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Abstract. Privacy and Byzantine-robustness are two major concerns of
federated learning (FL), but mitigating both threats simultaneously is
highly challenging: privacy-preserving strategies prohibit access to indi-
vidual model updates to avoid leakage, while Byzantine-robust methods
require access for comprehensive mathematical analysis. Besides, most
Byzantine-robust methods only work in the honest-majority setting.
We present FLOD, a novel oblivious defender for private Byzantine-
robust FL in dishonest-majority setting. Basically, we propose a novel
Hamming distance-based aggregation method to resist > 1/2 Byzantine
attacks using a small root-dataset and server-model for bootstrapping
trust. Furthermore, we employ two non-colluding servers and use ad-
ditive homomorphic encryption (AHE) and secure two-party computa-
tion (2PC) primitives to construct efficient privacy-preserving building
blocks for secure aggregation, in which we propose two novel in-depth
variants of Beaver Multiplication triples (MT) to reduce the overhead
of Bit to Arithmetic (Bit2A) conversion and vector weighted sum aggre-
gation (VSWA) significantly. Experiments on real-world and synthetic
datasets demonstrate our effectiveness and efficiency: (i) FLOD defeats
known Byzantine attacks with a negligible effect on accuracy and con-
vergence, (ii) achieves a reduction of ≈ 2× for offline (resp. online) over-
head of Bit2A and VSWA compared to ABY-AHE (resp. ABY-MT) based
methods (NDSS’15), (iii) and reduces total online communication and
run-time by 167-1416× and 3.1-7.4× compared to FLGUARD (Crypto
Eprint 2021/025).

Keywords: Privacy-Preserving · Byzantine-Robust · Federated Learn-
ing · Dishonest-Majority

1 Introduction

Federated Learning (FL) is an emerging collaborative machine learning trend,
in which the training is distributed and executed in parallel, and used in real-
world applications, e.g., next word prediction [17], medical imaging [15]. More
importantly, FL offers an appealing solution to privacy preservation by enabling
clients to train a global model via an aggregator (a.k.a server) while keeping
private data at local to avoid violating related regulations and laws [28,35].
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Despite its benefits, FL has been shown to be vulnerable to Byzantine and
inference attacks [26,16]. In the former, the adversary Ac, who controls some
clients, aims to manipulate the global model, e.g., compromise the model per-
formance. In the latter, adversary As, who corrupts the aggregator, follows the
execution transcript honestly but tries to learn additional information about
the clients’ private local data by analyzing their model updates. Mitigating
both kinds of attacks simultaneously is highly challenging: Defending Byzantine
attacks require access to the clients’ model updates [1,6,25,38], while privacy-
preserving strategies, such as the methods based on secure computation which
is provable security, prohibit this to avoid information leakage [8,12,31,33]. Ad-
ditionally, existing Byzantine-robust methods mainly rely on clients honest-
majority assumption, which means Ac controls < 1/2 clients.

Recently, Cao et al. proposed FLTrust [11] to overcome the honest-majority
limitation by using a small clean root-dataset to compute server-model update
for bootstrapping trust. But it requires complex calculation operations such
as cosine distance, rescaling, and comparison, which are very expensive when
evaluated in secure computation.

Nguyen et al. employed two servers P0 and P1 as aggregators and proposed
FLGUARD [27] to preserve privacy while thwarting Byzantine attacks by com-
bining a novel robust aggregation approach with 2PC, but it only works under
honest-majority assumption. Worsely, FLGUARD results in a severe P -P over-
head and increases the client-aggregator (C-P ) communication by 3×, which is
also a serious burden since the C-P connection is usually in WAN and bandwidth
limited. In terms of reducing C-P communication, quantization is one promising
approach that approximates float model updates with low-bit precision. Among
these researches, SIGNSGD [5] transmits only the sgn model update (−1 for neg-
ative and 1 otherwise), and a majority vote decides the global update. However,
SIGNSGD is also suffering from inference and Byzantine attacks (in dishonest-
majority). What is worse, it introduces significant convergence degradation com-
pared to traditional FL (cf. §5.1). Therefore, it is urgent and challenging to
propose a solution to adequately tackle these obstacles simultaneously.

To address the challenge, we propose FLOD, a novel oblivious defender for
private Byzantine-robust FL in a dishonest-majority setting based on bootstrap-
ping trust and sgn quantization techniques. Though bootstrapping trust and
quantization are inspired by prior works, our technical innovation lies in the
novel in-depth aggregation method. Unlike existing works, our key insight is
that Hamming distance [9] is highly more suitable and efficient than others to
measure the similarity of binary vectors. Therefore, we aim to compute the Ham-
ming distance between each local model update and the aggregator’s to measure
the similarity and remove local model updates with relatively a large hamming
distance (small similarity). To this end, we introduce a sgn/Boolean conversion
method to support XOR and propose to use ReLU with a pre-defined threshold
τ for clipping the distance. The aggregated model update is the weighted average
of all sgn model updates based on corresponding clipped results.
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In terms of privacy preservation, we employ two non-colluding servers as ag-
gregators and design efficient privacy-preserving blocks based on 2PC primitives
to protect the immediate results. Concretely, we construct CXOR and PCBit2A to
evaluate correlated XOR for free and realize Bit2A conversion efficiently. Hence,
we can compute the Hamming distance privately. Then, we use garbled circuits
(GC) with single instruction multiple data (SIMD) optimization to implement
private τ -Clipping. Finally, we compute the weighted average of all secret-shared
sgn model updates as CSWA securely. Specially, we propose two variants of MT
[13] based on the correlations of secret-shared values to reduce the offline and on-
line overheads of Bit2A and VSWA by ≈ 2×, respectively. Notably, these secure
blocks are of independent interest and can be useful in other works.

Contributions In brief, we summarize our main contributions as follows.

• Byzantine-robustness: We propose FLOD, a novel Hamming distance-based
aggregation method in the dishonest-majority setting. In contrast to existing
works, FLOD is much more efficient, especially evaluated in 2PC, since our
solution is mainly composed of lightweight operations, e.g., XOR, ADD, and
MUL. Moreover, we achieve the same level of Byzantine-robustness as FLTrust
for sgn model updates in theory.
• Privacy Preservation: To impede inference attacks by a semi-honest aggre-

gator, we construct privacy-preserving building blocks based on 2PC and AHE
for each component of FLOD. Furthermore, we propose two novel variants of
MTs based on the correlations of secret-shared values to reduce the overhead
(including communication and run-time) of Bit2A and VSWA by ≈ 2×. We
also give a detailed analysis of the correctness and privacy of FLOD.
• Evaluations: We implement a proof-of-concept prototype and give the exper-

imental results on neural networks: (i) FLOD defeats known Byzantine attacks
with a negligible effect on accuracy and convergence, (ii) achieves a reduction
of ≈ 2× for offline (resp. online) overhead compared to ABY-AHE (resp. ABY-
MT) based method [13], (iii) and reduces total online communication and
run-time by 167-1416× and 3.1-7.4× compared to FLGUARD [27].

