
Look-up the Rainbow:
Efficient Table-based Parallel Implementation of
Rainbow Signature on 64-bit ARMv8 Processors

Hyeokdong Kwon1, Hyunjun Kim1, Minjoo Sim1,
Wai-Kong Lee2, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{korlethean, khj930704, minjoos9797, hwajeong84}@gmail.com

2Department of Computer Engineering,
Gachon University, Seongnam, Incheon (13120), Korea,

waikonglee@gachon.ac.kr

Abstract. Rainbow signature is one of the finalist in National Insti-
tute of Standards and Technology (NIST) standardization. It is also the
only signature candidate that is designed based on multivariate quadratic
hard problem. Rainbow signature is known to have very small signature
size compared to other post-quantum candidates. In this paper, we pro-
pose an efficient implementation technique to improve performance of
Rainbow signature schemes. A parallel polynomial-multiplication on a
64-bit ARMv8 processor was proposed, wherein a look-up table was cre-
ated by pre-calculating the 4 × 4 multiplication results. This technique
was developed based on the observation that the existing implemen-
tation of Rainbow’s polynomial-multiplication relies on the Karatsuba
algorithm. It is not optimal due to the divide and conquer steps in-
volved, whereby operations on F16 are divided into many small sub-fields
of F4 and F2. Further investigations reveal that when the polynomial-
multiplication in Rainbow signature is operated on F16, its operand is
in 4-bit. Since the maximum combinations of a 4 × 4 multiplication is
only 256, we constructed a 256-byte look-up table. According to the 4-bit
constant, only 16-byte is loaded from the table at one time. The time-
consuming multiplication is replaced by performing the table look-up. In
addition, it calculates up-to 16 result values per register using character-
istics of vector registers available on 64-bit ARMv8 processor. With the
proposed fast polynomial-multiplication technique, we implemented the
optimized Rainbow III and V. These two parameter sets are performed
on F256, but they use sub-field F16 in the multiplication process. There-
fore, the sub-field multiplication can be replaced with the proposed table
look-up technique, which in turn omitted a significant number of opera-
tions. We have carried out the experiments on the Apple M1 processor,
which shows up to 167.2× and 51.6× better performance enhancement
at multiplier, and Rainbow signatures, respectively, compared to the pre-
vious implementation.

Keywords: Post-quantum Cryptography · Rainbow Signature · 64-bit
ARMv8 Processors · Software Implementation.

2 Kwon et al.

1 Introduction

Due to the advancement of quantum computers and its related computing al-
gorithms, existing cryptographic schemes are seriously in threats. Some widely
used public key cryptographic schemes (e.g. RSA and ECC) can be easily com-
promised by quantum computers. To prepare for these threats, the National
Institute of Standards and Technology (NIST) is holding a post-quantum cryp-
tography standardization competition to select cryptographic schemes that can
be safely used even in the quantum computer era. Rainbow signature is the only
multivariate-based public key signature in the finalists (Round 3) of this stan-
dardization competition. Rainbow signature has a disadvantage that its imple-
mentation performance is heavily influenced by the polynomial-multiplication,
which is very slow execution timing.

In this paper, we propose a technique using a look-up table, in which the re-
sult of 4×4 multiplication is pre-computed. This look-up table is used to speed up
the polynomial-multiplication of Rainbow schemes. In addition, we also propose
to use vector registers to perform parallel table look-up operations to speed-
up the memory load and store operations. With the proposed fast polynomial-
multiplication technique, optimized Rainbow I, Rainbow III and Rainbow V
implementations are presented in this paper. Its performance is compared with
the previous reference implementation.

The rest part of paper can be written as follows; In Section 2, it shows related
works of Rainbow post-quantum cryptography, target 64-bit ARMv8 processor,
and previous optimal implementation of Post-Quantum Cryptography on target
processor. In Section 3, the proposed method will be described. In Section 4, the
performance comparison is carried out. In Section 5, it draws the conclusion of
this paper and presents future works.

1.1 Contributions

– Efficient implementation of polynomial-multiplication operations
for Rainbow signature schemes.
The proposed method calculates the polynomial-multiplication result for 4×
4 cases, and stores it as a look-up table. There are only 256 combinations in
this situation. The look-up table only consumes 256-byte. This technique is
applicable to all parameter sets in Rainbow schemes, but Rainbow III and
Rainbow V requires an additional of 16 bytes to store the look-up table in
total 272 bytes. This technique greatly reduces the computational time in
polynomial-multiplication compared to the previous implementation using
the Karatsuba algorithm. Evaluation results show better performance by
up-to 167.2× and 51.6× for multiplier and Rainbow signatures, respectively,
compared to the previous implementation.

– Optimal parallel-implementation on the latest 64-bit ARMv8 pro-
cessors. The Apple M1 is one of the state-of-art latest ARM processor.
In this paper, we exploited vector registers and vector instructions in Ap-
ple M1 processor for the parallel-implementation. The vector register can

Look-up the Rainbow 3

store up-to 16-byte, and multiple results can be computed simultaneously
with vector instructions and combinations. The proposed parallel technique
can compute results faster than the conventional multiplication operations,
because multiple values can be loaded from the look-up table at once.

