
Evolving Secret Sharing Schemes Based on
Polynomial Evaluations and Algebraic Geometry

Codes

Chaoping Xing and Chen Yuan

Shanghai Jiao Tong University, Shanghai, China

Abstract. A secret sharing scheme enables the dealer to share a secret
among n parties. A classic secret sharing scheme takes the number n of
parties and the secret as the input. If n is not known in advance, the
classic secret sharing scheme may fail. Komargodski, Naor, and Yogev [7,
TCC 2016] first proposed the evolving secret sharing scheme that only
takes the secret as the input. In the work [7, TCC 2016], [8, TCC 2017]
and [2, Eurocrypt 2020], evolving threshold and ramp secret sharing
schemes were extensively investigated. However, all of their constructions
except for the first construction in [2] are inspired by the scheme given in
[7], namely, these schemes rely on the scheme for st-connectivity which
allows to generate infinite number of shares.
In this work, we revisit evolving secret sharing schemes and present three
constructions that take completely different approach. Most of the pre-
vious schemes mentioned above have more combinatorial flavor, while
our schemes are more algebraic in nature. More precisely speaking, our
evolving secret sharing schemes are obtained via either the Shamir secret
sharing or arithmetic secret sharing from algebraic geometry codes alone.
Our first scheme is an evolving k-threshold secret sharing scheme with
share size k1+ε log t for any constant ε > 0. Thus, our scheme achieves
almost the same share size as in [7, TCC 2016]. Moreover, our scheme is
obtained by a direct construction while the scheme in [7, TCC 2016] that
achieves the (k − 1) log t share size is obtained by a recursive construc-
tion which makes their structure complicated. Our second scheme is an
evolving kt-threshold secret sharing scheme with any sequence {kt}∞t=1

of threshold values that has share size t4. This scheme improves the
share size by log t given in [8] where a dynamic evolving kt-threshold
secret sharing scheme with the share size O(t4 log t) was proposed. In
addition, we also show that if the threshold values kt grow in rate bβtc
for a real β ∈ (0, 1), then we have a dynamic evolving threshold secret
sharing scheme with the share size O(t4β). For β < 0.25, this scheme
has sub-linear share size which was not known before. Our last scheme
is an evolving (αt, βt)-ramp secret sharing scheme with constant share
size. One major feature of this ramp scheme is that it is multiplicative as
the scheme is also an arithmetic secret sharing scheme. We note that the
same technique in [8] can also transform all of our schemes to a robust
scheme as our scheme is linear.1

1 We note that by replacing the building block scheme with an arithmetic secret
sharing scheme, the evolving (αt, βt)-ramp secret sharing scheme in [2] can also be

1 Introduction

Secret sharing scheme enables the dealer to share a secret among n parties such
that a authorized subset of parties can reconstruct the secret while a unautho-
rized subset of parties learns nothing about the secret. In this secret sharing
scheme, to generate these n shares, the dealer must learn the number of parties
in advance. If parties arrive at a different time, the dealer has to estimate the
number of parties and generate all shares before the arrival of the first party.
Since the share size, privacy and reconstruction all depend on the number n of
parties, a pessimistic estimation of n may cause a large overhead in the share
size or reconstruction and privacy while an underestimation of n will force the
dealer to refresh the shares of all existing parties. Komargodski, Naor, and Yo-
gev [7] proposed the evolving secret sharing scheme as a possible solution to this
problem. In this scheme, the dealer does not need to know the number of parties
in advance. When a new party arrives, the dealer could generate her share with-
out updating the shares of all the existing parties. Since we handle an infinite
number of parties, the share size tends to infinity as well for the threshold case.
To measure the performance of an evolving secret sharing scheme, we write the
share size as a function in the index of party, i.e., the t-th party has the share size
f(t). In [7], Komargodski, Naor, and Yogev observed that the share size of an
evolving 2-threshold secret sharing scheme is at least log t+log log t which might
be counterintuitive as the share size of the celebrated 2-threshold Shamir secret
sharing scheme [9] is merely log t. This feature distinguishes the evolving secret
sharing scheme from the classic secret sharing scheme. Given the important role
of secret sharing scheme as a cryptographic primitive and this new feature, we
believe that evolving secret sharing scheme is worth a thorough investigation.