Roadmap We present the preliminaries and definitions in §2. Then, we formulate
our scope and threat model in §3. In §4, we give the concrete design of FLOD,
including the proposed aggregation rule (cf. §4.1) and privacy-preserving build-
ing blocks (cf. §4.2). The prototype and experimental results are presented in
§5. We discuss existing works in §6 and conclude this work in §7.

2 Background & Preliminaries

2.1 Federated Learning

Workflow Federated learning (FL) [19,20,22] enables K distributed clients to
collaboratively build a global model W. In each training round, client Ci locally
computes model updates wi based on previous global model W and local dataset
Di, and sends wi to the aggregator. Then, the aggregator aggregates all wi as w
according to the particular aggregation method, such as average w = 1

n ·
∑K
i=1 wi.

Finally, the aggregator dispatches w to all clients for model update.
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Inference Attack FL provides data locality such thatDi can be confined within
its owner Ci. Despite this, clients still entail sharing locally trained wi, in order
to synthesize the final global model W. However, these local wi are subject to
information leakage. Specially, one semi-honest aggregator As can attempt to
infer sensitive information and even restore private Di from received wi [39].
Therefore, it is an essential requirement to keep wi confidential.

Byzantine Attacks In Byzantine attacks, adversary Ac controls some clients
and mantipluates w′i to affect the final W’s behavior. As the main accuracy (MA)
is one of the dominant metrics in machine learning, we focus on the Byzantine
attacks aiming at compromising MA in this work. To attack FL, existing work
mainly uses data poisoning [38] and model poisoning [6] attacks. In the former,
Ac poisons the instances of training data, e.g., label flipping. While in the latter,
Ac can add well manipulated noises, e.g., Gaussian noises, to wi.

Hamming distance For two bit vectors x, y ∈ {0, 1}d of equal length, their
Hamming distance hd is the number of positions where xi 6= yi for xi ∈ x and
yi ∈ y. Formally, hd =

∑d
i=1 xi ⊕ yi.

2.2 Cryptographic Preliminaries

Secure 2-party computation (2PC) allows two parties to jointly compute
a function without leaking private inputs. Basically, there are three techniques:
Arithmetic sharing, Boolean sharing, and Yao’s garbled circuits.

Arithmetic/Boolean Sharing For one `-bit value x in finite ring R, party Pt
for t ∈ {0, 1} holds an additive share 〈a〉At such that a = 〈a〉A0 + 〈a〉A1 . For two
arithmetic shared value 〈a〉A and 〈b〉A, addition (ADD) can be evaluated locally.
And multiplication (MUL) gate relies on Beaver’s Multiplication Triples (MTs):
P0 and P1 prepare triple (〈x〉A, 〈y〉A, 〈z〉A) where z = xy and Pt holds the t-th
share. Then Pt computes 〈e〉At = 〈a〉At −〈x〉At and 〈f〉At = 〈b〉At −〈y〉At . Both parties
reconstruct e and f , and compute 〈ab〉At = −tef + f〈a〉At + e〈b〉At + 〈z〉At [3]. Note
we omit the modular operation for brevity. The triples can be generated offline
using Additive Homomorphic Encrytion (AHE) or Oblivious Transfer (OT) as
[13]. Boolean Sharing can be seen as arithmetic sharing in Z2, and hence all
operations carry over: addition is replaced by XOR (⊕), and multiplication is
replaced by AND (∧).

Yao’s Garbled Circuits (GC) is run between two parties called garbler and eval-
uator. The garbler generates the garbled circuits corresponding to the Boolean
circuit by associating two random keys Kw

0 , Kw
1 for each wire w to represent

bit value {0, 1}, and then sends GC together with the keys for its inputs to the
evaluator. While the evaluator obliviously obtains keys for its inputs via Obliv-
ious Transfer (OT) [30], it evaluates the circuit to obtain the output key, which
is used to decode the real output. For more details, please refer to [4,37]

Additive Homomorphic Encryption (AHE) A public key encryption scheme
is additively homomorphic if given two ciphertexts x̂ = AHE.Encpk(x) and ŷ =
AHE.Encpk(y), there is a public-key operation � such that AHE.Encpk(x+ y) =
x̂ � ŷ, e.g., Paillier’s encryption [29], exponential ElGamal encryption [14]. Be-
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sides, adding or multiplying a ciphertext by a constant c is also efficiently sup-
ported: AHE.Encpk(c + x) = c � x̂ and AHE.Encpk(c · x) = c � x̂. Furthermore,
we use single instruction multiple data (SIMD) technique [34] to pack multiple
messages into one ciphertext for better efficiency.

Semi-honest Model A semi-honest adversary runs the protocol honestly but
try to learn additional information from received messages. Let π be a two-party
protocol running in real-world and F be the ideal functionality completed by a
trusted party. The ideal-world adversary is referred to as a simulator Sim. We
define the two interactions as follows:

• Realπ(κ,C;x1, x2) run protocol π with security κ, where Pt inputs xt and C
is the corrupted party.
Output {V iewt, t ∈ C}, (y1, y2). The Pt’s view and output are V iewt and yt.
• IdealF,Sim(κ,C;x1, x2) compute (y1, y2)← F(x1, x2).

Output Sim(C, {xi, yi}i∈C) and (y1, y2)

In the semi-honest model, a protocol π is secure as long as the ideal-world
adversary’s view is indistinguishable from the view in the ideal-world.

3 Scope & Threat Model

We focus on the widely deployed horizontal scenario where the data is indepen-
dent and identically distributed (i.i.d.) among clients, e.g., financial institutions
or medical centers. Our goal is to preserve Byzantine-robustness and privacy at
the same time in FL.