– Efficient instructions usage and implementation. The proposed im-
plementation uses only 18 instructions to increase the readability of the code
and facilitate maintenance. Each of the instructions perform 4-bit masking,
table address allocation, table look-up, and accumulation of result values.

– First optimal-implementation for Rainbow III and Rainbow V on
64-bit ARMv8 processors. Most of the Rainbow implementations tar-
gets only Rainbow I. Rainbow III and Rainbow V are usually omitted. This
paper implemented not only Rainbow I, but also Rainbow III and V. Since
the implementation technique of Rainbow I cannot be equally applied to
Rainbow III and Rainbow V, some modifications are required and it can be
applied to all parameter sets. However, the look-up table used in Rainbow
I can also be used in Rainbow III and Rainbow V for the multiplication on
F16. Rainbow III and Rainbow V require an additional 16-byte table for high
4-bit squaring operations. Therefore, the total table size of Rainbow III and
Rainbow V is 272-byte.

2 Related Works

2.1 Post Quantum Cryptography: Rainbow Signatures

Rainbow is a polynomial signature scheme proposed by Jintai Ding and Dieter
Schmidt in 2004, which is a based on multivariate quadratic problem [1]. Param-
eters of Rainbow algorithm are shown in Table 1. Rainbow signature adopted
the Unbalanced Oil and Vinegar (UOV) structure that requires small size of
memory but this provides fast operation speed for public key algorithms [2].

The multivariate quadratic problem is a mathematical hard problem to find
the answer X of P when there are m quadratic equations with n variables as
shown in the following equation.

P (m)(x1, ..., xn) =

n∑
i,j=1

p
(m)
i,j xixj +

n∑
i=1

p
(m)
i xi + p

(m)
0

Multivariate cryptography is developed based on a system of multivariate
quadratic polynomials over a finite field K. The security of multivariate systems
relies on the multivariate quadratic (MQ) problem, which is to find a solution
of multivariate system for field K. Rainbow signature is based on MQ-problem,
and consist of Key Scheduling, Signature, and Verification. Overall scheme of
Rainbow signature is shown in Figure 1.

– Key Scheduling. The public key is given as P = T ◦F ◦S : Kn → Km, and
the private key consists of T , F and S. For multivariate signature schemes,
we require n ≥ m, which ensures that every message has a signature.

4 Kwon et al.

d Kq
m w Kq

m y Kq
m

T-1 F-1

z Kq
m

S-1

Signature

Verification

P

Fig. 1. Overall scheme of Rainbow signature.

Table 1. Length of key and signature for Rainbow schemes. Internal brackets indicate
the private key size when linear maps S and T are generated through 256-bit seed.

Type Security Parameters Public key size (KB) Private key size (KB) Signature size (bit)

Standard

I (GF (16), 36, 32, 32) 157.8 101.2 528

III (GF (256), 68, 32, 48) 861.4 611.3 1,312

V (GF (256), 96, 36, 64) 1,885.4 1,375.7 1,632

CZ

I (GF (16), 36, 32, 32) 58.8 101.2 (99.0) 528

III (GF (256), 68, 32, 48) 258.4 611.3 (603.0) 1,312

V (GF (256), 96, 36, 64) 523.5 1,375.7 (1,361.8) 1,696

– Signature Generation. To generate a signature for a message (or its hash
value) d ∈ Km, we need to recursively calculate the following expression.

w = T−1(d) ∈ Km, y = F−1(w) ∈ Kn, z = S−1(y)

z ∈ Kn means the signature of message d, and F−1(w) means finding one
(of possibly many) pre-images of w under the central map F .

– Signature verification. To check the authenticity of the signature z ∈ Kn,
the verifier simply computes d′ = P (z). If the signature verification result is
equal to the message d, the signature is accepted, otherwise it is rejected.

Rainbow signature has alternative version that called CZ-Rainbow (i.e. Cir-
cumzenithal Rainbow or Cyclic Rainbow), it has reversed key generation process
then Classic Rainbow signature. CZ-Rainbow is inspired by Petzoldt et al. that
proposed cyclic structure inside the Rainbow public key [3]. CZ-Rainbow does
not use cyclic matrices at all, and it reduces public key size about 70% then Clas-
sic Rainbow. However, it takes more time spend because inefficient computation
during Key Scheduling and Verification.

Another alternative version is Compressed Rainbow. Compressed Rainbow
has the same internal structure as CZ-Rainbow, but it don’t store the computed
central map. Therefore, Compressed Rainbow needs a lot of time for Signature,
but it drastically reduced size of public key.

