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Dept. of Computer Engineering

Bilkent University
Ankara, Turkey

cicek@cs.bilkent.edu.tr

Abstract—Distributed deep learning frameworks, such as split
learning, have recently been proposed to enable a group of par-
ticipants to collaboratively train a deep neural network without
sharing their raw data. Split learning in particular achieves this
goal by dividing a neural network between a client and a server so
that the client computes the initial set of layers, and the server
computes the rest. However, this method introduces a unique
attack vector for a malicious server attempting to steal the client’s
private data: the server can direct the client model towards
learning a task of its choice. With a concrete example already
proposed, such training-hijacking attacks present a significant
risk for the data privacy of split learning clients.

In this paper, we propose SplitGuard, a method by which a
split learning client can detect whether it is being targeted by a
training-hijacking attack or not. We experimentally evaluate its
effectiveness, and discuss in detail various points related to its
use. We conclude that SplitGuard can effectively detect training-
hijacking attacks while minimizing the amount of information
recovered by the adversaries.

Index Terms—machine learning, data privacy, split learning

I. INTRODUCTION

As neural networks, and more specifically deep neural
networks (DNNs), began outperforming traditional machine
learning methods in tasks such as natural language processing
[1], they became the workhorses driving the field of machine
learning forward. However, effectively training a DNN re-
quires large amounts of computational power and high-quality
data [2]. On the other hand, relying on a sustained increase
in computing power is unsustainable [3], and it may not be
possible to share data freely in fields such as healthcare [4],
[5].

To alleviate these two problems, distributed deep learning
methods such as split learning (SplitNN) [6], [7] and federated
learning (FL) [8]–[10] have been proposed. They fulfill their
purpose by enabling a group of data-holders to collaboratively
train a DNN without sharing their private data, while offload-
ing some of the computational work to a more powerful server.

In FL, each client trains a DNN using its local data, and
sends its parameter updates to the central server; the server
then aggregates the updates in some way (e.g. average) and
sends the aggregated results back to each client. In SplitNN,
a DNN is split into two parts and the clients train in a round-
robin manner. The client taking its turn computes the first few
layers of the DNN and sends the output to the server, who then

computes the DNN’s overall output and starts the parameter
updates by calculating the loss value. In both methods, no
client shares its private data with another party, and all clients
end up with the same model.

Motivation. In SplitNN, the server has control over the
parameter updates being propagated back to each client model.
This creates a new attack vector, that has already been ex-
ploited in an attack proposed by Pasquini et al. [11], for a
malicious server trying to infer the clients’ private data. By
contrast, this attack vector does not exist in federated learning,
since the clients can trivially check if their model is aligned
with their goals by calculating its accuracy. The same process
is not possible in split learning, since the adversary can train
a legitimate model on the side using the clients’ intermediate
outputs, and use that model for a performance measure. In
fact, any such detection protocol that expects cooperation from
the server is doomed to failure through the server’s use of a
legitimate surrogate model as described.

Contributions. Our main contribution in this paper is Split-
Guard, a protocol by which a SplitNN client can detect, with-
out expecting cooperation from the server, if its local model is
being hijacked. To the best of our knowledge, SplitGuard is the
first attempt at detecting training-hijacking attacks against split
learning clients. To achieve our goal, we utilize the observation
that if a client’s local model is learning the intended task,
then it should behave in a drastically different way when the
task is reversed (i.e. when success in the original task implies
failure in the new task). We demonstrate using three commonly
used benchmark datasets (MNIST [12], Fashion-MNIST [13],
and CIFAR10 [14]) that SplitGuard effectively detects and
mitigates the only training-hijacking attack proposed so far
[11]. We further argue that it is generalizable to any such
training-hijacking attack.

In the rest of the paper, we first provide the necessary
background on DNNs and SplitNN, and explain some of the
related work. We then describe SplitGuard, experimentally
evaluate it, and discuss certain points pertaining to its use.
We conclude by providing an outline of possible future work
related to SplitGuard.

Supplementary code for the paper can be found at
https://github.com/ege-erdogan/splitguard.

https://github.com/ege-erdogan/splitguard


(a) With label-sharing. (b) Without label-sharing.

Fig. 1: Two different split learning setups. Arrows denote the forward and backward passes, starting with the examples X , and
propagating backwards after the loss computation using the labels Y . In Figure 1a, clients send the labels to the server along
with the intermediate outputs. In Figure 1b, the model terminates on the client side, and thus the clients do not have to share
their labels with the server.

II. BACKGROUND

A. Neural Networks

A neural network [15] is a parameterized function f : X ×
Θ → Y that tries to approximate a function f∗ : X → Y .
The goal of the training procedure is to learn the parameters
Θ using a training set consisting of examples X̃ and labels Ỹ
sampled from the real-world distributions X and Y .

A typical neural network, also called a feedforward neural
network, consists of discrete units called neurons, organized
into layers. Each neuron in a layer takes in a weighted
sum of the previous layer’s neurons’ outputs, applies a non-
linear activation function, and outputs the result. The weights
connecting the layers to each other constitute the parameters
that are updated during training. Considering each layer as a
seperate function, we can model a neural network as a chain of
functions, and represent it as f(x) = f (N)(...(f (2)(f (1)(x))),
where f (1) corresponds to the first layer, f (2) to the second
layer, and f (N) to the final, or the output layer.

