
1

“Act natural!”: Having a Private Chat on a Public
Blockchain

Thore Tiemann, Sebastian Berndt, Thomas Eisenbarth, Maciej Liśkiewicz

Universität zu Lübeck
{t.tiemann, s.berndt, thomas.eisenbarth}@uni-luebeck.de,

liskiewi@tcs.uni-luebeck.de

Abstract—Chats have become an essential means of inter-
personal interaction. Yet untraceable private communication
remains an elusive goal, as most messengers hide content, but
not communication patterns. The knowledge of communication
patterns can by itself reveal too much, as happened e. g., in
the context of the Arab Spring. The subliminal channel in
cryptographic systems – as introduced by Simmons in his
pioneering works – enables untraceable private communication
in plain sight. In this context, blockchains are a natural object for
subliminal communication: accessing them is innocuous, as they
rely on distributed access for verification and extension. At the
same time, blockchain transactions generate hundreds of thou-
sands transactions per day that are individually signed and placed
on the blockchain. This significantly increases the availability of
publicly accessible cryptographic transactions where subliminal
channels can be placed. In this paper we propose a public-key
subliminal channel using ECDSA signatures on blockchains and
prove that our construction is undetectable in the random oracle
model under a common cryptographic assumption. While our
approach is applicable to any blockchain platform relying on
(variants of) ECDSA signatures, we present a proof of concept
of our method for the popular Bitcoin protocol and show the
simplicity and practicality of our approach.

Index Terms—blockchain, subliminal channel, covert commu-
nication, digital signature, information security, smart contract,
steganography.

I. INTRODUCTION

The goal of steganography is to hide information in unsus-
picious documents to achieve secret communication without
revealing the presence of these sensitive information. This
situation is called a steganographic (or subliminal) channel
– a covert channel in information processing, storage and data
transmission. Modern digital steganography was first made
popular due to the prisoners’ problem by Simmons [1] and
the investigation of steganography [2], [3], [4], [5], [6], [7]
and closely related topics such as kleptography [8], [9], [10]
and algorithm substitution attack (ASA) [11], [12], [13], [14],
[15] have recently become the subject of intensive studies,
both theoretical and empirical.

In the most basic setting, the task of the steganographic
encoder (Alice) is to hide a secret message in a document,
like e. g., a digital image, and to send it to the decoder
(Bob) via a public channel which is completely monitored
by an adversary (the warden). The goal of the encoder is that
no adversary can distinguish between normal documents and
documents carrying hidden information. The decoder should

be able to reliably extract the hidden information from the
altered documents.

Note that the goals of encryption and steganography are
related, but different. Using encryption, no eavesdropper that
reads the ciphertext is able to obtain the content of the underly-
ing plaintext. In the steganographic setting, no eavesdroppper
observing the communication between Alice and Bob should
be able to detect the presence of the sensitive communication.
One recent example for this distinction between encryption
and steganography comes from the revolutionary wave in
Tunisia, Libya, Egypt, Yemen, Syria and Iraq commonly
known as Arab Spring [16]. Social networks and digital media
played a very important role in the organization of the protests
[17] and cryptographic services such as the TOR network
[18] were widely utilized. While the use of these services
allowed the protesters to hide the content of their messages,
the governments of the involved countries were still able
to observe communication metadata such as the dramatic
increase of encrypted Internet traffic [19]. The reaction of
some of the governments ranged from the blocking of several
social media websites to the total blockade of the Internet [20].
Using steganography to hide the important protester messages
in unsuspicious communication would have prevented the
attention brought by the usage of cryptographic services. The
importance of metadata has also been acknowledged by the
NSA. General Michael Hayden, the former director of the
NSA and the CIA, stressed the importance of metadata by
asserting “We kill people based on metadata.” during a debate
at Johns Hopkins University [21].

Another example for the importance of steganography is
related to whistleblowing: If a party wants to send sensitive
information to a whistleblowing platform, such as WikiLeaks,
they clearly will use encryption to protect the content of these
sensitive information. An observer already suspicious about
the party that observes the outgoing communication of the
potential whistleblower will not be able to extract the sensitive
information, but the mere presence of the communication
with the whistleblowing platform validates the suspicion of
the attacker. If the whistleblower would embed the sensitive
information steganographically in non-suspicious communica-
tion (like the upload of media to social media platforms), the
observer would not be able to substantiate their suspicion.

Interestingly, in his pioneering works, Simmons uses chan-
nels in cryptographic systems as first examples for subliminal

2

communication, in particular in the ElGamal signature scheme
[22] as well as in DSA [23]. Such subliminal channels
can be applied to communicate secretly in normal looking
communication using digital signatures, like e. g., blockchains.

While subliminal channels have been introduced almost four
decades ago, steganography has mainly found usage in mul-
timedia applications. Preventing subliminal communication in
cryptographic systems is an important issue in cryptography
research, but there have not been as many works addressing
this problem [24], [25], [26], [27], [28]. On the other hand,
blockchain applications have become much more prominent
and nowadays generate hundreds of thousands of transactions
per day which are individually signed and then stored in
the blockchain. This significantly increases the availability of
hidden transmissions embeddable in large publicly available
data through subliminal channels in cryptographic schemes.
The main focus of this paper concerns such channels in digital
signatures on blockchain networks.

Recently, several works propose covert channels in digital
signature schemes, particularly in ECDSA and EdDSA which
are commonly used in the blockchain applications. It has
been shown that both of them can be used for broadband
subliminal channels [26], [29]. In [30], Ali et al. present
several methods for hidden data transmission; In particular,
the authors propose to reuse the randomness in ECDSA which
allows the extraction of the private signing key. Frkat et al. [31]
present an alternative construction, where the entire nonce can
be used to transmit subliminal information to get a broadband
subliminal channel. Interestingly, the algorithms proposed in
both of these papers can also be used as subversion attacks,
also known as ASAs, against Bitcoin (we discuss these results
in more detail in Section V).

In [32], Gao et al. propose a kleptography-based digital
signature algorithm to build a subliminal channel in the Bitcoin
system. It uses ECDSA signatures and the OP RETURN field
to store the secret data. A drawback of this approach is that the
distribution of the embedded values in that field is different
from the typical distribution and might thus become detectable.

Besides ECDSA and EdDSA, several other signature
schemes that could be used in blockchain applications may
allow the hiding of subliminal information as well [33], [34].

Unfortunately, most of the existing subliminal channels can
either be detected by analyzing their special patterns, they
have low embedding rate, high time complexity, or need a
previously exchanged symmetric key. Moreover, their provable
security is open.
Our Contribution. In this paper we propose a public-
key steganographic algorithm using ECDSA signatures on
blockchain networks. We describe and implement a proof
of concept of our method for Bitcoin protocols, but our
approach is easily applicable for other blockchain platforms,
e. g., Ethereum, Litecoin, or Dash, and for other signature
algorithms like EdDSA.

In our scenario, Alice and Bob communicate subliminally
by sending hidden messages in transactions, transferring bit-
coins to a third non-suspicious party. They chat without having
to meet a priori to agree upon a key and the third party.
To this aim, additionally to the common asymmetric ECDSA

signature key pairs in the wallets, both Alice and Bob hold
secret and public key pairs for the hidden communication.
To initiate the bidirectional channel, we propose a new way
of leaking the secret signing key which is based on the
following idea: In a non-interactive key exchange, using their
communication key pairs, Alice and Bob share a secret which
is exploited to derive a nonce during the generation of an
ECDSA signature. The nonce allows to gain the secret signing
key from the signature in the Bitcoin transaction. We prove
that our subliminal channel is undetectable in the random
oracle model under the decisional Diffie-Hellman assumption
for secp256k1 and the assumption that AES is a pseudorandom
permutation. This is in contrast to most previous approaches
which were ad-hoc and came without any formal security
model or provable security guarantee.

To the best of our knowledge, our construction is the
first asymmetric stegosystem for covert communication on
blockchain networks and thus prevents the need for the deploy-
ment of a high number of symmetric keys in contrast to all
previous approaches. Furthermore, our approach is provably
undetectable (under common cryptographic assumptions) in a
formal security model similar to chosen-plaintext attacks. Fi-
nally, our stegosystem is easily implementable, very effective
with constant overhead, and separates the wallet keys from the
steganographic keys needed for communication, which allows
a user to use multiple, independent wallets. This separation
also allows for a bidirectional communication, which was
explicitly out-of-scope in previous works [31].

The paper is organized as follows. Section II provides
the needed preliminaries. Next, in Section III, we formally
define the security model and in Section IV we provide the
description and analysis of our method. In Section V we
discuss in more detail the relevant, previous methods to hide
messages in blockchain transactions before we conclude the
paper with a short discussion.

II. PRELIMINARIES

In this section, we give the needed preliminaries about
steganographic communication, Bitcoin, ECDSA, and our
cryptographic assumptions. In our pseudocode, we write x‖y
to describe the concatenation of two variables x and y, write
x := X to assign the value X to the variable x, which
is final and will not change later on and write x ← X to
denote a non-final assignment. Finally, we write x←$X for a
randomized assignment, where X is a probability distribution
(maybe realized by a probabilistic algorithm). We identify a
finite set X with the uniform distribution on this set and thus
also write x←$X for such a random assignment.

A. Steganography

The goal of an encryption scheme is to hide the content of
a message send from Alice to Bob. Using such an encryption,
an observer to the communication between Alice and Bob
has no way to obtain this content. Nevertheless, the observer
still knows that some sensitive information between Alice and
Bob were exchanged. The goal of steganography is to embed
this sensitive information into unsuspicious communication

3

and thus hide the fact that Alice and Bob communicate such
sensitive information.

A complexity-theoretic model for symmetric steganogra-
phy was proposed by Hopper, von Ahn, and Langford [3]
and, independently, by Katzenbeisser and Petitcolas [35]. The
asymmetric setting was first formalized by von Ahn and Hop-
per [36]. The main idea behind these models is that an attacker
A cannot distinguish between a probability distribution P ,
which produces unsuspicious documents, and a probability
distribution Q, which embeds sensitive information into these
documents. This concept of steganographic communication
has found applications in covert computation, broadcasting,
anonymous communication, or algorithm substitution attacks,
see e. g. [37], [38], [39], [40], [41], [42], [14].

In this work, we also follow the above mentioned models.
As we concentrate on developing steganographic techniques
for signature schemes, we make the definitions more explicit
later on. As noted above, many steganographic systems are
presented without a provable security guarantee. As steganog-
raphy is often employed in very sensitive scenarios (such as
those described in the introduction), we believe that a provable
guarantee to be of uttermost importance. This is similar to the
situation for encryption, where the realization of such guar-
antees are essential and described as “the essence of modern
cryptography, and was responsible for the transformation of
cryptography from an art to a science” [43]. The Turing awards
for Shafi Goldwasser and Silvio Micali also explicitly mention
their “transformative work that laid the complexity-theoretic
foundations for the science of cryptography” [44].

B. Bitcoin Transactions

Bitcoin is the first cryptocurrency based on a public de-
centralized blockchain protocol. Bitcoin was proposed by
Satoshi Nakamoto in 2008 [45], first implemented in 2009,
and has since then seen an enormous growth. Several further
blockchain-based public ledgers have been proposed since
the release of Bitcoin. Digital signatures are a fundamental
building block for nearly all blockchains, due to their ability
to guarantee the authenticity of transactions. A Bitcoin wallet
is associated with at least one public/private key pair. The
private key (also secret key or signing key), denoted sk, is to
be kept secret. It is used to sign transactions issued from the
corresponding wallet. The verification key (also called public
key), denoted vk, is public knowledge and used to verify
signatures. The address, denoted A, of a wallet is the hash
of vk1. The address is used to receive transactions.

