
Noname manuscript No.
(will be inserted by the editor)

Quantum Implementation and Resource Estimates for
RECTANGLE and KNOT

Anubhab Baksi ∗ · Kyungbae Jang ∗ · Gyeongju Song · Hwajeong Seo ·
Zejun Xiang

Received: date / Accepted: date

Abstract With the advancement of the quantum com-

puting technologies, a large body of research work is

dedicated to revisit the security claims for ciphers being

used. An adversary with access to a quantum computer

can employ certain new attacks which would not be

possible in the current pre-quantum era. In particular,

the Grover’s search algorithm is a generic attack against

symmetric key cryptographic primitives, that can re-

duce the search complexity to square root. To apply the

Grover’s search algorithm, one needs to implement the

target cipher as a quantum circuit. Although relatively

recent, this field of research has attracted serious atten-

tion from the research community, as several ciphers

(like AES, GIFT, SPECK, SIMON etc.) are being im-

plemented as quantum circuits. In this work, we target

the lightweight block cipher RECTANGLE and the Au-
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thenticated Encryption with Associated Data (AEAD)

KNOT which is based on RECTANGLE; and implement

those in the ProjectQ library (an open-source quantum

compatible library designed by researchers from ETH

Zurich). AEADs are considerably more complex to im-

plement than a typical block/stream cipher, and ours is

among the first works to do this. The implementations

reported here are simulated on classical computer (as

long as it is feasible).

Keywords Lightweight Cryptography · Quantum

Computing · RECTANGLE · KNOT · Grover’s search

1 Introduction

Quantum computing [19] makes use of the properties of

the fundamental particles for the computation. Quantum

computing has been advancing in leaps and bounds over

the last few years. Technological breakthroughs are being

reported frequently. This leads to serious consequences

in several research fields, including cryptography [17].

One such prominent algorithm in quantum com-

puting which has found its application in private key

cryptography is the Grover’s search algorithm [10]. In

summary, the Grover’s search can find the secret key

for a private key cipher at the square root search space

of the classical search space. For example, for a 128-bit

cipher like AES, the search complexity for the Grover’s

search would be of the order of 264. In other words, with

the help of a powerful enough quantum computer, the

attacker would be able to find (with a high probability)

the key with a search complexity of around 264.

Computation in the quantum realm follows the so-

called reversible computing paradigm1 [5]. Under this

1Except for measurement, see Section 2.3.
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paradigm, the entropy is preserved throughout every

step of computation, hence certain design considerations

are to be made (see Section 2.2).

The objective of this paper is to show a quantum-

compatible implementation of two lightweight ciphers,

namely RECTANGLE [23] and KNOT [24]. This enables us

to estimate the cost that would be required to run

the ciphers on an actual quantum computer. Further, in

order to apply the Grover’s search, certain other circuitry

are required on top of the cipher implementation. We

explore this direction too and estimate the related costs.
In this way, we are able to evaluate the security of

those ciphers even against an adversary with access to

a quantum computer.

1.1 Our Contribution

The contribution in this paper can be summarised as

follows:

1. We report the first quantum implementation of the

lightweight block cipher RECTANGLE (which has two

variants, namely, RECTANGLE-80 and RECTANGLE-128)

[23]. Further, we report the first implementation of

the lightweight AEAD KNOT (multiple variants of the

cipher) [24].

2. Also, we show analysis on the circuit complexity

required to mount the Grover’s search for both

RECTANGLE and KNOT. In the process, we discover

that multiple versions of KNOT fail to meet the NIST

recommended threshold for quantum security.

3. We use an optimised implementation to keep the

number of qubits low.

4. We also use optimisation to keep the number of gates

low.

Thus, we combine quantum implementation and cost

estimate for two ciphers at one go. Save for [4], our work

is the first to consider an AEAD (which is arguably more

complex than a block or stream cipher as the state size

is typically larger, the number of initialisation rounds is

typically higher, not to mention a higher number of input

lines) in the scope, to the best of our knowledge. Our

source code is available as open-source2. We validate our

implementation by simulating it on classical computer,

as long as it is practicable.

1.2 Previous Works

Several reports of quantum implementation of symmet-

ric key ciphers as well as estimation of quantum re-

sources required for the Grover’s search are published.

2https://github.com/starj1023/KNOT-QC/.

One may refer to, for example, AES [9, 15, 16, 25], SIMON

[3], SPECK [13], GIFT [12], PRESENT [14]. In case of AEADs,

the authors of [4] report quantum implementation GRAIN-

128-AEAD and TINYJAMBU.

On the other hand, there have been attempts to

construct tools that enable efficient implementation of

ciphers in reversible/quantum realm. For example, the

LIGHTER-R [8] can find reversible implementation of

4× 4 SBoxes. The implementation works in-place, thus

no ancilla or garbage line is created. Similarly, the se-

quential XOR implementation from [22] enables imple-

mentation for binary non-singular matrices (which are

used as the linear layer for ciphers like AES) as reversible

circuits.

2 Background

2.1 Quantum Bit (Qubit)

A classical computer uses a bit as the fundamental unit,

the analogy to that in a quantum computer would be

a quantum bit or qubit for short. A qubit has a two

dimensional state. However, unlike a classical bit, which

can only take logic 0 or logic 1; a qubit can be at any

state 〈ψ| = a 〈0| + b 〈1|, where a and b are complex

numbers with |a|2+|b|2= 1, and 〈0| and 〈1| respectively

correspond to logic 0 and logic 1 states of the qubit.

This is known as superposition and is not available in a

classical computer. In other words, whereas a classical

bit can take one of the two discrete states (logic 0 or logic

1), a qubit state can take any point in the unit sphere

through superposition. For instance, the polarization of a

single photon can represent a qubit (here the state can be

described as a superposition of the vertical polarization

and horizontal polarization). The expression a 〈0|+ b 〈1|

is often written in the matrix form,

[
a

b

]
. Here we call a

and b as the amplitudes of 〈0| and 〈1|, respectively.

2.2 Reversible Computing

In the reversible computing paradigm, computation is

described as a bijection. Therefore, the entropy is pre-

served. Put in other words, the input to a reversible

computer can be uniquely computed backwards given

the output.