Like many other machine learning methods, training a
neural network involves minimizing a loss function. However,
since the nonlinearity introduced by the activation functions
applied at each neuron causes the loss function to become
non-convex, we use iterative, gradient-based approaches to
minimize the loss function. It is important to note that these
methods do not provide any global convergence guarantees.

A widely-used optimization method is stochastic gradient
descent (SGD). Rather than computing the gradient from the
entire data set, SGD computes gradients for batches selected
from the data set. The weights are updated by propagating the
error backwards using the backpropagation algorithm. Training
a deep neural network generally requires multiple passes over
the entire data set, each such pass being called an epoch. One
round of training a neural network requires two passes through
the network: one forward pass to compute the network’s
output, and one backward pass to update the weights. We will

use the terms forward pass and backward pass to refer to
these operations in the following sections. For an overview
of gradient-based optimization methods other than SGD, we
refer the reader to [16].

B. Split Learning

In split learning (SplitNN) [6], [7], [17], a DNN is split
between the clients and a server such that the clients compute
the first few layers, and the server computes rest of the layers.
This way, a group of clients can train a DNN utilizing, but
not sharing, their collective data. Furthermore, most of the
computational work is also offloaded to the server, reducing
the training cost for the clients. However, this partitioning
involves a privacy/cost trade-off for the clients, with the
outputs of earlier layers leaking more information about the
inputs.

Figure 1 displays the two basic modes of SplitNN, the
main difference between the two being whether the clients
share their labels with the server or not. In Figure 1a, clients
compute only the first few layers, and should share their labels
with the server. The server then computes the loss value,
starts backpropagation, and sends the gradients of its first
layer back to the client, who then completes the backward
pass. The private-label scenario depicted in Figure 1b follows
the same procedure, with an additional communication step.
Since now the client computes the loss value and initiates
backpropagation, it should first feed the server model with the
gradient values to resume backpropagation.

For our purposes, it is important to realize that the server
can launch a training-hijacking attack even in the private-
label scenario (Figure 1b). It simply discards the gradients
it received from the second part of the client model, and
computes a malicious loss function using the intermediate
output it received from the first client model, propagating the
malicious loss back to the first client model.



The primary advantage of SplitNN compared to federated
learning is its lower communication load [18]. While federated
learning clients have to share their entire parameter updates
with the server, SplitNN clients only share the output of a
single layer. However, choosing an appropriate split depth
is crucial for SplitNN to actually provide data privacy. If
the initial client model is too shallow, an honest-but-curious
server can recover the private inputs with high accuracy,
knowing only the model architecture (not the parameters) on
the clients’ side [19]. This implies that SplitNN clients should
increase their computational load, by computing more layers,
for stronger data privacy.

Finally, SplitNN follows a round-robin training protocol to
accomodate multiple clients; clients take turn training with the
server using their local data. Before a client starts its turn, it
should bring its parameters up to date with those of the most
recently trained client. There are two ways to achieve this:
the clients can either share their parameters through a central
parameter server, or directly communicate with each other in
a P2P way and update their parameters.

III. RELATED WORK

A. Feature-Space Hijacking Attack (FSHA)

The Feature-Space Hijacking Attack (FSHA), by Pasquini
et al. [11], is the only proposed training-hijacking attack
against SplitNN clients so far. It is important to gain an
understanding of how a training-hijacking attack might work
before discussing SplitGuard in detail.

In FSHA, the atttacker (SplitNN server) first trains an
autoencoder (consisting of the encoder f̃ and the decoder
f̃−1) on some public dataset Xpub similar to that of the
client’s private dataset Xpriv . It is important for the attack’s
effectiveness that Xpub be similar to Xpriv. Without such a
dataset at all, the attack cannot be launched. The main idea
then is for the server to bring the output spaces of the client
model f and the encoder f̃ as close as possible, so that the
decoder f̃−1 can successfully invert the client outputs and
recover the private inputs.

After this initial setup phase, the client model’s training be-
gins. For this step, the attacker initializes a distinguisher model
D that tries to distinguish the client’s output f(Xpriv) from
the encoder’s output f̃(Xpub). More formally, the distinguisher
is updated at each iteration to minimize the loss function

LD = log(1−D(f̃(Xpub))) + log(D(f(Xpriv))). (1)

Simultaneously at each training iteration, the server directs the
client model f towards maximizing the distinguisher’s error
rate, thus minimizing the loss function

Lf = log(1−D(f(Xpriv))). (2)

In the end, the output spaces of the client model and the
server’s encoder are expected to overlap to a great extent,
making it possible for the decoder to invert the client’s outputs.

Notice that the client’s loss function Lf is totally indepen-
dent of the training labels, as in changing the value of the

labels does not affect the loss function. We will soon refer to
this observation.

IV. SPLITGUARD

We start our presentation of SplitGuard by restating an
earlier remark: If the training-hijacking detection protocol
requires the attacker SplitNN server to knowingly take part in
the protocol, the server can easily circumvent the protocol by
training a legitimate model on the side, and using that model
during the protocol’s run. In the light of this, it is evident that
we need a method which the clients can run during training,
without breaking the flow of training from the server’s point
of view.