Look-up the Rainbow 5

2.2 Target Processor: 64-bit ARMv8 Architecture

The ARM processor is one of lightweight processors that provides high per-
formance in resource-constrained Internet of Things (IoT) environment, such as
sensor nodes. In this paper, we targeted the latest ARMv8-A (ARMv8) architec-
ture, which can be separated into two versions; 32-bit AArch32 (A32) and 64-bit
AArch64 (A64). Among them, A64 has 64-bit general registers and 128-bit vector
registers. Vector registers provide parallel operation with arrangement specifier,
which determines the packing unit of data. For example, 16b arrangement means
that the internal data of the specified register is treated as 16-bytes [4]. Apple M1
processor is one of the latest of ARM processors. The M1 is a processor designed
by Apple, intended for use in devices such as Macs and iPads. M1 processor is a
kind of System on Chip (SoC) that has multi-core CPU, GPU, DSP and Neural
engine on a single chip. It is produced on a 5nm process and consists of about
16 billion transistors [5].

2.3 Previous Implementations of Post Quantum Cryptography on
ARM Processors

Chou et al. implemented the Rainbow post-quantum cryptography on Cortex-
M4, which is a family of 32-bit ARMv7 [6]. Chou et al. proposed fast constant-
time bit-slice F16 multiplication allowing multiplication of 32 field elements in
32 clock cycles. As two F16 elements fit into one byte, eight F16 elements can
be mounted in one 32-bit register. They proposed a significantly faster F16 mul-
tiplication routines that run in constant time, in which each field element is
implemented in bit-slice form on four separate registers, holding a total of 32
elements.

Kim et al. proposed a renewed polynomial-multiplication technique that can
reduce number of XOR operations by more 13.7% than previous work Chou et
at. on Cortex-M4 environments [7]. In addition, Chou et al. used table look-up
for inverse operation, but Kim et al. achieved this by using a 4×4 matrix inverse
method.

Sanal et al. implemented Kyber encryption schemes for 64-bit ARM Cortex-
A and Apple A12 processors [8]. They improved the performance of Number
Theoretic Transform (NTT), noise sampling, and symmetric function implemen-
tations (based on AES accelerator). The proposed Kyber512 implementation on
ARM64 improved previous work by 1.72×, 1.88×, and 2.29× for key generation,
encapsulation, and decapsulation, respectively.

Nguyen et al. implemented an optimized implementation of three lattice-
based NIST post-quantum cryptography Key Encapsulation Mechanisms Final-
ists (CRYSTALS-Kyber, NTRU, Saber) on ARMv8 environment [9]. This opti-
mized implementation involves an explicit call to the NEON instruction (vector
instruction), and the results obtained show a significant speedup compared to the
implementation written only in C language. Nguyen et al. stated that NTT and
NTRU for CRYSTALS-Kyber and Toom-Cook for Saber are the optimal algo-
rithms for implementing polynomial multiplication in ARMv8 using the NEON
instruction through the experimental results.

6 Kwon et al.

Streit et al. implemented a New Hope post-quantum key exchange on ARMv8-
A [10]. New Hope is based on Ring-LWE (Ring-Learning With Errors) problem,
so researchers fully vectorized all ring operations. Proposed method has three al-
ternative modular reduction, to makes the Number Theoretic Transform (NTT)
in parallel-way. The results shows vectorized NTT takes 18,909 clock cycles on
ARM Cortex-A53 processor when using a 16-bit unsigned integer.

3 Proposed Method

In this section, we describe the parallel polynomial-multiplication with look-up
table technique. The implementation is targeting the 64-bit ARMv8 processor.

3.1 Instruction Set and Register Allocation Plan

The target processor Apple M1 is one of the 64-bit ARMv8 processors that
provides many powerful instructions. These instructions can be classified into two
types: general instructions and vector instructions (i.e. NEON). Among them,
vector instructions can be provide the operation in parallel-way. In Table 2,
instructions used for the proposed implementation are summarized. An easy
distinction between vector instructions and general instructions is the presence
of an arrangement specifier. Since the vector instruction treats the value inside
the register by dividing it into an arrangement unit, the arrangement is expressed
after the instruction or after the operand register.

64-bit ARMv8 architecture has 31 general registers and 32 vector registers.
Since the number of register is limited, an efficient allocation plan for regis-
ters should be required. Figure 2 shows register scheduling plan for proposed
implementation. Our proposed implementation utilized 24 vector registers for
operands, three for holding look-up table values and one for constant value, for
Rainbow III, and Rainbow V. For Rainbow I, 16 vector registers for operands
and only single vector register needed to store look-up table values. Only six
general registers are utilized in our implementation, which are mainly for house-
keeping purposes like address pointer, temporary variables and etc. Rainbow III
and Rainbow V require one more general register for temporary value.

3.2 Look-up Table based Polynomial Multiplication

Rainbow I is operated on the F16, and the computation is based on tower-field.
That is, F16 operates on the sub-field F4, while the sub-field F4 operates on the
sub-field F2. This can be expressed by the following formula.