Additionally, we follow previous works [27] and consider two kinds of adver-
saries: Ac and As, as follows:

• Adversary Ac controls K ′ (≤ K − 2) (if K ′ = K − 1, the aggregated result
is likely to be the honest model update) clients and tries to compromise the
global model performance. However, Ac has no control over the aggregators
and honest clients. Note that Ac is not involved in the computation between
the servers and only receives the aggregated results in each update. Thus, it
learns nothing beyond what can be inferred from the aggregated results and
its own inputs.
• The second adversary As, which runs our protocols honestly, has access to no

more than one server (two non-colluding servers) and does not perform Byzan-
tine attacks (semi-honest). The non-colluding assumption can be guaranteed
between two competing companies as it is in their interest to not give their
customer’s data to the competitor for protecting business secrets. Addition-
ally, it is reasonable to assume that the two servers are semi-honest because
cloud providers/companies are strictly regulated and threatened with severe
financial and reputation damages once malicious behavior is detected.

4 Design of FLOD

FLOD follows the workflow of typical FL except maintaining a root-dataset
and server-model as FLTrust [11], we hence elaborate our aggregation method,
privacy-preserving building blocks, and the analysis of correctness and privacy.



6 Y. Dong et al.

4.1 Aggregation Method

In each round of model update, client Ci (resp. aggregator) computes the sgn
model update w̃i (resp. w̃s) in {−1, 1} as SIGNSGD [5]. The sgn value can
limit scaling attacks [2], but naively adding them up will ignore their direction
property. Specially, an attacker can manipulate the direction of w̃i such that
the global model might be updated towards the opposite of correct direction.
FLTrust resolved a similar issue using cosine similarity and ReLU clipping [11],
but it requires many expensive non-linear operations. When combining them
with secure computation, the overhead will be much more serious.

Weighted
Averaging

Encoding

HD-
Compting

-Clipping
 

Decoding

Fig. 1: Overview of FLOD aggregation method.

To this end, we propose an efficient aggregation method as Fig. 1. First,
we introduce sgn/Boolean conversion so that Ci (resp. aggregator) can convert
the w̃i ( resp. w̃s) in {−1, 1} to Boolean representation wi (resp. ws) and back.
Then, aggregator computes their Hamming distance with mostly XOR/ADD and
and τ -clip the distance with little comparison, where τ is the threshold. Finally,
aggregator converts wi back to w̃i and aggregates them based on clipping results.

sgn/Boolean Conversion Recall w̃i is in {−1, 1}d, it is not suitable for XOR
operation. Therefore, for w̃ij ∈ w̃i we propose encoding method E as:

E(w̃ij) =

{
0, if w̃ij = 1;

1, otherwise.
(1)

And to aggregate w̃i in the last step of aggregation, we need to decode E(w̃ij).
To this end, we propose the decoding method D as:

D(E(w̃ij)) = 1− 2E(w̃ij) (2)

It is straightforward to see that we can guarantee D(E(w̃ij)) = w̃ij .

HD-Computing After computing and E-encoding sgn model update, we have
the Boolean representation in Zd2. Now, for each Ci, we let the aggregator com-
pute the Hamming distance between wi and ws as:

hdi =

d∑
j=1

wij ⊕ wsj . (3)

τ -Clipping We let the aggregator use threshold τ to clip hdi and assign weight
νi to wi as:

νi = ReLU(τ − hdi), (4)
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Algorithm 1 FLOD Aggregation Method

Input: Ci inputs w̃i for i ∈ [1,K] and aggregator inputs w̃s.

Output: w̃ = 1∑K
i=1 νi

· (
∑K
i=1 νi · w̃i).

1: Encode w̃s ∈ {−1, 1}d using E into {0, 1}d as ws = E(w̃s).
2: for i ∈ [1,K] do
3: Encode w̃i ∈ {−1, 1}d using E into {0, 1}d as wi = E(w̃i).

4: Compute hdi =
∑d
j=1 wij ⊕ wsj for wij ∈ wi and wsj ∈ ws.

5: Clip hdi as νi = ReLU(τ − hdi).
6: end for
7: return w̃ = 1∑K

i=1 νi
· (
∑K
i=1 νiw̃i), where w̃i = D(wi).

where ReLU(x) returns x if x > 0, and 0 otherwise. Therefore, if hdi > τ , which
indicates the difference between wi and ws is huge, ReLU will return 0 and
we will exclude wi from the aggregation. Otherwise, we assign positive weight
τ − hdi to wi. Hence, when hdi is smaller, which means wi is more similar to
ws, the corresponding weight νi is bigger.

Weighted Averaging Finally, we compute w̃ = 1∑K
i=1 vi

(
∑K
i=1 νi · w̃i) as the

aggregated result to update the global model. The formulation is in algorithm
1, and the analysis of our Byzantine-robustness is illustrated in Appendix A.

4.2 Privacy-Preserving Building Blocks

CXOR PCBit2A
Private

𝝉-Clipping CSWA
…

CXOR PCBit2A Private
𝝉-Clipping CSWA

 
Clients

௜ ଴
୅

௜ ଵ
୅

௜ ଴
୅

௜ ଴
୅

௜ ଵ
୅௜ ଵ

୅

Fig. 2: Workflow of privacy-preserving FLOD. Without losing generality, we let P0

maintain root-dataset and server-model. As E can be evaluated locally by each party
and secure D is implemented in CSWA, we omit them for brevity.

We construct the privacy-preserving blocks of FLOD as Fig. 2: We employ two
non-colluding servers, P0 and P1, as aggregators. In each round of aggregation,
P0 computes and E encodes ws, and Ci sends the Boolean share of E-encoded wi

to Pt. P0 and P1 firstly compute the coordinate-wise XOR of wi and ws privately
using CXOR. Then, they jointly convert the Boolean shares to arithmetic shares
using PCBit2A for efficient weighted averaging aggregation. Next, Pt sum up all
coordinates of 〈hdi〉A as 〈hdi〉A, and jointly clip it with τ to obtain νi as private
τ -Clipping. Finally, two servers aggregate w̃is based on νi as w̃ in CSWA, where
we compute the arithmetic shares of w̃i through the shares of wi. And w̃ is
revealed to P0 and all clients for model update.
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Algorithm 2 PCBit2A

Input: For t ∈ {0, 1}, Pt inputs 〈wi〉Bt and 〈hdi〉Bt for i ∈ {1, ...,K}.
Output: For t ∈ {0, 1}, Pt outputs 〈wi〉At and 〈hdi〉At for i ∈ {1, ...,K}.
1: for i = 1 to K do
2: Offline:
3: P0 samples length-d vectors xi, x′i, ri, and r′i at random.
4: P1 samples length-d vectors yi at random.
5: P1 encrypts and sends ŷi = AHE.Encpk1

(yi) to P0.
6: P0 computes and sends ξi = (xi � ŷi) � ri, ξ

′
i = (x′i � ŷi) � r′i to P1.