Suppose that Alice wants to pay Bitcoin to Charlie. Alice
thus has a wallet with key pair (skA, vkA) and address AA

and Charlie uses (skC , vkC) as his wallet with address AC .
To pay Charlie, Alice needs Bitcoin that were sent to her
wallet earlier and that they didn’t spent yet. Alice then creates
a transaction. The transaction has one or more inputs and
one or more outputs. Each input references an output of a
previous transaction sending Bitcoin to Alice. Each output of
the transaction contains an address and the amount of Bitcoin
to be sent to this address. For our example, Alice creates one

1Precisely, A = Base56(RIPEMD160(SHA256(vk)).

Security against existential forgery GSIG.

Chall. C Att. A
(sk, vk)←$KGen()

verification key vk

loop over i

message msgi

σi ←$Sign(sk,msgi)

pair (msg, σ)

if msg 6= msgi ∀i :
b← Vf(vk,msg, σ)

return b

else return 0

Figure 1. Cryptographic game to guarantee security against existential forgery.
The attacker A is given a signing oracle C and their goal is to construct a
valid message-signature pair by themselves.

output with Charlie’s address AC . Note that Alice may add an
output to her own address AA to send change back to herself.
This is necessary if the sum of values defined in the inputs is
greater than the amount Alice plans to send to Charlie plus
some transaction fee. Alice then signs the transaction inputs
and outputs with her secret skA and attaches the signature
together with her public vkA to the transaction. The signed
transaction is broadcasted to the Bitcoin network to be mined
into a block. Charlie can see that Alice sends Bitcoin their way
as soon as Alice broadcasts the transaction to the network.
However, Charlie can only be sure that the transaction is
correct after it is mined into a block as this step involves
a check of the transaction signature [46].

C. Signature Schemes
In order to verify that a blockchain transaction is valid, it

needs to be signed by the sender of the transaction. A signature
scheme is a triple of PPTMs SIG = (KGen,Sign,Vf) such
that Vf is deterministic and the algorithms have the following
semantic:
• A call of the key generation algorithm KGen produces a

key-pair (sk, vk) consisting of a secret key sk and a public
verification key vk.

• A call of the signing algorithm Sign(sk,msg) takes the
signing key and a message msg (from some underlying
message space) and produces a signature σ.

• A call of the verification algorithm Vf(vk,msg, σ) takes
the verification key, a message msg, and a signature σ
and outputs a bit.

We say that SIG = (KGen,Sign,Vf) is correct, if
Vf(vk,msg, σ) = 1 for all key-pairs (vk, sk) ∈
Supp(KGen()), all messages msg, and all signatures σ ∈
Supp(Sign(sk,msg)).

The corresponding cryptographic game GSIG to guarantee
security against existential forgery uses an attacker A as

4

NonceGenRFC6979(H(msg), d, cnt)

1 : h← HMAC(d‖H(msg))

2 : for i = 1 . . . cnt :

3 : h← HMAC(h)

4 : return h

SignECDSAE,G,n(d,msg)

1 : c← 0

2 : h := H(msg)

3 : k ← NonceGenRFC6979(h, d, c)

4 : (x, y) := k ·G
5 : r ← x mod n

6 : if r = 0 :

7 : c← c+ 1; goto line 3

8 : s := [k−1(h+ r · d)] mod n

9 : if s = 0 :

10 : c← c+ 1; goto line 3
11 : return (r,min{s,−s})

Figure 2. Signing algorithm as it is implemented in libsecp256k1. The
message msg being signed is the transaction itself.

SignEdDSAE,G,n(d,msg)

1 : h := SHA512(d)

2 : d′ := 2254 +

253∑
i=3

2ih[i]

3 : Q := d′ ·G
4 : k ← SHA512(h[256 : 511],msg)

5 : (x, y) := k ·G
6 : r ← x mod n

7 : s := [r + SHA512(r,Q,msg) · d′] mod n

8 : return (r, s)

Figure 3. Signing algorithm for Ed25519 [47].

depicted in Fig. 1. During the game, the challenger C generates
a key pair and publishes the public key. The attacker A may
then request valid signatures for chosen messages. Eventually,
A has to provide C with a signature for a message that
wasn’t sent to C before. A wins the game if the provided
signature is valid. The advantage AdvsignA,SIG(κ) of A against
SIG = (KGen,Sign,Vf) is defined as the probability that the
above game GSIG outputs 1, where κ is the security parameter
of the signature scheme. We say that SIG is (t, ε, q)-secure, if
the term AdvsignA,SIG(κ) is at most ε for all attackers A running
in time at most t that make q queries to the signing oracle.

D. Elliptic Curve Digital Signature Algorithm (ECDSA)

Arguably, the most widely used signature scheme in practice
is the elliptic curve digital signature algorithm (ECDSA). It is
also the signature scheme used to sign transactions in Bitcoin,

Ethereum, and other blockchains. In order to use ECDSA,
two parties agree on an elliptic curve E over a prime field
Fp and a generator point G of order n on E. The private
signing key sk, often also denoted by d, used for signing is
chosen randomly from the interval {1, . . . , n − 1} and the
corresponding public key vk used for verification is chosen as
the curve point Q = dG.

When signing a message hash h, the signer chooses a private
securely random per signature nonce k from the interval
{1, . . . , n − 1} and computes the curve point (xr, yr) =
k ·G mod n. The values r = xr and s = k−1(h+ rd) mod n
then form the signature σ = (r, s). To verify a signature
using the public key Q, the verifier computes the curve point
(x′r, y

′
r) = hs−1G+ rs−1Q mod n and accepts the signature

if x′r = r [48].
Note that all known security proofs of ECDSA rely on very

strong idealized assumptions such as the generic group model
(see e. g. the discussion in [49]). Nevertheless, ECDSA is the
most widely used signature scheme and we will thus later
assume the security of ECDSA (without explicitly stating the
underlying assumptions).

1) Basic Attacks against ECDSA: Since d and k are the
only two unknowns in the equation s = k−1(h+ rd) mod n,
it is crucial to keep both values secret. If either value becomes
known to an attacker, they can compute the other value as well.
In particular, d is easily computed as

d = (s · k − h)r−1 mod n (1)

if the nonce k is revealed [50].
Also, reusing a nonce k with the same private key d and two

different message hashes h1 and h2 immediately reveals d. Let
(r1, s1) and (r2, s2) be signatures for h1 and h2 respectively.
Since k was used for both signatures, it immediately follows
that r1 = r2, because r1 = r2 = (kG)x. This is easily
detectable for an attacker. Now, the attacker can compute
k = (h1 − h2)(s1 − s2)−1 mod n, which reveals k. With k
known, they can derive the private key as above [50]

2) ECDSA in blockchains: In the context of blockchains,
the elliptic curve secp256k1 [51] is widely used when generat-
ing ECDSA signatures [52]. ECDSA signatures are malleable
because whenever (r, s) verifies a hash h correctly for a given
key pair, also (r,−s) is a valid signature for h under the same
key pair. To counter this, signatures should be normalized by
only accepting signatures (r,min{s,−s}). Bitcoin’s ECDSA
library libsecp256k12, which is also used by many other
blockchains, performs this normalization3.

In addition, Bitcoin recommends using a deterministic
nonce generation algorithm instead of a pseudo random num-
ber generator (PRNG) to counter nonce reuse or broken
PRNGs, which would allow for wallet key recovery through,
e. g., lattice attacks [50] or the basic attacks described in the
previous section. RFC6979 defines one way for deterministic
nonce generation. As inputs it expects the hash of the message
to be signed, the private signing key, and a counter which is
usually chosen as zero unless the generated nonce leads to
invalid values r or s during the signing process.

2https://github.com/bitcoin-core/secp256k1
3https://github.com/bitcoin-core/secp256k1/commit/0c6ab2ff

https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1/commit/0c6ab2ff

5

ECDHQ(d)

1 : (Px, Py) := d ·Q
2 : if Py ≡ 0 mod 2 :

3 : return H(0x02‖Px)

4 : return H(0x03‖Px)

Figure 4. ECDH key exchange in libsecp256k1.

Figure 2 shows the ECDSA signature generation routine
SignECDSA as it is implemented in libsecp256k1. The hash
function used is SHA256. ECDSA on the secp256k1 curve
requires the hash to be 256 bits long, which is the case for
SHA256. Therefore, we will assume that the length of the hash
fits the application throughout the paper.

3) Comparison to EdDSA: In contrast to ECDSA, EdDSA
chooses the nonce in a deterministic fashion by design [47].
The default curve is Curve25519 and the default hash function
is SHA512. EdDSA with this configuration is called Ed25519.
Many blockchains that do not rely on ECDSA use Ed25519
instead [52]. The Ed25519 signing routine is given in Fig. 3.

E. Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Let’s say Alice and Bob would like to exchange a secret
symmetric key k. To do so, they publicly agree on an elliptic
curve E over a prime field Fp and a generator point G of
order n on E. Alice and Bob both choose a secret random
value a (resp. b) and compute QA = a ·G mod n and QB =
b ·G mod n respectively. Next, Alice and Bob exchange their
QA and QB while keeping a and b secret. Both now compute
the shared point P = (Px, Py) on E by computing P =
a ·QB = b ·QA. The shared secret k is then chosen as k = Px.
It is recommended to use the shared secret as an input to a key
derivation function or simply a secure hash function in order
to generate a shared key [53]. In the following we use the
terms “shared key” and “shared secret” to describe the output
of the key derivation or hash function in the context of ECDH.

1) ECDH in libsecp256k1: The library libsecp256k1 is
the reference ECDSA library for Bitcoin and has support
for ECDH. We use libsecp256k1 in Section IV-D which is
why we want to point out an important detail: libsecp256k1
computes k by hashing the compressed representation of P .
This step is motivated by the potential malleability arising
from the fact that both points (Px, Py) and (Px,−Py) result
in the same shared secret [54, sec B.4.1]. The compressed
representation of P contains Px as well as the sign4 of Py .
So hashing the compressed representation of (Px, Py) results
in a different hash than hashing the compressed representa-
tion of (Px,−Py). The pseudocode of the ECDH algorithm
implemented in libsecp256k1 is given in Fig. 4.

F. Cryptographic Assumptions

To show the security of our chat, we need three crypto-
graphic assumption which are given below. We start with

4When talking about signs, we think about numbers being in [− p
2
, p
2
].

Since in practice all numbers are in [0, p− 1] we use “even/odd” instead of
“positive/negative” to distinguish Py and −Py .

Table I
NOTATION OVERVIEW. NOTE THAT ALICE HAS SEVERAL WALLETS

REPRESENTED BY HER BITCOIN/ECDSA KEY PAIRS, BUT ONLY ONE CHAT
KEY PAIR (skChatA , pkChatA).

Name Meaning

(ski, vki) Alice’s i-th Bitcoin/ECDSA key pair
Ai Alice’s i-th address associated with (ski, vki)
(skChatA , pkChatA) Alice’s chat key pair
(skC , vkC) Charlie’s Bitcoin/ECDSA key pair
AC Charlie’s Bitcoin address
(skChatB , pkChatB) Bob’s chat key pair
σ = (r, s) An ECDSA signature
txAi,C A Bitcoin transaction from Ai to C
amsg = (amsgi)i Subliminal message to be sent
kChati Secret key for encrypting amsgi
ctxChat Encrypted amsgi
dataChat Tuple: (skChatA , pkChatB , amsgi, vki)

recalling the following definition: Two probability distributions
P and Q are (t, ε, q)-indistinguishable, if every probabilistic
algorithm D with running time t and oracle access to either P
or Q that tries to distinguish them has only success probability
ε, if D makes at most q queries to their oracle. We will often
also say that P and Q are indistinguishable, if we are not
interested in the concrete values of t, ε, and q.