The NOT gate is reversible, since the input can be

uniquely computed given its output. In contrast, the

(2-input) XOR gate is not a reversible circuit; since it is

not possible to compute both the inputs given its output.

In order to get a reversible XOR gate, the minimum

requirement is to insert one extra output line, such

2
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that this output line directly gives one of the inputs.

This is what is known as the CNOT gate (see Figure

1(b)). Any such extra output line is called a garbage.

There may arise a situation where an extra input line is

to be considered to make the circuit reversible, which

(typically initialized with a constant) is referred to as

an ancilla. It may be noted that a reversible circuit

does not have fan-out (feed-forward), nor fan-in (feed-

backward). One of the consequences is that, a reversible

circuit cannot have iterations (has to be loop-unrolled).

The common reversible gates are described next.
The circuit representation of those gates can be found

in Figure 1.

• NOT/X gate: NOT(a) = a.

• CNOT (Controlled NOT)/CX /Feynman: CNOT(a,

b) = (a, a ⊕ b). This gate flips one output (known

as the target) line if and only if the the other input

line (known as the control) is at logic 1.

• CCNOT /CCX /Toffoli gate: CCNOT(a, b, c) = (a, b,

ab⊕ c). This gate can be generalized with Tofn gate,

where first n− 1 variables are used as control lines;

i.e., Tofn(a0, a1, . . . , an−2, an−1) = (a0, a1, . . . , an−2,

a0a1 · · · an−2 ⊕an−1). The NOT and CNOT gates

are sometimes denoted as Tof1 and Tof2, respectively.

• SWAP gate: SWAP(a, b) = (b, a).

We present an example of the half adder in the

reversible computing paradigm in Figure 2 for more

clarity. It can be seen that one input line is set as logic

0 (ancilla), and one output line is not used (garbage).

Quantum computing is inherently reversible, this

appears from the very nature of physical principles it

is based on. However, there can be some technology

which follows the reversible computing paradigm, but

not quantum (although no prominent non-quantum re-

versible technology exists as of yet, to the best of our

knowledge).

2.3 Quantum Computing

As the quantum computing is reversible, it uses the

reversible gates (common reversible gates are covered in

Section 2.2). Further, quantum computing allows certain

other gates specialised for quantum application.

The relevant gates are described next, the corre-

sponding circuit diagrams can be found in Figure 3.

• Hadamard gate: The Hadamard gate changes the

superposition of the state. It can be described by

pre-multiplication with the matrix, H = 1√
2

[
1 1

1 −1

]
.

It may be noted that, by applying the Hadamard

gate twice, the state of a qubit returns to its original

superposition.

• Measurement gate: With the measurement gate, a

qubit collapses to a classical bit. Given the state,

〈ψ| = a 〈0|+ b 〈1|, the measurement gate will return

a classical bit, either logic 0 with probability |a|2 or

logic 1 with probability |b|2. Thus, the property of

reversibility is lost. As it can be seen from Figure

3(b), the classical bit is indicated by two lines.

For example, when the Hadamard gate is applied to

a qubit with state 〈0|, it enters a new state given by

the superposition, 1√
2

[
1 1

1 −1

] [
1

0

]
= 1√

2

[
1

1

]
= 1√

2
〈0|+

1√
2
〈1|. Thus, the probability of measuring logic 0 is

1
2 , and that of logic 1 is 1

2 too. Similarly, when the

Hadamard gate is applied to the qubit with state 〈1|, it

enters the state 1√
2
〈1|+ 1√

2
〈−1|. Again in this case, it

can be shown that the probability of measuring logic 0
as well as logic 1 are both 1

2 .

2.4 Grover’s Search

Introduced in [10], the Grover’s search is a well-known

algorithm in quantum computing. In a nutshell, it takes

a function f(·), searches the implicit list of its possible

inputs, and returns the input that for which the function

returns a particular output (say, y) with high proba-

bility. Given N such inputs, it finds the desired input
(with high probability) with around bπ4 ·

√
Nc searches.

Thus, compared to the classical algorithm which searches

through the list of inputs one-by-one (and hence is of

complexity of N), the Grover’s search offers quadratic

improvement.

In summary, it works by amplifying the amplitude

of the state 〈ψ| for which f(x̂) = y. This way, the

probability of measuring the state, 〈ψ| = x̂, is higher

than that of any other 〈ψ| 6= x̂. Grover’s search consists

of oracle and diffusion operator. First, before performing

the oracle and diffusion operator, the N inputs are made

superposition state by applying Hadamard gates. The

oracle reverses the sign by searching for the correct

input of the superposition state. The diffusion operator

increases the probability of measurement of the correct

input by amplifying the amplitude of the inverted sign

in the oracle. Grover’s search repeats the oracle and

diffusion operator to sufficiently increase the probability

that the answer will be measured.

3 Description of the Ciphers

3.1 RECTANGLE

RECTANGLE [23] is a bit-slice lightweight block cipher

designed by Zhang et al., which is suitable for low-

3



a a

(a) NOT/X gate

a • a

b a⊕ b

(b) CNOT gate

a • a

b • b

c ab⊕ c

(c) Toffoli gate

a × b
b × a
(d) SWAP gate

Fig. 1: Circuit diagrams of common reversible gates

a • • (Garbage)

b • Sum (= a⊕ b)

(Ancilla) 0 Carry (= ab)

Fig. 2: Reversible circuit of a half adder

cost implementation on multiple platforms. It adopts

an Substitution Permutation Network (SPN) structure.

The block size of RECTANGLE is 64 bits, and the key size

has two versions, i.e., 80 bits and 128 bits respectively.

The 64 bits state of RECTANGLE are arranged as a 4 ×
16 rectangle. At each round, each of the 16 columns
of the state is substituted by a 4-bit SBox S, then

followed by a circular shift for each row with different

shift parameters (refer to Figure 4). The SBox, S, is

given by 65CA1E79B03D8F423. The coordinate functions

of S in algebraic normal form (ANF) are given by:

y0 = x0x1 ⊕ x0 ⊕ x2 ⊕ x3,
y1 = x0 ⊕ x1x3 ⊕ x1 ⊕ x2 ⊕ 1,

y2 = x0x1x2 ⊕ x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x2x3
⊕ x2 ⊕ x3 ⊕ 1,

y3 = x0x2 ⊕ x0x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1 ⊕ x3.

