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Abstract. We propose a second-order masking of the AES in hardware
that requires an order of magnitude less random bits per encryption com-
pared to previous work. The design and its security analysis are based on
recent results by Beyne et al. from Asiacrypt 2020. Applying these results
to the AES required overcoming significant engineering challenges by in-
troducing new design techniques. Since the security analysis is based on
linear cryptanalysis, the masked cipher needs to have sufficient diffusion
and the S-box sharing must be highly nonlinear. Hence, in order to apply
the changing of the guards technique, a detailed study of its effect on
the diffusion of the linear layer becomes important. The security analysis
is automated using an SMT solver. Furthermore, we propose a sharpen-
ing of the glitch-extended probing model that results in improvements
to our concrete security bounds. Finally, it is shown how to amortize
randomness costs over multiple evaluations of the masked cipher.
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1 Introduction

The Advanced Encryption Standard (AES) [10] has been an important building
block for many cryptographic applications. For over twenty years, the cipher has
largely withstood cryptanalytic attacks. However, just like any other symmetric
primitive, naive implementations of the AES are vulnerable to side-channel at-
tacks such as Differential Power Analysis (DPA) due to Kocher et al. [17]. To
counter these attacks, several adversarial models and side-channel countermea-
sures have been developed during the past two decades. Masking methods are a
common theme among different countermeasures. These methods split all key-
dependent variables in the circuit into d+ 1 or more random shares and provide
security against dth-order DPA attacks.

Over the years, several first- and even higher-order secure maskings of the
AES have appeared in the literature. In particular, several second-order maskings
have been proposed: a higher-order threshold implementation [11], a private cir-
cuits variant [15], and a multiplicative masking [12]. Despite these advances, all
of these works still require significant randomness resources for each evaluation
of the round function, namely more than ten-thousand random bits. There are
several important downsides to strong randomness requirements. The security



requirements for embedded random number generators used by masking schemes
are currently not well understood. As mentioned in NIST’s threshold cryptog-
raphy project roadmap [6], random number generators can be single points of
failure. As a result, considerable efforts were made to reduce the randomness
costs of maskings. This research culminated in the development of first-order
maskings of the AES that did not require fresh randomness [24,26]. So far, it is
not known how to similarly reduce the randomness requirements for higher-order
secure maskings of the AES.

Threshold Implementations, proposed by Nikova et al. [21], are key to the
design of first-order low-randomness maskings. Until recently, this method has
had limited success in the higher-order setting as it was only secure against
univariate attacks [22]. At Asiacrypt 2020, Beyne et al. [2] demonstrated how
to design multivariate secure threshold implementations without significantly
increasing the randomness costs. Their approach uses linear cryptanalysis to
show that the information obtained by second-order probing adversaries cannot
be reliably exploited with a finite but large number of queries to the masked
cipher.

Although the work of Beyne et al. represents an important step towards
secure higher-order threshold implementations, it is still quite theoretical and
its application was limited to a 7-share masking of the block cipher LED. In
addition, it imposes strong requirements such as uniformity and higher-order
non-completeness on each shared function. However, there is currently no known
uniform sharing of the AES S-box. In the first-order case, the “changing of
the guards” method of Daemen [7] can be used to achieve uniformity without
fresh randomness. However, as noted by Beyne et al., a direct application of the
changing of the guards method would “alter the diffusion of the shared cipher
and consequently demand a more detailed security analysis” [2, §8.2]. Finally, for
more complicated maskings, the security analysis becomes cumbersome without
the use of automated tools.

Contribution. This paper applies the techniques from [2] to design a second-
order masking of the AES in hardware. This requires overcoming the difficulties
outlined above. The design is based on four shares and requires an order of mag-
nitude fewer random bits per encryption operation than previous work, namely
we require only 1800 random bits per encryption including the sharing of the
plaintext and key. This randomness cost can be compared with second-order
designs such as the one by Groß et al. [15] requiring a total of 11312 bits or the
work by De Meyer et al. [12] requiring 11112 bits.

After reviewing the necessary preliminary material in Section 2, the proposed
design is described in Section 3. Several novel design concepts are introduced
along the way. It is shown how the second-order non-completeness requirement
can be relaxed by means of additional randomness. However, by using the tech-
niques from [2], we are able to show that this randomness can be reused across
all S-boxes. In order to maintain strong diffusion even when the changing of the
guards method is used to ensure the uniformity of the S-box layer, the “guards in
formation” technique is introduced. This technique relies on a detailed analysis
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of the interaction between the changing of the guards structure and the linear
layer of the cipher.

The design choices made in Section 3 pay off in the security analysis, which
is presented in Section 4. As a result, a concrete upper bound on the advantage
of bounded-query second-order probing adversaries is obtained. In addition, Sec-
tion 4 shows how Satisfiability Modulo Theories (SMT) solvers can be used to
automate a large portion of the security analysis by identifying optimal linear
trails in the masked cipher.

Section 5 investigates the glitch-extended probing model of Faust et al. [13]
and proposes a sharpened variant. This sharpening results in significant im-
provements to the security bound of our second-order masking of the AES. We
adapt the bounded-query probing model appropriately and apply the necessary
changes to the theoretical results from [2]. Our proposals are based on realistic
simulations of the behavior of glitches in the masked AES S-box.

Finally, Section 6 proposes a technique to amortize randomness over multiple
masked AES calls by extracting randomness during its execution. Moreover, it
is shown that this extraction process can be used several thousands of times
without a significant security loss. A concrete upper bound on the advantage of
bounded-query probing adversaries is derived. This technique allows us to reduce
the total number of random bits required to 840 bits per masked encryption call.

2 Preliminaries

This section introduces the bounded-query probing model and the key results
from [2] related to the security analysis of higher-order threshold implementa-
tions. For convenience, all random variables in this paper are denoted in boldface.

2.1 The Bounded-Query Probing Model

This section introduces the bounded-query probing model of Beyne et al. [2] and
the main theorem that can be used to prove the security of higher-order masked
implementations in this model.

Threshold Probing A dth-order (or d-threshold) probing adversary A, as first
proposed by Ishai et al. [16], can view up to d gates or wires in a circuit. This
circuit encodes an operation, such as a cipher call, and consists of gates, such as
AND or XOR gates, and wires. The adversary A is computationally unbounded,
and must specify the location of the probes before querying the circuit. However,
the adversary can change the location of the probes over multiple circuit queries.
The adversary’s interaction with the circuit is mediated through encoder and
decoder algorithms, neither of which can be probed.