7: P1 sets 〈zi〉A1 = AHE.Decsk1(ξi), 〈z′i〉A1 = AHE.Decsk1(ξ′i). P0 sets 〈zi〉A0 =
−ri, 〈z′i〉A0 = −r′i.

8: Online:
9: P0 computes and sends 〈wi〉B0 + xi and 〈hdi〉B0 + x′i to P1.

10: P1 computes and sends 〈wi〉B1 + yi to P0.
11: P0 locally computes 〈ui〉A0 = −xi(〈wi〉B1 + yi) + 〈zi〉A0 and 〈u′i〉A0 =

−x′i(〈hdi〉B1 + yi) + 〈z′i〉A0 , and P1 sets 〈ui〉A1 = 〈wi〉B1 (〈wi〉B0 + xi) + 〈zi〉A1
and 〈u′i〉A1 = 〈hdi〉B1 (〈hdi〉B0 + x′i) + 〈z′i〉A1 .

12: Pt computes 〈wi〉At = 〈wi〉Bt − 2〈ui〉At and 〈hdi〉At = 〈hdi〉Bt − 2〈u′i〉At .
13: end for
14: return For t ∈ {0, 1}, Pt outputs 〈wi〉At and 〈hdi〉At for i ∈ {1, ...,K}.

Correlated XOR (CXOR) After model evaluation and E , P0 has ws ∈ {0, 1}d,
Pt has 〈wi〉Bt for t ∈ {0, 1}. To compute the Hamming distance between wi and
ws, we need to compute their coordinate-wise XOR firstly. As wi = 〈wi〉B0 ⊕
〈wi〉B1 , we have hdi = ws ⊕ wi = ws ⊕ 〈wi〉B0 ⊕ 〈wi〉B1 . Therefore, we let P0

computes 〈hdi〉B0 = ws ⊕ 〈wi〉B0 and 〈hdi〉B1 = 〈wi〉B1 with no communication.

Partial Correlated Bit to Arithmetic Conversion (PCBit2A) To achieve
practical aggregation, we need to convert 〈wi〉B and 〈hdi〉B to arithmetic shares
since the latter is more efficient for ADD and MUL. Considering wij ∈ wi is 0
or 1, we have wij = 〈wij〉B0 + 〈wij〉B1 − 2〈wij〉B0 〈wij〉B1 . As Pt has 〈wij〉Bt , the main
challenge is computing the arithmetic shares of 〈wij〉B0 〈wij〉B1 securely.

To this end, a naive approach is generating MT using AHE as ABY li-
brary [13] and computing the product in element-wise as §2.2, where we view
{〈ai〉A0 = 〈wi〉B0 , 〈ai〉A1 = 0}, {〈bi〉A0 = 0, 〈bi〉A1 = 〈wi〉B1}, and compute 〈aibi〉A =
〈wi〉B0 〈wi〉B1 . But this method requires P1 encrypts 4K length-d vectors and sends
4Kdd/se ciphertexts to P0 in offline phase, and Pt sends 4Kd` bits to P1−t in
online phase for all 〈wi〉B and 〈hdi〉B conversions totally. To improve efficiency,
we propose a novel partial correlated Bit2A (PCBit2A) method requires 4× less
encryption and ≈ 2× less communication in offline, and reduces P0 → P1 (resp.
P1 → P0) communication by 2× (resp. 4×) in online.

Firstly, as Pt holds 〈wi〉Bt for 〈wi〉B0 〈wi〉B1 , we propose a variant of MT (par-
tial MT) (xi,yi, zi) inspired by [7] such that P0 holds {xi, 〈zi〉A0}, P1 holds
{yi, 〈zi〉A1}, and zi = xiyi. In online, P0 computes and sends 〈wi〉B0 + xi to P1,
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Fig. 3: Boolean circuit for private τ -Clipping. ”+” refers to integer addition and ”−”
refers to integer subtraction. The ”MUX” is multiplexer and ”>” outputs 1 i.f.f. the
input is larger than bR/2c.

while P1 sends 〈wi〉B1 + yi to P0. P0 computes 〈ui〉A0 = −xi(〈wi〉B1 + yi) + 〈zi〉A0
and P1 computes 〈ui〉A1 = 〈wi〉B1 (〈wi〉B0 + xi) + 〈zi〉A1 to obtain 〈ui〉A0 + 〈ui〉A1 =
〈wi〉B0 〈wi〉B1 in secret. And 〈hdi〉B0 〈hdi〉B1 computation is likewise.

The above method complete 〈wi〉B and 〈hdi〉B conversions independently.
As 〈wi〉B1 = 〈hdi〉B1 , we further let P1 prepare yi = y′i, while P0 generate xi, x′i,
ri, and r′i independently at random. In offline, P1 only encrypts and sends ŷi
to P0. While P0 uses (xi, ŷi, ri) (resp. x′i, ŷi, r

′
i)) to compute ξi (resp. ξ′i). And

Pt computes 〈zi〉At and 〈z′i〉At locally as the offline in Algorithm 2. Note that we
can also generate the MTs using OT with much more communication and less
run-time. As the network costs are charged much more than computation [18],
we adopt AHE based method to minimize the monetary cost. In online, P0 sends
〈wi〉B0 + xi and 〈hdi〉B0 + x′i to P1, while P1 only sends 〈wi〉B1 + yi to P0. Thus
Pt can complete 〈wi〉B and 〈hdi〉B conversions simultaneously as illustrated in
online of Algorithm 2. Therefore, we need 2Kd` (resp. Kd`) bits for P0 → P1

(resp. P1 → P0) online communication.

Private τ -Clipping To evaluate τ -Clipping privately, we use GC to clip 〈hdi〉A =∑d
j=1〈hdij〉A. The Boolean circuit is illustrated in Fig. 3: P0 inputs x0 = τ −

〈hdi〉A0 and y0 = r (chosen at random), P1 inputs x1 = −〈hdi〉A1 . The first block
computes the arithmetic sum of τ − hdi = x0 + x1 over integers. The second
block computes the ReLU function. And the third block subtract y0 from the
result to obtain the P1’s share y1. Finally, Pt sets 〈νi〉At = yt.