Before presenting our results, let us take a quick review at the known re-
sults. Like a classic secret sharing scheme, an evolving secret sharing scheme is
k-threshold if any subset of k parties can reconstruct the secret and any sub-
set of k − 1 parties learn nothing about the secret. Komargodski, Naor, and
Yogev [7] showed that an evolving k-threshold secret sharing scheme can have
share size roughly equal to (k−1) log t. Komargodski and Paskin-Cherniavsky [8]
considered the evolving secret sharing scheme with dynamic threshold in which
the threshold of the t-th party is kt such that k1, k2, . . . is a non-decreasing se-
quence. They constructed an evolving secret sharing scheme with any sequence
of threshold value in which the share size of the t-th party is O(t4 log t). Beimel
and Othman [1] extended this evolving threshold secret sharing scheme to evolv-
ing ramp secret sharing scheme. Let b(t), g(t) : N → N be two non-decreasing
function. An evolving (b(t), g(t))-ramp secret sharing scheme is an evolving se-
cret sharing scheme such that a subset of parties is authorized if it contains at
least g(t) parties from the first t parties for some t ∈ N and a subset of parties is
unauthorized if it dose not contain more than b(t) parties from the first t parties
for any t ∈ N. Beimel and Othman [1] considered the case b(t) and g(t) is a

multiplicative. However, their share size is much bigger than ours as each party hold
multiple shares.

2

linear function. In this case, their evolving ramp secret sharing scheme has share
size O(1) which is almost as good as ramp secret sharing scheme. Beimel and
Othman [2] further considered the case g(t) − b(t) = O(tβ) for some β ∈ (0, 1).
Note that the evolving secret sharing scheme with dynamic threshold is also an
evolving (b(t), g(t))-ramp secret sharing scheme if we set the sequence of thresh-
old value to be kt = b(t) + 1. However, they found that such small gap could
lead to a significant improvement on the share size. The two schemes they pro-

posed have the share size O(t
4− 1

log2 β log2 t) and O(t
1−β
β log t), respectively. We

conclude this subsection by tabulating the known result below.

Reference Scheme Share Size of the tth Party

[7] k-threshold O(k log t)
[8] kt-threshold O(t4 log t)
[1] (αt, βt)-ramp for 0 < α < β < 1 O(1)
[2] (k, 2k)-ramp O(log k log t)

[2] (γt− tβ , γt)-ramp for 0 < γ, β < 1 O(t
4− 1

log2 β log2 t)

[2] (γt− tβ , γt)-ramp for 0 < γ, β < 1 O(t(1−β)/β log t)

1.1 Our Results

We note that all known evolving threshold secret sharing scheme rely on the
secret sharing scheme for st-connectivity which can be extended to any length.
The scheme for st-connectivity is not multiplicative and thus might not be suit-
able for the applications like secure multi-party computation. In this work, we
take a different approach which only relies on the multiplicative secret sharing
scheme alone. Although our evolving threshold secret sharing scheme is also not
multiplicative, we can show that this scheme is somewhat multiplicative under
very restrictive conditions. Moreover, we believe that our evolving secret sharing
scheme is the natural and straightforward extension of the classic secret sharing
scheme. Our evolving ramp secret sharing scheme based on arithmetic secret
sharing scheme is multiplicative.

We first propose two evolving k-threshold secret sharing schemes, one has
simpler structure but larger share k2 log t and another one is slightly complicated
but has share size that can be arbitrarily close to k log t. Then, we extend our
technique to the evolving secret sharing scheme with dynamic threshold. Our
scheme achieves the share size at most t4 which is better than the previous
construction [8] O(t4 log t). In addition, for kt = bβtc with β ∈ (0, 1) we obtain
an evolving dynamic kt-threshold secret sharing scheme with share size O(t4β).
We emphasize that in all of the above schemes, the secret of each Shamir secret
sharing scheme is either the secret of this evolving secret sharing scheme or share
of other Shamir secret sharing schemes. Our last contribution is an evolving
(αt, βt)-ramp secret sharing scheme with constants α, β and O(1) share size.
The approach we take is purely algebraic such that the share of each party is

3

actually an evaluation of an algebraic curve. Thus, the multiplicative property
comes for free. However, the price we have to pay is a larger gap between α
and β which usually does not affect the asymptotic performance of any secure
multi-party computation protocol. In conclusion, we tabulate our results in the
following table.