A. Overview

During training with SplitGuard, clients intermittently input
batches with randomized labels, denoted fake batches. The
main idea is that if the client model is learning the intended
task, then the gradient values received from the server should
be noticeably different for fake batches and regular batches.1

The client model learning the intended task means that
it is moving towards a relatively high-accuracy point on its
parameter space. That same high-accuracy point becomes
a low-accuracy point when the labels are randomized. The
model tries to get away from that point, and the classification
error increases. More specifically, we make the following two
claims (experimentally validated in Section V-B):

Claim 1. If the client model is learning the intended task,
then the angle between fake and regular gradients will be
higher than the angle between two random subsets of regular
gradients.2

Claim 2. If the client model is learning the intended task,
then fake gradients will have a higher magnitude than regular
gradients.

Notation

PF Probability of sending a fake batch
BF Share of randomized labels in a fake batch
N Batch index at which SplitGuard starts running
F Set of fake gradients
R1, R2 Random, disjoint subsets of regular gradients
R R1 ∪R2

α, β Parameters of the SplitGuard score function
L Number of classes
A Model’s classification accuracy
AF Expected classification accuracy for a fake batch

TABLE I: Summary of notation used throughout the paper.

B. Putting the Claims to Use

At the core of SplitGuard, clients compute a value, denoted
the SplitGuard score, based on the fake and regular gradients

1Fake gradients and regular gradients similarly refer to the gradients
resulting from fake and regular batches.

2Angle between sets meaning the angle between the sums of vectors in
those sets.



Fig. 2: Overview of SplitGuard, comparing the honest training
and training-hijacking scenarios. Clients intermittently send
training batches with randomized labels, and analyze the
behavior of their local models visible from their parameter
updates.

they have collected up to that point. This value’s history is then
used to reach a decision on whether the server is launching
an attack or not. We now describe this calculation process in
more detail. Table I displays the notation we use from here
on.

Starting with the N th batch during the first epoch of train-
ing, with probability PF ,3 clients send fake batches with the
share BF ∈ [0, 1] of the labels randomized. Upon calculating
the gradient values for their first layer, clients append the fake
gradients to the list F , and split the regular gradients randomly
into the lists R1 and R2, where R = R1∪R2. To minimize the
effect of fake batches on model performance, clients discard
the parameter updates resulting from fake batches. Figure 2
displays a simplified overview of the protocol, and Algorithm
1 explains the modified training procedure in more detail.
The MAKE_DECISION function contains the clients’ decison-
making logic and will be described later in Algorithm 3.

To make sure that none of the randomized labels gets
mapped to its original value, it is a good idea to add to each
label a random positive integer between 1 and L exclusive,
and compute the result modulo L, where L is the number of
classes.

We should first define two quantities. For two sets of
vectors A and B, we define d(A,B) as the absolute difference
between the average magnitudes of the vectors in A and B:

d(A,B) =
∣∣∣ 1

|A|
∑
a∈A
‖a‖ − 1

|B|
∑
b∈B

‖b‖
∣∣∣, (3)

3This is equivalent to allocating a certain share of the training dataset for
this purpose before training.

Algorithm 1: Client training with label sharing
f, w: client model, parameters
OPT : optimizer
PF : probability of sending fake batches
BF : number of labels randomized in fake batches
N : number of initial batches to ignore
initialize R1, R2, F as empty lists
rand(y, BF ): randomize share BF of the labels Y .
while training do

for (xi, yi) ← trainset do
if probability PF occurs and i ≥ N then

// sending fake batches
Send (f(xi),rand(yi, BF )) to server
Receive gradients ∇F from server
Append ∇F to F
MAKE_DECISION(F,R1 ∪R2)
// do not update parameters

else
// regular training
Send (f(xi), yi) to server
Receive gradients ∇R from server
if i ≥ N then

if probability 0.5 occurs then
Append ∇R to R1

else
Append ∇R to R2

w ← w +OPT (∇R)

and θ(A,B) as the angle between sums of vectors in two sets
A and B:

θ(A,B) = arccos(
Ā · B̄

‖Ā‖ · ‖B̄‖
) (4)

where
Ā =

∑
a∈A

a (5)

for a set of vectors A.
Going back to the two claims, we can restate them using

these quantities:

Claim 1 restated. θ(F,R) > θ(R1, R2)

Claim 2 restated. d(F,R) > d(R1, R2)

If the model is learning the intended task, then it follows
from the two claims that the product θ(F,R) ·d(F,R) will be
greater than the product θ(R1, R2) ·d(R1, R2). If the model is
learning some other task independent of the labels, then F,R1,
and R2 will essentially be three random samples of the set of
gradients obtained during training, and it will not be possible
to consistently detect the same relationships among them.

We can now define the values clients compute to reach a
decision. First, after each fake batch, the clients compute the
value:

S =
θ(F,R) · d(F,R)− θ(R1, R2) · d(R1, R2)

d(F,R) + d(R1, R2) + ε
. (6)



As stated, the numerator contains the useful information
we want to extract, and we divide that result by d(F,R) +
d(R1, R2) + ε, where ε is a small constant to avoid division
by zero. This division bounds the S value within the interval
[−π, π], a feature that will shortly come handy.

So far, the claims lead us to consider high S values as
indicating an honest server, and low S values as indicating
a malicious server. However, the S values obtained during
honest training vary from one model/task to another. For a
more effective method, we need to define the notions of higher
and lower more clearly. For this purpose, we will define
a squashing function that maps the interval [−π, π] to the
interval (0, 1), where high S values get mapped infinitesimally
close to 1 while the lower values get mapped to considerably
lower values.4 This allows the clients to choose a threshold,
such as 0.9, to separate high and low values.