In the bounded query model, the security of a circuit C with input k against
a dth-order probing adversary is quantified by means of the left-or-right security
game. The challenger picks a random bit b and provides an oracle Ob, to which
adversary A is given query access. The adversary queries the oracle by choosing
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up to d wires to probe – we denote this set of probe positions by P – and
sends it to the oracle along with chosen inputs k0 and k1. The oracle responds
with the probed wire values of C(kb). After a total of q queries, the adversary
responds to the challenger with a guess for b. For b ∈ {0, 1}, denote the result of

the adversary after interacting with the oracle Ob using q queries by AOb

. The
left-or-right advantage of the adversary A is then as defined as

Adv-thr(A) = | Pr[AO
0

= 1]− Pr[AO
1

= 1] | .

The above model is extended to capture the effect of glitches on hardware.
Whereas a probe normally results in the value of a single wire, a glitch-extended
probe allows observing all value used in the calculation of the probed wire up to
the previous register layer. More information can be found in the work by Faust
et al. [13].

Security Analysis The main theoretical result of [2] is that the bounded-query
probing security of a masked cipher can be related to its linear cryptanalysis.
The first step towards this result is provided by Theorem 1 below, which relates
the security of the masked cipher to the Fourier transform of the probability dis-
tribution of wire values obtained by probing. The link with linear cryptanalysis
will be developed in detail in Section 2.4.

The Fourier transform of a function V → C, where V is a subspace of Fn
2 ,

can be defined as in Definition 1 below. For the purposes of this section, only
probability mass functions on Fn

2 need be considered. Despite this, Definition 1
considers more general functions on an arbitrary subspace V ⊆ Fn

2 . Since any
vector space over F2 is isomorphic to Fn

2 for some n, this generalization is mostly
a matter of notation. Nevertheless, this extended notation will be convenient in
Section 2.4.

Definition 1 ( [2], §2.1). Let V ⊆ Fn
2 be a vector space and f : V → C a

complex-valued function on V . The Fourier transformation of f is a function
f̂ : Fn

2/V
⊥ → C defined by

f̂(u) =
∑
x∈V

(−1)u
>xf(x),

where we write u for u + V ⊥. Equivalently, f̂ is the representation of f in the

basis of functions x 7→ (−1)u
>x for u ∈ Fn

2/V
⊥.

Recall that the orthogonal complement V ⊥ of a subspace V of Fn
2 is the

vector space V ⊥ = {x ∈ Fn
2 | ∀v ∈ V : v>x = 0}. The quotient space Fn

2/V
⊥

is by definition the vector space of cosets of V ⊥. For convenience, an element
x + V ⊥ ∈ Fn

2/V
⊥ will simply be denoted by x. For x ∈ Fn

2/V
⊥ and v ∈ V , the

expression x>v is well-defined. Consequently, the above definition is proper.
The main theorem on the advantage of an adversary in the bounded-query

probing model can now be stated. It relies on the observation that, for a bounded-
query probing secure circuit, all probed wire values either closely resemble uni-
form randomness or reveal nothing about the secret input.
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Theorem 1 ( [2], §4). Let A be a t-threshold-probing adversary for a circuit
C. Assume that for every query made by A on the oracle Ob, there exists a
partitioning (depending only on the probe positions) of the resulting wire values
into two random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x−δ0‖22 ≤ ε with
δ0 the Kronecker delta function,

2. Any t-threshold-probing adversary for the same circuit C and making the
same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2 q ε ,

where q is the number of queries to the oracle Ob.

The advantage of a probing adversary against the circuit can be upper
bounded in terms of ‖p̂z − δ0‖2 where pz is the probability distribution of any
measured set of ‘bad’ wire values, possibly conditioned on several ‘good’ wire
values. The conditioning on ‘good’ values simply corresponds to fixing some vari-
ables in the circuit to constants. Section 2.4 provides the essential link between
p̂z and the linear cryptanalysis of the shared circuit that will enable us to upper
bound the quantity ‖p̂z − δ0‖2 for concrete masked ciphers.

2.2 Boolean Masking and Threshold Implementations

Boolean masking is a technique based on splitting each secret variable x ∈ F2

in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =
∑sx

i=1 x
i over F2.

A random Boolean masking of a fixed secret is uniform if all sharings of that
secret are equally likely.

There are several approaches to masking a circuit. In this work, we make use
of threshold implementations, proposed by Nikova et al. [21]. This approach has
been extended to capture higher-order univariate attacks by Bilgin et al. [4]. In
the following, the main properties of threshold implementations are reviewed.

A threshold implementation consists of several layers of Boolean functions.
As for any masked implementation, a black-box encoder function generates a
uniform random sharing of the input before it enters the shared circuit and the
output shares are recombined by a decoder function. At the end of each layer,
synchronization is ensured by means of registers.

Let F̄ be a layer in the threshold implementation corresponding to a part
of the circuit F : Fn

2 → Fm
2 . The function F̄ : Fnsx

2 → Fmsy
2 , where we as-

sume sx shares per input bit and sy shares per output bit, will be called a
sharing of F . The ith share of the function F̄ is denoted by F i : Fnsx

2 → Fm
2 ,

for i ∈ {1, .., sy}. Sharings can have a number of properties that are relevant
in the security argument for a threshold implementation; these properties are
summarized in Definition 2.
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Fig. 1: Schematic illustration of a threshold implementation assuming an equal
number of input and output shares.

Definition 2 (Properties of sharings [4, 21]). Let F : Fn
2 → Fm

2 be a
function and F̄ : Fnsx

2 → Fmsy
2 be a sharing of F . The sharing F̄ is said to be

1. correct if
∑sy

i=1 F
i(x1, . . . , xsx) = F (x) for all x ∈ Fn

2 and for all shares
x1, . . . , xsx ∈ Fn

2 such that
∑sx

i=1 x
i = x,

2. dth-order non-complete if any function in d or fewer shares F i depends on
at most sx − 1 input shares,

3. uniform if F̄ maps a uniform random sharing of any x ∈ Fn
2 to a uniform

random sharing of F (x) ∈ Fm
2 .

2.3 Changing of the Guards

The changing of the guards method proposed by Daemen [7] is a technique that
transforms a non-complete sharing into a uniform and non-complete sharing. The
technique works by embedding the sharing into a Feistel-like structure. In this
paper, we slightly generalize the method by considering a (higher-order) probing
secure sharing. Such a sharing potentially requires multiple register stages and
extra randomness to guarantee its security. However, the changing of the guards
method still ensures the uniformity of the output. An example of the method
with four shares is shown in Figure 2.

r̄

a1

a2

a3

a4

b1

b2

b3

S̄

⊕
⊕
⊕

⊕ ⊕ ⊕

b′1
b′2
b′3

a′1
a′2
a′3
a′4

r̄

Fig. 2: Changing of the guards method with four shares where the shared S-box
S̄ uses the randomness r̄.