Correlated Secure Weighted Aggregation(CSWA) To weighted average all
w̃i privately, we first let Pt computes 〈w̃i〉At = t−2〈wi〉At to implement D securely
in batch. With 〈νi〉A and 〈w̃i〉A, P0 and P1 are capable to compute 〈w̃〉A where
the main challenge is computing 〈νiw̃i〉A for i ∈ {1, ...,K}. A trivial method is
using MT for each scalar-product as ABY [13], but this needs Kd triples in total,
which requires Pt to encrypt (and send) 2Kdd/se ciphertexts to P1−t in offline,
and 2Kd` bits online communication for each Pt in online. Hence, we propose
an efficient method which achieves ≈ 2× reduction in communication.

Our key insight is that νi is fixed for all coordinates of w̃i. Therefore,
we construct MT (xi,yi, zi) subject to zi = xiyi using AHE, where Pt has
(〈xi〉At , 〈yi〉At , 〈zi〉At ). Pt thus only sends 1 + Kdd/se ciphertexts to P1−t in of-
fline. Note that we let Pt duplicate 〈xi〉At into s copies and pack these copies

into one ciphertext to support SIMD technique, and we use denotation 〈̂xi〉At =
AHE.Encpkt(〈xi〉At ) for brevity. In online, Pt sends 〈ei〉At = 〈νi〉At − 〈xi〉At , 〈fi〉At =
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Algorithm 3 CSWA

Input: For t ∈ {0, 1}, Pt inputs 〈wi〉At and 〈νi〉At for i ∈ {1, ...,K}.
Output: P0 outputs w̃ = 1∑K

i=1 νi
· (
∑K
i=1 νi · w̃i).

1: for i = 1 to K do
2: Offline
3: Pt locally samples scalar 〈xi〉At , length-d vector 〈yi〉At and ri,t.

4: Pt encrypts and sends 〈̂xi〉At = AHE.Encpkt
(〈xi〉At ) to P1−t.

5: Pt computes and sends ξi,t = 〈yi〉At � 〈̂xi〉At � ri,t to P1−t.
6: Pt decrypts and sets 〈zi〉At = 〈xi〉At 〈yi〉At + AHE.Decskt

(ξi,1−t)− ri,t.
7: Online
8: Pt computes 〈w̃i〉At = t− 2〈wi〉At to implement D(〈wi〉A) securely.
9: Pt sends (〈ei〉At = 〈νi〉At − 〈xi〉At , 〈fi〉A0 = 〈w̃i〉At − 〈yi〉At ) to P1−t.

10: P0 & P1 reconstruct (ei, fi) locally.
11: Pt locally computes 〈νiw̃i〉At = −teifi + ei〈w̃i〉At + 〈νi〉At fi + 〈zi〉At .
12: end for
13: Pt computes

∑K
i=1〈νiw̃i〉At ,

∑K
i=1〈νi〉At , and P1 sends its shares to P0.

14: return P0 reconstructs and computes w̃ = 1∑K
i=1 νi

· (
∑K
i=1 νiw̃i).

〈w̃i〉At − 〈yi〉At to P1−t, reconstruct both, and computes 〈νiw̃i〉At = −teifi +

ei〈w̃i〉At + 〈νi〉At fi + 〈zi〉At . Finally, Pt adds up
∑K
i=1〈νiw̃i〉At and

∑K
i=1〈νi〉At , and

P1 reveals its shares to P0, who computes w̃ = 1∑K
i=1 νi

· (
∑K
i=1 νiw̃i). This re-

quires K(d+1)` bits for P0 and (K+1)(d+1)` bits for P1 in online. The details
are in Algorithm 3.

4.3 Correctness & Privacy

Correctness FLOD is correct as long as the core building blocks are correct.
First, it is straightforward that CXOR is correct. Then, PCBit2A conversion is
correct since AHE and partial MT based secure multiplication are correct. Af-
terwards, GC guarantees that Pt can obtain the shares of νi = ReLU(τ − hdi)
for wi. Finally, AHE and MT also guarantee the correctness of CSWA.

Privacy We analyze the privacy of FLOD against semi-honest adversary As,
who corrupts one server, in Theorem 1. The proof is illustrated in Appendix B.

Theorem 1 (Privacy of FLOD). FLOD guarantees that adversary As learns

nothing beyond what can be inferred from the aggregated results (
∑K
i=1 νiw̃i,∑K

i=1 νi) with 1− ε probability where ε is negligible, as long as there are no more
than one corrupted server in semi-honest model.

Additionally, we can guarantee privacy even in the Ac-As collusion threat
model. The reason is that As learns nothing no more than the aggregated results
with an overwhelming probability, and Ac only receives the aggregated results
(cf. §3). Therefore, they learn nothing more than what can be inferred from the
aggregated results and their own inputs with an overwhelming probability.
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Fig. 4: MA along with the training iterations with δ = 0. 4(a) is for FNet on Fashion-
MNIST, 4(b) is for ResNet-18 on CIFAR10.

Table 1: MA of FedAvg, Krum, Median, T-Mean, FLGUARD, FLTrust, and FLOD with
δ = 30%. Note that we evaluate FedAvg with no Byzantine attack.

MA, δ=30% FedAvg Krum Median T-Mean FLGUARD FLTrust FLOD

GA
FNet 0.86 0.85 0.85 0.85 0.77 0.85 0.84

ResNet-18 0.79 0.76 0.75 0.76 0.74 0.76 0.76

LF
FNet 0.86 0.85 0.83 0.83 0.78 0.85 0.84

ResNet-18 0.79 0.76 0.64 0.66 0.75 0.75 0.75

5 Evaluation

Evaluation Setup: We implement FLOD in C++ and Python3. We use ABY
library [13] for 2PC and SIMD circuits, and rely on SEAL library [32] for AHE.
Parameters for both schemes are set with 128-bit security level. And we employ
widely used Convolutional Neural Networks: FNet with ≈507K parameters on
Fashion-MNIST [36] and ResNet-18 light with ≈2.07M parameters on CIFAR-10
[21]. Experiments are executed on Intel(R) Xeon(R) CPU E5-2650 v3@ 2.30GHz
servers with 64GB RAM, and we use PyTorch v1.4.0 equipped with CUDA v10.2
and two 12G memory TITAN Xp GPUs for model training. The P -P connection
is equipped with 10 Gbps LAN with 0.2ms RTT. And the C-P connection is over
50Mbps WAN with 50ms RTT.

5.1 Effectiveness Analysis

We evaluate FLOD against state-of-the-art Byzantine attacks: Gaussian Attack
(GA) and Label Flipping attack (LF). In GA, the poisoned model updates are
drawn from a Gaussian distribution (model poisoning). While in LF, we replace
training label y on the Byzantine machines with 9 − y (data poisoning). We
measure the main task Top-1 accuracy (MA) as the effectiveness metric.