The (t, ε, q)-Decisional Diffie-Hellman assumption (DDH)
for a cyclic group G with generator g ∈ G and order n says
that the distributions (ga, gb, gab) and (ga, gb, gc) are (t, ε, q)-
indistinguishable if a, b, and c are chosen uniformly random
from {1, . . . , n−1}. A family of permutations {fk}k, indexed
by a key k, is called a (t, ε, q)-pseudorandom permutation
(PRP), if the distributions of fk (for a randomly chosen key
k) and f? (a completely random permutation) are (t, ε, q)-
indistinguishable. More concretely, we will assume that AES
is a pseudorandom permutation. Finally, we will work in the
random oracle model (ROM) to model the used hash function
H (in our case SHA256) as a completely random oracle.

Note that the security of ECDSA (and thus of Bitcoin)
already requires the random oracle model and also other
assumptions which are not as standard as DDH or the hardness
of AES [55], [49], [56].

III. OUR MODEL

Remember that in our setting, the goal is to transfer a
message amsg from Alice to Bob. To protect against the
monitoring attack described above, we assume that Alice and
Bob do not use a symmetric key kChat, but work in a public-
key setting. Hence, Alice has a public key pkChatA and a secret
key skChatA as well as Bob has a pair pkChatB , skChatB consisting
of a public and a secret key. Furthermore, Alice controls
several bitcoin accounts with addresses Ai and associated keys
(ski, vki) for the signature scheme / wallet. We do not assume
that Bob has a bitcoin address himself. Hence, there is a third
party, Charlie, with address AC and keys (skC , pkC) that will
receive the transactions sent by Alice. See Table I for an
overview on the notation. In a concrete application, Charlie
might be a party which obtains many transactions, such as a
charity. To start the communication, Alice and Bob exchange
their public chat keys. This can be done via a Public Key

6

Infrastructure, during a personal meeting, or via any other
out-of-band communication channel that ensures integrity and
authenticity. Optionally, Alice and Bob may also agree on the
Bitcoin address AC in advance to reduce the computational
costs for receiving messages.

The attacker (or warden) A aims to detect the presence
of this hidden communication of amsg (not necessarily the
content). In order to do so, they are part of the bitcoin network,
i. e. they see all transactions send over the bitcoin network and
can also send transactions themselves. This attacker has access
to all of public information, including the public addresses Ai

and the verification keys vki of the accounts that Alice might
use to send messages, the public address AC of Charlie, and
the corresponding verification key vkC . Furthermore, they also
know the public keys pkChatA and pkChatB of Alice and Bob.
To represent the fact that A might have previous information
about the messages that Alice wants to send, we allow A
to choose the embedded message amsg, similar to a chosen-
plaintext-attack. We give a formal security game involving this
attacker below.

In the following, we assume that amsg is split into parts
amsgi and each part amsgi is sent from a wallet with key-
pair (ski, vki) for i = 1, . . . , `. Furthermore, we focus on the
case that amsgi can be embedded into two signatures.

A. Chat Scheme

Let SIG = (KGen,Sign,Vf) be an honest
implementation of a signature scheme and Chat =
(KGenChat,SignChat,ExtChat) be a triple consisting
of three PPTMs:
• The key generation algorithm KGenChat is used to pro-

duce the key-pairs (pkChatA , skChatA) and (pkChatB , skChatB).

• The modified signing algorithm SignChat is given the se-
cret signing key sk, a message msg, the public key pkChatB

of Bob, the secret key skChatA of Alice, and the hidden
message amsgi and produces a signature σ for msg.

• The extraction algorithm ExtChat is used by Bob to
extract a message amsg′ from several signatures σi. To
do so, it is given the public verification key vk, the public
key pkChatA of Alice, and the secret key skChatB of Bob.

We always assume that Chat is correct, i. e. we require that
ExtChat is able to reconstruct the original message amsg.

Note that a common recommendation to achieve
pseudonimity is to use a Bitcoin address for as few
transactions as possible. Hence, sending many messages from
the same Bitcoin address is detectable and thus suspicious
behavior.

B. Security Model

To guarantee security, an attacker against our embedding
strategy should not be able to distinguish between ` indepen-
dent users who each send q transactions from their respective
addresses Ai from Alice controlling the users and sending
signatures containing steganographic material. For the sake of
simplicity of the presentation, we will fix q to be two. The
attacker will also be able to choose the messages msg for

which the signatures should be created and the messages amsg
embedded into them. Note that in Bitcoin, each transaction is
unique. To model this fact, we require that the messages msg
queried by the attacker to be distinct.

Formally, this distinguishability game can be described as
shown in Fig. 5. Here, the challenger C generates two message
key pairs and ` signature key pairs, sends all public keys to the
attacker A, and generates a random bit. For each signing key,
A now provides C with two cover messages and one embed-
dable message and C signs both cover messages. Depending on
the random bit, C optionally embeds the embeddable message
into both cover messages during signing. Either way, the two
signatures are returned to A who now has to say whether the
signatures contain the embeddable message or not. Note that
each signature key pair (ski, vki) belongs to her own wallet,
but all of the wallets are controlled by Alice, who has the key
pair (pkChatA , skChatA). We denote the i-th address (associated
with (ski, vki)) by Ai.

We say that a system Chat is (t, ε)-undetectable for ` mes-
sages (with respect to SIG) if the probability that G`,SIG,Chat

outputs 1 is at most 1/2 + ε for all attackers A with running
time t. Note that if Sign and SignChat are indistinguishable,
this is sufficient to argue for security in our model.

In the context of Bitcoin, we also want to prevent against
a malicious Bob who wants to steal the bitcoins of Alice.
They therefore know pkChatB , skChatB , (vki)i, and pkChatA , but
neither skChatA nor any ski. As Bob knows that Alice wants
to communicate with them, there is no need to hide this fact.
Their goal is rather to extract bitcoins owned by Alice. A
common way to leak information via ECDSA signatures also
used in many of the previous works is to reveal the signing
key ski and use it to recover the nonces k used in previous
transactions (which then include information about amsg). A
side effect of this is that it allows Bob to impersonate Alice
by signing messages in their name, which, in the context of
Bitcoin, allows Bob to obtain all of the bitcoins of Alice.
To protect against such a malicious Bob, we thus need to
guarantee that Alice has spent all of their bitcoins before ski
is revealed to Bob.

IV. SUBLIMINAL CHAT

We assume the following scenario: Alice sends a hidden
message amsg to Bob by transferring bitcoins to Charlie. Alice
has ` wallets, where wallet i has key pairs (ski, vki) and ad-
dress Ai. Additionally, Alice holds a key pair (skChatA , pkChatA)
which we will call the “chat key pair”. Charlie has a wallet
with key pair (skC , vkC) and address AC . Bob owns a chat
key pair (skChatB , pkChatB). The wallet key pairs are produced
by calling KGen and the chat key pairs are the result of
KGenChat. The scenario is shown in Fig. 6.

A. A Naive Approach

The basic idea of our chat protocol follows [31] in embed-
ding the hidden message amsg in the nonce of the ECDSA sig-
natures. But while [31] only allows unidirectional messaging,
our protocol allows for bidirectional communication. To create
the bidirectional subliminal channel, we propose a new way

7

Security game G`,SIG,Chat

Challenger C Attacker A
(pkChatA , skChatA , pkChatB , skChatB)←$KGenChat()

for i = 1, . . . , ` :

(ski, vki)←$KGen()

pkChatA , pkChatB , (vk1, . . . , vk`)

b←$ {0, 1}

. for i = 1, . . . , ` .

messages msg
(1)
i , msg

(2)
i , amsg

(1)
i , amsg

(2)
i

if b = 0 : for j ∈ {1, 2} :
dataChat := (skChatA , pkChatB , amsg

(j)
i , vki)

σ
(j)
i ←$SignChatE,G,n(ski,msg

(j)
i , dataChat)

if b = 1 : for j ∈ {1, 2} :
σ
(j)
i ←$SignE,G,n(ski,msg

(j)
i)

σ
(1)
i , σ

(2)
i

. end loop .
bit b′

if msg
(1)
i 6= msg

(2)
i for all i = 1, . . . , ` :

return [b = b′]

else : return 0

Figure 5. Security game to model undetectability. The attacker chooses messages to sign and a message to embed. Their goal is to detect whether the provided
signatures contain an embedded message or not.

Alice
#

A` C

σ
(j)
`

tx
(j)
`

A1 C

σ
(j)
1

tx
(j)
1

. . .
Charlie

Blockchain

Bob
Figure 6. Subliminal chat from Alice to Bob: Alice signs and publishes
transactions tx(j)i for i = 1, . . . , ` and j = 1, 2 on the blockchain. Bob
analyzes the signatures and detects messages from Alice. Note that Charlie’s
identity is irrelevant for the chat and could be anyone, including Alice.

of leaking the secret signing key: Perform a non-interactive
key exchange using the asymmetric key pairs generated by
KGenChat, which results in a shared secret that is used to
derive a nonce during signing an ECDSA signature to leak the
secret signing key. We call this new approach NonceGenBasic.
Its pseudocode is given in Fig. 7. The approach has several
benefits compared to a pre-shared nonce:

• The nonce cannot be detected by binary analysis as it can

NonceGenBasic(amsg, skChatA , pkChatB)

1 : kChat := ECDH(skChatA , pkChatB)

2 : if amsg = ∅
3 : return kChat

4 : return Enc(amsg, kChat)

Figure 7. Basic idea for altering the nonce generation algorithm in order to
embed chat messages in ECDSA signatures.

be computed on-the-fly.

• If a nonce still becomes public knowledge, only commu-
nication between the two parties using it is endangered.

• The subliminal channel is independent of Alice’s and
Bob’s Bitcoin addresses and keys. Therefore, Alice and
Bob do not need to know each others Bitcoin addresses
in advance in order to communicate.

Obviously, using this naive approach is highly susceptible to
resulting in a nonce reuse during signature generation which
would undermine the security of ECDSA and is also easily
detectable for our attacker A. We will overcome these issues in
the following section which concludes with an undetectability
and security proof for the final nonce generation function.

8

B. Theory

Alice and Bob need to exchange their public chat keys in
a way that ensures authenticity and integrity. How to realize
this in practice will be discussed later and is out of scope of
our theoretic model. To send a message amsg of b bytes to
Bob, Alice splits amsg into ` = d b

32e parts amsg1, . . . , amsg`.
Also from now on we assume the length of amsg to be
a multiple of 32 bytes. If this should not be the case, we
simply append null bytes to amsg. To embed amsgi, Alice then
creates transactions tx(1)Ai,C

and tx(2)Ai,C
. Whether the receiving

addresses in the transactions are equal or not does not impact
the sending of the message. But let Charlie’s address AC be
the receiver in all transactions for simplicity.

Alice signs all transactions from wallet i with her signing
key ski using the SignChat routine which makes use of
NonceGenChat (cf. Fig. 8). She embeds her secret message
part amsgi into the transaction tx

(1)
Ai,C

by passing it to the
signing routine via dataChat = (skChatA , pkChatB , amsgi, vki).
Per call, NonceGenChat computes a shared secret kChati =
H(ECDH(skChatA , pkChatB)‖vki) and encrypts the current mes-
sage block amsgi with it. The resulting ciphertext is returned
to be used as nonce by SignChat. We require the cipher
to produce pseudo-random ciphertexts5. This is important to
ensure that the ciphertext is suitable to be used as a nonce
for the signature scheme. Because AES is believed to be a
(t, ε, q)-pseudorandom permutation [57], AES-CBC produces
(t, ε, q)-pseudorandom ciphertexts and is therefore suitable for
our implementation. More concretely, this means that the ci-
phertexts produced by AES-CBC are (t, ε, q)-indistinguishable
from uniformly distributed strings (upon random choice of the
symmetric AES-key and adversarially chosen messages).