We show that the adapted changing of the guards construction is uniform.
This is equivalent to showing that it is invertible for any fixed secret values a
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and b. In other words, given secrets a and b and the outputs a′1, a′2, a′3, a′4,
b′1, b′2, b′3, r̄, it must be possible to reconstruct the inputs a1, a2, a3, a4, b1, b2, b3

and r̄. The derivation is straightforward. Since the secret a is given, the shares
a1, a2, a3, a4 can be recovered from b′1, b′2, b′3. Subtracting a′1, a′2, a′3 from the
output of the S̄ function yields b1, b2, b3. Since the value r̄ was already given and
a, b were taken arbitrarily, the construction is indeed invertible.

Additionally, the above construction is still probing secure. Thus, the adapted
changing of the guards method allows for the transformation of any probing
secure sharing into a uniform one which allows the re-use of the randomness
used in the S-box.

2.4 Cryptanalysis of Higher-Order Threshold Implementations

As discussed in Section 2.1, Theorem 1 allows proving the security of higher-order
threshold implementations given an upper bound on the Fourier coefficients of
probability distributions of wire values obtained by probing. This section shows
how such an upper bound can be obtained using linear cryptanalysis.

For any linear masking scheme, there exists a vector space V ⊂ F`
2 of valid

sharings of zero. More specifically, an F2-linear secret sharing scheme is an algo-
rithm that maps a secret x ∈ Fn

2 to a random element of a corresponding coset
of the vector space V. Let ρ : Fn

2 → F`
2 be a map that sends secrets to their

corresponding coset representative. For convenience, we denote Va = a+ V.
Let Ḡ be a correct sharing of a function G : Fn

2 → Fn
2 in the sense of Def-

inition 2. Fix any x ∈ Fn
2 and let a = ρ(x) and b = ρ(G(x)). The correctness

property implies that Ḡ(Va) ⊆ Vb. It follows that the restriction F : Va → Vb

of Ḡ defined by F (x) = Ḡ(x) is a well defined function.
Linear cryptanalysis is closely related to the propagation of the Fourier trans-

formation of a probability distribution under a function F : Va → Vb. This leads
to the notion of correlation matrices due to Daemen et al. [8]. The action of F on
probability distributions can be described by a linear operator. The coordinate
representation of this operator with respect to the standard basis {δx}x∈V may
be called the transition matrix of F . Following [1], the correlation matrix of F
is then the same operator expressed with respect to the Fourier basis. The cor-
relation matrix of a sharing can be defined as follows. Note that it only depends
on the spaces Va and Vb, not on the specific choice of the representatives a and
b.

Definition 3 (Correlation matrix). For a subspace V ⊆ F`
2, let F : Va → Vb

be a function. The correlation matrix CF of F is a real |Vb| × |Va| matrix with
coordinates indexed by elements u, v ∈ Fn

2/V⊥ and equal to

CF
v,u =

1

|V|
∑
x∈Va

(−1)u
>x+v>F (x) .

The relation between Definition 3 and linear cryptanalysis is as follows: the
coordinate CF

v,u is equal to the correlation of a linear approximation over F
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with input mask u and output mask v. That is, CF
v,u = 2 Pr[v>F (x) = u>x] −

1 for x uniform random on Va. An important difference with ordinary linear
cryptanalysis is that, for shared functions, the masks u and v correspond to
equivalence classes. This formalizes the intuitive observation that masks which
differ by a vector orthogonal to the space V lead to identical correlations.

From this point on, we restrict to second-order probing adversaries. The
description of the link with linear cryptanalysis presented in [2], is completed
by Theorem 2 below. It shows that the coordinates of p̂z are entries of the corre-
lation matrix of the state-transformation between the specified probe locations.
In Theorem 2, the restriction of x ∈ Va to an index set I = {i1, . . . , im} is

denoted by xI = (xi1 , . . . , xim) ∈ F|I|2 . This definition depends on the specific
choice of the representative a, but the result of Theorem 2 does not.

Theorem 2 ( [2], §5.2). Let F : Va → Vb be a function with V ⊂ F`
2 and

I, J ⊂ {1, . . . , `}. For x uniform random on Va and y = F (x), let z = (xI ,yJ).
The Fourier transformation of the probability mass function of z then satisfies

|p̂z(u, v)| = |CF
ṽ, ũ|,

where ũ, ṽ ∈ F`
2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v and ṽ[`]\J = 0.

Theorem 2 relates the linear approximations of F to p̂z(u) and hence pro-
vides a method to upper bound ‖p̂z− δ0‖2 based on linear cryptanalysis. Upper
bounding the absolute correlations |CF

ṽ, ũ| is nontrivial in general. However, the
piling-up principle [18,25] can be used to obtain heuristic estimates.

Importantly, Theorem 2 relates to linear cryptanalysis with respect to V
rather than F`

2. The differences are mostly minor, but there is a subtle difference
in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F`

2/V⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1)>, it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation for a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.

3 A Low-Randomness Second-Order Secure AES

In this section, our second-order masking of the AES is introduced.

3.1 Description of the AES

The AES is a family of iterative block ciphers due to Daemen and Rijmen [10]
with a 128-bit state that is commonly represented as a 4 × 4 array of bytes. In
this paper, we will only consider the most commonly used variant, known as
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AES-128, which has a 128-bit key and consists of 10 rounds. The round function
consists of a subkey addition, a bricklayer of S-boxes, a ShiftRows operation,
and a MixColumns step. The AES S-box consists of the map x 7→ x254 in a field
F28 , followed by an affine transformation. A visual representation of the round
function is shown in Figure 3.

The key schedule consists of 32-bit operations working on the columns of the
key state. Each column is added onto the next, apart from the last column where
its bytes are rotated, send through a bricklayer of AES S-Boxes, and added to
constants.

AddRoundKey

⊕ ⊕
⊕⊕
⊕

⊕⊕ ⊕
⊕
⊕
⊕
⊕

⊕ ⊕ ⊕ ⊕
SubBytes

S S

SS

S

SS S

S

S

S

S

S S S S

ShiftRows MixColumns

Fig. 3: The AES round function.