Reference Scheme Share Size of Remark
the tth Party

Theorem 2 k-threshold O(k1+ε log t) almost same size as [7]
for any real ε > 0

Theorem 3 kt-threshold O(t4) improvement to [8]
Theorem 4 kt = bβtc-threshold O(t4β) new result
Theorem 6 (αt, βt)-ramp O(1) same size as [1]

for some 0 < α < β < 1 but with multiplicativity

Note that all of our schemes are obtained via either the Shamir secret sharing
scheme or the arithmetic secret sharing based on algebraic geometric codes.
In [8], they proposed the robust version of the evolving secret sharing scheme
and showed how to transform a linear evolving secret sharing scheme to its
robust version. Since our new scheme keeps linearity, we can apply the same
transformation to obtain a robust version of our evolving secret sharing scheme.

1.2 Our Techniques

In previous works, their approaches rely on the st-connectivity. In this work,
we take a completely different approach. Our construction might be seen as a
natural extension of the classic secret sharing scheme. Let us first look at our
construction of the evolving k-threshold secret sharing scheme.

Constant Threshold. We partition parties into different generations like the
other approaches. The party in the g-th generation holds k shares, shg1, . . . , sh

g
k

where shg` is a share generated by the `-threshold Shamir secret sharing scheme.
We create k−1 virtual parties for each generation. This virtual party is assigned
the share in the same way as the real party except that they do not appear in
the sequence of parties.2 For ` < k, the `-threshold Shamir secret sharing scheme
shares a secret which is a share held by the `-th virtual party in the previous
generation and the k-threshold Shamir secret sharing scheme shares the secret of
this evolving secret sharing scheme. When it comes to the reconstruction, assume
that an authorized set A has cg parties from the g-th generation and g is the
largest generation index in A. Then, these cg shares can recover cg shares held

2 Their share will be secret shared among parties in the next generation. Then, the
secret reconstructed by the parties in the next generation will not be collided with
the shares held by the parties in this generation.

4

by cg virtual parties from the (g−1)-th generation according to our scheme. We
can replace these cg parties with the new cg virtual parties in our reconstruction.
Since the share of virtual parties is equally effective as the share of real party, we
move to an earlier generation without loss of any shares. We can continue in this
manner until we collect k shares in the same generation. The similar argument
also works for the privacy.

This scheme is simple but not very efficient. The secret of the Shamir secret
sharing scheme is too big i.e., the field size of Shamir secret sharing scheme from
the adjacent generation has to increase by k times. This yields an evolving secret
sharing scheme with share size k2 log t. To reduce the share size, our improved
scheme connects the g-th generation with the (g − r)-th generation, i.e., the
secret shared among parties in the g-th generation is the share held by the virtual
parties in the (g−r)-th generation. This modification can reduce the share size to

k1+
1
r log t. We still have a challenge to overcome. Note that such a scheme only

works for the g-th generation with g > r. For the first r generations, we apply
our original scheme since it will not affect our asymptotic performances. Then,
there comes another challenge. For the i-th generation with i ≤ r, their shares
will be a secret for both of the (i+ 1)-th generations and (i+ r)-th generations.
To avoid that these secrets are overlapped, we create 2k−2 virtual parties, k−1
of them are used for the (i+1)-th generation and another k−1 of them are used
for the (i+ r)-th generation. This will settle all the issues.

Dynamic Threshold. We move to our construction of evolving secret sharing
scheme with dynamic threshold. We present our scheme in two steps. As usual,
we partition parties into different generations.