First, we measure MA with training iterations of FLOD, FedAvg [24], and

SIGNSGD with δ = K′

K = 0% to show our model performance under no Byzan-
tine attacks. Then, we fix δ = 30% and compare the MA of FLOD to Krum [6],
Median [38], T-Mean [38], FLGUARD [27], and FLTrust [11] to show our robust-
ness in honest-majority. Finally, we measure the MA with dynamic δ to present
our robustness is comparable to FLTrust, which is better than other works when
δ > 50%. We train FNet for 150 iterations and ResNet-18 Light for 1,000 itera-
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Fig. 5: MA of FNet with δ = 10%-90% for all Byzantine-robust aggregation methods,
where 5(a) is for GA and 5(b) is for LF.

tions, and set τ = d
3 and d

2 for FNet and ResNet-18 for best MA, respectively.
Determining the optimal τ is a interesting task, and we leave it for future work.

Performance Analysis with δ = 0 One Byzantine-robust aggregation method
should also apply to no attack cases in real applications: it should introduce little
degradation to model performance when δ = 0. As FedAvg achieves the optimal
performance, we compare FLOD to it. Also, we measure the MA of SIGNSGD
since we encode model updates similar to it.

As shown in Fig 4, FLOD converges to a similar MA level as FedAvg achieved
within the same training iterations for both FNet and ResNet-18 Light. The
reason is that FLOD utilizes the root dataset to bootstrap trust; thus, it can
almost aggregate all sgn model updates when δ = 0. Although the sgn encoded
values lose some information, it has merely impacts on the overall model train-
ing. However, SIGNSGD converges much slower than FedAvg and ours because
SIGNSGD only returns the sgn of the sum of all individual model updates to
resist Byzantine attacks, which is equivalent to Median method for sign encoded
model updates. As Median excludes ≈ K−1 values for each coordinate, SIGNSGD
introduces significant degradation to model convergence.

Performance Analysis with δ = 30% Table 1 shows the MA of FLOD and
existing methods: Krum, Median, T-Mean, FLGUARD, and FLTrust, in honest-
majority (δ = 30%), under both attacks. As SIGNSGD converges much slower
and is equivalent to Median for sign encoded model updates, we omit it here. And
we present the MA of FedAvg without attack for a comprehensive comparison.

FLOD introduces little MA loss compared to FedAvg and other Byzantine-
robust FL methods. Compared to FedAvg, the MA loss is no more than 0.02
for FNet and 0.04 for ResNet-18. Moreover, the MA degradation is within 0.01
for all cases compared to FLTrust. The degradation has two main sources: (i)
With Byzantine attacks, the correct model updates (or clean data) is less than
that of FedAvg. Therefore, FLOD and FLTrust with δ = 30% both introduce
MA degradation compared to FedAvg with δ = 0. (ii) For FLOD, sgn encoding
introduces information loss compared to original model updates. Hence, FLOD
achieves a slightly lower MA than FLTrust. However, this degradation is so little
that it can be acceptable in practical with enhancements on privacy preservation.
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Table 2: P -P communication of PCBit2A (resp. CSWA) and ABY based methods for
Bit2A (resp. VSWA) in one round of aggregation, where K = 10, 50, 100, models are
FNet and ResNet-18, offline (resp. online) communication is in GB (resp. MB), and
X denotes AHE for offline and MT for online.

Comm. Bit2A VSWA
Model FNet ResNet-18 FNet ResNet-18

Method PCBit2A ABY-X PCBit2A ABY-X CSWA ABY-X CSWA ABY-X

O
ff

.,
K 10 1.43 2.90 7.44 15.28 0.74 1.45 4.03 7.64

50 7.44 14.77 33.86 91.74 3.94 7.39 22.81 44.99

100 14.07 30.60 67.93 153.13 7.64 15.30 38.63 76.56

O
n
.,
K 10 58.16 151.22 237.17 616.64 41.07 81.14 165.83 329.58

50 290.06 754.16 1185.06 3081.16 194.41 387.62 797.55 1594.78

100 580.16 1508.42 2370.45 6163.17 387.69 772.38 1587.20 3173.68

Besides, compared to Krum, Median, T-Mean, and FLGUARD, we achieve a
similar or better MA in honest-majority. Therefore, FLOD has much broader
application prospects for resisting Byzantine attacks in FL.

Performance Analysis with Dynamic δ Fig. 5(a)-5(b) show the MA with
the fraction of Byzantine clients for all methods. To completely test the Byzantine-
robustness, we alter δ=10%-90%. Firstly, we see FLOD can reach a similar or
even higher level of MA as other FL methods in honest-majority, which is con-
sistent with our analysis. Secondly, when δ > 50% the MA of Krum, Median, and
FLGUARD drops sharply, e.g. MA≈ 0.1 when δ = 90%. The reason is that these
methods all rely on the honest-majority assumption, and thus with δ > 50%,
the poisoned model updates will be aggregated into the final result. However,
FLOD and FLTrust can still maintain a high MA since both methods utilize a
root-dataset to bootstrap trust, and thus can exclude the poisoned model up-
dates even in dishonest-majority. Similar results for ResNet-18 are illustrated as
Fig. 8 in Appendix C.

5.2 Efficiency Analysis

We test the costs and scalability of FLOD by varying the number of clients
(K = 10, 50, 100) and size of model updates. Concretely, we measure the com-
munication overhead and run-time in respective offline and online phases.

Communication We test the P -P communication costs of Bit2A and VSWA
for offline, and compare our costs to ABY-AHE based method. For online, we
measure each block communication and compare it to ABY-MT based method,
and further compare our total online communication overhead, including the C-
P overhead, of one aggregation to FLGUARD to demonstrate our improvements.

P -P Offline Communication We measure the P -P communication costs for the
offline of PCBit2A and CSWA, and compare our costs to ABY-AHE based method
as the offline part of Table 2. Firstly, our PCBit2A reduces the communication
costs by ≈ 2× for Bit2A. This is because we propose partial MTs and reuse yi
to generate correlated partial MTs for 〈wi〉B and 〈hdi〉B conversions simultane-
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Fig. 6: Total online C-P and P -P communication of FLOD and FLGUARD for FNet
and ResNet-18 in one aggregation. 6(a) shows each C-P communication, 6(b) shows
the P -P costs for FNet, and 6(c) shows the P -P costs for ResNet-18. Note the y-axis
of 6(b) and 6(c) is in log-scale.

ously. Secondly, we also reduce the VSWA offline communication costs by ≈ 2×
since we reuse the same 〈xi〉A for all coordinates of wi in CSWA. Hence, we
improve the total offline communication efficiency in one aggregation by ≈ 2×
compared to ABY-AHE method.