We concatenate the hash of the message to be signed
(tx(1)Ai,C

in this case) with kChati and use the first 128 bits of
its hash as initialization vector. This ensures fresh nonces for
each signature even if amsg contains two equal 32 byte blocks.
NonceGenChat is a deterministic algorithm. However, the

nonce returned by NonceGenChat may lead to either r or s
being zero during the signing process. In this case, SignChat
can request a different nonce from NonceGenChat by incre-
menting the cnt variable which leads to kChat being hashed
cnt times before being used or embedded. Please note that the
hashing of kChat is only implemented to ensure the theoretic
security of the signature scheme. A nonce causing r or s being
zero only occurs in two out of 2256 cases which means that
the additional hashing does not occur in practice.

When signing the second transaction tx
(2)
Ai,C

, Alice now
chooses dataChat = (skChatA , pkChatB ,∅, vki) which tells the
nonce generation function to embed kChati instead of a mes-
sage. This way, the shared secret kChati itself is used as nonce
which allows Bob to later recover ski. Alice has to ensure
to leak ski only once per wallet as otherwise a nonce reuse
occurs which would allow anyone monitoring the blockchain
to take over their wallet.

After all transactions and signatures are generated, Alice
publishes all transactions to the blockchain. In cases where

5Note: This is a stronger assumption than requiring indistinguishability of
ciphertexts.

NonceGenChat(H(msg), dataChat, cnt)

1 : (skChatA , pkChatB , amsg, vki) := dataChat

2 : kChati ← H(ECDH(skChatA , pkChatB)‖vki)
3 : for j = 1 . . . cnt :

4 : kChati ← H(kChati)

5 : if amsg = ∅ :

6 : return kChati

7 : iv := H(H(msg)‖kChat)[0 : 128]

8 : ctxChat := AESEnc
CBC(amsg, kChati , iv)

9 : return ctxChat

SignChatE,G,n(ski,msg, dataChat)

1 : c← 0

2 : h := H(msg)

3 : k ← NonceGenChat(h, dataChat, c)

4 : (x, y) := k ·G
5 : r := x mod n

6 : if r = 0 :

7 : c← c+ 1; goto line 3

8 : s := [k−1(h+ r · ski)] mod n

9 : if s = 0 :

10 : c← c+ 1; goto line 3
11 : return (r,min{s,−s})

Figure 8. Nonce generation algorithm for ECDSA signatures that enables the
user to efficiently embed secret messages into the signatures in a provably
undetectable way. As in SignECDSA, the message msg to be signed is
the transaction itself. The variable dataChat contains all additionally needed
information for the embedding.

Bob is assumed to be malicious, Alice has to take extra care
when publishing tx

(2)
Ai,C

as this transaction allows Bob to
recover the private signing key ski for address Ai. Therefore,
all other transactions originating from Ai must be mined into
a block in the longest chain and only a transaction fee should
be left on Ai before publishing tx(2)Ai,C

.
Bob on the other end follows the extraction algorithm

depicted in Fig. 9 to receive amsgi. He can compute kChati

from skChatB , pkChatA and vki. Bob searches the blockchain
for a transaction (tx

(2)
Ai,C

, σ(2)), which can be identified by
r as r(2) is the x-coordinate of the point kChati · G. In
theory, an additional check for r being the x-coordinate of
G multiplied with a hashed kChati would be necessary. But
since kChati does not get hashed in practice6 we discarded this
test for simplicity. Because Bob knows the nonce used for
signing tx

(2)
Ai,C

, he can compute ski from either (r(2), s(2))

or (r(2),−s(2)). Decision for the correct ski can be made by
computing the corresponding verification key and comparing
it with vki. This step is necessary because Bitcoin only accepts
normalized signatures. Next, Bob searches the blockchain for
the remaining transaction (tx

(1)
Ai,C

, σ(1)). Since Bob learned

6Recall, NonceGenChat hashes kChati with a probability of 2−255.

9

ski from (tx
(2)
Ai,C

, σ(2)), he can compute all the nonces used for
signing tx(1)Ai,C

and hence extract the encrypted message which
is either ctxChat from (r(1), s(1)) or ctx′Chat from (r(1),−s(1)).
Only one of the two ciphertexts results in a meaningful
plaintext when decrypted with kChati , so Bob is able to recover
amsgi successfully. In our PoC implementation we define
“meaningful” as “ASCII-printable”. This is no hard constraint
as binary data can be Base64 encoded before sending. Note
that each transaction in Bitcoin has a unique timestamp that
is determined at the time the transaction is broadcasted to
the blockchain. If Alice sends the message part amsgi before
amsgi+1, Bob can determine the correct ordering of the
message parts by looking at these timestamps.

Lemma 1: If the (t, ε, 2)-DDH assumption is true
for secp256k1 and AES is a (t, ε, 1)-pseudorandom
permutation, then the output of the algorithm
NonceGenChat(H(tx), dataChat, cnt) is (t, 2ε + 2−127, 1)-
indistinguishable from the uniform distribution on
{1, . . . , n − 1} for a distinguisher that does not know
dataChat. Here, n is the order of secp256k1.

Proof: Consider the different games presented in Fig. 10
in the appendix. Here, G1 equals NonceGenChat, while G7

corresponds to the choice of a random nonce.
G1 ≈ G2: As we assume the (t, ε, 2)-decisional Diffie-

Hellman assumption for secp256k1, no attacker can
distinguish the output of ECDH(skChatA , pkChatB) from a
randomly chosen group element of secp256k1.

G2 = G3: As we work in the random-oracle model and the
random element g is not known by the adversary, the
output kChati of H(g‖vki) is a uniformly distributed string
of length 256. Similarly, applying H on H(tx)‖kChati

and shortening to the first 128 bits gives a uniformly
distributed string of length 128.

G3 = G4: Applying a random oracle H to a uniformly random
value results again in a uniformly random value. We can
thus ignore the for-loop.

G4 ≈ G5: As we assume that AES is a (t, ε, 1)-pseudorandom
permutation and AESEncCBC is called with a secret key
kChati and a randomly chosen initialization vector iv, the
generated ciphertext ctxChat are (t, ε, 1)-pseudorandom
and thus indistinguishable from a uniformly sampled
string of length 256.

G5 = G6: The value of iv is not used in the algorithm
anymore. Furthermore, the only part of dataChat still used
is amsgi. But amsgi is used only in the if-statement and
in both cases (amsgi = ∅ or amsgi 6= ∅), the output is
a uniformly random string of length 256.

G6 ≈ G7: The probability that ctxChat is not in the interval
{1, . . . , n− 1} is at most 1− n−1

2256 . As 2256 − n ≤ 2129,
this probability is bounded by 2−127, which is negligible7.

Combining the security losses in G1 ≈ G2 (by the
DDH), in G4 ≈ G5 (by the PRP), and in G6 ≈
G7 (by the order of secp256k1), we can conclude that

7Note that n = 2256 − 432420386565659656852420866394968145599
for secp256k1.

ExtChatE,G,n(sk
Chat
B , pkChatA , AC)

TxC ← all (tx, σ) sending BTC to AC ; i← 1

foreach (tx, σ) in TxC :

vki, Ai, k
Chat
i := hasAmsg(E,G, n, skChatB , pkChatA , tx, σ)

1 : get vki from tx

2 : (r, s) := σ

3 : kChati := H(ECDH(skChatB , pkChatA)‖vki)
4 : (x, y) := kChati ·G
5 : if r = x mod n :

6 : return vki,Addr(vki), k
Chat
i

7 : return 0, 0, 0

if vki = 0 or Vf(vki, tx, σ) = 0 : continue

ski ← recoverSk(E,G, n, kChati , vki, tx, σ)

1 : h := H(tx); (r, s) := σ

2 : ski ← [(s · kChati − h) · r−1] mod n

3 : if ski ·G = vki :

4 : return ski

5 : ski ← [((−s) · kChati − h) · r−1] mod n

6 : if ski ·G = vki :

7 : return ski
8 : return 0

if ski = 0 : continue
TxA,C ← all (txA,C , σ) where txA,C 6= tx

amsgi ← recoverMsg(n, kChati , ski, TxA,C)

1 : foreach (tx, (r, s)) in TxA,C :

2 : h := H(tx); iv := H(h‖kChati)[0 : 128]

3 : ctxChat ← [(ski · r + h) · s−1] mod n

4 : tmp← AESDec
CBC(ctxChat, k

Chat
i , iv)

5 : if tmp is meaningful :
6 : return tmp

7 : ctxChat ← [(ski · r + h) · (−s)−1] mod n

8 : tmp← AESDec
CBC(ctxChat, k

Chat
i , iv)

9 : if tmp is meaningful :
10 : return tmp

i← i+ 1

reconstruct amsg from (amsgi)i=1,...,`

Figure 9. Extraction algorithm used to recover messages that were embedded
into ECDSA signatures with the SignChat algorithm. First, the extractor iter-
ates through all transactions and determines whether they contain embedded
messages via hasAmsg. Then, the corresponding signing keys are recovered
via recoverSk and finally, recoverMsg recovers the messages.

NonceGenChat(H(tx), dataChat, cnt) is (t, 2ε + 2−127, 1)-
indistinguishable from the uniform distribution on {0, 1}256.

The above lemma implies that the nonce generated by algo-
rithm NonceGenChat looks like a random nonce. But, in order
to construct an undetectable chat system, we must guarantee
that the nonces are indistinguishable from the deterministic

10

nonces generated by NonceGenRFC6979. Note that if every
message is signed at most once (which is true for Bitcoin), this
holds, as the distinguisher does not know the signing key ski.

Lemma 2: Algorithm NonceGenRFC6979(H(msg), d, cnt)
outputs are (t, 0, 1)-indistinguishable from the uniform distri-
bution on the set {1, . . . , n− 1} in the random oracle model
for every t. Here n is the order of secp256k1.

Combining these two lemmata allows us to conclude the
undetectability of our chat client.

Theorem 1: If the (t, ε, 2)-DDH assumption is true for
secp256k1, AES is a (t, ε, 1)-pseudorandom permutation, and
ECDSA is (t, ε, 2)-secure, then our client Chat is (t, 3ε +
2−127)-undetectable for ` ≤ t messages (with respect to
ECDSA) in the random oracle model.

Proof: Lemma 1 shows that under the given assumptions,
the generated nonces of NonceGenChat(H(tx), dataChat, cnt)
are (t, 2ε + 2−127, 1)-indistinguishable from random nonces
and Lemma 2 shows that this is in turn indistinguishable from
the output of NonceGenRFC6979(H(msg), d, cnt). Hence, the
generated nonces are (t, 2ε+2−127, 1)-indistinguishable from
real nonces. The (t, ε, 2)-security of ECDSA now implies that
an attacker cannot extract the nonces from the signatures.
These nonces are thus not known by an attacker and the
remaining part of SignChat are identical to ECDSA. Hence,
Chat is (t, 3ε+2−127)-undetectable for ` ≤ t messages (with
respect to ECDSA) in the random oracle model.

With the chat being provably undetectable, we do not
need to care for confidentiality of the chat messages being
sent. But an attacker may still try to attack the integrity of
embedded messages by altering transactions that are broadcast
to the network in the hope of hitting a transaction with
an embedded message. This attack, however, has to fail as
altering a transaction renders the transaction signature invalid.
As a result, all blockchain nodes will reject and not further
broadcast the transaction. Therefore, embedded messages that
are tampered with will automatically be filtered out by the
network. Bob still verifies the transaction signatures in cases
where the Bitcoin node forwarding the transaction to him
cannot be trusted. Authenticity of the messages is guaranteed
as only Alice owns skChatA which means that only she can
encrypt a message with kChati .