For the 80-bit key version, the key bits are loaded

into a 5 × 16 array. The first four rows are extracted

as the sub-key of the current round, then the array is

updated by applying SBox to the bits intersected at the

four uppermost rows and the four rightmost columns,

followed by a 1-round generalized Feistel transforma-

tion and a round constant addition (see Figure 5(a)

for a pictorial description). For the 128-bit key version,

the key bits are loaded into a 4× 32 array. The right-

most 16 columns are extracted as the sub-key, then the

array is updated by applying SBox to the rightmost

eight columns, followed by a 1-round generalised Feis-

tel transformation and a round constant addition (see

Figure 5(b)).

3We indicate the SBoxes by the shorthand string-based no-
tation, as opposed to the more common table-based notation,
to save space.

3.2 KNOT

KNOT [24] is one of the 32 candidates in the second round

of the NIST Lightweight Cryptography (LWC)4 project.

The KNOT family consists of lightweight authenticated

encryption algorithms and hash functions. In this paper,

we focus only on its authenticated encryption algorithms,
which are based on the MonkeyDuplex structure. There

are four members of authenticated encryption denoted

as KNOT−AEAD(k, b, r), where k, b, r are the key size (the

nonce and tag sizes are equal to the key size), state

width and bit rate, respectively. For different versions,

the parameters can be found in Table 15. The KNOT-

AEAD family uses a 6-bit (resp., a 7-bit) linear feedback

shift registers to generate round constants CONST6

(resp., CONST7) for different versions, and the 6-bit
(resp., 7-bit) constant is added into the first 6 (resp., 7)

bits of the state. The encryption process is consist of

four steps.

3.2.1 Padding

Padding of the given associated data AD and plaintext

P may be needed before encryption. First, a single 1

is inserted as the most significant bit followed with a

minimal number of 0’s to make the length of associated

data and plaintext multiple of r. If the associated data

or plaintext is the empty string, nothing is done.

3.2.2 Initialisation

This step loads the key and nonce into the state, i.e.,

the b-bit state is initialised as:

S =


(0128||K||N)⊕ (1||0383)

for KNOT−AEAD(128, 384, 192),

K||N
for other versions.

Then, the state is updated by a public permutation

with nr0 iterated rounds. The public permutation will

be described later.

4https://csrc.nist.gov/Projects/

lightweight-cryptography/round-2-candidates.
5It may be noted that, c = b− r is the capacity.
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a 〈0|+ b 〈1| H a 〈0|+〈1|√
2

+ b 〈0|−〈1|√
2

(a) Hadamard gate

a 〈0|+ b 〈1|

{
0 with probability |a|2

1 with probability |b|2
(b) Measurement gate

Fig. 3: Circuit diagrams of common quantum gates
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Fig. 5: Schematic for key schedule of RECTANGLE

Table 1: Parameters for the four members of authenticated encryption

KNOT-AEAD Variant
Parameters

Constants
Rounds

k b r c (= b− r) nr0 nr nrf

KNOT-AEAD (128,256,64) 128 256 64 192 CONST6 52 28 32

KNOT-AEAD (128,384,192) 128 384 192 192 CONST7 76 28 32

KNOT-AEAD (192,384,96) 192 384 96 288 CONST7 76 40 44

KNOT-AEAD (256,512,128) 256 512 128 384 CONST7 100 52 56

3.2.3 Processing Associated Data

The padded associated data is first cut into r-bit blocks,

and each block is processed as follows. The r-bit block

is added to the first r bits of the state, then update

the state with an nr-round permutation. After all the

associated data blocks are processed or if the associated

5



data is empty, a domain separation bit 1 is added to the

last bit of the state.

3.2.4 Encryption

The padded plaintext is first cut into r-bit blocks, and

each block is processed by adding it to the first r bits of

the state, then these r bits are extracted as a ciphertext

block. If the current block is not the last block, the state

is updated by an nr-round permutation. Otherwise, the

state is not updated and this last ciphertext block is

truncated to its real size, i.e., the size of the last block

before padding.

3.2.5 Finalisation

After all plaintext blocks being processed, the state is

updated by a nrf -round permutation and the first k

bits is returned as the tag. In the encryption process,

the tag is returned as part of the output. However, we

have to compare this tag with the user received tag in

the decryption process, and the plaintext is returned

only if these two tags are the same.

Note that the KNOT-AEAD encryption and decryption

are quite similar, except for the third step. Thus, we

just specifies the third step of KNOT-AEAD decryption as

follows.

3.2.6 Decryption

The padded ciphertext is first cut into r-bit blocks,

and each block is processed as follows. The first r bits

of the state is extracted as the key stream, that is

added with the current ciphertext block to generate the

corresponding plaintext block. Then, the first r bits of

the state is replaced by the current ciphertext block.

If the current block is not the last block, the state is

updated by an nr-round permutation. Otherwise, the
state is not updated and this last plaintext block is

truncated to its real size.

3.3 KNOT-PERMUTATION

The KNOT-PERMUTATION can be characterised by the

width parameter b, where b ∈ {256, 384, 512}. There-

fore it has a state size of b-bits, which is organized in a

two dimensional 4× b
4 matrix, which can be found in [24,

Chapter 2.1]. At each round, an SPN round transforma-

tion (denoted by, pb) is applied over iterations. Each pb
consists of the 3 respective steps: AddRoundConstantb,

SubColumnb, ShiftRowb.

The AddRoundConstantb subroutine adds round con-

stants CONST6 (or CONST7) to the state, more de-

scription can be found at [24, Chapter 2.2]. Next, the

SubColumnb step updates the state by applying a 4-bit

SBox, which is given by 40A7BE1D9F6852C3, in column-

major fashion (similar to RECTANGLE). The coordinate

functions of this SBox in ANF are given by:

y0 = x0x1x3 ⊕ x0x1 ⊕ x0x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x3,
y1 = x0x3 ⊕ x1x2x3 ⊕ x1 ⊕ x2x3 ⊕ x2,
y2 = x0 ⊕ x1x2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ 1,

y3 = x0x1 ⊕ x1 ⊕ x2 ⊕ x3.