Our function of choice for the squashing function is the
logistic sigmoid function σ. To provide some form of flexibil-
ity to the clients, we introduce two parameters, α and β, and
define the function as follows:

SG = σ(α · S)β ∈ (0, 1). (SplitGuard Score)

The function fits naturally for our purposes into the interval
[−π, π], mapping the high-end of the interval to 1, and the
lower-end to 0. The parameter α determines the range of
values that get mapped very close to 1, while increasing the
parameter β punishes the values that are less than 1. We
discuss the process of choosing these parameters in more depth
in Section VI.

V. EXPERIMENTAL EVALUATION

We need to answer three questions to claim that SplitGuard
is an effective method:
• How much does sending fake batches affect model per-

formance? If the decrease is significant, then the harm
might outweigh the benefit.

• Do the underlying claims hold?
• Can SplitGuard succeed in detecting FSHA, while not

reporting an attack during honest training?
• What can a typical adversary learn until detection?
In each of the following subsections, we answer one of

these questions by conducting various experiments. For our
experiments, we used the ResNet architecture [20], trained
with the Adam optimizer [21], on the MNIST [12], Fashion-
MNIST [13], and CIFAR10 [14] datasets. We implemented
our attack in Python (v 3.7) using the PyTorch library (v
1.9) [22]. In all our experiments, we limit our scope only
to the first epoch of training. It is the least favorable time for
detecting an attack since the model initially behaves randomly,
and represents a lower bound for results in later epochs.

A. Effect on Model Performance
Table II displays the classification accuracy of the ResNet

model on the test sets of our three benchmark datasets with
4From here on we will refer to the values very close to 1 as being equal to

1, since that is the case when working with limited-precision floating point
numbers.

BF Classification Accuracy (%)

MNIST F-MNIST CIFAR

0 (Original) 97.52 87.77 50.39

1/64 97.72 86.94 51.28
4/64 97.44 87.76 50.39
8/64 97.78 87.33 50.49
16/64 97.70 87.67 52.30
32/64 97.83 87.46 53.68
64/64 97.29 86.30 50.42

TABLE II: Test classification accuracy values of the ResNet
model for MNIST, F-MNIST, and CIFAR datasets for different
BF values after the first epoch of training with SplitGuard,
averaged over 10 runs with a PF of 0.1.

different BF values, averaged over 10 runs. The client model
consists of a single convolutional layer, and the rest of the
model is computed by the server. This is the worst-case
scenario for this purpose, since the part of the model that is
being updated with fake batches is as large as possible. Also
remember that a BF value of 1 does not mean that the clients
always send fake labels. They are still sending fake labels with
probability PF .

The results demonstrate that even when limited to the first
epoch, the model performs similarly when trained with and
without SplitGuard. There is not a noticeable and consistent
decrease in performance for any of the datasets, even for high
BF values such as 1.

B. Validating the Claims

Going back to the two claims, we now demonstrate that
fake gradients make a larger angle with regular gradients than
the angle between two subsets of regular gradients, and that
fake gradients have a higher magnitude than regular gradients.
Figures 3 and 4 display these values for each of our three
datasets obtained during the first epoch of training with an
honest server, averaged over 5 runs.

From Figure 3, it can be observed that θ(F,R) is con-
sistently greater than θ(R1, R2) for each of our benchmark
datasets. Note however that the difference is greater for
MNIST (around 60°) than for Fashion-MNIST (around 30°)
and CIFAR (around 10°). Remembering from Table II that the
model’s performance after the first epoch of training is higher
in MNIST compared to other datasets, it is not surprising that
the difference between the angles is higher as well. As we
will discuss later, SplitGuard is more effective as the model
becomes more accurate.

Finally, Figure 4 displays a similar relation between the
d(F,R) and d(R1, R2) values obtained during the first epoch
of training. For each of our datasets, d(F,R) values are
consistently higher than the d(R1, R2) values, although the
difference is smaller for CIFAR compared to MNIST.

To recap, Figures 3 and 4 demonstrate that our claims are
valid during the first epoch of training for our benchmark
datasets. The decreasing difference as the models become
less adept (going from MNIST to CIFAR10) implies that the



(a) MNIST (b) Fashion-MNIST (c) CIFAR

Fig. 3: Comparison of the angle between fake and regular gradients (θ(F,R)) with the angle between two subsets of regular
gradients (θ(R1, R2)), averaged over 5 runs during honest training. The x-axis denotes the number of fake batches sent, also
standing for the passage of training time during the first epoch.

(a) MNIST (b) Fashion-MNIST (c) CIFAR

Fig. 4: Comparison of the average magnitude values (d(F,R) and d(R1, R2)) for fake and regular gradients, averaged over 5
runs during honest training. The x-axis denotes the number of fake batches sent, also standing for the passage of training time
during the first epoch.

protocol might need to be extended beyond the first epoch for
more complex tasks.

C. Detecting FSHA

With the claims validated, the questions of actual effective-
ness remains: how well does SplitGuard defend against FSHA?

To show that SplitGuard can effectively detect a SplitNN
server launching FSHA, we ran the attack for each of our
datasets. Figure 5 displays the SplitGuard scores obtained
during the first epoch of training by the clients against an
honest server and a FSHA attacker, averaged over 5 runs.
The PF value is set to 0.1, and the BF value varies.5 We
experimentally set the α and β values to 5 and 2 respectively,
representing reasonable starting points, although we do not
claim that they are optimal values.