F16 := F4[y]/(y2 + y + x), F4 := F2[y]/(x2 + x + 1)

The reference implementation provided by Rainbow in NIST submission
adopted the Karatsuba algorithm for implementing the tower-field operation.
The implementation can be described with pseudo code form as shown in Algo-
rithm 1. It first divides two 4-bit values (A and B) into two sets of 2-bit values

Look-up the Rainbow 7

Table 2. Instructions for to implement parallel polynomial-multiplication based look-
up table; Xd, Vd: destination register (general, vector), Xn, Vn, Vm: source register
(general, vector, vector), Vt: transferred vector register, T: arrangement specifier.

asm Operands Description Operation

ADD Xd, Xn, #imm Add registers immediate Xd ← Xn + #imm

ADR Xd, (Label) Form PC-relative address Xd ← address

AND Vd.T, Vn.T, Vm.T Bitwise AND Vd ← Vn & Vm

B (Label) Branch Go to Label

BEQ (Label) Branch if it is equal Go to Label

CBNZ Xt, (Label) Compare and Branch on Nonzero Go to Label

CMP Xd, #imm Compare Flags ← result

EOR Vd.T, Vn.T, Vm.T Bitwise Exclusive OR Vd ← Vn ⊕ Vm

LD1 Vt.T, [Xn] Load multiple Vt ← [Xn]

single-element structures

LSL Xd, Xn, #shift Logical Shift Left Xd ← Xn << #shift

immediate (general)

MOV Xd, #imm Move immediate (general) Xd ← #imm

MOVI Vt.T, #imm Move immediate (vector) Vt ← #imm

RET {Xn} Return from subroutine Return

SHL Vd.T, Vn.T, #shift Shift Left immediate (vector) Vd ← Vn << #shift

ST1 Vt.T, [Xn] Store multiple [Xn] ← Vt

single-element structures

SUB Xd, Xn, #imm Subtract immediate Xd ← Xn - #imm

TBL Vd.T, {Vn.16B}, Vm.T Table vector Lookup Vd ← Vn[Vm]

USHR Vd.T, Vn.T, #shift Unsigned Shift Right immediate Vd ← Vn >> #shift

(a0, a1, b0 and b1). Then, it performs a series of multiplication/addition to
compute the intermediate values for Karatsuba algorithm. Lastly, it collects the
intermediate results of each operation and accumulates it into a final result C.
Since Rainbow signature uses the tower-field operation, the modular reduction
is applied to the carry generated during the computation on F4. Consequently,
polynomial-multiplication can be executed efficiently with the Karatsuba algo-
rithms based on this tower-field arrangement [11].

PMUL (or PMULL) instruction performs polynomial-multiplication in a parallel-
way, and store the result into the vector register according to arrangement spec-
ifier. Since Rainbow I multiplication variable are 4-bit, 8b or 16b arrangement
specifier is needed. Since the polynomial-multiplication of Rainbow I is based
on tower-field, modular reduction is performed if carry occurs in the sub-field
F4. On the other hand, the minimum computation unit of PMUL instruction is
byte-wise. Since this is not a tower-field operation, the carry occurring in the
sub-field cannot be reflected correctly. Thus, it is difficult to implement Rain-
bow I multiplication efficiently by using the PMUL instruction. Considering that
the input variable is divided into 2-bit units, one can still use PMUL instruction

8 Kwon et al.

Additional temporary variables

General registers

Vector registers

* Additional registers required for Rainbow III or Rainbow V

Look-up table value

Constant (0xf)

Operand array value

Temporary variables

Address pointer

Operand constant

Empty registers

Additional operand array value

Additional look-up table value

Empty registers

Input size indicator

Fig. 2. Register scheduling plan.

with modular reduction manually, but it is inefficient. Therefore, a new efficient
technique for 4-bit unit polynomial-multiplication is proposed.

To resolve this issue, we propose a technique based on look-up table. The
table can be calculated by multiplying the cases of all variables. Since the
polynomial-multiplication of Rainbow I operates on F16, each variable can ex-
press only 4-bit, and the output value is also 4-bit. Since each 4-bit value can
represent 16 distinct numbers, so there is only 256 multiplication results. The
proposed technique creates a table by pre-calculating the multiplication results
of all possible combinations (256). During the look-up access, one of the mul-
tiplication operand is a constant. Instead of loading the whole table, only 16
values are loaded from the table according to the input constant operand. For
example, operand is 0x3, the fourth 16 table values will be loaded. Listing 1.1
represents the multiplication table used for implementation. Each value of the
table is 4-bit, but the minimum data storage unit is 8-bit. So the total size of
the table is 256-byte.

The look-up table can be loaded by adjusting pointer address value, this can
be easily implemented with branch statements. However, this approach is time
consuming and vulnerable to side channel attack. Since it moves to the table call
statement by forming a branch according to the operand constant, additional
time is required to adjust the address value. This additional time increases fur-
ther as the operand constant value is later in the branch condition. Therefore, we
proposed to directly changing the address pointer. The implementation method
is as follow. Firstly, pointer to the first address of look-up table is initialized,
which points to the results of operand constant 0. There are 16 possible values
in the look-up table that one operand constant may load. If the address pointer

Look-up the Rainbow 9

Algorithm 1 Pseudo-code for reference polynomial multiplication.