Lastly, the ShiftRowb step left-rotates the state in

a row-major fashion. The ith row of the state matrix is

rotated ci bits, i = 0, 1, 2, 3; where c0 = 0 and c1 = 1 for

all versions, c2 = 8 and c3 = 25 for b = 256, c2 = 8 and

c3 = 55 for b = 384, c2 = 16 and c3 = 25 for b = 512.

The designers’ recommend to use 28-rounds for b = 256
and 52-rounds for b = 512 [24, Table 2].

4 Quantum Circuit Design Methodology

4.1 RECTANGLE

We designed a RECTANGLE quantum circuit that allo-

cates only qubits for plaintext and key. 144 qubits

were allocated to the RECTANGLE-80 quantum circuit

implementation, and 192 qubits were allocated to the

RECTANGLE-128 quantum circuit implementation. Also,

many of the quantum gates of the proposed algorithms

to implement AddRoundkey, SubColumn, ShiftRow, and

Key Schedule are performed in parallel. As a result,

our RECTANGLE-80 and RECTANGLE-128 quantum circuits

have a low depth of 266.

4.1.1 AddRoundkey

AddRoundKey, which XORs the 64-qubit round key RK

to the 64-qubit block B, is implemented using only

CNOT gates. Round key RK and block B are the inputs

of the CNOT gate, and RK⊕B is stored in block B. The

quantum circuit design for AddRoundKey is described in

Algorithm 1.

4.1.2 SubColumn

RECTANGLE is a lightweight block code optimised for

bit-slice, with SBox applied to each column. When im-

plementing SubColumn on quantum computers, it is very

inefficient to use a table type SBox that derives a specific

output according to the input. Since qubits in the super-

position state represent all values, in order to use the
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Algorithm 1: AddRoundKey quantum circuit implemen-

tation

Input: 64-qubit block B (b63, . . . , b0), 64-qubit round key
RK (rk63, . . . , rk0)

Output: 64-qubit block B (b63, . . . , b0)
1: for i = 0 to 63 do
2: bi ← CNOT(rki, bi)

3: return B(b63, . . . , b0)

SBox table, it is necessary to implement a quantum cir-

cuit that checks all input values and generates outputs.

On the other hand, if the SBox operation in algebraic

normal form is implemented as a quantum circuit, out-

puts for all inputs can be generated at once. However,

in order to implement the RECTANGLE SBox operation

in algebraic normal form as a quantum circuit, temp

qubits are required to store the input X (x3, x2, x1, x0).

x0 • • • y2

x1 • • • y1

x2 • • • y3

x3 • • • • y0

Fig. 6: Quantum implementation of RECTANGLE SBox
(65CA1E79B03D8F42, using LIGHTER-R)

We propose a 4-qubit quantum SBox implementa-

tion that generates the output of the SBox table no

matter what input comes in without temp qubits. To

design the proposed 4-qubit quantum SBox, we use the

LIGHTER-R tool [8] (with the MCT gc library; and the

cost incurred is 4 Toffoli gates, 5 CNOT gates, and 1

NOT gate). As a result, we obtain the optimal quantum

SBox in terms of qubits and quantum gates. The imple-

mentation using LIGHTER-R is described in Algorithm

2/Figure 6.

4.1.3 ShiftRow

In ShiftRow, each row of 64-qubit block B is rotated

in units of 16 qubits. Changing the position between

qubits is performed with the SWAP gates, but this can

be replaced by relabeling the qubits like the output of the

RECTANGLE SBox (i.e., (y0, y1, y2, y3)← (x2, x1, x3, x0)).

We relabel all the qubits so that none of the quantum

resources are used for these qubit rotation operations.

4.1.4 Key Schedule

RECTANGLE supports two versions with 80-bit key and

128-bit key. In RECTANGLE-80, the 80-qubit key K is

Algorithm 2: Quantum implementation of RECTANGLE

SBox (65CA1E79B03D8F42, using LIGHTER-R)

Input: (x3, x2, x1, x0) to the SBox
Output: (y3, y2, y1, y0) from the SBox
1: x0 ← Toffoli(x1, x3, x0)
2: x3 ← Toffoli(x0, x1, x3)
3: x0 ← CNOT(x3, x0)
4: x2 ← CNOT(x0, x2)
5: x0 ← CNOT(x1, x0)
6: x3 ← X(x3)
7: x3 ← CNOT(x2, x3)
8: x1 ← CNOT(x3, x1)
9: x3 ← Toffoli(x0, x2, x3)

10: x0 ← Toffoli(x2, x3, x0)
11: (y0, y1, y2, y3)← (x2, x1, x3, x0)
12: return (y3, y2, y1, y0)

arranged in five 16-qubit rows, K = Row4‖Row3‖Row2

‖Row1‖Row0. In the first of the Key Schedule, the

quantum RECTANGLE SBox of Algorithm 2 is utilised for

each column. Then, the Feistel transformation is ap-

plied. CNOT gates are used for the XOR operation be-

tween rows (i.e., Row′0 = (Row0 ≪ 8)⊕Row1, Row
′
3 =

(Row3 ≪ 12) ⊕ Row4). At this time, since Row0 and

Row3 must be used as the result later (Row′2, Row
′
4),

we store the XOR result in Row1 and Row4 for opti-

misation. Qubit rotations are used together, qubits are

input to the CNOT gates according to the qubit index
after rotation(e.g., CNOT(k8, k16)). Swap operations

between rows are also relabeled, so quantum resources

are not used. Lastly, the round constants RCi gener-

ated by the 5-bit LFSR are XORed to the key. Since all

of the round constants RCi can be known in advance,
we optimised using X gates according to the round

constant and denoted as AddRoundConsant(RCi,K).

For example, when i = 4, RC4 = 12. In 5-bit RC4

(rc4, rc3, rc2, rc1, rc0), the bits with value 1 are rc4 and

rc1. Therefore, XORing RC4 to K can be replaced by

performing X gate on k1 and k4 qubits, and X gate

consumes less resources than CNOT gate. The quan-

tum circuit design for Key Schedule of RECTANGLE-80

is described in Algorithm 3.

In RECTANGLE-128, the 128-qubit key K is arranged

in four 32-qubit rows, K = Row3‖Row2 ‖Row1‖Row0.

The Key Schedule subroutine of RECTANGLE-128 is sim-

ilar to RECTANGLE-80 and is shown in Algorithm 4.