Online Communication Table 2 online part shows the online communication
between P0 and P1 caused by PCBit2A and CSWA in one aggregation, and we
compare our costs to ABY-MT based method. For PCBit2A, we reduce the com-
munication by around 2.5× due to our partial correlated triples optimization.
And for CSWA we reduce the communication by ≈ 2× as νi is same for all coor-
dinates of wi. Additionally, the costs of PCBit2A and CSWA are determined by
K and model size since P0 and P1 need to conduct multiplication for each coor-
dinate of wi. Besides, private τ -Clipping introduces little online communication,
and thus we present it as Table 4 in Appendix D due to page limitation.

Besides, we present the total online C-P and P -P communication costs of
FLOD (including private τ -Clipping) in one aggregation, and compare our over-
head to FLGUARD as Fig 6. Firstly, Fig. 6(a) shows that we reduce the C-P
communication by ≈ 6× compared to FLGUARD. This reason is that FLGUARD
encodes the model updates and aggregated results as 64-bit integers, while we
use 1 bit to represent each share of the E-encoded binary sgn model update
and 32 bits to encode the aggregated results (which is enough to achieve a
comparable accuracy as FedAvg). Secondly, in Fig. 6(b)-6(c), we compare the
P -P communication in one aggregation of FLOD to FLGUARD to show our im-
provements: FLOD requires 361-1416× less communication for FNet and 167-
417× less communication for ResNet-18. The reason is that our methods are
mainly composed of arithmetic operations and require a little GC for private
τ -Clipping. While FLGUARD requires much tremendous expensive garbled cir-
cuits for cosine distance calculation, clustering, and Euclidean distance calcula-
tion/clipping/aggregation. Thirdly, with K being increased, the communication
of FLGUARD increases more sharply than FLOD. Therefore, our FLOD is much
more communication efficient than FLGUARD.

Run-time We test the run-time, including the computation, data transferring,
and network latency, for offline and online phases. Also, we compare our offline
run-time to ABY-AHE based method, and online run-time to ABY-MT based
method and FLGUARD in one aggregation.
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Table 3: Run-time in seconds of PCBit2A (resp. CSWA) and ABY based methods for
Bit2A (resp. VSWA) in one aggregation for FNet and ResNet-18, where K = 10, 50, 100
and X denotes AHE for offline and MT for online.

Run-time Bit2A VSWA
Model FNet ResNet-18 FNet ResNet-18

Method PCBit2A ABY-X PCBit2A ABY-X CSWA ABY-X CSWA ABY-X

O
ff

.,
K 10 22.82 50.83 113.47 241.28 16.56 25.42 78.57 120.64

50 114.36 241.28 582.13 1194.15 80.39 121.76 386.87 558.65

100 222.54 479.47 1151.29 2381.73 157.71 289.78 766.14 1696.35

O
n
.,
K 10 9.34 23.35 22.42 56.05 5.16 5.22 20.75 21.84

50 45.52 113.76 106.43 266.08 23.43 25.66 96.33 98.15

100 94.19 235.98 213.50 533.75 48.36 49.78 192.66 193.75

Offline Run-time Table 3 offline part shows the offline run-time of PCBit2A,
CSWA and ABY-AHE based method for Bit2A and VSWA. Compared to ABY-
AHE based method, our approaches reduce the run-time by around 2× and
1.5×. The reason is that we propose partial MTs and utilize the correlations for
(〈wi〉B, 〈hdi〉B) in PCBit2A, and use 〈xi〉A for all wij ∈ wi in CSWA, and hence
we reduce the total instances of AHE operations by ≈ 2× for Bit2A and by 1.5×
for VSWA. Moreover, it reduces the run-time of data transfer, which is consistent
with offline communication analysis.

Online Run-time Table 3 online part presents the online run-time per aggre-
gation of PCBit2A and CSWA, and we compare our costs to ABY-MT based
method. As can be seen, we reduce the run-time of Bit2A by around 2.5× due to
our reduction on the numbers of multiplication and communication. However,
the online run-time improvements of CSWA is limited. The reasons are as fol-
lows: (i) We do not reduce the multiplication invocations, and the efficiency of
scaler-vector and vector-vector element-wise multiplication is almost the same
in batch processing; (ii) The reduction of communication saves little time in our
LAN P0-P1 network setting. CXOR and private τ -Clipping introduce little over-
head due to the efficient XOR operation and model update size independent GC
invocations, respectively. We thus present their costs in Appendix D.

Fig. 7 presents the total online run-time of FLOD (including CXOR and pri-
vate τ -Clipping) and FLGUARD in one aggregation. As the ML training is ex-
ecuted in plaintext and can be significantly accelerated using GPU, we omit
its overhead as FLGUARD. As illustrated in the expermental results, we reduce
the online run-time significantly compared to FLGUARD: (i) FLOD reduces the
run-time by 3.9-7.4× for FNet and 3.1-6.2× for ResNet-18. (ii) Besides, we also
observe that with K being increased, the run-time of FLGUARD increases much
more significantly than FLOD. Therefore, our methods are more practical in real
applications.

6 Related Works

Here, we review the work in the area of privacy preservation and Byzantine-
robustness of FL. In terms of privacy preservation, the main used technologies are
differential privacy (DP), (additively) homomorphic encryption ((A)HE), secret
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Fig. 7: Total online run-time of FLOD and FLGUARD for FNet and ResNet-18 in one
aggregation. 7(a) is for FNet and 7(b) is for ResNet-18.

sharing, and etc. Shokri et al. used DP to protect model update to achieve the
balance between privacy and accuracy [33]. Liu et al. further combined the local
DP with Top-k gradients selection to improve the performance [23]. Phong et
al. proposed to protect the clients’ gradients utilizing AHE [31]. Bonawitz et
al. designed a secure aggregation scheme for sum function by exploiting secret
sharing and key agreement protocol [8]. Besides, Gibbs et al. combined secret
sharing with Zero-Knowledge Proof to verify the validity of clients’ gradients
[12]. But these schemes all focus on simple linear aggregation, e.g., average.