– Our first scheme referred to as the basic scheme only handles the case that
the threshold value in the same generation does not change, i.e., the threshold
value for the g-th generation is kg. Each party in the g-th generation hold
kg−1 shares, shg1, . . . , sh

g
kg−1

where shg` is a share generated by the (`+ kg −
kg−1)-threshold Shamir secret sharing scheme Π`. For 1 ≤ ` ≤ kg−1 − 1, Π`

shares a secret which is a share held by the `-th virtual party in the previous
generation and Πkg−1 shares the secret of this evolving secret sharing scheme.
Therefore, there are kg−1 − 1 virtual parties in the (g − 1)-th generation.
Regarding the reconstruction, assume that there are cg parties from the g-th
generation. They can recover cg − (kg − kg−1) shares held by the virtual
parties from the (g − 1)-th generation. Note that we lose kg − kg−1 shares
during such recovery while the threshold value also changes from kg to kg−1.
Note that the set of original parties is authorized, i.e., the number of parties
in the first g-th generation is at least kg. When we replace these cg parties
from g-th generation with cg− (kg−kg−1) virtual parties from the (g−1)-th
generation, this resulting set is still authorized. One can continue in this
manner until all shares are from the same generations. Then, we are done.
The privacy argument works almost in the same way.

– In our second step, we first set the threshold kg to be the threshold value of
the last party in the g-th generation and run the basic scheme to generate

5

the shares. Note that the virtual parties now have the same threshold value
as the last party in their generation. Let kg,t be the threshold value of the
t-th party in the g-th generation. For the t-th party in the g-th generation,
we use kg,t− kg−1 Shamir secret sharing schemes Πkg−1 , . . . ,Πkg,t , each will
generate t shares that are assigned to the first t parties in this generation.
For kg,t−kg−1 ≤ ` ≤ kg,t, Π` is the `-threshold Shamir secret sharing scheme
with a secret that is a share held by the (` − kg,t + kg−1)-th virtual party
defined in the basic scheme. The reconstruction works almost in the same
way as the basic scheme. Let the t-th party in the g-th generation be the
last party in our authorized set A and assume that there are cg parties from
the g-th generation in A. Then, these cg parties in the g-th generation can
recover cg − (kg,t − kg−1) shares held by virtual parties in the (g − 1)-th
generation. Replace them with these cg − (kg,t − kg−1) virtual parties in A.
One can check that this resulting set is still authorized. One can continue
in this manner until all shares are from the same generations. Then, we are
done. The privacy argument works similarly and we refer interested readers
to Theorem 3 for details.

Ramp Case. The technique we employ for the evolving ramp secret sharing
scheme is different. We still partition parties into different generations. For any
party in the g-th generation, the share is an evaluation of an algebraic curve Cg,
i.e., each party is assigned an evaluation of this algebraic curve at one point.
Roughly speaking, Cg yields an arithmetic secret sharing scheme Πg over Fq
with q = p2 on Ng parties such that Πg has (γ− ε)Ng-uniformity and (γ+ ε)Ng-
reconstruction where Ng ≈ pNg−1 and γ is any constant in (1

p + ε, 1− ε).3 The
first g generations now consist of Ng parties. When the first party in the g-th
generation arrives, we invoke Πg for secret s to generate Ng shares such that
its first Ng−1 shares match the shares held by the first (g − 1) generations.
4 The parties in the g-th generation are assigned the remaining Ng − Ng−1
shares. We claim that such evolving ramp secret sharing scheme has (γ− 1

p −ε)t-
privacy and (p(γ+ε)

1+(p−1)(γ+ε))t-reconstruction. The privacy argument is clear since

our arithmetic secret sharing scheme Πg has (γ − ε)Ng-uniformity. After fixing
the first Ng−1 shares, this scheme still has (γ − 1

p − ε)Ng ≥ (γ − 1
p − ε)t privacy

for any t ≤ Ng. The reconstruction divides into two cases:

1. The party from the g-th generation with index t ≤ (1+(p−1)(γ+ε))Ng−1: by

definition an authorized set including the t-th party must contain (p(γ+ε)
1+(p−1)(γ+ε))t

parties prior to her. That means, this authorized set contains at least (γ +
ε)Ng−1 parties from the first g − 1 generations. Running the reconstruction
scheme of Πg−1 can recover the secret.

2. Otherwise, we have (p(γ+ε)
1+(p−1)(γ+ε))t ≥ (γ+ ε)Ng. Running the reconstruction

scheme of Πg can recover the secret.

3 The ε = 2√
q−2

gap is caused by the genus of this curve.
4 s is the secret to be shared.

6

The multiplicative claim comes from the observation that the arithmetic secret
sharing scheme Πg is multiplicative.