4.2 KNOT-PERMUTATION

KNOT-PERMUTATION consists of the following subroutine

(characterised by parameter, b), AddRoundConstantb,

SubColumnb and ShiftRowb. Since the structure of KNOT-

PERMUTATION is similar to RECTANGLE, the design of

quantum circuit is also similar. AddRoundConstantb,
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Algorithm 3: Key Schedule of RECTANGLE-80 as a

quantum circuit

Input: 80-qubit key K (k79, . . . , k0)
Output: 64-qubit round key RK (rk63, . . . , rk0)
1: k48, k32, k16, k0 ← SBox (k48, k32, k16, k0)
2: k49, k33, k17, k1 ← SBox (k49, k33, k17, k1)
3: k50, k34, k18, k2 ← SBox (k50, k34, k18, k2)
4: k51, k35, k19, k3 ← SBox (k51, k35, k19, k3)
5: Row1 ← CNOT((Row0 ≪ 8), Row1) . Row unit

operation (16-qubit)
6: Row′0 ← Row1 . Row unit operation (16-qubit)
7: Row4 ← CNOT((Row3 ≪ 12), Row4)
8: Row′3 ← Row4

9: Row′1 ← Row2

10: Row′2 ← Row3

11: Row′4 ← Row0

12: . AddRoundConsant(RCi,K)
13: RK ← Row′3‖Row′2‖Row′1‖Row′0
14: return RK(rk63, . . . , rk0)

Algorithm 4: Key Schedule of RECTANGLE-128 as a

quantum circuit

Input: 128-qubit key K (k127, . . . , k0)
Output: 64-qubit round key RK (rk63, . . . , rk0)
1: k96, k64, k32, k0 ← SBox (k96, k64, k32, k0)
2: k97, k65, k33, k1 ← SBox (k97, k65, k33, k1)
3: k98, k66, k34, k2 ← SBox (k98, k66, k34, k2)
4: k99, k67, k35, k3 ← SBox (k99, k67, k35, k3)
5: k100, k68, k36, k4 ← SBox (k100, k68, k36, k4)
6: k101, k69, k37, k5 ← SBox (k101, k69, k37, k5)
7: k102, k70, k38, k6 ← SBox (k102, k70, k38, k6)
8: k103, k71, k39, k7 ← SBox (k103, k71, k39, k7)
9: Row1 ← CNOT((Row0 ≪ 8), Row1) . Row unit

operation (32-qubit)
10: Row′0 ← Row1 . Row unit operation (32-qubit)
11: Row3 ← CNOT((Row2 ≪ 16), Row3)
12: Row′2 ← Row3

13: Row′1 ← Row2

14: Row′3 ← Row0

15: . AddRoundConsant(RCi,K)
16: RK ←

Row′3(k111, . . . , k96)‖Row′2(k79, . . . , k64)
‖Row′1(k47, . . . , k32)‖Row′0(k15, . . . , k0)

17: return RK(rk63, . . . , rk0)

SubColumnb and ShiftRowb are optimised in quantun
circuits as follows.

In AddRoundConstantb, round constants RCi gen-

erated by d(6, 7, 8)-bit LFSR are XORed to the first

d-qubit of B. Since we know the RCi value used in each

round in advance, we optimise it by performing X gates

according to RCi.

In SubColumn, B consists of four b
4 -qubit rows (i.e.,

B = Row3‖Row2 ‖Row1‖Row0) and a 4-qubit SBox is

applied to each column. We implemented SBox as a

quantum circuit using LIGHTER-R (with the MCT gc

library; and the cost incurred is 4 Toffoli gates, 3 CNOT

gates, and 1 NOT gate). As a result, no additional qubit

is allocated, and low-cost quantum resources are used.

Details of the SBox quantum circuit implementation is

shown in Algorithm 5 and Figure 7.

Algorithm 5: Quantum implementation of KNOT SBox

(40A7BE1D9F6852C3, using LIGHTER-R)

Input: (x3, x2, x1, x0) to the SBox
Output: (y3, y2, y1, y0) from the SBox
1: x0 ← X(x0)
2: x2 ← Toffoli(x0, x1, x2)
3: x0 ← Toffoli(x1, x2, x0)
4: x3 ← CNOT(x2, x3)
5: x1 ← CNOT(x3, x1)
6: x0 ← CNOT(x1, x0)
7: x1 ← Toffoli(x0, x2, x1)
8: x2 ← Toffoli(x0, x1, x2)
9: (y0, y1, y2, y3)← (x1, x2, x0, x3)

10: return (y3, y2, y1, y0)

x0 • • • y1

x1 • • • • y2

x2 • • • y0

x3 • y3

Fig. 7: Quantum implementation of KNOT SBox
(40A7BE1D9F6852C3, using LIGHTER-R)

In ShifRow, for B (B = Row3‖Row2‖Row1‖Row0),

(c1, c2, c3) qubit left rotation operation is performed

on each (Row1, Row2, Row3). The values of (c1, c2, c3)

depend on the width of b. No matter what rotation
operations are performed in ShiftRow, we do not use

any quantum resources as we relabel the qubits without

using SWAP gates as in ShiftRow of RECTANGLE. Our

optimised KNOT-PERMUTATION quantum circuit imple-

mentation is utilised as a round transformation of KNOT-

AEAD in Section 4.3.

4.3 KNOT-AEAD

We implemented all versions of KNOT-AEAD as a quantum

circuit. The previously mentioned KNOT-PERMUTATION

is utilised, and all other operations are optimised in

quantum circuits. The proposed KNOT-AEAD quantum

circuits are optimised in terms of qubits, and the use of

quantum gates is also minimised. Only qubits for input

and output are allocated, and no additional qubit is

used during the operation.
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4.3.1 Padding

Before authenticated encryption, Padding is performed

on associated data AD and plaintext P , except when

AD and P are ∅. First, a single 1 is added as the most

significant bit and filled with the minimum number

of 0’s to satisfy multiples of the r-bit block. However,

we optimised Padding by not using quantum resources

at all. That is, we do not perform Padding. Since the

padded P and AD are used only as intermediate values

for the result value in authenticated encryption, we

assume that the original P and AD (i.e., not padded) are

padded and perform authenticated encryption. This is

described in detail in Sections Processing Associated

Data and Encryption.