3.2 Masking Details

Masking State and Key For the sharing of the AES state and key, we use classical
Boolean masking. The 128-bit state is shared using four shares per bit, requiring
a total of 128× 3 = 384 random bits. The 128-bit key is also shared using four
shares, and this also costs 384 random bits. Finally, we extend the state by an
additional column where each cell contains three shares of randomness. This
requires an additional 32× 3 = 96 random bits and is necessary for the “guards
in formation” technique that will be described in Section 3.4. It will be used over
the rows of the state for the S-box layer. An overview of the shared AES round
function is shown in Figure 4. The following sections discuss further aspects of
this sharing.

AddRoundKey

⊕ ⊕
⊕⊕
⊕

⊕⊕ ⊕
⊕
⊕
⊕
⊕

⊕ ⊕ ⊕ ⊕
SubBytes1

F̄ ⊕

F̄ ⊕

F̄ ⊕

F̄ ⊕

SubBytes2

Ḡ ⊕

Ḡ ⊕

Ḡ ⊕

Ḡ ⊕

SubBytes3

Ā Ā

ĀĀ

Ā

ĀĀ Ā

Ā

Ā

Ā

Ā

Ā Ā Ā Ā

ShiftRows MixColumns

Fig. 4: One round of the masked AES. The locations of the registers are indicated
by dashed lines. The nonlinear operations require an additional register stage,
which is not shown on the figure. Hatched cells remain unchanged through the
operation.
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Sharing the Affine Transformations The masking of the linear transformations
ShiftRows and MixColumns is simply done share-wise. Constants are added to
the first share of the relevant variable.

Sharing the S-Box The AES S-box consists of an inversion S over F28 and an
affine layer A. Similar to the other linear layers of the AES, the affine layer is
masked using a share-wise approach. Following the work by Wegener et al. [26],
the inversion (x 7→ x254) is decomposed into two cubic functions. Specifically,
we consider

x254 =
(
x26
)49

= G(F (x)) .

The sharings F̄ and Ḡ of F and G respectively are chosen such that they are
first-order non-complete and second-order probing secure. That is, none of the
output shares depends on all of the input shares and placing two probes in
the sharing does not reveal any secret values. While the need for second-order
probing security is clear, non-completeness is required such that, even when
randomness is re-used, a security analysis over multiple rounds remains possible.
More details are given in Section 4.2.

Non-complete sharings of F and G can be achieved by using four input
shares. More specifically, we use the direct four-sharing of F and G as defined
in the thesis of Bilgin [3, pg. 36]. To achieve second-order probing security, the
sharings F̄ and Ḡ are split into two stages separated by a register such that
F̄ = F̄2 ◦ F̄1 and Ḡ = Ḡ2 ◦ Ḡ1 with F̄1, F̄2, Ḡ1 and Ḡ2 second-order non-
complete. In particular, F̄2 and Ḡ2 merely implement a linear compression of
shares into four output shares. To ensure the second-order probing security of F̄
and Ḡ, randomness is added at the end of the stages F̄1 and Ḡ1. This is depicted
in Figure 5. Section 3.3 discuss the specific choice of F̄1 and Ḡ1 in more detail.

Finally, the sharing is made uniform using the changing of the guards ap-
proach of Daemen [7] which was recalled in Section 2.3.

Key Schedule The key schedule is masked similar to the state. Meaning that
linear layers are masked share-wise and the masked S-box follows the method
above.

Using the linear cryptanalysis tool introduced in Section 4, we find that
using the above masked AES S-box with changing of the guards over the four
S-boxes does not result in a secure masking of the key-schedule. In fact, one
can easily find trails with nonzero correlation over few rounds with a small
number of active S-boxes. One such trail is shown in Appendix A. Hence, we
instantiate the additional cell due to the changing of the guards technique with
fresh randomness in every evaluation. This costs 24 random bits for every F̄ or
Ḡ layer for a total randomness cost of 20 × 24 = 480 bits plus an additional
384 random bits for the initial sharing of the master key. The 456 random bits
to ensure the local second-order probing security of the masked S-box can be
re-used from the masked S-boxes in the state.
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x1

x2

x3

x4

F 1
1

F 2
1

...

F `−1
1

F `
1

⊕

⊕

⊕

⊕

r1

r2

r`

r1

...

⊕

⊕

y1

...

y4

second-order non-complete

first-order non-complete

Fig. 5: Sharing of the cubic function F (or G). The Boolean functions F 1
1 , . . . , F

`
1

are the shares of the first layer F̄1 (or Ḡ1). The gray dashed line denotes a register
stage.

3.3 Optimizing the S-Box Sharing

As explained in Section 3.2, the S-box sharing is realized using a particular
technique to ensure second-order non-completeness over each register stage and
first-order non-completeness over both stages. This section shows how to min-
imize the randomness costs by reducing the number of output shares in the
second-order non-complete expansion layers F̄1 and Ḡ1.

We start with a straightforward method to choose F̄1 and Ḡ1. Denote the
output bits of F̄ (similarly Ḡ) by y1

i , y
2
i , y

3
i , y

4
i for i ∈ {1, ..., 8}. Each output

bit is a function of at most three shares of each input bit due to F̄ being non-
complete. One can again find a second-order non-complete sharing for each of
these three-shared functions. This would indeed result in a decomposition of F̄
that is second-order non-complete in each stage, while maintaining the first-order
non-completeness of F̄ .

The above method has the downside that it results in functions F̄1 with a
large number of shares. This can be optimized further. Instead of using a second-
order non-complete sharing of each F i (or Gi), we can re-share some functions
using a first-order non-complete covering scheme. The optimized covering scheme
is shown in Table 1. The third column shows which input shares can be combined
in F̄1 (or Ḡ1). For example, F 1 is re-shared such that each output bit can use
only either the first and second share of an input bit or the first and third. This
covering scheme is verified to be second-order non-complete. For example, it is
clear that one probe can never learn the second and third share of an input bit.

While Table 1 shows a second-order non-complete covering scheme for F̄1

and Ḡ1, we still need to share F̄ or Ḡ following those requirements. For this,
we use the covering schemes from the work by Bozilov [5]. This work provides a
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Table 1: This table depicts the share dependencies of an input bit for F̄ , Ḡ or
F̄1, Ḡ1. It also shows which random bits are added to the output of F̄1 or Ḡ1.