The results displayed in Figure 5 indicate that the Split-
Guard scores are distinguishable enough to enable detection
by the client. The SplitGuard scores obtained with an honest
server are very close or equal to 1, while the scores obtained

5Note that the BF value does not affect the SplitGuard scores obtained
against a FSHA server, since the client’s loss function Lf is independent of
the labels.

against a FSHA server do not surpass 0.6. Notice that higher
BF values are expectedly more effective. For example, it takes
slightly more time for the scores to get fixed around 1 for
Fashion-MNIST with a BF of 4/64 compared to a BF of 1.
The same can be said for CIFAR10 as well, although it is
evident that the BF value should be set higher.

To assess more rigorously how accurate SplitGuard is at
detecting FSHA, and likewise not reporting an attack during
honest training, we define three candidate decision-making
policies with different goals and test each one’s effectiveness.
A policy takes as input the list of SplitGuard scores obtained
up to that point, and decides if the server is launching a
training-hijacking attack or not. We set a threshold of 0.9 for
these example policies. While the clients can choose different
thresholds (Section VI-B), the results in 5 indicate that 0.9 is
a sensible starting point. The three policies, also displayed in
Algorithm 2 are defined as follows:
• Fast: Fix an early batch index. Report attack if the last

score obtained is less than 0.9 after that index. The goal
of this policy is to detect an attack as fast as possible,
without worrying too much about a high false positive
rate.



(a) MNIST (b) Fashion-MNIST (c) CIFAR

Fig. 5: SplitGuard scores obtained while training with an honest server, and a FSHA attacker during the first epoch of training,
averaged over 5 runs. The x-axis displays the number of fake batches sent. The PF value is set to 0.1, and the BF values
varies when training with an honest server.

Policy MNIST F-MNIST CIFAR10

TP FP i TP FP i TP FP i

Fast 1 0.01 15 1 0.09 15 1 0.20 88
Avg-10 1 0 130 1 0.03 130 1 0.29 160
Avg-20 1 0 230 1 0.01 230 1 0.21 260
Avg-50 1 0 530 1 0 530 1 0.13 560
Voting 1 0 520 1 0 520 1 0.02 550

TABLE III: Attack detection statistics for the five example
policies, collected over 100 runs of the first epoch of training
with a FSHA attacker and an honest server. The true positive
rate (TP) corresponds to the rate at which SplitGuard succeeds
in detecting FSHA. The false positive rate (FP) corresponds
to the share of honest training runs in which SplitGuard
mistakenly reports an attack. The i field denotes the average
batch index at which SplitGuard successfully detects FSHA.

• Avg-k: Report attack if the average of the last k scores
is less than 0.9. This policy represents a middle point
between the Fast and the Voting policies.

• Voting: Wait until a certain number of scores is obtained.
Then divide the scores up to a fixed number of groups,
calculate each group’s average, and report attack if the
majority of the mean values is less than 0.9. This policy
aims for a high overall success rate (i.e. high true positive
and low false positive rates). It can tolerate making
decisions relatively later.

Note that these policies are not conclusive, and are provided as
basic examples. More complex policies can be implemented
to suit different settings. We will discuss the clients’ decision-
making process in more detail in Section VI-B.

Table III displays the detection statistics for each of these
strategies obtained over 100 runs of the first epoch of training
with a FSHA attacker and an honest server with a BF of 1 and
PF of 0.1. For the Avg-k policy, we use k values of 10, 20, and
50, corresponding to roughly 100, 200, and 500 batches with
a PF of 0.1; this ensures that the policy can run within the

Algorithm 2: Example Detection Policies

Function FAST(S: scores):
return S[−1] < 0.9

Function AVG-K(S: scores, k: no. of scores to
average):

return mean(S[−k :]) < 0.9

Function VOTING(S: scores, c: group count, n:
group size):

votes = 0
// default c = 10 and n = 5
for i from 0 to c do

group = S[i · n : (i+ 1) · n]
if mean(group) < 0.9 then

votes += 1
return votes > c/2

first training epoch.6 For the Voting policy, we set the group
size to 5 and the group count to 10, again corresponding to
around 500 batches with PF 0.1. Finally, we set N , the index
at which SplitGuard starts running, as 20 for MNIST and F-
MNIST, and 50 for CIFAR10.

A significant result is that all the strategies achieve a perfect
true positive rate (i.e. successfully detect all runs of FSHA).
Expectedly, the Fast strategy achieves the fastest detection
times as denoted by the i values in Table III, detecting in less
than a hundred training batches all instances of the attack.

Another important observation is that the false positive rates
increase as the model’s performance decreases, moving from
MNIST to F-MNIST and then CIFAR10. This means that
more training time should be taken to achieve higher success
rates in more complex tasks. This is not a troubling scenario,
since as we will shortly observe the model not having a high
performance also implies that the attack will be less effective.
Nevertheless, the Voting policy achieves a false positive rate of

6With a batch size of 64, one epoch is equal to 938 batches for MNIST
and F-MNIST, and 782 for CIFAR10.



Fig. 6: Results obtained by a FSHA attacker for the MNIST, F-MNIST, and CIFAR10 datasets until the average detection
times of the given policies as displayed in Table III. The first row displays the original images, and the last row displays the
results obtained by a FSHA attacker able to run for an arbitrary duration without being detected.

0 for (F-)MNIST and 0.02 for CIFAR, indicating that despite
the relatively high false positive rates of the Avg-k policies,
better detection performance in less time is achievable through
smarter policies.