Last but not least we want to stress that the communication
flow between Alice and Bob is independent of the flow of
the bitcoins transferred during communication. Alice can hide
messages meant for Bob in any of her transactions, no matter
the recipient. As a result, no metadata of the communication
between Alice and Bob is generated or observable by third
parties. This is possible because the peer-to-peer network
structure is used for transaction and therefore message dis-
tribution. Also, Bob could receive messages without knowing
the mailbox address (AC in this case) by simply scanning all
transactions in new blocks for messages from Alice. So chang-
ing the mailbox address while communicating is possible.

C. Considering multi-input transactions

So far we proposed and demonstrated a technique to se-
curely send subliminal messages via Bitcoin transaction. Our

design, as well as other work like [31] require an overhead
of one transaction to leak the signing key of the sender. Also,
our technique requires the sender to issue multiple requests
from the same Bitcoin address. Since it is recommended to
use each address only once to ensure the user’s privacy, our
“chat behavior” might attract some attention.

We can overcome both issues with a feature of cryptocur-
rencies based on the UTXO model8 like Bitcoin, Litecoin, or
Dash: multi-input transactions. UTXO model based cryptocur-
rencies allow9 transactions to have multiple inputs. Since each
input contains a signature, we can use this to send arbitrarily
long messages with just a single transaction. We only require
that one of the inputs is signed using kChat as nonce. All other
inputs are then signed using ciphertexts as nonces.

This improvement cannot be applied to account based cryp-
tocurrencies like Ethereum or XRP. Here, multiple transactions
have to be used in order to transmit a hidden message. But
since sending multiple transactions from the same account
is common for account-based cryptocurrencies, sending a
message via multiple transactions will not raise any suspicion.

D. PoC implementation

We implemented a proof of concept (PoC)10 of the chat
client in Python. The program relies on the Python frame-
work bit11 to interact with the blockchain and manage keys.
For key generation, signing, and verification, bit relies on
coincurve12 which is a Python wrapper for the highly opti-
mized libsecp256k1. libsecp256k1 is a good choice for our
experiments because of three reasons: First, it is part of the
Bitcoin reference implementation bitcoin-core. This implies
that all changes we do to the library are applicable to other
compliant libraries as well. Second, libsecp256k1 provides a
very handy API, allowing us to provide the signing routine
with a custom nonce generation function that can be passed,
besides the transaction hash and the private key, arbitrary
additional data. Instead of passing a custom nonce generation
function to the signing routine, one can also easily exchange
the default nonce generation function with our handcrafted
routine. Third, libsecp256k1 implements ECDH support. This
means that the number of code changes for ECDH support
is close to zero. We only have to implement AES and define
the dataChat struct. Note that curve secp256k1 is also used
by Ethereum, XRP, Litecoin, EOS, and several other top 100
cryptocurrencies [52].

To implement AES, we rely on Intel’s reference imple-
mentation for AES-NI as given in [58]. The code provides
an efficient AES implementation while keeping the code
base small and avoiding S-boxes or T-tables which would
blow up the code base. We use the ECDH and SHA256
implementation provided by libsecp256k1 to compute kChat.
We define dataChat in the main header file of libsecp256k1
and modify coincurve and bit to support it.

8Cryptocurrencies based on the UTXO model require the user to always
spend inputs as a whole and optionally return some coins as change.

9Due to their design, they even require multi-input transactions.
10https://github.com/7K9cNgkh/btc-chat
11https://github.com/ofek/bit
12https://github.com/ofek/coincurve

https://github.com/7K9cNgkh/btc-chat
https://github.com/ofek/bit
https://github.com/ofek/coincurve

11

Table II
CHAT POC BETWEEN ALICE AND BOB ON THE BITCOIN TESTNET3 USING MULTIPLE INPUTS TO HIDE THE MESSAGE.

Alice BTC Priv. Key skA 27ded4e06a96cc5613e0e2bfd48ab068cfa0ab687c5900cad4e4c2d79b37794d
BTC Verif. Key vkA 0386aaca9192ae7434a677ffb4774dac8e8e9527757f3af6e812a290b8627a91ab
BTC Addr. AA mpiNLrkV6DpQKDW3oPQm1RXhJ6azf43o5m
Chat Priv. Key skChatA 89bdcbeb3e1dddc3eabf472b431f9e41b6e5ed327d1166f9aa523112237a0162
Chat Pub. Key pkChatA 032f84f427dda0a6f5b8b78e569b2aa213f030ec36db295a1934eb4440587cfdce

Bob BTC Priv. Key skB 38147cca2c3a120c6525f45aaa51d6ad624ed06ea67a0b8f285b575ca0359792
BTC Pub. Key vkB 03ee8f3721316cd7457b141ceeb42e26b0f72c24fcd14ae96ade6ebd2f6d180dd1
BTC Addr. AB mzvoy8wgtuDB3ng7Ga4758fNPrsFch8mLr
Chat Priv. Key skChatB 935cece8609c40ecb802e9c496ea99db9f8da468a264ab1ebb65eb13d5bcebad
Chat Pub. Key pkChatB 02e8a27b4f01a53e69b80495a955ed2e974290ff3b862e542ac1d92aa0dc7a39fa

A → B Message amsg “Hi Bob, how are you?” (20 Bytes)
Transaction ID txA→B b282f4f2298f197b2abd848c5da4dc83dd88851e714612785237457f18dab378

B → A Message amsg “I’m great! This chat is nice. We’re hiding in the open.” (55 Bytes)
Transaction ID txB→A fc22fb96908c2c9730b796c0c346e717564e3bc6b63b33eeae8d05e7fd97093a

In order to demonstrate the PoC we placed two transactions
txA→B and txB→A with embedded messages on the Bitcoin
Testnet3 blockchain. Here, we denote by tx,X→Y the fact that
a message is sent from X to Y in a transaction sent from
X to some third party. All necessary information to receive
the transferred messages yourself is given in Table II. Both
transactions send bitcoins to an arbitrary letterbox address
while exchanging messages between Alice and Bob. The trans-
action txA→B has two inputs embedding a 20 byte message
from Alice to Bob. The signature of the first input carries the
encrypted message while the signature for the second input
is used to leak skA to Bob. The transaction txB→A contains
a 55 byte message from Bob to Alice. Because the message
exceeds 32 bytes, a third input is needed. The first two input
signatures contain the message and the third signature leaks
skB to Alice. Both transactions transfer all remaining funds to
a new wallet.

Performance Benchmarking the PoC shows that our approach
is practical. The benchmarks we collected are depicted in
Table III. We measured the performance for the unmodified
and the chat version of libsecp256k1. The usage of AES
or additional hash operations does not add significant time
penalties. The main timing difference of about 50µs between
the unmodified library and the chat libsecp256k1 is caused by
the additional group operation during the offline key exchange.

The data throughput is upper-bounded by the capacity
of the blockchain. Currently Bitcoin issues one block with
approx. 2.2k transactions every 10 minutes. Assuming each
transaction has 1.6 inputs (on average, cf. Table IV) and each
input carries 32 B of information, the upper bound for data
transfer of our approach in Bitcoin is about 112.6 kB every
ten minutes or 187.7 B per second. Later blockchains like
EOS, or XRP already offer a much higher capacity as they are
capable of mining thousands of transactions per second [59].
Future blockchain improvements may even allow for 100.000
transactions per second [60].

Table III
BENCHMARKS. ALL VALUES ARE AVERAGED OVER 1000000 RUNS ON AN

INTEL CORE I5-7600 CPU.

Algorithm min (µs) avg (µs) max (µs)

AES-NI-CBC ENC (w/ KE) 0.0612 0.0631 0.0691
AES-NI-CBC DEC (w/ KE) 0.0611 0.0622 0.0639
SHA256 0.525 0.529 0.546
ECDH 49.2 50.2 51.9

NonceGenRFC6979 6.22 6.37 6.56
NonceGenChat 55.2 56.7 58.1

SignBTC 41.5 42.4 43.5
SignChat 90.9 92.9 93.9

E. Practical considerations for a real implementation

Before using our PoC in a practical setting, some additional
considerations should be taken into account.

Exchanging public chat keys When Alice and Bob want
to communicate, they initially have to exchange each others
public chat keys pkChatA and pkChatB . To do so, they can rely
on a public key infrastructure (PKI) [61] as we do not require
the keys to be kept secret13. Any form of communication that
ensures authenticity and integrity is suitable for this initial
step as well. In cases where the pure fact that Alice and
Bob exchange some keys is not to be known by an attacker,
however, more sophisticated methods or a personal meeting
may be required.

Choice of the mailbox address The choice of the mailbox
address is worth a thought. For sure, choosing a mailbox
address that is owned by one of the communication partners
will allow for efficiently receiving messages as the number
of transactions received by the mailbox address and therefore
the number of transactions that have to be searched for hidden
messages will be at a minimum. On the other hand, a random
address receiving many transactions (due to chatting) may
raise suspicion in the context of transaction pattern analysis.
Therefore, it might be wise to agree on multiple mailbox

13In fact, we even assume that pkChatA and pkChatB are known to the attacker.

https://live.blockcypher.com/btc-testnet/address/mpiNLrkV6DpQKDW3oPQm1RXhJ6azf43o5m/
https://live.blockcypher.com/btc-testnet/address/mzvoy8wgtuDB3ng7Ga4758fNPrsFch8mLr/
https://www.blockchain.com/btc-testnet/tx/b282f4f2298f197b2abd848c5da4dc83dd88851e714612785237457f18dab378
https://www.blockchain.com/btc-testnet/tx/fc22fb96908c2c9730b796c0c346e717564e3bc6b63b33eeae8d05e7fd97093a

12

Table IV
DISTRIBUTION OF TRANSACTION INPUTS PER BITCOIN TRANSACTION

MINED BETWEEN FEB. 22. AND FEB. 28., 2021.

#inputs 1 2 3 4 5 6+
percentage 74.29% 13.62% 4.28% 2.02% 1.25% 4.54%

addresses and switch between them or choosing a well known
mailbox address assumed to receive many transactions like
addresses belonging to cryptocurrency exchanges or charity.

Also, Alice may embed messages into regular transactions
that are about to occur anyways. In this case Bob does not
know the mailbox address Alice sent the transaction to, so
he has to scan all transactions on the blockchain for new
messages. During initial setup, all transactions mined into
blocks after Alice and Bob exchanged their public chat keys
have to be searched. Afterward, only transactions in new
blocks have to be searched. For slower blockchains this is
feasible as e. g. new Bitcoin blocks get mined every 8-15
minutes with 1500-2500 transactions each [62], [63]. The
faster the blockchain is, the less efficient becomes the message
receiving algorithm for unknown mailbox addresses while
allowing for a maximum protection against transaction pattern
analysis.

Choice of the blockchain When implementing our approach
in a real chat application, the choice of the underlying
blockchain is important. If the application is only meant to be
used by a small amount of users and only for critical but short
messages, the Bitcoin blockchain might be suitable although
it only allows for a throughput of 187 bytes per second and
requires varying transaction fees of 2 - 60 US dollar per
transaction [64]. For applications with many users, the chosen
blockchain should be capable of mining many transactions
per second. For an example, EOS and XRP are capable of
handling thousands [59] and Ethereum 2.0 even promises
100.000 transactions per second [60]. While, this will still not
be enough to handle services equivalent to WhatsApp which
deals with about 1.2m messages per second [65], a reasonable
chat application for those who really need it can be realized.
Besides the throughput, the transaction fee is important as
well. As messages are embedded into transactions, a fee
charged per transaction is also charged per message. Therefore,
blockchains with little or no transaction fees allow cheaper
messaging. XRP, as an example, charges a fraction of a US
cent per transaction [64].