Input: 4-bit array A, 4-bit constant B.
Output: 4-bit accumulated output C.
1: a0 ← low 2-bit of A

2: a1 ← high 2-bit of A

3: b0 ← low 2-bit of B

4: b1 ← high 2-bit of B

5: a0b0 ← a0 × b0

6: a1b1 ← a1 × b1

7: middle ← a0 ⊕ a1 × b0 ⊕ b1

8: square ← a1b1 × a1b1

9: C ← ((middle ⊕ a1b1) � 2) ⊕ a0b0 ⊕ square

10: return C

is increased by 16, it becomes the table of the next constant value. These steps
are implemented simply by multiplying the operand constant by 16 and adding
it to the address pointer. Table 2 shows the address pointer setting in pseudo-
code form. If the address pointer has been adjusted, it loads table value into
the vector register using the LD1 instruction. The vector register can store up to
128-bit (16-byte), which can be completely stored in one table.

1 .balign 256

2 MUL_TABLE:

3 .byte 0x0, 0x0, 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , \

4 0x0, 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , \

5 0x0, 0x1 , 0x2 , 0x3 , 0x4 , 0x5 , 0x6 , 0x7 , \

6 0x8, 0x9 , 0xa , 0xb , 0xc , 0xd , 0xe , 0xf , \

7 0x0, 0x2 , 0x3 , 0x1 , 0x8 , 0xa , 0xb , 0x9 , \

8 0xc, 0xe , 0xf , 0xd , 0x4 , 0x6 , 0x7 , 0x5 , \

9 0x0, 0x3 , 0x1 , 0x2 , 0xc , 0xf , 0xd , 0xe , \

10 0x4, 0x7 , 0x5 , 0x6 , 0x8 , 0xb , 0x9 , 0xa , \

11 0x0, 0x4 , 0x8 , 0xc , 0x6 , 0x2 , 0xe , 0xa , \

12 0xb, 0xf , 0x3 , 0x7 , 0xd , 0x9 , 0x5 , 0x1 , \

13 0x0, 0x5 , 0xa , 0xf , 0x2 , 0x7 , 0x8 , 0xd , \

14 0x3, 0x6 , 0x9 , 0xc , 0x1 , 0x4 , 0xb , 0xe , \

15 0x0, 0x6 , 0xb , 0xd , 0xe , 0x8 , 0x5 , 0x3 , \

16 0x7, 0x1 , 0xc , 0xa , 0x9 , 0xf , 0x2 , 0x4 , \

17 0x0, 0x7 , 0x9 , 0xe , 0xa , 0xd , 0x3 , 0x4 , \

18 0xf, 0x8 , 0x6 , 0x1 , 0x5 , 0x2 , 0xc , 0xb , \

19 0x0, 0x8 , 0xc , 0x4 , 0xb , 0x3 , 0x7 , 0xf , \

20 0xd, 0x5 , 0x1 , 0x9 , 0x6 , 0xe , 0xa , 0x2 , \

21 0x0, 0x9 , 0xe , 0x7 , 0xf , 0x6 , 0x1 , 0x8 , \

22 0x5, 0xc , 0xb , 0x2 , 0xa , 0x3 , 0x4 , 0xd , \

23 0x0, 0xa , 0xf , 0x5 , 0x3 , 0x9 , 0xc , 0x6 , \

24 0x1, 0xb , 0xe , 0x4 , 0x2 , 0x8 , 0xd , 0x7 , \

25 0x0, 0xb , 0xd , 0x6 , 0x7 , 0xc , 0xa , 0x1 , \

26 0x9, 0x2 , 0x4 , 0xf , 0xe , 0x5 , 0x3 , 0x8 , \

27 0x0, 0xc , 0x4 , 0x8 , 0xd , 0x1 , 0x9 , 0x5 , \

10 Kwon et al.

Algorithm 2 Pseudocode of table address setting method.

Input: 4-bit constant C, address pointer P, 256-byte look-up table(LUT).
Output: address pointer P.
1: P ← first address of LUT

2: C ← C × 16

3: P ← P + C

4: return P

Algorithm 3 Look-up table based polynomial-multiplication on F16.

Input: x0 = address of A, x1 = address
of B, x2(w2) = constant C.