Meanwhile, Byzantine-robust aggregation rules have been extensively stud-
ied using clear gradients. Among these methods, the main mechanism is to com-
pare gradients received and remove the outliers. Blanchard et al. proposed Krum
combining the intuitions of majority-based and squared -distance-based methods
to guarantee convergence tolerating K ′ ≤ bK/2c − 1 adversaries [6]. Mhamdi
et al. showed that convergence is not enough and introduced Bulyan to reduce
the attacker’s leeway to narrow O(1/

√
d) bound [25]. Alistarh et al. proposed

a variant of SGD which finds ε-approximate minimizers of convex functions in
Õ( 1

ε2m+α2/ε2 ) iterations [1]. Yin et al. developed trimmed mean and median

based robust distributed learning algorithms with a focus on optimal statistical
performance [38]. Bernstein et al. proposed SIGNSGD where clients transmit only
the sign of their gradient vector to a server, and the overall update is decided by
a majority vote [5]. But these method all depends on the clients honest-majority
assumption. Cao et al. proposed FLTrust to break this limitation by collecting a
small clean dataset on the aggregation server to bootstrap trust, but this method
also provides no privacy guarantee for clients [11].

To our best knowledge, only Nguyen et al. proposed a similar work, FLGUARD
[11], as ours. But they requires much more significant overhead, including com-
putation and communication, which limits their real application seriously.

7 Conclusion

We propose FLOD, an efficient oblivious defender for private Byzantine-robust
FL in dishonest-majority. We introduce a Hamming distance-based aggregation
method and then use 2PC and AHE based protocols, with several novel in-
depth optimizations, to protect privacy. Evaluations show our effectiveness and
efficiency. We aim to verify the correctness of the aggregated results in future.
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erated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

22. Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski, V., Long,
J., Shekita, E.J., Su, B.Y.: Scaling distributed machine learning with the param-
eter server. In: 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14). pp. 583–598 (2014)

23. Liu, R., Cao, Y., Yoshikawa, M., Chen, H.: Fedsel: Federated sgd under local
differential privacy with top-k dimension selection. In: International Conference
on Database Systems for Advanced Applications. pp. 485–501. Springer (2020)

24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics. pp. 1273–1282. PMLR (2017)

25. Mhamdi, E.M.E., Guerraoui, R., Rouault, S.: The hidden vulnerability of dis-
tributed learning in byzantium. arXiv preprint arXiv:1802.07927 (2018)

26. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In: 2019 IEEE symposium on security and privacy (SP). pp.
739–753. IEEE (2019)

27. Nguyen, T.D., Rieger, P., Yalame, H., Möllering, H., Fereidooni, H., Marchal, S.,
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A Byzantine-robustness Analysis

Cosine similarity is one of the best metrics to measure the similarity of two

vectors. Recall the cosine similarity of two sgn w̃i and w̃s is ci = 〈w̃i,w̃s〉
‖w̃i‖·‖w̃s‖ , and

FLTrust clips ci using ReLU function to remove the poisoned model updates with
negative ci [11]. Based on w̃i, w̃s in {−1, 1}d and Eqn. (2, 3), we have

ci =

∑d
j=1 w̃ij · w̃sj√
d ·
√
d

=
1

d
· (

d∑
j=1

(1− 2E(w̃ij)) · (1− 2E(w̃sj)))

= 1− 2

d
· (

d∑
j=1

(E(w̃ij) + E(w̃sj)− 2E(w̃ij)E(w̃sj)))

= 1− 2

d
· (

d∑
j=1

E(w̃ij)⊕ E(w̃sj))

= 1− 2
hdi
d
.

Thus, we have ci > 0⇔ 1− 2 · hdid > 0⇔ hdi <
d
2 . Therefore, with τ = d

2 we
have νi > 0⇔ ci > 0, which means τ -clipping Hamming distance-based method
is capable to exclude the poisoned sgn model updates equivalent to that the
cosine similarity-based method achieved. What is more, our τ -clipping Hamming
distance-based method is more flexible than the cosine similarity-based one since
we can alter τ for different tasks to achieve the best Byzantine-robustness.

B Proof of Theorem 1

Proof (of Theorem 1). The universal composability framework [10] guarantees
the security of arbitrary composition of different protocols. Therefore, we only
need to prove the security of individual protocols. We give the proof of the
security under the semi-honest model in the real-ideal paradigm [10].

Privacy of CXOR. There is nothing to simulate as the protocol is non-interactive.

https://doi.org/10.2307/j.ctt1trkk7x
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Privacy of PCBit2A. In offline phase, P0’s view in real-world is composed of
{xi, ri,x′i, r′i,AHE.Encpk0

(yi)}. To simulate it in ideal-world, the Sim can simply

return {∆x
i ,∆

r
i ,∆

x′

i ,∆
r′

i ,AHE.Encpk′
0
([0, 0, ..., 0])} where ∆x

i ,∆
r
i ,∆

x′

i ,∆
r′

i are

chosen from Rd at random and pk′0 is generated by Sim. Due to the semantic
security of AHE, these two views are computationally indistinguishable from
each other. And P1’s view in real execution can also be simulated by Sim which
outputs two random vectors in Rd since the real-world view {ξi, ξ′i} are masked
by random vectors ri and r′i. In online, the output of Sim for corrupted Pt is one
share which is uniformly chosen from Rd, and thus Pt’s view in the real-world
is also indistinguishable from that in ideal-world.

Privacy of Private τ -Clipping. As the underlying garbled circuits are secure, Pt’s
view composed of labels in real-world is indistinguishable from the ideal-world
view, which comprises of simulated labels.

Privacy of CSWA. In the offline, the view of Pt in the real-world is computation-
ally indistinguishable from the ideal-world view because of the semantic security
of AHE. Moreover, in the online, the real-world view of Pt is also masked random
values. Sim can simulate it with random values of the same size.

Therefore, we guarantee that the adversary As (when corrupts P0) learns

nothing beyond what can be inferred from the aggregated results (
∑K
i=1〈νiw̃i〉At ,∑K

i=1〈νi〉At ) with an overwhelming probability. Completing the proof.

C MA of ResNet-18 on CIFAR10 with altering δ
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Fig. 8: MA of ResNet-18 on CIFAR10 with δ = 10%-90% for all Byzantine-robust
aggregation methods, where 8(a) is for GA and 8(b) is for LF.

D Online Overhead of Free-HD and Private τ -Clipping

Table 4: Comm. and Run-time of Free− HD and Private τ -Clipping.

Comm (MB) Run-time (s)
K

10 50 100
10 50 100

Model FNet ResNet-18 FNet ResNet-18 FNet ResNet-18

CXOR 0 0 0 0.02 0.07 0.08 0.34 0.15 0.64
Private τ -Clipping 0.06 0.28 0.56 0.006 0.012 0.020
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