness, rqe = O(log |x|) bits of decision randomness, and decision complezity d.
Then there is a deterministic polynomial-time reduction that maps an instance x for L to an instance
¢ for k-SSAT such that:

o Ifx € L then the value of ¢ is 1.

e Ifx ¢ L then the value of ¢ is at most 1 — (l)%d%

Proof. Fix an instance x and let q denote the query complexity of the IOP. For every py. € {0, 1}
let Vi, : {0,1}9 — {0, 1} be the circuit representing the decision predicate as in Definition 9.4 where,
by assumption, |V, | <d.

Fix pg € {0,1}"<. By applying the Cook—Levin theorem we can, therefore, efficiently reduce
V. to a 3CNF formula ¢, : {0, 13970 — {0, 1} of size O(d) where for every by,...,bq € {0,1}
the following holds.

o If Vpdc(b17 ce bq) =1 then dzq,... yZO(d) € {O, 1} ¢Pdc(b1’ e bq, Z1y .- 7ZO(d)) =1.
o If Vpdc(b17 ceey bq) =0 then Vzq,... » ZO(d) S {0, 1} ¢Pdc(b1’ .. ,bq, L]y ,Zo(d)) =0.

We describe how the variables of ¢ correspond to messages in the IOP. For each i € [k], the

random variables p; 1, ..., p;r represent the verifier’s message in round ¢ and the existential variables

62



ai1,--.,a; represent the prover’s message in round ¢. To the final set of existential variables we add
additional variables zp, 1 ..., %, o(4) for every pa € {0, 1}, matching the variables added when
reducing the boolean circuit V,, to the boolean formula ¢,, . By adding dummy variables we can
ensure that each quantifier has the same number of variables following it.

The k-SSAT instance ¢ is the conjunction of the formulas ¢, for every ps € {0,1}" where each
¢py. has as its variables the variables matching the locations in the prover messages that V(x; pq.)
queries, and additionally the variables added by converting it into a formula, 7y, 1 ..., 7%y, 0(d)-

We now analyze the formula ¢.

e The size of ¢ is 2™ - O(d) = poly(|x|).

e If x € L then the IOP’s completeness implies that for every choice of the random variables there
exists a choice of existential variables such that every V,, is simultaneously satisfied. Thus, by
choosing the correct assignment for the z variables, every ¢,, can be simultaneously satisfied.
This implies that ¢ is always satisfiable, so its value is 1.

e If x ¢ L then the IOP’s soundness implies that the expected number of choices for p, such
that V,, is satisfied is at most 3. Fix some transcript of the protocol, which induces a partial
assignment for ¢. For every ps. where V,, is satisfied by the transcript, every clause in ¢,
can be satisfied by an appropriate setting of zpy 1, ..., %, o(d)- For every ps where V ,, is not
satisfied by the transcript, there exists at least one clause that is not satisfiable in ¢,, , no matter
the setting of 7y, 1,...,%,, 0(d)- Since ¢, has at most O(d) clauses and at least one clause is
not satisfied, we have that at most 1 — ﬁ of the clauses of these formulas are satisfied. Thus, at
most S+ (1 —5)-(1— ﬁ) =1- é%d‘é of the clauses of ¢ are satisfiable in expectation.

O

Proof of Theorem 9.5. First, we explain how an AM[k] protocol can distinguish whether a k-SSAT
instance has value 1 or value 1 — ﬁ. On input a k-SSAT instance ¢, the prover and verifier take
turns giving values to the variables: the verifier sends random bits py 1,..., p1¢, the prover answers
with a1,1,..., a1, the verifier sends pa1, ..., p2 ¢, and so on until all of the variables of ¢ are given
values. The verifier then accepts if and only if all of the clauses of ¢ are satisfied. For completeness,
if ¢ has value 1, then for any choice of verifier messages, there exists some strategy for the prover
that will make the verifier accept. For soundness, when the value of ¢ is at most 1 — ﬁ, no matter

what strategy the prover uses, the probability that the verifier accepts is at most 1 — % (which
can be made constant using parallel repetition).