D. What Does the Attacker Obtain Until Detection?

We now analyze what a FSHA adversary can obtain until the
detection batch indices displayed in Table III. Figure 6 displays
the results obtained by the attacker after the batch indices
corresponding to the detection times of the given policies. Note
that all these batch indices fall within the first training epoch.

It is visible that for the Fast policy, the attacker obtains not
much more than random noise. This means that if a high false
positive rate can be tolerated (e.g. privacy of the data is highly
critical, and the server is distrusted), this policy can be applied
to prevent any data leakage.

Unsurprisingly, the attack results get more accurate as
the attacker is given more time. Nevertheless, especially for
the more complex CIFAR10 task, the results obtained by
the attacker against the Voting policy do not contain the
distinguishing features of the original images. This highlights
the effectiveness of the Voting policy, preventing significant
information leakage with a relatively low false positive rate
of 0.02. We would like to note once again that the policies
described above are rather simplistic, and do not use the
clients’ full power, as will be discussed in Section VI-B.

Finally, the CIFAR10 results also give credibility to our
previous statement that giving more time to the attacker for a
more complex task should not be a cause of worry. After the
same number of batches, the attacker’s results for MNIST and
Fashion-MNIST are more accurate than the CIFAR10 results.

VI. DISCUSSION

In this section, we answer the following questions:
• What is the computational complexity of running Split-

Guard (for clients)?
• How can the clients make a decision on whether the

server is honest or not?
• Can the attacker detect SplitGuard? What happens if it

can?

• What effect do the parameters have on the system?
• Can SplitGuard generalize to different scenarios?
• What are some concrete use cases for SplitGuard?

A. Computational Complexity

We now argue that SplitGuard does not incur a significant
computational cost regarding time or space. Since SplitNN
clients are already assumed to be able to run back-propagation
on a few DNN layers, calculating the S value described in
Equation 6 is a simple task.

Space-wise, although it might seem like storing the gradient
vectors for potentially multiple epochs requires a significant
amount of space, the clients in fact do not have to store all the
gradient vectors. For each of the sets F , R1, R2, the clients
have to maintain two quantities: a sum of all vectors in the set,
and the average magnitude of the vectors in the set; the first
has the dimensions of a single gradient vector, and the second
is a scalar. More importantly, both of these quantities can be
maintained in a running manner. This keeps the total space
required by SplitGuard to O(1) with respect to training time,
equivalent to the space needed for three scalar values and three
gradient vectors. For reference, the space required to store a
single gradient vector in our experiments was 2.304 KB. Since
the space requirement is independent of the total number of
batches, it is possible to run SplitGuard for arbitrarily long
training processes.

B. Clients’ Decision-Making Process

We have described some makeshift decision-making policies
in Section V-C, and in this subsection we discuss the clients’
decision-making process in more depth, without focusing on
a specific policy.

After each fake batch, clients can make a decision on
whether the server is launching an attack or not. The main
decision procedure is as follows:

1) Is the SG value high or low?
a) If high, there are no problems. Keep training.
b) If low, there are two possible explanations:

i) The model has not learned enough yet. Keep going,
potentially making changes.



ii) The server is launching an attack. Halt training.
Going back to the policies we have described in Section V-C,
it can be seen that they did not consider the first explanation
(1.b.i) of low scores, namely the model not having learned
enough. As we will see, taking that into consideration could
help reduce the false positive rates.

The outline contains two branching points: separating high
and low scores, and explaining low scores.

Separating High and Low Scores. The process of sepa-
rating high and low SplitGuard scores consists of two steps:
setting the hyperparameters of the squashing function, and
deciding on a threshold value in the interval (0, 1). We
consider two scenarios: the clients know or do not know the
server model architecture.

If the clients know the architecture, then the clients can train
the entire model using all or part of their local data, and gain
a prior understanding of what S values (Equation 6) values
to expect during honest training. The parameters α and β can
then be adjusted to map these values very close to 1. In this
scenario, since the clients’ confidence on the accuracy of the
method is expected to be higher, a relatively high threshold
can be set, such as 0.95.

If the clients do not know the model architecture, then they
should set the parameters α and β manually. Nevertheless, S
values all lying within the interval [−π, π] makes the clients’
job easier. It is unreasonable to set extremely high α or
β values since they will cause the squashing function to
make sudden jumps, or map no value close to one. As our
experiments also demonstrate, smaller values such as 5 and 2
are reasonable starting points.

Finally, note that the clients do not have to decide based on
a single SplitGuard score. They can consider the entire history
of the score, as depicted in Figure 5 and done in the Avg-k
and Voting policies. For example, the score making a sudden
jump to 1 and shortly going down to 0.5 does not imply honest
training; similarly, the score making a sudden jump down to
0.5 after consistently remaining close to 1 does not strictly
imply training-hijacking.

Explaining Low Scores. When a client decides that the
SplitGuard score is low, it should choose between two possible
explanations: either the model has not learned enough yet, or
the server is launching a training-hijacking attack.

Informally, a low score indicates that fake gradients are
not that different from regular gradients; the model behaves
similarly when given fake batches and regular batches. In the
domain of classification, behaving similarly is equivalent to
having a similar classification accuracy. Then, the explanation
that the model has not learned enough yet is more likely if
the expected classification accuracy for a fake batch is close to
the actual (expected) prediction accuracy. If these values are
different but the SplitGuard score is still low, then the server
is very likely launching an attack.