Output: 4-bit accumulated output to A.
1: MOVI v31.16b, #15
2: ADR, x4, MUL TABLE
3: LSL, w2, w2, #4
4: ADD, x4, x4, x2
5: LD1.16b {v30}, [x4]
6: LD1.16b {v30}, [x1]

7: AND.16b v0, v1, v31
8: USHR.16b v1, v1, #4
9: TBL.16b v0, {v30}, v0

10: TBL.16b v1, {v30}, v1
11: SHL.16b v1, v1, #4
12: EOR.16b v0, v0, v1
13: LD1.16b {v1}, [x0]
14: EOR.16b v1, v1, v0
15: ST1.16b {v1}, [x0]

28 0x6, 0xa , 0x2 , 0xe , 0xb , 0x7 , 0xf , 0x3 , \

29 0x0, 0xd , 0x6 , 0xb , 0x9 , 0x4 , 0xf , 0x2 , \

30 0xe, 0x3 , 0x8 , 0x5 , 0x7 , 0xa , 0x1 , 0xc , \

31 0x0, 0xe , 0x7 , 0x9 , 0x5 , 0xb , 0x2 , 0xc , \

32 0xa, 0x4 , 0xd , 0x3 , 0xf , 0x1 , 0x8 , 0x6 , \

33 0x0, 0xf , 0x5 , 0xa , 0x1 , 0xe , 0x4 , 0xb , \

34 0x2, 0xd , 0x7 , 0x8 , 0x3 , 0xc , 0x6 , 0x9

Listing 1.1. Pre-calculation result table of 4-bit tower-field polynomial multiplication
results on F16 with hexadecimal notation.

With this precomputed table, the 4×4 multiplication in polynomial-multiplication
is replaced by a table look-up. In this case, the implementation uses TBL instruc-
tion, which replaces the value of a vector register with the look-up table value.
For example, if the value stored in the register is 0x3, it is replaced with the
fourth value of the table. Finally, the operation is completed by accumulating
result of multiplication. Each vector register stores 16 values, so a single in-
struction can generate 16 results in parallel-way. The overall operation codes is
detailed in Algorithm 3. When we need to parallelize more data, it is completed
by using more registers or writing loop statement. In line 1-5, it loads 16-byte
table according to operand constant. In line 6-8, it loads operand array values
and separates into high/low 4-bit. In line 9-10, it performs the table look-up for
polynomial-multiplication on F16. In line 11-15, it combines the two 4-bit results
into 8-bit, and accumulates the results to output array. The entire process can
be simply represented in Figure 3

Look-up the Rainbow 11

1. Multiplier get accumulate array, operand array, operand constant, and size indicator.

Accumulate array

Operand array

2. Look-up table pointer initialized to table of constant 0

3. Look-up table pointer setting with operand constant

Address(x4) = 0x0a00

Address(x4) = 0x0a00 + C*16

4. Getting table value from address pointer
Table value

5. Table look-up performed

6. Accumulating the result to accumulate array

Look-up

Fig. 3. Table-based polynomial-multiplier operation process.

3.3 Optimized Implementations of Rainbow III and Rainbow V

Rainbow III and Rainbow V is operated on F256, where each operand has 8-
bit. Therefore, 8-bit multiplication is performed, and the number of calculation
results is 65,536. In this case, the size of the additional table becomes too large
that takes 65,536-byte (64KB), and it takes a lot of time accessing this look-up
table. However, since Rainbow III and Rainbow V are also based on tower-field
calculations, the look-up table used in Rainbow I can be used as is. The proposed
technique is simple. First, each 8-bit value is decomposed into two 4-bit for sub-
field F16 operation. At this moment, polynomial-multiplication on F16 can be
performed by table look-up. However, since Rainbow III and Rainbow V include
4-bit squaring operation, it required an additional 16 bytes in the look-up table,
which is shown in Listing 1.2. Therefore, the size of the entire table becomes 272-
byte for Rainbow III and Rainbow V implementation. After the operations on F16

are completed, the rest of the operations take place. The entire process is shown
in Algorithm 4, which computes 32-byte results in a parallel-way. Referring to
Algorithm 4, lines 1-11 it separates the operand constant into high/low 4-bit and
loads two 16-byte tables according to separate constant. In lines 12-13, it calls
additional table for Rainbow III and Rainbow V, followed by steps to load the
operand array values and separate them into high/low 4-bit (lines 14-19). In lines
20-23, the algorithm performs the table look-up with the previous table, and then
calculates the intermediate values and switching table according to this one in
lines 24-32. In lines 33-36, it performs the table look-up through switched table.
In line 37-38, it operates the table look-up through the additional table. In lines
39-44, it combines result values into 8-bit. Finally, the results are accumulated
into the output array in lines 45-51. Since Rainbow III and Rainbow V require
the intermediate value multiplication on F16, table replacement occurs once,
unlike Rainbow I. To compute with a parallel-way larger than 32-bytes, one can
use more registers or loop statement.

12 Kwon et al.

1 .balign 16

2 ADDI_TABLE:

3 .byte 0x0, 0x8, 0xc , 0x4 , 0xb , 0x3 , 0x7 , 0xf , \

4 0xd, 0x5 , 0x1 , 0x9 , 0x6 , 0xe , 0xa , 0x2

Listing 1.2. Additional table of Rainbow III and Rainbow V with hexadecimal
notation.

Algorithm 4 Look-up table based polynomial-multiplication on F256.

Input: x0 = address of array A, x1 = ad-
dress of array B, x2(w2) = constant
C.