Multiple transactions vs. multi-input transactions We an-
alyzed all 2,131,422 Bitcoin transactions within a week14

(blocks 671623-672620) for their number of inputs and found
that 25.71% of the transactions had more than one input. In
general, it became obvious that transactions with more inputs
are less likely to occur. A true chat client implementation
should take this distribution into account. This means that
in practice, a balance between sending messages in multi-
input transactions and multiple transactions should be chosen
to keep the communication hidden.

14February 22. - 28., 2021

Dealing with a malicious receiver If Bob is assumed to be
malicious, Alice has to take extra care of her coins. As soon as
Alice publishes a transaction with a signature that uses kChat as
nonce Bob can compute Alice’s private signature key skA and
therefore owns the wallet. Hence Bob is able to generate valid
transactions for that wallet and can thus spend any remaining
funds. This may even be true for the funds being transferred
in the very transaction that leaks skA to Bob if the blockchain
uses the UTXO model. This is because Bob may learn the
transaction before it is mined into a block. If Bob computes
skA and issues a new transaction spending the same UTXOs
again but raises the transaction fee, then it is more likely that
Bob’s new transaction gets mined and Alice’s transaction is
discarded. To overcome this problem, only small funds should
be transferred in the transaction leaking skA and no funds
should remain in the wallet afterwards. This may be achieved
by sending a message using a multi-input transaction where no
signature leaks skA and all but little coins are transferred to a
save wallet. After the transaction is mined into a block, Alice
may publish the transaction spending the remaining funds and
leaking skA. Now Bob can read the message contained in the
previous transaction but has no motivation to betray Alice.

Forward secrecy and disappearing messages In cases where
a UTXO-based blockchain is used and Bob is trustworthy,
Alice and Bob can cooperate to achieve forward secrecy and
disappearing messages. To do so, they can apply the cleaning
scheme proposed in [66]. Here, Bob basically behaves just
like in the malicious case described above: After computing
skA, Bob issues a new transaction with a higher transaction
fee that double-spends the UTXOs Alice used for leaking
skA. The higher fee is important to increase the chance
of Bob’s transaction being mined into a block. This leads
to the rejection of Alice’s transaction because of double-
spending. Therefore, an attacker cannot read the messages on
the blockchain even though they might get hold of Alice’s or
Bob’s chat key pair in the future because they cannot get a hold
of skA anymore. Also, disappearing messages can be realized
by having Bob double-spend all UTXOs used in transactions
that Alice embeds messages in. In this case, Alice and Bob
have to be online at the same time as the blockchain cannot
be searched for new messages later on. However, we have to
note that this cleaning scheme is not guaranteed to work as
higher fees do not guarantee but only increase the probability
that the double-spending transactions will be mined first.

V. RELATED WORK

Besides the works already mentioned in Section I, there
have been several other studies with the goal on building
covert channels in blockchain systems. For example, Basuki et
al. [67] give a covert channel encoding scheme base on smart
contracts with a joint use of image steganography. Abdulaziz et
al. [68] create a decentralized messaging application utilizing
Whisper – the communication protocol of Ethereum – to send
encrypted messages both securely and anonymously. In [69],
similarly as in [68] and [70], the authors use Whisper which
relies on payload to store information useful for the realization
of covert communication. All of these papers rely on specific

https://www.blockchain.com/btc/block/671623
https://www.blockchain.com/btc/block/672620

13

properties of the underlying blockchain and are therefore not
easily adoptable to other blockchains. We circumvent this
issue by embedding the messages in signatures generated by
schemes that are widely used in blockchain systems.

Ali et al. [30] propose to use rejection sampling to embed
messages in ECDSA signatures. Rejection sampling samples
random nonces k until a pair (r, s) is found such that
PRFkChat((r, s)) = amsg for some pseudorandom function
PRF. It is known that this approach is undetectable (see
e. g. [14], [3]), but has a very limited rate logarithmic in the
length of the nonce. Partala [71] proposes a blockchain-based
covert channel in which a transaction can carry one bit in
the field of payments. While this scheme again is provably
undetectable, its embedding rate is too low to be used in real
applications. While Zhang et al. [72] improve the method of
[71] using the special addresses generated by a Bitcoin address
generator, the embedding rate is still too low to realize a chat.
In contrast, our embedding scheme is provable secure while
allowing for a high embedding rate with a constant overhead.

Some works also use Bitcoin’s output script function OP_-
RETURN to directly embed messages in transactions [30], [66]
or to identify transactions that embed messages [73]. While
Ali et al. [30] do not describe how to encode messages for the
script, Yin et al. [66] embed Base64-encoded ciphertexts using
a symmetric encryption scheme. With high probability, both
methods are detectable by statistical tests as they do not take
the distribution of real OP_RETURN payloads into account.
Therefore, these methods cannot be used in practice. Tian et
al. [73] do take the distribution into account when generating
identifiers for their transactions. As embedding technique, they
replace the private signing key of the Bitcoin address with a
ciphertext resulting from symmetrically encrypting amsg. To
leak the private key d, they reuse the nonce k that is involved
in the signing process. Leaking d through nonce reuse is also
discussed by Ali et al. [30] and Frkat et al. [31] who both
embed messages by replacing the nonce with a symmetrically
computed ciphertext of amsg. Reusing the nonce results in
the first part r of the signatures being equal which makes
this technique easily detectable by an adversary. Note that
it is in fact known that there are several parties scanning
the blockchain for such weak signatures (see e. g. [50]). In
addition to being detectable, an adversary can compute d as
well and therefore impersonate the owner of the corresponding
Bitcoin address. This is a major problem which renders this
technique impractical.

To avoid the reuse of the nonce k, Frkat et al. [31] also
propose a more involved method. The sender first symmetri-
cally encrypts the messages amsg = amsg1, . . . , amsg` using
kChat into ciphertexts c1, . . . , c` and uses these ciphertexts
c1, . . . , c` as nonces in the production of the signature. Finally,
to construct the signature ` + 1, it uses H(kChat) as nonce.
The extractor stores all of the observed signatures and tries
to reconstruct the private signing key d by using H(kChat) as
nonce applying the attacks described in Section II-D1. For the
signature `+1, the extractor succeeds and thus reveals d. Using
d, the extractor is able to reconstruct c1, . . . , c` and to decrypt
them to the message amsg. As the attacker A can not observe
the internal randomness used by the signing algorithm, all of

the values c1, . . . , c`, as well as H(kChat) are indistinguishable
from random nonces. This approach is the only one in the
current literature that offers a reasonable bandwidth and might
be secure. However, there are some drawbacks when using
it for implementing a chat. First of all, the security of the
embedding scheme remains unproven. Second, as Frkat et al.
design their stegosystem to be used by botnets, communication
is only possible in one direction while the reverse direction
is declared out of scope. Also, sender and receiver have to
agree on an initial symmetric key/nonce. In the context of
botnets, this value can be hard-coded into the bot software, but
for a chat application, this is rather unhandy. Each embedded
message then has to contain the symmetric key that will be
used as nonce k and for encrypting the next message. This
effectively reduces the bandwidth of the channel. In contrast,
our approach addresses all of these issues. We are provably
undetectable while allowing for bidirectional communication
and efficient key distribution without having to beforehand.

Another recent line of research, which is closely related
to our work, deals with algorithm substitution attacks (ASA),
and particularly with ASAs against digital signature schemes
[14], [74], [75], [13]. Although the main focus of this paper
are subliminal channels in digital signatures, we note that our
approach can be used to realize an asymmetric ASA against
ECDSA as well as against any splittable signature scheme (for
a definition, see [75]). The resulting ASA would look similar
to the attack given recently by Wang et al. [75], but would
have the advantage to embed arbitrary messages, like e. g.,
sensitive data of users, and not just the secret signing key.

VI. CONCLUSION

In this work, we presented a new method to hide data in dig-
ital signatures and applied it to enable subliminal bidirectional
communication in blockchain transactions in an asymmetric
key scenario. We can hide messages in arbitrary transactions,
and can thus apply our technique to arbitrary blockchains. The
only requirement is the use of a splittable signature scheme for
the transactions, such as the widely used ECDSA or EdDSA.
Our subliminal communication channel follows a public-key
approach and thus does not rely on hard-coded secrets as
used for prior unidirectional proposals. Unlike classic secure
messaging, where the content of messages is protected and
private, but communication patterns or connection graphs are
accessible to the operator of the messaging service, our scheme
hides both the content and the mere existence of messages,
thus leaving no metadata to be analyzed by other parties.
We have shown that the channel is undetectable, meaning
that both the content is secure and there is no externally
observable metadata. Furthermore, the scheme features a low
overhead of just one signature. To show that the protocol is
practical, we implemented a proof-of-concept chat client for
the Bitcoin blockchain and embedded chat messages in the
Bitcoin Testnet3.

REFERENCES

[1] G. J. Simmons, “The prisoners’ problem and the subliminal channel,”
in Advances in Cryptology – CRYPTO ’83, D. Chaum, Ed.
Springer, 1984, pp. 51–67. [Online]. Available: https://doi.org/10.1007/
978-1-4684-4730-9 5

https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-1-4684-4730-9_5

14

[2] C. Cachin, “An information-theoretic model for steganography,”
Information and Computation, vol. 192, no. 1, pp. 41–56, 2004.
[Online]. Available: https://doi.org/10.1007/3-540-49380-8 21

[3] N. Hopper, L. von Ahn, and J. Langford, “Provably secure
steganography,” IEEE Transactions on Computers, vol. 58, no. 5, pp.
662–676, 2009. [Online]. Available: https://doi.org/10.1109/TC.2008.
199

[4] S. Berndt and M. Liśkiewicz, “On the gold standard for security of
universal steganography,” in Advances in Cryptology – EUROCRYPT
2018, J. B. Nielsen and V. Rijmen, Eds. Springer, 2018, pp. 29–60.
[Online]. Available: https://doi.org/10.1007/978-3-319-78381-9 2

[5] T. Horel, S. Park, S. Richelson, and V. Vaikuntanathan, “How
to subvert backdoored encryption: Security against adversaries that
decrypt all ciphertexts,” in 10th Innovations in Theoretical Computer
Science Conference (ITCS 2019), ser. Leibniz International Proceedings
in Informatics (LIPIcs), A. Blum, Ed., vol. 124. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018, pp. 42:1–42:20. [Online].
Available: https://doi.org/10.4230/LIPIcs.ITCS.2019.42

[6] T. Agrikola, G. Couteau, Y. Ishai, S. Jarecki, and A. Sahai, “On
pseudorandom encodings,” in Theory of Cryptography, R. Pass and
K. Pietrzak, Eds. Springer, 2020, pp. 639–669. [Online]. Available:
https://doi.org/10.1007/978-3-030-64381-2 23

[7] G. Kaptchuk, T. M. Jois, M. Green, and A. D. Rubin, “Meteor:
Cryptographically secure steganography for realistic distributions,” in
Proceedings of the 28nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’21. ACM, 2021, (accepted).