We can formulate the expected accuracy for a fake batch.
Say the total number of labels is L ∈ N (L ≥ 2) and the
overall model has classification accuracy A ∈ [1/L, 1]. Then

Fig. 7: Expected classification accuracy in a fake batch with
the share BF of the labels randomized. The model normally
has classification accuracy A with L labels.

the expected classification accuracy for a fake batch with the
share BF ∈ [0, 1] of the labels randomized is

AF = A · (1−BF ) +
BF · (1−A)

L
. (7)

Figure 7 explains this equation visually.
If the model terminates on the client-side (as in Figure 1b),

then the clients already know the exact accuracy value. If that
is not the case but the clients know the model architecture
on the server side, then they can train the model using their
local data, and obtain an estimate of the expected classification
accuracy of the actual model during the first epoch. If even
that is not possible, then in the worst-case the clients can train
a linear classifier appended to their model to obtain a lower
bound on the original model accuracy.7

Formalizing this discussion, for SplitGuard to be effective,
it must be the case that A >> AF . If AF ≈ A, then the
clients’ choice of BF is not right, and they should increase it.
Note that AF is a linear function of BF with the coefficient

−A+
1

L
− A

L
.

Since A ∈ [1/L, 1],

−A+
1

L
≤ 0

and
−A+

1

L
− A

L
≤ 0

as well. Thus, AF is indeed a monotonic function of BF ,
and increasing BF either keeps AF constant or decreases it.
Then when the clients decide that the SG value is low and that
AF ≈ A, the best course of action is to increase BF . If BF
is already 1, then clients should wait until the model becomes
sufficiently accurate so that a completely randomized batch
makes a difference. Note that as discussed previously, this is
not a worrisome scenario, since the attack’s effectiveness also
relies on the model’s adeptness.

7A related, interesting study concludes that what a neural network learns
during its initial epoch of training can be explained by a linear classifier [23],
in the sense that if we know the linear model’s output, then knowing the
main model’s output provides almost no benefit in predicting the label. Note
however that this does not hold for any linear classifier, but the optimal one.



Algorithm 3: Clients’ decision-making process
A: Model’s classification accuracy
AF : Expected classification accuracy for a fake batch
BF : Share of randomized labels in a fake batch
N : Number of initial batches to ignore
Function MAKE_DECISION(F,R):

if scores are high then
Keep training.

else if A ≈ AF then
if BF = 1 then

It is too early to detect. Wait.
else

Increase BF .
[Optional] Increase N .

else
The server is launching an attack. Stop training.

Finally, an alternative course of action is to increase N ,
discarding the initial group of gradients. Since the models
behave randomly in the beginning, increasing N decreases
the noise, and can help distinguish an honest server from a
malicious one. Also note that increasing N is a reversible
process, provided that clients store the gradient values.

With these discussions, we can finalize the clients’ decision-
making process as the function MAKE_DECISION, displayed
in Algorithm 3.

C. Detection by the Attacker

An attacker can in turn try to detect that a client is running
SplitGuard. It can then try to circumvent SplitGuard by using
a legitimate surrogate model as described before.

If the server controls the model’s output (Figure 1a), then it
can detect if the classification error of a batch is significantly
higher than the other ones. Since SplitGuard is a potential,
though not the only, explanation of such behavior, it presents
an opportunity for an attacker to detect it. However, the model
behaving significantly differently for fake and regular batches
also implies that the model is at a stage at which SplitGuard
is effective. This leads to an interesting scenario: since the
attack’s and SplitGuard’s effectiveness both depends on the
model learning enough it seems as if the attack cannot be
detected without the attacker detecting SplitGuard and vice
versa.

We argue that this is not the case, due to the clients being
in charge of setting the BF value. For example, with the
MNIST dataset for which the model obtains a classification
accuracy around 98% after the first epoch of training, a BF
value of 4/64 results in an expected classification accuracy of
91.8% for fake batches (Equation 7). The SplitGuard scores on
the other hand displayed in Figure 5 being very close to one
implies that an attack can be detected with such a BF value.
Thus, clients can make it difficult for an attacker to detect
SplitGuard by setting the BF value more smartly, rather than
setting it blindly as 1 for better effectiveness.

Finally, we strongly recommend once again that a secure
SplitNN setup follow the three-part setup shown in Figure 1b
to prevent the clients sharing their labels with the server. This
way, an attacker would not be able to see the accuracy of
the model, and it would become significantly harder for it to
detect SplitGuard.

D. Choosing Parameter Values

We have touched upon how the clients can decide on BF ,
α, and β values, but we need to clarify the effects of the
parameter values (mainly BF , PF , and N ) for completeness.
Each parameter involves a different trade-off:
• Probability of sending a fake batch (PF ).

– (+) Higher PF values mean more fake batches, and
thus a more representative sample of fake gradient
values, increasing the effectiveness of the method.

– (−) Higher PF values can also degrade model perfor-
mance, since the server model will be learning random
labels for a higher number of examples, and a higher
share of the potentially scarce dataset will be allocated
for SplitGuard.

• Number of randomized labels in each batch (BF ).
– (+) More random labels in a batch means that fake

batches and regular batches behave even more differ-
ently, and the method becomes more effective.

– (−) Depending on the model’s training performance,
batches with entirely random labels can be detected
by the server. One way to overcome this difficulty is
to perform the loss computation on the client side.

• Number of initial batches to ignore (N ).
– (+) A smaller N value means that the server’s mali-

cious behavior can be detected earlier, giving it less
time to attack.