Output: 4-bit accumulated output to A.
1: MOVI v31.16b, #15
2: AND w4, w2, #15
3: LSR w5, w2, #4
4: ADR x6, MUL TABLE
5: LSL w4, w4, #4
6: ADD x6, x6, x4
7: ADR x7, MUL TABLE
8: LSL w5, w5, #4
9: ADD x7, x7, x5

10: LD1.16b {v30}, [x6]
11: LD1.16b {v29}, [x7]
12: ADR x6, ADDI TABLE
13: LD1.16b {v27}, [x6]
14: LD1.16b {v1}, [x1], #16
15: LD1.16b {v5}, [x1], #16
16: AND.16b v0, v1, v31
17: USHR.16b v1, v1, #4
18: AND.16b v4, v5, v3
19: USHR.16b v5, v5, #4
20: TBL.16b v2, {v30}, v0
21: TBL.16b v3, {v29}, v1
22: TBL.16b v6, {v30}, v4
23: TBL.16b v7, {v29}, v5
24: EOR.16b v0, v0, v1

25: EOR.16b v4, v4, v5
26: AND w4, w2, #15
27: LSR w5, w2, #4
28: EOR w4, w4, w5
29: ADR x6, MUL TABLE
30: LSL w4, w4, #4
31: ADD x6, x6, x4
32: LD1.16b {v28}, [x6]
33: TBL.16b v0, {v28}, v0
34: EOR.16b v0, v0, v2
35: TBL.16b v4, {v28}, v4
36: EOR.16b v4, v4, v6
37: TBL.16b v3, {v27}, v3
38: TBL.16b v7, {v27}, v7
39: SHL.16b v0, v0, #4
40: EOR.16b v0, v0, v2
41: EOR.16b v0, v0, v3
42: SHL.16b v4, v4, #4
43: EOR.16b v4, v4, v6
44: EOR.16b v4, v4, v7
45: LD1.16b {v1}, [x0], #16
46: LD1.16b {v5}, [x0], #16
47: SUB x0, x0, #32
48: EOR.16b v1, v1, v0
49: EOR.16b v5, v5, v4
50: ST1.16b {v1}, [x0], #16
51: ST1.16b {v5}, [x0], #16

4 Evaluation

The implementation was evaluated on a Apple M1 chip, which can be clocked up
to 3.2 GHz. Implementation is carried out on the Xcode framework, and compile
using the compile option -O3 (i.e. fastest). The performance evaluation is carried
out in two ways. First, the performance of the previous multiplication algorithm

Look-up the Rainbow 13

Table 3. Evaluation results of multiplier (unit: clock cycles).

Algorithm F16 multiplier F256 multiplier

Previous work [1] 355 16,557

This work 58 99

Table 4. Comparison of execution timing (unit: ×106 clock cycles).

Algorithm
Previous work [1] This work

Key Scheduling Signature Verification Key Scheduling Signature Verification

Rainbow I Classic 2.53 3.17 3.30 1.59 0.32 0.064

Rainbow I CZ 281.76 3.20 12.42 16.90 0.48 9.18

Rainbow I Compressed 281.79 127.71 12.42 16.90 12.99 9.18

Rainbow III Classic 3,141 27.65 28.67 88.13 1.98 5.86

Rainbow III CZ 3,570 27.65 83.74 93.73 1.98 60.96

Rainbow III Compressed 3,570 1,690 83.71 93.70 75.36 60.96

Rainbow V Classic 8,830 61.12 62.4 530.14 2.46 2.69

Rainbow V CZ 10,140 61.12 186.66 561.18 2.50 127.17

Rainbow V Compressed 10,140 4,850 186.88 561.06 279.94 127.14

and the proposed table-based parallel multiplication algorithm is compared. The
second is to compare the performance of previous Rainbow signature and the
Rainbow signature adopted the proposed multiplier.

For measuring multiplier performance, 512-byte input was used, and each
algorithm was repeated 1,000,000 times to measure operation time. The perfor-
mance evaluation of the multiplier is shown in Table 3. Previous F16 multiplier
takes about 355 clock cycle and F256 multiplier takes about 16,557 clock cycle.
Proposed table-based parallel multiplier takes only 58 and 99 clock cycles for
F16 multiplication and F256 multiplication, respectively. Therefore, the proposed
technique to speed up the polynomial multiplication is 6.12× and 167.2× faster
than the reference implementation for F16 and F256 respectively.

The Rainbow signature was implemented using the proposed polynomial mul-
tiplication technique based on look-up table. The performance comparison is
conducted on Classic, Circumzenithal (CZ), and Compressed versions for three
security levels (Rainbow I, III and V). For the performance measurement, the
previous work uses the average value of 300 times iteration hours, and the pro-
posed method uses the average value of 10,000 times repetition hours. The differ-
ence in number of iterations of the two algorithms is that the proposed method
ended before the CPU usage reaches the maximum because the operation speed
is too fast. Considering this, the proposed technique was tested by increasing
number of iterations count. The implementation result is shown in Table 4.