Output share F̄ or Ḡ F̄1 or Ḡ1 Used random bits

1 {x1, x2, x3} {x1, x2}, {x1, x3} r1, ..., r96
2 {x2, x3, x4} {x2}, {x3}, {x4} r97, ..., r456
3 {x1, x3, x4} {x1, x3}, {x1, x4} r1 + r97, ..., r96 + r192
4 {x1, x2, x4} {x1, x2}, {x1, x4} r1 + r193, ..., r96 + r288

covering such that each function F 1, F 3, and F 4 is re-shared to have 12 output
shares and F 2 can be re-shared to have 45 output shares. Thus, we have a total
of 45 · 8 + 24 · 12 = 648 output shares for F̄1 (similarly Ḡ1).

In order to ensure the second-order probing security of the sharings of F̄
and Ḡ, a total of 648 random bits are added to the second-order non-complete
sharing before re-compression. We can reduce this number by observing that the
security condition boils down to requiring that all values seen by the probing
adversary need to be masked with a unique random bit. In Table 1, we show a
reduction of this randomness to 456 bits. By probing, an adversary can see all
random bits related to an output share listed in the table. One can see that, even
if two output shares are probed, all observed bits in the expansion are masked
with a unique random bit. For example, probing output shares 2 and 3, the
adversary observes r97, ..., r456 and r1 + r97, ..., r96 + r193. The observations are
then still masked by the unique random bits r97, ..., r456 and r1, ..., r96.

3.4 Guards in Formation

This section discusses the application of the changing of the guards technique to
the S-box layer. Recall from Figure 2 that three out of four shares of one input
(b1, b2, b3) are used to re-mask the other branch (a′1, a′2, a′3, a′4) in the Feistel
structure. However, when used in a straightforward way, this operation is not
second-order non-complete as three shares are used to mask the fourth share
of the other branch. In order to make the re-masking operation second-order
probing secure, it can be spread across the two stages of the sharing F̄ (or Ḡ).

It is also important to consider how the changing of the guards structure links
the different cells of the state. As the cryptanalytic properties of our masking
affect its security, the diffusion resulting from the linear layer plays an important
role. However, from the perspective of linear-cryptanalysis, placing a changing
of the guards structure over the S-box layer reduces diffusion. To improve diffu-
sion while keeping the cost minimal, we look for inspiration in the Rijndael-160
cipher [9].

A traditional application of the changing of the guards method would result
in one additional state cell. This extra cell is instantiated with a random sharing
of zero at the start of execution. One has several options on how to lay out the
changing of the guards structure in this case, one example is shown in the left-
most illustration in Figure 6. Since the changing of the guards method now mixes
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SubBytes SubBytes SubBytes

Fig. 6: Three examples of diffusion patterns using the changing of the guards
technique. Additional cells are outlined by dashed gray lines. The third example
chains all cells in a row.

shares from different cells, it affects the diffusion of the shared cipher. Using the
security analysis tool that will be introduced in Section 4, one finds that the ex-
ample in Figure 6 results in linear trails with few active S-boxes. Consequently,
the security bound obtained using Theorem 1 would not be satisfactory.

Instead, we shorten the chain of cells linked by the changing of the guards
structure by increasing the number of additional cells. Specifically, the chang-
ing of the guards method is applied to the S-boxes in each of the rows of the
state independently. This is illustrated in the middle illustration of Figure 6.
Furthermore, the diffusion properties over the enlarged state are improved by
also applying a MixColumns operation over the four extra cells. Finally, to com-
plete the analogy with Rijndael-160, a ‘shift’ is introduced in the changing of
the guards structure. The shifting offset depends on the row number as depicted
in the rightmost part of Figure 6. The final result is shown in Figure 4.

4 Security Analysis

This section determines an upper bound on the advantage of second-order prob-
ing adversaries for the masked AES construction from Section 3.

4.1 Single Round

In this section, we argue that one round of the masked AES is second-order
probing secure. Recall that, without loss of generality, it may be assumed that
all probes are placed right before a register stage. Probes placed in linear layers
only return one share per input bit. Probing two linear layers is trivially secure,
and probing a linear layer and an S-box can be reduced to the following cases
where two S-boxes are probed. Hence, only two cases must be considered: both
probes placed within the same shared S-box (either F̄ or Ḡ), or probes positioned
in two different shared S-boxes.

For the first case, consider that the adversary places both probes in F̄ (the
argument is the same for Ḡ). If both probes are placed in F̄1, the adversary does
not receive all shares of any secret bit since F̄1 is a second-order non-complete
sharing. Thus, consider the case where the adversary probes the compression
layer F̄2. As shown in Table 1, each bit at the input of the expansion layer is
masked with a unique random bit. Thus, whatever the choice of the second probe
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position, the adversary cannot infer any information about an input secret of F̄ .
As a result, the sharings F̄ and Ḡ are second-order probing secure.

Consider the second case, i.e. the two probes are placed in different S-boxes.
If both probes are placed in the F̄ -part of the S-box sharings (similarly Ḡ) then,
due to first-order non-completeness, the adversary does not learn any secret bits.
Hence, we consider the case where one probe is placed in F̄ and one is placed in
Ḡ. Consider that b̄ denotes the additional branch used for the changing of the
guards technique. This branch b̄ is a uniform random sharing of zero and is used
to re-mask the output of F̄ . From the probe in F̄ , the adversary learns at most
one output share of F̄ . We argue that the probe in Ḡ cannot reveal all of the
other output shares. The argument is based on the consistent use of the same
covering scheme for both sharings:

– Due to the second-order non-completeness of the expansion layer Ḡ1 of Ḡ,
probing Ḡ1 does not reveal any of the other three output shares of F̄ .

– When probing the compression layer Ḡ2 of Ḡ, the resulting values are masked
by the randomness r̄. The adversary can only see the same bits of r̄ as
obtained from the probe in F̄ when the indices of the probed output shares
of F̄ and Ḡ are the same. The covering scheme used for non-completeness
(second column of Table 1) guarantees that the adversary does not obtain
all of the output shares of F̄ .

The above security argument also holds for the key schedule, as it uses the
same masked S-box. In particular, the four S-boxes in one round of the key
schedule can be considered to be parallel to the 16 S-boxes in the round function.

4.2 Multiple Rounds

Following Theorems 1 and 2, we argue the second-order probing security of
multiple rounds of the masked AES by bounding the correlation of all linear trails
resulting from two probes placed in different rounds. Specifically, by Theorem 2,
bounding the correlation of linear approximations in the masked cipher results
in an upper bound on ‖p̂z − δ0‖2 where pz is the probability distribution of the
probed values. In turn, by Theorem 1, this provides a bound on the advantage
of second-order probing adversaries.