4.3.2 Initialisation

The key K and nonce N are initialised differently ac-

cording to parameters. In KNOT-AEAD (128,384,192), it

is initialised to S = (0128‖K‖N)⊕ (1‖0383). Since S is

continuously updated and used as the output; 128 addi-

tional qubits for 0128 are allocated for this purpose. On

the other hand, the other three parameters are initialised

to S = (K‖N). Because K and N are just attached,

quantum resources are not used. Lastly, the quantum

version of KNOT-PERMUTATION pb[nr0] is performed on
the initial state S (i.e., S ← pb[nr0](S)).

4.3.3 Processing Associated Data

As mentioned earlier, we minimise the use of qubits

by using the input as it is without performing padding

for the associated data AD. Suppose AD is padded to

be ADi (i = 0, . . . , u− 1) composed of u blocks. Only

the last block ADu−1 is padded with a single 1 and

0’s. Therefore, if it is not the last block, the following

general process is performed. Block unit operation(S ←
S⊕ADi) is performed using CNOT gates, and the KNOT-

PERMUTATION pb[nr] is performed on S. In the last block,

block unit operation is not performed. In ADu−1, only

the unpadded input ADu−1 is XORed to S using CNOT

gates.

Originally, in Padding, input AD is appended with a

single 1 and 0s to fill the r-bit block. The XOR operation

of 0s does not change anything, so this does not need

to be implemented. Only a single X gate is used for a

single 1 XOR operation and KNOT-PERMUTATION pb[nr] is

performed. Lastly, 1 is XORed by performing a single X

gate on the last qubit of S. Through these, Processing

Associated Data is implemented as a quantum circuit

with minimal quantum gates and no additional qubits.

Details of the quantum circuit implementation are shown

in Algorithm 6.

Algorithm 6: Processing Associated Data of KNOT-

AEAD as a quantum circuit

Input: S = (sb−1, . . . , s0), x-qubit ADi (i = 0, . . . , u− 1) .
Assuming padded

Output: S = (sb−1, . . . , s0)
1: i← 0
2: while i 6= (u− 1) do
3: S ← CNOT(ADi, S) . Block unit operation (r-qubit)
4: S ← pb[nr](S)
5: i← i + 1

6: x = x mod r . Last block
7: for j = 0 to x− 1 do
8: sj ← CNOT(ADi(j), sj)

9: sx ← X(sx)
10: S ← pb[nr](S)
11: sb−1 ← X(sb−1)
12: return S(sb−1, . . . , s0)

4.3.4 Encryption

In Encryption, the same techniques used in Processing

Associated Data are utilised. In the last block Pv−1,

only the non-padded input Pv−1 is XORed to S using

CNOT gates. For the padded part, no additional qubits

are allocated and only a single X gate is used. The

difference from Processing Associated Data is that

KNOT-PERMUTATION pb[nr] is not performed in the last

block, and y qubits of the same size as Pi are newly allo-

cated to store the ciphertext Ci. The implementation of

quantum circuit for Encryption is described in detail

in Algorithm 7.

Algorithm 7: Encryption of KNOT-AEAD as a quantum

circuit

Input: S = (sb−1, . . . , S0), y-qubit Pi (i = 0, . . . , v − 1) .
Assuming padded

Output: Ciphertext Ci (i = 0, . . . , v − 1)
1: i = 0
2: while i 6= v − 1 do
3: S ← CNOT(Pi, S) . Block unit operation (r-qubit)
4: Ci ← CNOT(S,Ci) . Generate ciphertext
5: S ← pb[nr](S)
6: i← i + 1

7: y = y mod r . Last block
8: for j = 0 to y − 1 do
9: sj ← CNOT(Pi(j), sj)

10: Ci(j) ← CNOT(sj , Ci(j))

11: sy ← X(sy)
12: return Ci (i = 0, . . . , v − 1)

4.3.5 Finalisation

In Finalisation, the tag T is generated and appended

to the ciphertext C to generate the output T ||C. A

KNOT-PERMUTATION pbb[nrf ] is performed on S, and the
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lower k-qubits are used as tag T :

S = pbb[nrf ](S),

T = sk−1||. . . ||s0.

5 Resource Estimates/Evaluation

5.1 Resources for Implementation of RECTANGLE and

KNOT-AEAD

We used ProjectQ, a quantum programming tool pro-

vided by IBM, to implement RECTANGLE and KNOT-AEAD

as quantum circuits. We simulated RECTANGLE and KNOT-

AEAD quantum circuits using the ClassicalSimulator

and estimated the used quantum resources using the

ResourceCounter. Quantum resources required to im-

plement quantum circuits of RECTANGLE and other block

ciphers are shown in Table 2. Based on the quantum re-

sources in Table 2, we compare and check the important

factors in implementing quantum circuits.

The number of qubits is an important factor in

quantum circuit implementation. Since large-scale qubit

quantum computers have not yet been developed, the

number of qubits used in quantum circuits is related to

the timing at which they actually operate in quantum

computers. In RECTANGLE, only the qubits for the initial

input and key are allocated and no more additional

qubits are allocated.

For a block cipher, particularly which are based on

the Substitution Permutation Network (SPN) family,

how the SBox is implemented plays an important role.

Since the input is in a superposition state, an inefficient

SBox quantum circuit must be implemented that checks

all inputs one by one and allocates additional qubits for

the output. We optimise the RECTANGLE SBox operation

using LIGHTER-R rather than implementing it näıvely

from its coordinate functions. With this, input qubits

become output qubits and the cost of quantum gates was

also minimized. In Key Schedule, no additional qubits

are allocated by storing the result of the operation in

rows that are not used as result values when perform-

ing an operation between rows. As a result, an ideal

number of qubits were used in the quantum circuits of

RECTANGLE.

Many operations such as AddRoundkey, SubColumn,

and Key Schedule of RECTANGLE are performed in par-

allel. As a result, the depth of the quantum circuit is

266, the lowest among the ciphers given in Table 2. The

depths of SPECK and CHAM are not indicated, but those

are much higher than the depth of SPECK. As a result

of measuring the resources from the source codes of

CHAM [11] and SPECK [13], we get the depth of CHAM-

64/128 is 7807 and that of SPECK-64/128 is 8323. In the

latest implementation of SPECK [2], it is reduced to 4239,

which is still high. Depth represents the longest path

from beginning till the end of the circuit, which is an

important factor related to execution time [6].