In Rainbow I classic version, the proposed technique has better performance
than previous work about 1.59×, 9.91×, and 51.6× in key scheduling, signa-
ture, and verification, respectively. Subsequently, in Rainbow I Circumzenithal
version, the proposed implementation has 16.67×, 6.67×, and 1.35× better per-
formance than the previous work, and in Rainbow I Compressed, the proposed
method has 16.67×, 9.83×, and 1.35× better performance. Therefore, the biggest

14 Kwon et al.

performance difference in Rainbow I is verification process of Classic version,
which shows a 51.6× better performance than previous implementations.

Evaluating the Rainbow III in the same way. Classic version of proposed im-
plementation shows higher performance than previous implementations about
35.64×, 13.96×, 4.89× for key scheduling, signature, and verification, respec-
tively. In case of Circumzenithal version of Rainbow III, the proposed Rainbow
implementation achieved 38.09×, 13.96× 1.37× higher calculation speed than
previous works. Similarly, for Compressed version, there are a performance dif-
ference of 38.10×, 22.42×, and 1.37×.

Finally, the performance evaluation for Rainbow V are as follows. First, in
the case of the Classic version, the proposed technique has 16.66×, 28.85×,
and 23.05× better performance for key scheduling, signature, and verification,
respectively, compared to previous implementation. In Circumzenithal version,
the proposed method shows better performance than the previous work about
18.07×, 24.45×, 1.47×. In the case of Compressed version, the proposed tech-
nique has 18.07× 17.33× 1.47× better performance than the previous one.

Overall, the verification of the Rainbow I Classic version has the highest
performance improvement of 51.6×.

5 Conclusion

In this paper, we proposed the table based polynomial-multiplication technique.
Previous implementation applies the efficient Karatsuba algorithm to the poly-
nomial multiplication. However the multiplication takes a long time because
the size of the parameter is too large. The proposed method reduced computa-
tion load from multiplication by using look-up table which takes 256-byte, or
272-byte, and performance of multiplier has a difference of up to 167.2×. As
a result of transplanting the proposed multiplier to Rainbow signatures, com-
putational performance could be improved 51.6× in best case. Another reason
for performance improvement is parallel operation of vector registers and vector
instructions. Therefore, the proposed technique can be improved performance of
Rainbow signatures on target processor (i.e. Apple M1). As a future study, we
present the implementation of another post-quantum cryptography on the target
processor, the latest M1 processor, or using a different processor (i.e. RISC-V)
as well [12, 13].

References

1. J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature
scheme,” in International conference on applied cryptography and network security,
pp. 164–175, Springer, 2005.

2. A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced Oil and Vinegar signature
schemes,” in International Conference on the Theory and Applications of Crypto-
graphic Techniques, pp. 206–222, Springer, 1999.

Look-up the Rainbow 15

3. A. Petzoldt, S. Bulygin, and J. Buchmann, “CyclicRainbow–a multivariate sig-
nature scheme with a partially cyclic public key,” in International Conference on
Cryptology in India, pp. 33–48, Springer, 2010.

4. H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 1–20, 2018.

5. J. Lee, “VHDL design for out-of-order superscalar processor of a fully pipelined
scheme,” The Journal of the Institute of Internet, Broadcasting and Communica-
tion, vol. 21, no. 1, pp. 99–105, 2021.

6. T. Chou, M. J. Kannwischer, and B.-Y. Yang, “Rainbow on Cortex-M4.,” IACR
Cryptol. ePrint Arch., vol. 2021, p. 532, 2021.

7. G.-S. Kim and Y.-S. Kim, “Efficient implementation of finite field operations in
NIST PQC Rainbow,” Journal of the Korea Institute of Information Security &
Cryptology, vol. 31, no. 3, pp. 527–532, 2021.

8. P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-Kermani, “Ky-
ber on ARM64: Compact implementations of Kyber on 64-bit ARM Cortex-A
processors,”

9. D. T. Nguyen and K. Gaj, “Optimized software implementations of CRYSTALS-
Kyber, NTRU, and Saber using NEON-based special instructions of ARMv8,”

10. S. Streit and F. De Santis, “Post-quantum key exchange on ARMv8-A: A new
hope for NEON made simple,” IEEE Transactions on Computers, vol. 67, no. 11,
pp. 1651–1662, 2017.

11. D. J. Bernstein and T. Chou, “Faster binary-field multiplication and faster binary-
field MACS,” in International Conference on Selected Areas in Cryptography,
pp. 92–111, Springer, 2014.

12. H. Kwon, H. Kim, E. S. Woo, M. Shim, W.-K. Lee, Z. Hu, and H. Seo, “Optimized
implementation of SM4 on AVR microcontrollers, RISC-V processors, and ARM
processors,”

13. H. Seo, H. Kwon, K. Jang, and H. Kim, “Optimized implementation of scalable
multi-precision multiplication method on RISC-V processor for high-speed com-
putation of post-quantum cryptography,” Journal of the Korea Institute of Infor-
mation Security & Cryptology, vol. 31, no. 3, pp. 473–480, 2021.