We now show that it is AMJk|-hard to decide whether the value of a formulais 1 or 1 — % Let L
be a language in AMJk]. By Theorem 7.1, L has a k-round non-adaptive IOP with constant soundness
error, polynomial proof length over the binary alphabet, polynomial interaction randomness, and
logarithmic decision randomness. The theorem follows by showing that the decision complexity of
this IOP is O(k) and plugging it into Lemma 9.5.

The verifier’s decision is computed by the index-decodable PCP verifier. Following the construction
of our index-decodable PCP in Sections 5 and 6, we observe that the verifier’s decision predicate
can be written as the conjunction of O(k) computations, each of which runs on O(1) of the query
answers. Hence it can be described as a circuit of size O(k), so the decision complexity is O(k). O

63



Acknowledgments

Gal Arnon is supported in part by a grant from the Israel Science Foundation (no. 2686/20) and by
the Simons Foundation Collaboration on the Theory of Algorithmic Fairness. Alessandro Chiesa is
funded by the Ethereum Foundation. Part of this project was performed when Eylon Yogev was in
Tel Aviv University where he was funded by the ISF grants 484/18, 1789/19, Len Blavatnik and
the Blavatnik Foundation, and The Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv

University.

References

[ALMSS98]

[AS98]

[BBHR18]

[BBHR19]

[BCFKLOQ21]

[BCG20]

[BCGGHJ17]

[BCGGRS19]

[BCGRS17|

[BCGV16]

[BCL20]

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501-555.

Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization
of NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70-122.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed—Solomon In-
teractive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1-14:17.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowl-
edge with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733-764.

Daniel Benarroch, Matteo Campanelli, Dario Fiore, Jihye Kim, Jiwon Lee, Hyunok
Oh, and Anais Querol. Proposal: Commit-and-Prove Zero-Knowledge Proof Systems
and Eztensions. https://docs.zkproof.org/pages/standards/accepted-workshop4 /proposal-
commit.pdf. 2021.

Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sub-
linear Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC ’20. 2020, pp. 19-46.

Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit
Satisfiability”. In: Proceedings of the 23rd International Conference on the Theory and
Applications of Cryptology and Information Security. ASTACRYPT ’17. 2017, pp. 336-365.

Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. “Linear-Size Constant-Query IOPs for Delegating Computation”. In:
Proceedings of the 17th Theory of Cryptography Conference. TCC ’19. 2019, pp. 494-521.

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Interactive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of
the 44th International Colloquium on Automata, Languages and Programming. ICALP ’17.
2017, 40:1-40:15.

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size
Zero Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of
Cryptography Conference. TCC ’16-A. 2016, pp. 33-64.

Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-Knowledge IOPs with Linear-Time
Prover and Polylogarithmic-Time Verifier. Cryptology ePrint Archive, Report 2020/1527.
2020.

64



[BCRSVW19)]

[BCS16]

[BFLS91]

[BGGI0]

[BGHSV05]

[BGHSVO6]

[BGKS20]

[BMSS]

[BN21]|

[BSO8]

[Bab85]

[Ben+17]

[CCHLRR18]

[CFHKKNPZ15]|

[CFLS95]

[CFLS97]

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of
the 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’19. 2019, pp. 103-128.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC '16-B. 2016, pp. 31-60.

Laszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing. STOC ’91. 1991, pp. 21-32.

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Randomness in Interactive Proofs”.
In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science.
FOCS ’90. 1990, pp. 563-572.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
“Short PCPs Verifiable in Polylogarithmic Time”. In: Proceedings of the 20th Annual IEEE
Conference on Computational Complezity. CCC *05. 2005, pp. 120-134.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
“Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding”. In: STAM Journal
on Computing 36.4 (2006), pp. 889-974.

Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. “DEEP-FRI:
Sampling Outside the Box Improves Soundness”. In: Proceedings of the 11th Innovations
in Theoretical Computer Science Conference. ITCS ’20. 2020, 5:1-5:32.

Laszlo Babai and Shlomo Moran. “Arthur-Merlin Games: A Randomized Proof System,

and a Hierarchy of Complexity Classes”. In: Journal of Computer and System Sciences
36.2 (1988), pp. 254-276.

Sarah Bordage and Jade Nardi. Interactive Oracle Proofs of Proximity to Algebraic
Geometry Codes. ArXiv ¢s/2011.04295. 2021.

Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In:
SIAM Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05.,
pp- 551-607.

Laszl6 Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421-429.

Eli Ben-Sasson et al. “Computational integrity with a public random string from quasi-
linear PCPs”. In: Proceedings of the 36th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 551-579.

Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.
Rothblum. Fiat-Shamir From Simpler Assumptions. Cryptology ePrint Archive, Report
2018,/1004. 2018.

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. “Geppetto: Versatile Verifiable Computation”.
In: Proceedings of the 36th IEEE Symposium on Security and Privacy. S&P ’15. 2015,
pp. 250-273.

Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Probabilistically
Checkable Debate Systems and Nonapproximability of PSPACE-Hard Functions”. In:
Chicago Journal of Theoretical Computer Science 1995 (1995).

Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Random Debaters
and the Hardness of Approximating Stochastic Functions”. In: STAM Journal on Computing
26.2 (1997), pp. 369-400.

65



[CFQ19]

[CHMMVW20]

[CMS19]

[COS20]

[DH13|

[DRO4]

[Din07]

[Drullal

[Drullb]

[Dru20]

[EG14]

[FGLSS91]

[FGLSS96]

[FGMSZ89]

[GI05]

Matteo Campanelli, Dario Fiore, and Anais Querol. “LegoSNARK: Modular Design and
Composition of Succinct Zero-Knowledge Proofs”. In: Proceedings of the 26th Conference
on Computer and Communications Security. CCS ’19. 2019, pp. 2075-2092.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. “Marlin: Preprocessing zkSNARKSs with Universal and Updatable SRS”. In:
Proceedings of the 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques. EUROCRYPT ’20. 2020.

Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. “Succinct Arguments in the
Quantum Random Oracle Model”. In: Proceedings of the 17th Theory of Cryptography
Conference. TCC ’19. 2019, pp. 1-29.

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography”. In: Proceedings of the 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT 20.
2020, pp. 769-793.

Irit Dinur and Prahladh Harsha. “Composition of Low-Error 2-Query PCPs Using Decod-
able PCPs”. In: STAM Journal on Computing 42.6 (2013). Preliminary version appeared
in Property Testing ’10., pp. 2452-2486.

Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof of
the PCP Theorem”. In: Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science. FOCS ’04. 2004, pp. 155-164.

Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007),
p- 12.

Andrew Drucker. “A PCP Characterization of AM”. In: Proceedings of the 38th Interna-
tional Colloquium on Automata, Languages and Programming. ICALP ’11. 2011, pp. 581—
592.

Andrew Drucker. “Efficient Probabilistically Checkable Debates”. In: Proceedings of the
15th International Workshop on Approximation, Randomization, and Combinatorial Opti-
mization. RANDOM °11. 2011, pp. 519-529.

Andrew Drucker. “An Improved Exponential-Time Approximation Algorithm for Fully-
Alternating Games Against Nature”. In: Proceedings of the 61st Annual IEEE Symposium
on Foundations of Computer Science. FOCS ’20. 2020, pp. 1081-1090.

Alex Escala and Jens Groth. “Fine-Tuning Groth—Sahai Proofs”. In: Proceedings of the
17th International Conference on Practice and Theory in Public Key Cryptography. PKC
'14. 2014, pp. 630-649.

Uriel Feige, Shafi Goldwasser, Lészlo Lovasz, Shmuel Safra, and Mario Szegedy. “Approxi-
mating clique is almost NP-complete (preliminary version)”. In: Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science. SFCS '91. 1991, pp. 2—-12.

Uriel Feige, Shafi Goldwasser, Laszlo Lovéasz, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268-292.

Martin Fiirer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. “On
Completeness and Soundness in Interactive Proof Systems”. In: Advances in Computing
Research 5 (1989), pp. 429-442.

Venkatesan Guruswami and Piotr Indyk. “Linear-time encodable/decodable codes with
near-optimal rate”. In: IEEFE Transactions on Information Theory 51.10 (2005). Preliminary
version appeared in STOC ’03., pp. 3393-3400.