All of the randomness which is re-used across S-boxes, can be labeled as
‘good’ in the terminology of Theorem 1. This is safe, since an adversary only
probing these values cannot obtain any secret information. Consequently, in the
linear cryptanalysis of the masked cipher, these random bits must be considered
to be constant. Since F and G are shared in a non-complete way even without the
use of randomness, we can assume that any probe placed by the adversary results
in a set of non-complete input shares. This is important, since it implies only
linear approximations with nonzero input and output masks must be considered.

To ensure the security of the masking, all linear approximations over the
sharings Ḡ and F̄ should have a low absolute correlation. Verifying this property
is slow since the masked S-box has 32 input bits. Using optimized verification
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software, it takes 1500 core hours on an Intel(R) Xeon(R) Gold 6230 CPU with
a clock frequency of 2.10 GHz to compute the linear approximation table of a
sharing for one input secret (one restriction). The search revealed sharings of
the F and G with the following properties.

Claim 1. Let F̄ : Va → Vb be any restriction of the sharing of F obtained
in Section 3.2. Denote its absolute correlation matrix by |CF̄ |. For any u, v ∈
F`

2/V⊥ not both equal to zero, it holds that
∣∣CF̄

u,v

∣∣ ≤ 2−3 and, moreover,
∣∣CF̄

0,v

∣∣ ≤
2−3.8.

Claim 2. Let Ḡ : Va → Vb be any restriction of the sharing of G obtained
in Section 3.2. Denote its absolute correlation matrix by |CḠ|. For any u, v ∈
F`

2/V⊥ not both equal to zero, it holds that
∣∣CḠ

u,v

∣∣ ≤ 2−2.6 and, moreover,
∣∣CḠ

0,v

∣∣ ≤
2−4.

The above two claims can be verified from the linear approximation table
of the sharings. However, the above two results are claims since they were only
verified for a couple of secrets.

To upper bound the maximum absolute correlation of linear trails between
the observed values (corresponding to nonzero masks), we use a slight refinement
of the standard a wide-trail type argument. That is, we search for the best
trail activity patterns over the masked AES, but we take into account both
cases in Claims 1 and 2. All of this is done using automated tools. Specifically,
we encode this search problem as a sequence of Satisfiability Modulo Theories
(SMT) problems in the bit-vector theory. These problems are then solved with
the off-the-shelf SMT solver Boolector [20]. A similar approach was originally
used by Mouha et al. [19] to search for activity patterns of the unmasked AES
using Mixed Integer Linear Programming. Whereas the approach of Mouha et al.
is to search for activity patterns with a minimal number of active S-boxes, our
approach is to look for activity patterns with maximal absolute correlation. To
create and solve these SMT problems we used a development version of ArxPy1.

To model the correlation of the shared S-boxes, we consider the worst case
scenarios from Claims 1 and 2, that is, replacing the inequalities for both cases by
equalities. Thus, the correlation of the activity patterns found by our SMT-based
method provides an upper bound on the correlation of all linear trails compatible
with a specified activity pattern for the input and output masks. An optimal
trail is shown in Appendix C. It spans three rounds and has absolute linear
correlation at most 2−55.20. Therefore, the absolute correlation of all relevant
linear trails is bounded by 2−55.20. It follows that the squared 2-norm of the
nontrivial Fourier coefficients of the observed bits z can be upper bounded by

ε := ‖p̂z − δ0‖22 ≤ |supp p̂z| ‖p̂z − δ0‖2∞ ≤ 248 2−110.40 = 2−62.40,

where we have used the inequality |supp p̂z| ≤ 248. The latter follows from the
fact that the observed value z consists of at most 48 bits in the glitch-extended
probing model: if an output coordinate of F̄ or Ḡ is read, at most 24 shares are

1 https://github.com/ranea/ArxPy
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learned; if an output of the shared linear layer is probed, at most seven shares
are observed.

We also built an SMT model for the key schedule. The best trail was found to
span eight rounds and activates 21 masked S-boxes. The absolute correlation of
the trail is upper bounded by 2−63.60. Thus, the squared 2-norm of the nontriv-
ial Fourier coefficients of observed bits in the key schedule can be bounded by
ε ≤ 2−79.20. As the trails through the state transformation have a larger abso-
lute correlation, the upper bound on the maximum advantage of a second-order
probing adversary is determined by the bound ε ≤ 2−62.40.

4.3 Security Claim

Due to the analysis in Sections 4.1 and 4.2, Theorem 1 can be applied with the
upper bound ε ≤ 2−62.40. It follows that the following security claim can be
made.

Security Claim 1. For the masked AES described in Section 3, the following
bound on the advantage of the adversary (assuming piling-up) in the probing
model is claimed:

Adv2-thr(A) ≤
√

q

261.4
.

Although the above bound is expressed in terms of the number of probing
queries, it can be interpreted in terms of the number of traces taken by an
adversary subject to a few assumptions. If the attacker mounts a second-order
DPA attack using at most two time samples in a power trace, then the number
of queries corresponds to the number of traces. If an adversary does not gather
more than 227 (100 million) traces, the above bound shows that the advantage
of any attack is at most 2−17.2. We note that most of the side-channel literature
verifies implementations using 100 million traces [11, 12, 14]. The next section
shows that this bound can be significantly improved by taking a closer look at
the glitch model, leading to a much lower advantage in practice.

5 Sharpening the Glitch Model

In Section 4, an upper bound on the advantage of a second-order probing ad-
versary for the masked AES of Section 3 was obtained. However, we observe
that this bound is significantly negatively impacted by the large support of the
Fourier transformation of the observed values. Indeed, this leads to an increase in
advantage by a factor 224 due to the possibility that a glitch-extended probe may
observe 24 bits. In this section, we propose a modified glitch model (supported
by simulations) that leads to an improved bound.

We adapt the glitch-extended probing model from Section 2.1. Instead of an
adversary which observes the values of all wires that depend on the probed wire
(up to the preceding register stage), the new model proposes that the adversary
chooses an arbitrary Boolean function of those values. For example, suppose that
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the adversary places a glitch-extended probe on a masked function g(x1, . . . , xn).
Instead of receiving all of the input values x1, . . . , xn, the adversary can choose a
function f : Fn

2 → F2 and receives the value f(x1, . . . , xn) instead. The function
f will be referred to as the glitch function.

The idea is that, intuitively, the glitch function cannot be completely ar-
bitrary: most Boolean functions in many variables are not easily realized with
a small, structured circuit. We formalize this intuition by postulating that the
1-norm of the Walsh-Hadamard transform of the glitch function can not be too
large. To exploit this assumption, the following refinement of Theorem 2 is pro-
posed.