In KNOT-AEAD except KNOT-AEAD (128, 384, 192), a

fixed length key K and nonce N are used, and K and N

are appended to use the internal state S (i.e., S = K||N).

Therefore, Ksize + Nsize qubits are allocated. In KNOT-

AEAD (128, 384, 192), since 128 additional 0’s are ap-
pended (i.e., S = 0128||K||N), Ksize+Nsize+128 qubits

are allocated. The qubits of S are fixed, and the final

number of qubits depends on the length of the associ-

ated data AD and plaintext P . Originally, Padding, in

which additional bits are appended to AD and P , is per-

formed; but we do not allocate any qubits for Padding.

Finally, the optimal number of qubits, |S|+|AD|+2 · |P |,
is used in KNOT-AEAD quantum circuits. The depth of

the KNOT quantum circuits and the required quan-

tum gates depend on the block lengths of the padded

AD and P (i.e., u and v). This is because the number

of KNOT-PERMUTATION depends on the block length.

KNOT-PERMUTATION occupies the most proportion in

KNOT-AEAD. Since KNOT-PERMUTATION is very similar to

RECTANGLE, the same optimisation technique is applied.

In other words, quantum resources also differ according

to |AD| and |P |, but are ignored in Table 3, because

they are small changes compared to u and v.

A summary of results on KNOT-AEAD is given in Table

3. For the depth figures in Table 3, we consider AD and

P are ∅.

5.2 Resources for Grover’s Search Oracle

In Grover’s search, the main module is oracle, and the

core of oracle in this key search is KNOT-AEAD quantum

circuit. We estimate the attack resource based on the

previously optimized implementation of KNOT-AEAD. For

standardized evaluation of all parameters, encryption

is based when associated data AD and plaintext P are

32 bits, and the resource estimates with the X/NOT,

CNOT and Toffoli gates (NCT gates) are as shown in

Table 4.

We analyze KNOT-AEAD with the NCT gates, and an-

alyze Grover’s oracle and key search at the T + Clifford

gate level. X and CNOT gates count as one Clifford gate,

and Toffoli gates count as T + Clifford gates. Toffoli

gates can be decomposed in several ways. We choose

the method of [1], the Toffoli gate is decomposed into

7 T gates + 8 Clifford gates, and the T depth is 4. In

oracle, KNOT-AEAD is executed twice due to encryption +

reverse, and a single multi-controlled NOT gate is used

10



Table 2: Quantum resources required for few lightweight block ciphers

Cipher Qubits Toffoli gates CNOT gates X gates Depth

RECTANGLE-80 (Ours) 144 2,000 4,964 567 266

RECTANGLE-128 (Ours) 192 2,400 5,688 668 266

SIMON-64/128 [3] 192 1,408 7,396 1,216 2,643

SPECK-64/128 [13] 193 3,286 9,238 57 N/A

GIFT-64/128 [12] 192 1,792 1,792 3,261 308

CHAM-64/128 [11] 196 2,400 12,285 240 N/A

Table 3: Quantum resources required for KNOT-AEAD implementation

Cipher Qubits Toffoli gates CNOT gates X gates Depth

KNOT-AEAD

(128, 256, 64)

256 +
|AD|+
2 · |P |

21, 044 +
7, 032 · u +

7, 032 · (v − 1)

16, 128 +
5, 376 · u +

5, 376 · (v − 1)

5, 146 +
1, 723 · u +

1, 723 · (v − 1)

672 +
224 · u +

224 · (v − 1)

KNOT-AEAD

(128, 384, 192)

384 +
|AD|+
2 · |P |

40, 846 +
10, 620 · u +

10, 620 · (v − 1)

31, 104 +
8, 072 · u +

8, 072 · (v − 1)

10, 056 +
2, 621 · u +

2, 621 · (v − 1)

864 +
224 · u +

224 · (v − 1)

KNOT-AEAD

(192, 384, 96)

384 +
|AD|+
2 · |P |

45, 362 +
15, 146 · u +

15, 146 · (v − 1)

34, 560 +
11, 520 · u +

11, 520 · (v − 1)

11, 161 +
3, 732 · u +

3, 732 · (v − 1)

960 +
320 · u +

320 · (v − 1)

KNOT-AEAD

(256, 512, 128)

512 +
|AD|+
2 · |P |

78, 862 +
26, 304 · u +

26, 304 · (v − 1)

59, 904 +
19, 968 · u +

19, 968 · (v − 1)

19, 463 +
6, 495 · u +

6, 495 · (v − 1)

1, 248 +
416 · u +

416 · (v − 1)

u = length of AD block (after padding), v = length of P block (after padding)

to compare the generated ciphertext with the known

ciphertext. Therefore, in oracle, Table 4 × 2 resources

are used, excluding qubits. When the ciphertext length

is l-bit, l multi-controlled NOT gate is used and it is

decomposed into 32 · l − 84 T gates [21]. In addition,

in a multi controlled NOT gate, one target qubit is

allocated, which is flipped when the ciphertext matches.

As a result, the resources required for oracle are shown

in Table 5.

5.3 Resources for Grover’s Key Search

KNOT-AEAD operates with plaintext P , associated data

AD, nonce N , and key K as inputs. In [4], the au-

thors estimated the Grover’s key search resources for

GRAIN-128-AEAD and TINYJAMBU, assuming the plaintext,

associated data, and nonce are known. We also assume

that the plaintext P , associated data AD, and nonce

N are known and estimate the resource for Grover key

search. In this case, Grover search is performed on key

K in superposition state, and the number of iterations

depends on the size of K (i.e. k). The Grover search al-

gorithm is well known for reducing the complexity of N

to
√
N . However, in [7], the authors suggested that the

optimal number of iterations for N is bπ4
√
Nc through a

tight analysis of the Grover search algorithm. Therefore,

in case of 128-bit key, oracle is repeated bπ4 ·2
64c, in case

of 192-bit key and 256-bit key, it is repeated bπ4 · 2
96c,

bπ4 · 2
128c. We sufficiently increase the probability of

measuring the solution key by iterating the oracle and

diffusion operator. Finally, the resource for Grover’s key

search is estimated as shown in Table 5 × bπ4 · 2
k
2 c,

which is shown in Table 6. Grover’s search algorithm

iterates the oracle and diffusion operators as a set, but

we ignore the cost of the diffusion operator. Because the

diffusion operator has a standardized structure, there

is no special technique to implement. Also, since the

oracle accounts for most of the cost, diffusion operator

is usually ignored when estimating the cost [9].