[8] A. Young and M. Yung, “Kleptography: Using cryptography against
cryptography,” in Advances in Cryptology – EUROCRYPT ’97,
W. Fumy, Ed. Springer, 1997, pp. 62–74. [Online]. Available:
https://doi.org/10.1007/3-540-69053-0 6

[9] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Cliptography: Clipping
the power of kleptographic attacks,” in Advances in Cryptology –
ASIACRYPT 2016, J. H. Cheon and T. Takagi, Eds. Springer, 2016, pp.
34–64. [Online]. Available: https://doi.org/10.1007/978-3-662-53890-6
2

[10] ——, “Generic semantic security against a kleptographic adversary,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. ACM, 2017, pp. 907—-922.
[Online]. Available: https://doi.org/10.1145/3133956.3133993

[11] M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric
encryption against mass surveillance,” in Advances in Cryptology –
CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Springer, 2014, pp.
1–19. [Online]. Available: https://doi.org/10.1007/978-3-662-44371-2 1

[12] M. Bellare, J. Jaeger, and D. Kane, “Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. ACM, 2015, pp. 1431––1440. [Online].
Available: https://doi.org/10.1145/2810103.2813681

[13] G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signatures:
Definitions, constructions and applications,” Theoretical Computer
Science, vol. 820, pp. 91–122, 2020. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2020.03.021

[14] S. Berndt and M. Liśkiewicz, “Algorithm substitution attacks from
a steganographic perspective,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. ACM, 2017, pp. 1649––1660. [Online]. Available:
https://doi.org/10.1145/3133956.3133981

[15] R. Chen, X. Huang, and M. Yung, “Subvert KEM to Break DEM:
Practical algorithm-substitution attacks on public-key encryption,”
in Advances in Cryptology – ASIACRYPT 2020, S. Moriai and
H. Wang, Eds. Springer, 2020, pp. 98–128. [Online]. Available:
https://doi.org/10.1007/978-3-030-64834-3 4

[16] L. M. Abbott, “Civil resistance in the Arab Spring: Triumphs and
disasters,” International Affairs, vol. 94, no. 1, pp. 212–213, 2016.
[Online]. Available: https://doi.org/10.1093/ia/iix260

[17] P. N. Howard and M. M. Hussain, “The upheavals in Egypt and Tunisia:
The role of digital media,” Journal of democracy, vol. 22, no. 3, pp.
35–48, 2011. [Online]. Available: https://doi.org/10.1353/jod.2011.0041

[18] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” in 13th USENIX
Security Symposium (USENIX Security 04). USENIX Associa-
tion, 2004. [Online]. Available: https://www.usenix.org/conference/
13th-usenix-security-symposium/tor-second-generation-onion-router

[19] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung,
F. Wang, and D. Boneh, “Stegotorus: A camouflage proxy for the Tor
anonymity system,” in Proceedings of the 2012 ACM Conference on

Computer and Communications Security, ser. CCS ’12. ACM, 2012, p.
109–120. [Online]. Available: https://doi.org/10.1145/2382196.2382211

[20] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa,
M. Russo, and A. Pescapé, “Analysis of country-wide internet outages
caused by censorship,” IEEE/ACM Transactions on Networking,
vol. 22, no. 06, pp. 1964–1977, 2014. [Online]. Available: https:
//doi.org/10.1109/TNET.2013.2291244

[21] D. Cole, “We Kill People Based on Metadata,” May 10,
2014. [Online]. Available: https://www.nybooks.com/daily/2014/05/
10/we-kill-people-based-metadata/

[22] G. J. Simmons, “The subliminal channel and digital signatures,”
in Advances in Cryptology – EUROCRYPT ’84, ser. Lecture Notes
in Computer Science, T. Beth, N. Cot, and I. Ingemarsson,
Eds., vol. 209. Springer, 1985, pp. 364–378. [Online]. Available:
https://doi.org/10.1007/3-540-39757-4 25

[23] ——, “Subliminal communication is easy using the DSA,” in Advances
in Cryptology – EUROCRYPT ’93. Springer, 1994, pp. 218–232.
[Online]. Available: https://doi.org/10.1007/3-540-48285-7 18

[24] M. Burmester, Y. G. Desmedt, T. Itoh, K. Sakurai, H. Shizuya,
and M. Yung, “A progress report on subliminal-free channels,” in
Information Hiding, R. Anderson, Ed. Springer, 1996, pp. 157–168.
[Online]. Available: https://doi.org/10.1007/3-540-61996-8 39

[25] J.-M. Bohli and R. Steinwandt, “On subliminal channels in deterministic
signature schemes,” in Information Security and Cryptology – ICISC
2004, C.-s. Park and S. Chee, Eds. Springer, 2005, pp. 182–194.
[Online]. Available: https://doi.org/10.1007/11496618 14

[26] J.-M. Bohli, M. I. González Vasco, and R. Steinwandt, “A subliminal-
free variant of ECDSA,” in Information Hiding, J. L. Camenisch, C. S.
Collberg, N. F. Johnson, and P. Sallee, Eds. Springer, 2007, pp. 375–
387. [Online]. Available: https://doi.org/10.1007/978-3-540-74124-4 25

[27] M. Lepinksi, S. Micali, and a. shelat, “Collusion-free protocols,” in
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, ser. STOC ’05. ACM, 2005, pp. 543—-552. [Online].
Available: https://doi.org/10.1145/1060590.1060671

[28] J. Alwen, J. Katz, Y. Lindell, G. Persiano, I. Visconti et al., “Collusion-
free multiparty computation in the mediated model,” in Advances in
Cryptology - CRYPTO 2009, S. Halevi, Ed. Springer, 2009, pp. 524–
540. [Online]. Available: https://doi.org/10.1007/978-3-642-03356-8 31

[29] A. R. Hartl, R. Annessi, and T. Zseby, “A subliminal channel in EdDSA:
Information leakage with high-speed signatures,” in Proceedings of the
2017 International Workshop on Managing Insider Security Threats,
ser. MIST ’17. ACM, 2017, pp. 67—-78. [Online]. Available:
https://doi.org/10.1145/3139923.3139925

[30] S. T. Ali, P. McCorry, P. H. Lee, and F. Hao, “ZombieCoin
2.0: Managing next-generation botnets using Bitcoin,” Int. J. Inf.
Sec., vol. 17, no. 4, pp. 411–422, 2018. [Online]. Available:
https://doi.org/10.1007/s10207-017-0379-8

[31] D. Frkat, R. Annessi, and T. Zseby, “ChainChannels: Private
botnet communication over public blockchains,” in 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2018, pp. 1244–1252. [Online]. Available:
https://doi.org/10.1109/Cybermatics 2018.2018.00219

[32] F. Gao, L. Zhu, K. Gai, C. Zhang, and S. Liu, “Achieving a covert
channel over an open blockchain network,” IEEE Network, vol. 34,
no. 2, pp. 6–13, 2020. [Online]. Available: https://doi.org/10.1109/
MNET.001.1900225

[33] Y. Zhang, H. Li, X. Li, and H. Zhu, “Provably secure and subliminal-
free variant of Schnorr signature,” in Information and Communication
Technology, K. Mustofa, E. J. Neuhold, A. M. Tjoa, E. Weippl,
and I. You, Eds. Springer, 2013, pp. 383–391. [Online]. Available:
https://doi.org/10.1007/978-3-642-36818-9 42

[34] A. R. Hartl, R. Annessi, and T. Zseby, “Subliminal channels in
high-speed signatures,” J. Wirel. Mob. Networks Ubiquitous Comput.
Dependable Appl., vol. 9, no. 1, pp. 30–53, 2018. [Online]. Available:
https://doi.org/10.22667/JOWUA.2018.03.31.030

[35] S. Katzenbeisser and F. A. P. Petitcolas, “Defining security in
steganographic systems,” in Security and Watermarking of Multimedia
Contents IV, E. J. Delp III and P. W. Wong, Eds., vol. 4675,
International Society for Optics and Photonics. SPIE, 2002, pp. 50–56.
[Online]. Available: https://doi.org/10.1117/12.465313

[36] L. von Ahn and N. Hopper, “Public-key steganography,” in Advances
in Cryptology - EUROCRYPT 2004, C. Cachin and J. L. Camenisch,
Eds. Springer, 2004, pp. 323–341. [Online]. Available: https:
//doi.org/10.1007/978-3-540-24676-3 20

https://doi.org/10.1007/3-540-49380-8_21
https://doi.org/10.1109/TC.2008.199
https://doi.org/10.1109/TC.2008.199
https://doi.org/10.1007/978-3-319-78381-9_2
https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.1007/978-3-030-64381-2_23
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1016/j.tcs.2020.03.021
https://doi.org/10.1016/j.tcs.2020.03.021
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1093/ia/iix260
https://doi.org/10.1353/jod.2011.0041
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.1145/2382196.2382211
https://doi.org/10.1109/TNET.2013.2291244
https://doi.org/10.1109/TNET.2013.2291244
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://doi.org/10.1007/3-540-39757-4_25
https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.1007/3-540-61996-8_39
https://doi.org/10.1007/11496618_14
https://doi.org/10.1007/978-3-540-74124-4_25
https://doi.org/10.1145/1060590.1060671
https://doi.org/10.1007/978-3-642-03356-8_31
https://doi.org/10.1145/3139923.3139925
https://doi.org/10.1007/s10207-017-0379-8
https://doi.org/10.1109/Cybermatics_2018.2018.00219
https://doi.org/10.1109/MNET.001.1900225
https://doi.org/10.1109/MNET.001.1900225
https://doi.org/10.1007/978-3-642-36818-9_42
https://doi.org/10.22667/JOWUA.2018.03.31.030
https://doi.org/10.1117/12.465313
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-3-540-24676-3_20

15

[37] N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai, “Covert multi-party
computation,” in 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07). IEEE, 2007, pp. 238–248. [Online].
Available: https://doi.org/10.1109/FOCS.2007.61

[38] C. Cho, D. Dachman-Soled, and S. Jarecki, “Efficient concurrent
covert computation of string equality and set intersection,” in Topics in
Cryptology - CT-RSA 2016, K. Sako, Ed. Springer, 2016, pp. 164–179.
[Online]. Available: https://doi.org/10.1007/978-3-319-29485-8 10

[39] N. Fazio, A. R. Nicolosi, and I. M. Perera, “Broadcast
steganography,” in Topics in Cryptology – CT-RSA 2014,
J. Benaloh, Ed. Springer, 2014, pp. 64–84. [Online]. Available:
https://doi.org/10.1007/978-3-319-04852-9 4

[40] V. Goyal and A. Jain, “On the round complexity of covert computation,”
in Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, ser. STOC ’10. ACM, 2010, pp. 191––200. [Online].
Available: https://doi.org/10.1145/1806689.1806717

[41] S. K. Jakobsen and C. Orlandi, “How to bootstrap anonymous
communication,” in Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, ser. ITCS ’16. ACM,
2016, pp. 333—-344. [Online]. Available: https://doi.org/10.1145/
2840728.2840743

[42] L. von Ahn, N. Hopper, and J. Langford, “Covert two-party
computation,” in Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, ser. STOC ’05. ACM, 2005,
pp. 513––522. [Online]. Available: https://doi.org/10.1145/1060590.
1060668

[43] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
CRC Press, Nov 2014.

[44] O. Goldreich, Ed., Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali. ACM, 2019.
[Online]. Available: https://doi.org/10.1145/3335741

[45] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Tech.
Rep., 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[46] A. M. Antonopoulos, Mastering Bitcoin: Programming the open
blockchain, 2nd ed. O’Reilly Media, Inc., Jul 2017. [Online].
Available: https://github.com/bitcoinbook/bitcoinbook

[47] J. Brendel, C. Cremers, D. Jackson, and M. Zhao, “The provable
security of Ed25519: Theory and practice,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, May 2021, pp. 1659–
1676. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP40001.2021.00042

[48] FIPS PUB 186-4: Digital Signature Standard (DSS), National
Institute of Standards and Technology, Jul 2013. [Online]. Available:
https://doi.org/10.6028/NIST.FIPS.186-4

[49] M. Fersch, E. Kiltz, and B. Poettering, “On the one-per-message
unforgeability of (EC)DSA and its variants,” in Theory of Cryptography.
Springer, 2017, pp. 519–534. [Online]. Available: https://doi.org/10.
1007/978-3-319-70503-3 17

[50] J. Breitner and N. Heninger, “Biased Nonce Sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies,” in Financial
Cryptography and Data Security, I. Goldberg and T. Moore, Eds.
Springer, 2019, pp. 3–20. [Online]. Available: https://doi.org/10.1007/
978-3-030-32101-7 1

[51] D. R. L. Brown, SEC 2: Recommended Elliptic Curve Domain
Parameters, Certicom Research, Jan 2010, version 2.0. [Online].
Available: https://www.secg.org/sec2-v2.pdf

[52] E. Fast, “Cryptography behind the top 100 cryptocurrencies,” http:
//ethanfast.com/top-crypto.html, Feb 2021, accessed 06.08.2021, 17:03h.