Theorem 3. Let F : Va → Vb be a permutation with V ⊂ F`
2 and I, J ⊂

{1, . . . , `}. For x uniform random on Va and y = F (x), let z = (g1(xI), g2(yJ)),
f1 = 2−|I| (−1)g1 , and f2 = 2−|J| (−1)g2 . The Fourier transformation of the
probability mass function of z then satisfies

‖p̂z − δ0‖2 ≤ ‖f̂1‖1 ‖f̂2‖1 max
w,w′ ∈ F`

2/V⊥
|CF

w,w′ |,

where w,w′ ∈ F`
2/V⊥ are such that w′[`]\I = 0 and w[`]\J = 0.

Proof. Let z′ = (xI ,yJ). By Theorem 2, it holds that p̂z′(u, v) = CF
ṽ,ũ where

ũ, ṽ ∈ F`
2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v, and ṽ[`]\J = 0. In

addition, it holds that

p̂z(1, 1) =
[
(Cf1 ⊗ Cf2)p̂z′

]
1, 1

=
∑

u∈F|I|
2 , v∈ F|J|

2

f̂1(u)f̂2(v)CF
ṽ,ũ .

Since p̂z(0, 0) = 1, p̂z(0, 1) = 0, and p̂z(1, 0) = 0, it holds that ‖p̂z − δ0‖2 =
|p̂z(1, 1)|. The absolute value of p̂z(1, 1) can be upper-bounded using the triangle
inequality:

|p̂z(1, 1)| ≤
∑

u∈ F|I|
2 , v∈ F|J|

2

|f̂1(u)| |f̂2(v)| |CF
ṽ,ũ| ≤ ‖f̂1‖1 ‖f̂2‖1 max

w,w′ ∈ F`
2/V⊥

|CF
w,w′ | .

The above theorem shows that we can improve the bound on a probing
adversary if we know the 1-norm of the Walsh-Hadamard transformation of the
glitch functions. In order to upper bound this 1-norm, one can simulate the effect
of glitches on the circuit.

Our simulation setup is based on the work of Šijačić et al. [23]. We obtain
gate-level netlists using Synopsys DesignCompiler with a 45 nm standard-cell
library from NanGate. Composite Current Source (CCS) models provide detailed
timing information with 1 ps precision. CCS timing also captures different gate
propagation delays for every pin and signal edge (rising or falling). Thus, we
include the effects of data-dependent glitches in the simulations. The distribution
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of data-dependent glitches is also affected by the routing wires delays and random
fluctuations of the operating environment (e.g. noise, temperature, and operating
voltage). To account for these influences, we annotate delays of all ports and
wires using random values drawn from a normal distribution with mean 100 ps
and variance 30 (ps)2. We use MentorGraphics QuestaSim for logic simulation.
Lastly, we develop custom parsers to obtain continuous identity function traces
from logic simulation outputs.

We simulate the masked AES S-box from Section 3 and compute its Walsh-
spectrum for different probe positions. However, since the masked AES S-box
has 32 input bits, the memory requirements for performing many experiments
are large. To provide an additional example, we also simulate a 9-bit XOR.
The spectrum and 1-norms for different input delays, initial states, and different
probe positions and time samples for the masked AES S-box and 9-bit XOR is
given in Appendix B.

Using the observed 1-norm and the above theorem, we can improve the secu-
rity bound for the masked AES from Section 3. From Figure 11 in Appendix B,
we observe that the 1-norm of the Walsh-Hadamard transform of the glitch
functions for the masked AES S-box is between 600 and 1635 ≈ 210.68. By ap-
plying Theorem 3, the squared 2-norm of the nontrivial Fourier coefficients of
the observed bits z can be upper bounded by

‖p̂z − δ0‖22 ≤ 221.36 2−110.40 = 2−89.04,

This gives the following refined security claim.

Security Claim 2. For the masked AES described in Section 3, the following
bound on the advantage of the adversary (assuming piling-up) in the probing
model with refined glitches is claimed:

Adv2-thr(A) ≤
√

q

288.04
.

6 Amortizing Randomness Over Multiple Queries

This section introduces a method to safely extract randomness from the state of
the masked AES from Section 3 for usage in the next call. This further reduces
the requirements on the (true) random number generator used in the implemen-
tation.

The technique works by extracting the randomness from the masked state
in certain rounds. Here extraction means taking three out of four shares of each
bit of the state for subsequent use. Directly using the extracting state bits as
randomness in the next masked cipher call would be insecure in the probing
model. Instead, we extract randomness from multiple rounds and add it together.
A total of twice the shared state size, 960 random bits, is extracted per masked
cipher call. This process is depicted in Figure 7.

Suppose that the randomness is refreshed after every l calls to the masked
cipher, i.e. after l blocks have been encrypted. To assess the security of such
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⊕
rand 2

rand 1

Fig. 7: Extraction of randomness from a masked AES to create the random bits
“rand 1” and “rand 2”. The ith round function of AES is denoted by Ri.

a construction, one can rely on a variant of the bounded query probing model
from Section 2.1. Since the regular circuit oracle only generates new randomness
every l calls, it is more convenient to consider an oracle for which each query
corresponds to l invocations of the masked cipher. Equivalently, the adversary
is given oracle access to a circuit that consists of l blocks which are only con-
nected by the circuitry required to reuse randomness. The adversary is allowed
to reposition the probes after each invocation of the masked circuit, so up to 2l
probes per query are provided. However, only two probes per block are allowed.
An adversary with this access structure may be called an l-block 2-threshold
adversary. This is illustrated in Figure 8.

AES1P1 C1 AES2P2 C2
. . .Pi Ci AESlPl Cl

Fig. 8: Illustration of the l-block 2-threshold probing model.

It is straightforward to adapt Theorem 1 to l-block 2-threshold adversaries.
The only difference is in the admissible probe positions. However, when applying
this result to determine the security bound, care must be taken in the labeling
(as ‘good’ or ‘bad’) of probed values. In the l = 1 case, probed values resulting
from two probes placed within the same S-box were marked as ‘good’. This
helps to avoid corner cases that do not threaten the probing security, but that
prevent the direct replacement of these values with uniform randomness in the
proof of Theorem 1. For l ≥ 2, the presence of probes in other blocks makes this
labeling incorrect and an additional reduction is required before applying the
theorem. In this initial step, the set of values obtained by placing both probes
of a block in the same S-box is modified (expanded) to a set of values with a
uniform random marginal distribution. By simply returning all but one of the
input shares of the S-box, this is achieved without any loss in security. The
modified values can then be labeled as ‘bad’.
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To complete the argument, an upper bound on ‖p̂z−δ0‖22 must be determined.
Here, z consists of the (modified) probed values conditioned on any values labeled
as ‘good’. This requires an analysis of linear trails, including trails that run
across multiple blocks through the randomness extraction mechanism shown in
Figure 7. Suppose that ε = 2b× c2, where b is the maximum number of bits seen
by any pair of probes (possibly in different blocks) and c2 an upper bound on the
squared correlation of any linear approximation between such a pair of probes.
Grouping masks by the number of active probes, and applying the piling-up
principle, one obtains the upper bound

‖p̂z − δ0‖22 ≤
2l∑

n=2

(
2l

n

)
εn−1 = ε−1

[
(1 + ε)2l − (1 + 2l ε)

]
≤ l(2l − 1)ε .