5.4 Security Strength Estimated by NIST

It has been established that Grover’s search algorithm

reduces the security of symmetric key cryptosystems in

half. What we need to consider is the necessary cost.

If a huge cost is required to apply the Grover search

algorithm, it can be judged that it is resistant to at-

tacks by quantum computers. For this reason, NIST

has defined the following security requirements based

on resources for AES [9], which are listed in order of

security strength [20].

• Any attack that breaks the relevant security defini-

tion must require computational resources compara-

ble to or greater than those required for key search

on a block cipher with a 128-bit key (e.g., AES-128)
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Table 4: Quantum resources required for KNOT-AEAD implementation

Cipher Qubits Toffoli gates CNOT gates X gates Depth

KNOT-AEAD (128, 256, 64) 352 28,074 21,600 6,875 899

KNOT-AEAD (128, 384, 192) 480 51,464 39,264 12,683 1,091

KNOT-AEAD (192, 384, 96) 480 60,506 46,176 14,899 1,283

KNOT-AEAD (256, 512, 128) 608 105,164 79,968 25,964 1,667

AD and P are of 32-bits

Table 5: Quantum resources required for KNOT-AEAD to run Grover’s oracle

Cipher Qubits Clifford gates T gates T depth Depth

KNOT-AEAD (128, 256, 64) 353 506,134 398,072 224,592 1,799

KNOT-AEAD (128, 384, 192) 481 927,318 725,532 411,712 2,183

KNOT-AEAD (192, 384, 96) 481 1,090,246 854,168 484,048 2,567

KNOT-AEAD (256, 512, 128) 609 1,894,488 1,481,428 841,312 3,335

Table 6: Quantum resources required for KNOT-AEAD to run Grover’s key search

Cipher Qubits Clifford gates T gates T depth Depth Total gates

KNOT-AEAD (128, 256, 64) 353 1.516 · 282 1.193 · 282 1.346 · 281 1.378 · 274 1.354 · 283

KNOT-AEAD (128, 384, 192) 481 1.389 · 283 1.087 · 283 1.234 · 282 1.673 · 274 1.238 · 284

KNOT-AEAD (192, 384, 96) 481 1.633 · 2115 1.279 · 2115 1.450 · 2114 1.968 · 2106 1.456 · 2116

KNOT-AEAD (256, 512, 128) 609 1.419 · 2148 1.109 · 2148 1.260 · 2147 1.278 · 2139 1.264 · 2149

• Any attack that breaks the relevant security defini-

tion must require computational resources compara-

ble to or greater than those required for key search

on a block cipher with a 192-bit key (e.g., AES-192)

• Any attack that breaks the relevant security defini-

tion must require computational resources compara-
ble to or greater than those required for key search

on a block cipher with a 256-bit key (e.g., AES-256)

Based on [9], NIST conservatively estimate D (total

gates × depth) as 2170, 2233 and 2298 for AES-128, 196

and 256. Now we compare KNOT-AEAD with the security
strength of NIST, as shown in Table 7. As a result,

resources for Grover key search for KNOT-AEAD using

128-bit key, 196-bit key, and 256-bit key are lower than

the security strengths AES-128, AES-192 and AES-256

suggested by NIST.

For estimation of resources, both the plaintext P

and associated data AD are assumed to be 32-bit; but

even if the size is increased to 128-bit and 256-bit, it

does not satisfy the security strength of NIST (i.e., less

than 2170, 2233 and 2298). The effect of increasing the

size of P and AD is not significant. We believe that in

order to satisfy the security strengths of 2170, 2233 and

2298, it is necessary to increase the parameters of the

permutation based on RECTANGLE used in KNOT-AEAD.

6 Conclusion and Future Work

In this work, we implement two lightweight ciphers
(namely, the block cipher RECTANGLE [23] and the AEAD

KNOT [24]) as quantum circuits, using the ProjectQ li-

brary. This is the first such (public) implementation for

the ciphers, and among the first implementation for an

AEAD. Multiple optimisations are used to keep the cost

as minimal as possible. Further, we estimate the cost of
the circuit that would be required to run the Grover’s

search algorithm [10]. Thus, our work constitutes the

basis for analysis of the two target ciphers by a quantum

computer.

In the KNOT implementations, it is possible to re-

duce the depth slightly with a sharp increase in the

qubit complexity, but we ignore this as it appears to

be highly inefficient. Instead, we attempt to reduce the

qubit complexity while keeping the depth within a toler-

able bound. In other words, the KNOT implementations

presented here do not let the depth increase unbounded

to reduce the qubit complexity.

We note two potential research directions that could

be interesting for the future researchers to pursue. First,

other ciphers (such as AEADs from the NIST LWC
project or the CAESAR6 project) can be analysed in

an analogous way. In the process, one may be interested

in a generalised framework to compare multiple ciphers;

6https://competitions.cr.yp.to/caesar.html.
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Table 7: Comparison of NIST’s security strength of KNOT-AEAD with AES

Cipher Total gates Depth D NIST security

KNOT-AEAD (128, 256, 64) 1.354 · 283 1.378 · 274 1.866 · 2157

2170 (AES-128)
KNOT-AEAD (128, 384, 192) 1.238 · 284 1.673 · 274 1.036 · 2159

KNOT-AEAD (192, 384, 96) 1.456 · 2116 1.968 · 2106 1.433 · 2223 2233 (AES-192)

KNOT-AEAD (256, 512, 128) 1.264 · 2149 1.278 · 2139 1.615 · 2288 2298 (AES-256)

D = Total gates × Total depth

for example, as done in context of FPGA benchmarking

[18]. Second, tools can be designed/improved for (more)

efficient implementation. For example, support for bigger
SBoxes (such as, 8× 8) or non-zero cost for the SWAP

gate can be incorporated in LIGHTER-R.
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