– (−) Since a model behaves randomly in the beginning
of the training, the initial batches are of little value for
our purposes. Computing SG scores for later batches
will make it easier to distinguish honest behavior, but
in return give the attacker more time.

E. Generalizing SplitGuard

In the form we have discussed so far, a question might arise
regarding SplitGuard’s effectiveness in different scenarios. We
argue however that since the claims underlying SplitGuard
are applicable to any kind of neural network learning on
any kind of data, SplitGuard is generalizable to different data
modalities, or more complex architectures. The only caveat, as
discussed earlier, is that learning on a more complex dataset
or with a more complex architecture would require more time
for SplitGuard to be effective.

Another direction of generalization is towards different
attacks. Although there are no training-hijacking attacks other
than FSHA against which we can test SplitGuard, we claim
that SplitGuard can generalize to future attacks as well. After
all, SplitGuard relies only on the assumption that randomizing
the labels affects an honest model more than it affects a



malicious model. Thus, to go undetected by SplitGuard, an
attack should either involve learning significant information
about the original task, which would likely reduce the attack’s
effectiveness, or craft a different loss function for each label,
which could easily be prevented by not sharing the labels with
the server (Figure 1b).

Finally, SplitGuard also generalizes to multiple-client
SplitNN settings. Each client can independently run Split-
Guard, with their own choices of parameters. Each client
would then be making a decision regarding its own training
process. Alternatively, if the clients trust each other, they can
choose one client to run SplitGuard in order to minimize its
effect on performance loss, or they can combine their collected
gradient values and reach a collective decision.8 The latter
scenario would be equivalent to a single client training with
the aggregated data of all the clients.

F. Use Cases

We now describe three potential real-world use cases for
SplitGuard, modeling clients with different capabilities at each
scenario.

Powerful Clients. A group of healthcare providers decide
to train a DNN using their aggregate data while maintaining
data privacy. They decide on a training setup, and establish a
central server.9 Each client knows the model architecture and
the hyperparameters, and preferably has access to the model’s
output as well (no label-sharing). The clients can train models
using their local data to determine the parameters α and β.
Each client can then run SplitGuard during their training turns
and see if they are being attacked. This is an example scenario
with the clients as powerful as possible, and thus represents
the optimal scenario for running SplitGuard.

Intermediate Clients. The SplitNN server is a researcher,
attempting to perform privacy-preserving machine learning
on some private dataset of some data-holder (the client).
The researcher designs the training procedure, but the data-
holder actively takes part in the protocol. The data-holder thus
has tight control over how its data is organized. The client
cannot train a local model since it does not know the entire
architecture, and should set the parameters α and β manually.
Nevertheless, it can easily run SplitGuard by modifying the
training data being used in the protocol.

Weak Clients. An application developer is the SplitNN
server, and the users’ mobile devices are the clients with
private data. The clients do not know the model architecture,
and cannot manipulate how their data is shared with the server.
The application developer is in control of the entire process
from design to execution. In this scenario, SplitGuard should
be implemented at a lower-level, such as the ML libraries
the mobile OS supports. However, even in that scenario,
the application developer can implement a machine learning

8This is similar to the Voting policy described earlier, where the separation
of scores into groups follows naturally from their distributions among the
clients.

9Alternatively, members of the group can take turns acting as the SplitNN
server in a P2P manner.

pipeline from scratch, without relying on any libraries. This is
not an optimal scenario for running SplitGuard. There would
have to be strict regulations, as well as gatekeeping by the
OS provider (e.g. mandating that machine learning code must
use one of the specified libraries) before SplitGuard could
effectively be implemented for such clients.

VII. FUTURE DIRECTIONS

We outline three possible avenues of future work related
to SplitGuard: providing practical implementations, improving
its robustness against detection by the attacker, and developing
potentially undetectable attacks.

Although we provide a proof-of-concept implementation
of SplitGuard, it should be readily supported by privacy-
preserving machine learning libraries, such as PySyft [24].
That way, SplitGuard can be seamlessly integrated into the
client-side processes of split learning pipelines.

As we have explained in Section VI-C, SplitGuard can
potentially, although unlikely, be detected by the attacker,
who can then start sending fake gradients from its legitimate
surrogate model and regular gradients from its malicious
model. This could again cause a significant difference between
the fake and regular gradients, and result in a high SplitGuard
score. However, a potential weakness of this approach by
the attacker is that now the fake gradients result from two
different models with different objectives. Suppose the attacker
detects SplitGuard at the 200th batch, and starts using its
legitimate model. Then the fake gradients within the first 200
batches will be computed using a malicious model, and those
after the 200th batch will be computed using the legitimate
model. Clients can potentially detect this switch in models,
and gain the upper hand. This is another point for which future
improvement might be possible.

Finally, turning the tables, it might be possible to modify
the existing attacks, or propose novel attacks to produce high
SplitGuard scores, very likely at the cost of effectiveness. This
represents another line of future work concerning SplitGuard.

VIII. CONCLUSION

In this paper, we presented SplitGuard, a method for
SplitNN clients to detect if they are being targeted by a
training-hijacking attack [11] or not. We described the the-
oretical foundations underlying SplitGuard, experimentally
evaluated its effectiveness, and discussed at depth many issues
related to its use. We conclude that when used appropriately,
and in a secure setting without label-sharing, a client running
SplitGuard can successfully detect training-hijacking attacks
and leave the attacker empty-handed.
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