[53] NIST Special Publication 800-56A: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography,
National Institute of Standards and Technology, Apr 2018, rev. 3.
[Online]. Available: https://doi.org/10.6028/NIST.SP.800-56Ar3

[54] D. R. L. Brown, SEC 1: Elliptic Curve Cryptography, Certicom
Research, May 2009, version 2.0. [Online]. Available: https://www.
secg.org/sec1-v2.pdf

[55] ——, “Generic groups, collision resistance, and ECDSA,” Des. Codes
Cryptogr., vol. 35, no. 1, pp. 119–152, 2005. [Online]. Available:
https://doi.org/10.1007/s10623-003-6154-z

[56] M. Fersch, E. Kiltz, and B. Poettering, “On the provable security
of (EC)DSA signatures,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’16. ACM, 2016, pp. 1651––1662. [Online]. Available: https:
//doi.org/10.1145/2976749.2978413

[57] A. Bogdanov and A. Rosen, “Pseudorandom functions: Three decades
later,” in Tutorials on the Foundations of Cryptography: Dedicated to
Oded Goldreich, Y. Lindell, Ed. Springer, 2017, pp. 79–158. [Online].
Available: https://doi.org/10.1007/978-3-319-57048-8 3

[58] S. Gueron, “Intel Advanced Encryption Standard (AES) New Instruc-
tions Set,” Intel Corporation, May 2010, rev. 3.0, white paper. [On-
line]. Available: https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf

[59] A. Bhalla, “Top cryptocurrencies with their high transaction
speeds,” https://www.blockchain-council.org/cryptocurrency/
top-cryptocurrencies-with-their-high-transaction-speeds/, Aug 2021,
accessed 09.08.2021, 12:33h.

[60] V. Buterin, “Eth2 scaling for data,” https://twitter.com/VitalikButerin/
status/1277961594958471168, Jun 2020, accessed 09.08.2021, 12:45h.

[61] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering –
Design Principles and Practical Applications. Wiley, 2010, ch. 2.5,
pp. 29–30.

[62] Blockchain, “Median confirmation time,” https://www.blockchain.com/
charts/median-confirmation-time, May 2021, accessed 04.05.2021,
19:40h.

[63] ——, “Average transactions per block,” https://www.blockchain.com/
charts/n-transactions-total, May 2021, accessed 04.05.2021, 19:39h.

[64] BitInfoCharts, “Bitcoin, XRP avg. transaction fee historical chart,”
https://bitinfocharts.com/en/comparison/transactionfees-btc-xrp.html,
Jul 2021, accessed 09.08.2021, 15:32h.

[65] M. Singh, “WhatsApp is now delivering roughly 100
billion messages a day,” https://techcrunch.com/2020/10/29/
whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/,
Oct 2020, access 09.08.2021, 14:43h.

[66] J. Yin, X. Cui, C. Liu, Q. Liu, T. Cui, and Z. Wang, “CoinBot:
A covert botnet in the cryptocurrency network,” in Information and
Communications Security, W. Meng, D. Gollmann, C. D. Jensen,
and J. Zhou, Eds. Springer, 2020, pp. 107–125. [Online]. Available:
https://doi.org/10.1007/978-3-030-61078-4 7

[67] A. I. Basuki and D. Rosiyadi, “Joint transaction-image steganography
for high capacity covert communication,” in 2019 International
Conference on Computer, Control, Informatics and its Applications
(IC3INA). IEEE, 2019, pp. 41–46. [Online]. Available: https:
//doi.org/10.1109/IC3INA48034.2019.8949606

[68] M. Abdulaziz, D. Çulha, and A. Yazici, “A decentralized application
for secure messaging in a trustless environment,” in 2018 International
Congress on Big Data, Deep Learning and Fighting Cyber Terrorism
(IBIGDELFT). IEEE, 2018, pp. 1–5. [Online]. Available: https:
//doi.org/10.1109/IBIGDELFT.2018.8625362

[69] L. Zhang, Z. Zhang, Z. Jin, Y. Su, and Z. Wang, “An approach of covert
communication based on the Ethereum whisper protocol in blockchain,”
International Journal of Intelligent Systems, vol. 36, no. 2, pp. 962–996,
2021. [Online]. Available: https://doi.org/10.1002/int.22327

[70] S. Liu, Z. Fang, F. Gao, B. Koussainov, Z. Zhang, J. Liu, and
L. Zhu, “Whispers on Ethereum: Blockchain-based covert data
embedding schemes,” in Proceedings of the 2nd ACM International
Symposium on Blockchain and Secure Critical Infrastructure, ser.
BSCI ’20. ACM, 2020, pp. 171––179. [Online]. Available: https:
//doi.org/10.1145/3384943.3409433

[71] J. Partala, “Provably secure covert communication on blockchain,”
Cryptography, vol. 2, no. 3, p. 18, 2018. [Online]. Available:
https://doi.org/10.3390/cryptography2030018

[72] L. Zhang, Z. Zhang, W. Wang, R. Waqas, C. Zhao, S. Kim,
and H. Chen, “A covert communication method using special
Bitcoin addresses generated by Vanitygen,” Computers, Materials
and Continua, vol. 65, pp. 495–510, 2020. [Online]. Available:
https://doi.org/10.32604/cmc.2020.011554

[73] J. Tian, G. Gou, C. Liu, Y. Chen, G. Xiong, and Z. Li, “DLchain:
A covert channel over blockchain based on dynamic labels,” in
Information and Communications Security, J. Zhou, X. Luo, Q. Shen,
and Z. Xu, Eds. Springer, 2020, pp. 814–830. [Online]. Available:
https://doi.org/10.1007/978-3-030-41579-2 47

[74] S. S. M. Chow, A. Russell, Q. Tang, M. Yung, Y. Zhao, and H.-S.
Zhou, “Let a non-barking watchdog bite: Cliptographic signatures with
an offline watchdog,” in Public-Key Cryptography – PKC 2019, D. Lin
and K. Sako, Eds. Springer, 2019, pp. 221–251. [Online]. Available:
https://doi.org/10.1007/978-3-030-17253-4 8

[75] Y. Wang, R. Chen, C. Liu, B. Wang, and Y. Wang, “Asymmetric
subversion attacks on signature and identification schemes,” Personal
and Ubiquitous Computing, pp. 1–14, 2019. [Online]. Available:
https://doi.org/10.1007/s00779-018-01193-x

APPENDIX

https://doi.org/10.1109/FOCS.2007.61
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-04852-9_4
https://doi.org/10.1145/1806689.1806717
https://doi.org/10.1145/2840728.2840743
https://doi.org/10.1145/2840728.2840743
https://doi.org/10.1145/1060590.1060668
https://doi.org/10.1145/1060590.1060668
https://doi.org/10.1145/3335741
https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoinbook/bitcoinbook
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00042
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00042
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://www.secg.org/sec2-v2.pdf
http://ethanfast.com/top-crypto.html
http://ethanfast.com/top-crypto.html
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://doi.org/10.1007/s10623-003-6154-z
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1007/978-3-319-57048-8_3
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.blockchain-council.org/cryptocurrency/top-cryptocurrencies-with-their-high-transaction-speeds/
https://www.blockchain-council.org/cryptocurrency/top-cryptocurrencies-with-their-high-transaction-speeds/
https://twitter.com/VitalikButerin/status/1277961594958471168
https://twitter.com/VitalikButerin/status/1277961594958471168
https://www.blockchain.com/charts/median-confirmation-time
https://www.blockchain.com/charts/median-confirmation-time
https://www.blockchain.com/charts/n-transactions-total
https://www.blockchain.com/charts/n-transactions-total
https://bitinfocharts.com/en/comparison/transactionfees-btc-xrp.html
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://doi.org/10.1007/978-3-030-61078-4_7
https://doi.org/10.1109/IC3INA48034.2019.8949606
https://doi.org/10.1109/IC3INA48034.2019.8949606
https://doi.org/10.1109/IBIGDELFT.2018.8625362
https://doi.org/10.1109/IBIGDELFT.2018.8625362
https://doi.org/10.1002/int.22327
https://doi.org/10.1145/3384943.3409433
https://doi.org/10.1145/3384943.3409433
https://doi.org/10.3390/cryptography2030018
https://doi.org/10.32604/cmc.2020.011554
https://doi.org/10.1007/978-3-030-41579-2_47
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/s00779-018-01193-x

16

G1

1 : (skChatA , pkChatB , amsgi, vki) := dataChat

2 : kChati ← H(ECDH(skChatA , pkChatB)‖vki)
3 : for i = 1 . . . cnt :

4 : kChati ← H(kChati)

5 : if amsgi = ∅ :

6 : return kChati

7 : iv := H(H(tx)‖kChati)[0 : 128]

8 : return ctxChat ←$AESEnc
CBC(amsgi, k

Chat
i , iv)

G2

1 : (skChatA , pkChatB , amsgi, vki) := dataChat

2 : g←$E

3 : kChati ← H(g‖vki)
4 : for i = 1 . . . cnt :

5 : kChati ← H(kChati)

6 : if amsgi = ∅ :

7 : return kChati

8 : iv := H(H(tx)‖kChati)[0 : 128]

9 : return ctxChat ←$AESEnc
CBC(amsgi, k

Chat
i , iv)

G3

1 : (skChatA , pkChatB , amsgi, vki) := dataChat

2 : kChati ←$ {0, . . . , 2256 − 1}
3 : for i = 1 . . . cnt :

4 : kChati ← H(kChati)

5 : if amsgi = ∅ :

6 : return kChati

7 : iv←$ {0, . . . , 2128 − 1}
8 : return ctxChat ←$AESEnc

CBC(amsgi, k
Chat
i , iv)

G4

1 : (skChatA , pkChatB , amsgi, vki) := dataChat

2 : kChati ←$ {0, . . . , 2256 − 1}
3 : if amsgi = ∅ :

4 : return kChati

5 : iv←$ {0, . . . , 2128 − 1}
6 : return ctxChat ←$AESEnc

CBC(amsgi, k
Chat
i , iv)

G5

1 : (skChatA , pkChatB , amsgi, vki) := dataChat

2 : kChati ←$ {0, . . . , 2256 − 1}
3 : if amsgi = ∅ :

4 : return kChati

5 : iv←$ {0, . . . , 2128 − 1}
6 : return ctxChat ←$ {0, . . . , 2256 − 1}

G6

1 : return ctxChat ←$ {0, . . . , 2256 − 1}

G7

1 : return ctxChat ←$ {1, . . . , n− 1}

Figure 10. Games used in the proof of Lemma 1

	Introduction
	Preliminaries
	Steganography
	Bitcoin Transactions
	Signature Schemes
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Basic Attacks against ECDSA
	ECDSA in blockchains
	Comparison to EdDSA

	Elliptic Curve Diffie-Hellman Key Exchange (ECDH)
	ECDH in libsecp256k1

	Cryptographic Assumptions

	Our Model
	Chat Scheme
	Security Model

	Subliminal Chat
	A Naive Approach
	Theory
	Considering multi-input transactions
	PoC implementation
	Practical considerations for a real implementation

	Related Work
	Conclusion
	References
	Appendix