66



[GMRS9)

[GMWO1]

[GSS6]

[GUV0Y]

[GVW02]

[HRT07]

[TW14]

[KROS]|
[LFKN92]
[LMPO1]

[LWJ17]

[Lipl7]

[Majo7]

[Mic00]
[Mie09)]

[Pap83]

[RR20]

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of
interactive proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary
version appeared in STOC ’85., pp. 186-208.

Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: Journal of the
ACM 38.3 (1991). Preliminary version appeared in FOCS ’86., pp. 691-729.

Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins in Interactive
Proof Systems”. In: Proceedings of the 18th Annual ACM Symposium on Theory of
Computing. STOC ’86. 1986, pp. 59-68.

Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. “Unbalanced expanders
and randomness extractors from Parvaresh—Vardy codes”. In: Journal of the ACM 56.4
(2009), 20:1-20:34.

Oded Goldreich, Salil Vadhan, and Avi Wigderson. “On interactive proofs with a laconic
prover”. In: Computational Complexity 11.1/2 (2002), pp. 1-53.

Ishay Haviv, Oded Regev, and Amnon Ta-Shma. “On the Hardness of Satisfiability with
Bounded Occurrences in the Polynomial-Time Hierarchy”. In: Theory of Computing 3.1
(2007), pp. 45-60.

Yuval Ishai and Mor Weiss. “Probabilistically Checkable Proofs of Proximity with Zero-
Knowledge”. In: Proceedings of the 11th Theory of Cryptography Conference. TCC ’14.
2014, pp. 121-145.

Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International
Collogquium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536—547.

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Algebraic Methods
for Interactive Proof Systems”. In: Journal of the ACM 39.4 (1992), pp. 859-868.

Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. “Stochastic Boolean
Satisfiability”. In: Journal of Automated Reasoning 27.3 (2001), pp. 251-296.

Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. “Solving Stochastic Boolean Satisfia-
bility under Random-Exist Quantification”. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence. IJCAI 17. 2017, pp. 688-694.

Helger Lipmaa. “Prover-efficient commit-and-prove zero-knowledge SNARKS”. In: Interna-
tional Journal of Applied Cryptography 3.4 (2017), pp. 344-362.

Stephen M. Majercik. “APPSSAT: Approximate probabilistic planning using stochastic
satisfiability”. In: International Journal of Approzimate Reasoning 45.2 (2007), pp. 402—
419.

Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4
(2000). Preliminary version appeared in FOCS '94., pp. 1253-1298.

Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals
of Mathematics and Artificial Intelligence 56 (3 2009), pp. 313-338.

Christos H. Papadimitriou. “Games Against Nature (Extended Abstract)”. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing. STOC ’83. 1983, pp. 446—
450.

Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’20. 2020, pp. 846-857.

67



[RRR16]

[Sha92]
[Valog]

Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs
for Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory
of Computing. STOC ’16. 2016, pp. 49-62.

Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869-877.

Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply
Time/Space Efficiency”. In: Proceedings of the 5th Theory of Cryptography Conference.
TCC ’08. 2008, pp. 1-18.

68



	Abstract
	Contents
	1 Introduction
	1.1 Main results
	1.2 A cryptographic application to SNARKs

	2 Techniques
	2.1 Towards transforming IPs to IOPs
	2.2 Local access to randomness
	2.3 Index-decodable PCPs
	2.4 Local access to prover messages
	2.5 Constructing index-decodable PCPs
	2.6 Commit-and prove SNARKs from index-decodable PCPs
	2.7 Hardness of approximation

	3 Preliminaries
	3.1 Relative distance
	3.2 Relations
	3.3 Interactive oracle proofs
	3.4 Round-by-round soundness for IPs
	3.5 Error correcting codes
	3.6 PCPs of proximity for nondeterministic computations
	3.7 Extractors

	4 Index-decodable PCPs
	5 Basic construction of an index-decodable PCP from PCPPs
	5.1 Building blocks
	5.2 The construction

	6 ID-PCPs with constant query complexity over a binary alphabet
	6.1 Proof composition preserves index-decodability
	6.2 Robustification

	7 Transforming IPs into IOPs
	7.1 Local access to randomness
	7.2 Local access to prover messages

	8 Application: commit-and-prove SNARKs
	8.1 Definition
	8.2 Construction from index-decodable PCPs
	8.3 Security

	9 Application: hardness of approximation
	Acknowledgments
	References