The actual number of probes could be lower than 2l due to the initial reduction
that essentially combines two probes placed in one S-box into a single probe. It
follows that a second-order probing adversary making a total of q queries has
advantage bounded by

Advl-blk,2-thr(A) ≤
√

2l − 1×
√

2 q ε .

That is, a factor of at most
√

2l − 1 is lost when randomness is reused over l
masked cipher calls. This loss is due to the adversary’s capability of placing two
probes in each query in arbitrary positions. However, the information gathered
in each query does not directly relate to a secret. Instead, many queries are
needed to distinguish this information from uniform random. Thus, it is unclear
whether these attacks relate to second-order DPA attacks. Hence when factoring
in noise, we expect that the above bound can be significantly improved. We pose
this improvement as an open problem.

Using SMT-based search tools, we find the best linear trail with two probes
in one AES circuit and an arbitrary non-zero mask on the extracted randomness.
Optimal trails are shown in Appendix D.2 The best trail with a non-zero mask
on the extracted randomness has absolute correlation at most 2−61.0. Thus, the
dominant trails are still those given in Section 4.2 and we again have the bound
ε ≤ 2−62.40.

Security Claim 3. For the masked AES with randomness reuse, the following
bound on the advantage of the adversary (assuming piling-up) in the probing
model is claimed:

Advl-blk,2-thr(A) ≤
√

2l − 1×
√

q

261.4
.

2 We exclude the attack where probes are placed directly on the XOR between the
extracted states. We neglect this attack due to an XOR using too low power con-
sumption for it to be usable by the attacker. However, if this attack is of concern,
one can use two bits of extracted randomness and XOR them with the rest at the
start of the next cipher call to avoid it.
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By making use of the sharpened glitch model from Section 5, the above bound
can again be improved significantly.

This technique generates a total of 960 random bits per masked cipher call.
In total, the masked AES from Section 3 requires 1800 random bits, 936 bits for
the state and 864 bits for the key. By choosing l > 936, the effective number of
random bits for the state is less than one per call. This increases the maximum
advantage of a second-order probing adversaries by a factor less than 26.

The above security claim should be investigated further as the piling-up
principle might not be applicable since the randomness extraction makes the
entire masked cipher non-uniform. Due to this, there may be a large number
of trails with a similar absolute correlation for a given mask on the extracted
randomness.

7 Conclusion

A second-order masked AES using less than 2000 bits of randomness was de-
veloped. Furthermore, it was shown how the randomness cost can be amortized
over several cipher calls. This resulted in a total cost of less than 1000 random
bits per encrypted block. These low randomness costs are the result of care-
ful design choices guided by a detailed security analysis in the bounded-query
probing model. In particular, the sharing of the nonlinear layer is based on a
variant of the changing of the guards method, which we call “guards in forma-
tion” and improves the diffusive properties of the masked cipher. An automated
tool based on SMT solvers was used to bound the absolute correlation of linear
trails through the masked cipher. This resulted in concrete upper bounds on the
advantage of probing adversaries.

The main open problem of this work is the efficiency of the masking. We
note that our S-box masking extends the one from Wegener et al. [26], who
reported that the S-box costs over 20k GE when unrolled. Synthesis of our
unrolled S-box shows that it requires over 40k GE. Hence, the presented AES
masking will not competitive with the current state-of-the-art in terms of area-
requirements. However, we expect that future work will improve the efficiency
of the implementation.
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A Trails in the Second-Order Masked Key Schedule

This appendix provides the activity-pattern of a trail with non-zero correlation
over two rounds of the second-order masked key schedule of the AES. This is the
key-schedule described in Section 3.2, but without using fresh randomness for the
changing of the guards technique. The trail is depicted in Figure 9. Recall that
the AES S-box is split in two cubic maps and that the additional cell used for the
changing of the guards technique is passed on to the next nonlinear operation.

Sub1 Sub2

Ci

Sub1 Sub2

Ci+1

P1

P2

Fig. 9: Activity pattern of a trail with non-zero correlation through two rounds
of the second-order masked key schedule of AES caused by two probes. Hatched
cells correspond to active cells. The lightning signs denote the two probes.

B Walsh Spectra of the AES and XOR

In this appendix we simulate the masked AES S-box from Section 3 and compute
its Walsh-spectrum for different probe positions. The spectrum for a single input
delay and initial state but different probe positions and time samples for the
masked AES S-box is given in Figure 10a. The spectrum for different input
delays, initial states, probe positions, and time samples for the 9-bit XOR is
given in Figure 10b. The distributions of the 1-norms are illustrated in Figure 11
using a box plot.
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(a) AES S-box. (b) 9-bit XOR.

Fig. 10: Sorted absolute Walsh-spectrum of glitch functions for the AES S-box
and the 9-bit XOR for different probe positions, times, inputs delays, and initial
states.

Fig. 11: Box plot of the 1-norm of the Walsh-Hadamard transform of the glitch
functions for the masked AES and the XOR, for different probe positions, times,
input delays and initial states.

C Trails in the Second-Order Masked State

In this appendix we give trails through the state of the second-order masked
AES. We give the best trail with absolute linear correlation at most 2−55.20 in
Figure 12.

D Trails in the Generation of Randomness

In this appendix we give trails of the second-order masked AES where random-
ness is generated following the method described in Section 6. We give the best
trail with absolute linear correlation at most 2−61.0 in Figure 13. The hatched
cells in these figures denote the active cells in the output masks for the indicated
transformations.
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Start SubBytes2 ShiftRows MixColumns SubBytes1

SubBytes2 ShiftRows MixColumns SubBytes1 End

Fig. 12: An optimal trail (for two probes) with non-zero correlation through the
second-order masked AES. The hatched cells denote active cells of the output
of the operation.
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