2 Preliminaries

In this section, we present the definition of evolving secret sharing scheme and
some notations that will be used later. We use log to represent the logarithmic
function with base 2. Fq is a finite field with q elements. N = {1, 2, . . .} be the
collections of all positive integers. We denote by [n] the set {1, . . . , n}. We use
the notation 2S to denote the collections of all subsets of S. T ⊆ 2[n] is monotone
if for any A ∈ T and B ⊇ A, B ∈ T .

2.1 Access structure

To define the secret sharing scheme, we first need to define the access structure.

Definition 1 (Access Structures [2]) An access structure T = (TY es, TNo)
over n parties 1, . . . , n consists of a pair of collections of subsets in 2[n] such
that TY es and 2[n] \ TNo are monotone and TY es ∩ TNo = ∅. The set in TY es is
called an authorized set and the set in TNo is called an unauthorized set.

A secret sharing scheme realizes an access structure T = (TY es, TNo) if the
unauthorized set of parties will learn nothing about the secret while the autho-
rized set of parties can reconstruct the secret. The formal definition is given as
follows.

Definition 2 (Secret Sharing Scheme) A secret sharing scheme for an ac-
cess structure T = (TY es, TNo) consists of a pair of algorithms (SHARE, RE-
CON). SHARE is a probabilistic algorithm that takes the secret s ∈ S as an in-
put and generate n shares (shs1, sh

s
2, . . . , sh

s
n), i.e., SHERE(s) = (shs1, . . . , sh

s
n).

RECON is a deterministic algorithm that takes the input of shares of a subset
B ⊆ [n] and output a string in S. The requirements are:

1. CORRECTNESS: The secret can be reconstructed by any authorized set, i.e.,
for any secret s ∈ S, any share with SHERE(s, r) = (shs1, . . . , sh

s
n) and any

A ∈ TY es, we have RECON({shsi}i∈A, A) = s.
2. PRIVACY: For any two secrets s1 6= s2 and any unauthorized set B ∈
TNo, the distributions of shares {shs1i }i∈B and {shs2i }i∈B are identical. The
probability is over the randomness of the SHARE.

The share size of this scheme is the maximum number of bits each party holds
in the worst case over all parties and all secrets.

Definition 3 (Threshold Access Structures) An access structure T = (TY es, TNo)
over n parties 1, . . . , n is called an k-threshold access structure if TY es = {A ⊆
[n] : |A| ≥ k} and TNo = {B ⊆ [n] : |B| ≤ k − 1}.

7

It is well known that the Shamir secret sharing scheme can realize any threshold
access structure.

Claim 1 (Shamir [9]) Given a secret s ∈ Fq, the Shamir secret sharing scheme
can realize k-threshold access structure over n parties for any n ≤ q. More
precisely, this secret sharing scheme generates n shares (sh1, . . . , shn) ∈ Fq ×
Fq · · · × Fq. We call such a scheme a k-threshold Shamir secret sharing scheme.

Definition 4 (Ramp Access Structures) An access structure T = (TY es, TNo)
over n parties 1, . . . , n is called an (b, g)-ramp access structure if TY es = {A ⊆
[n] : |A| ≥ g} and TNo = {B ⊆ [n] : |B| ≤ b}.

A (b, g)-ramp secret sharing scheme is a secret sharing scheme realizing the
(b, g)-ramp access structure.

2.2 Evolving Access Structure

Next, we proceed to the definition of evolving access structure introduced in [7].

Definition 5 (Evolving Access Structures [2]) An Evolving access struc-
ture T = (TY es, TNo) is a pair of collections of sets TY es, TNo ⊆ 2N such that
every set in TY es ∪ TNo is finite. Moreover, for every t ∈ N, the intersection
Tt := (TY es ∩ 2[t], TNo ∩ 2[t]) is an access structure defined in Definition 1.

We can also define the evolving secret sharing scheme accordingly since an e-
volving secret sharing scheme is used to realize an evolving access structure.

Definition 6 (Evolving Secret Sharing Scheme) Let T = (TY es, TNo) be
an evolving access structure and Tt be the intersection in Definition 5. Let S
be the secret domain. A secret sharing scheme Π for S and T consists of two
algorithms (SHARE, RECON). They satisfy the following requirements.

1. SHARE is a probabilistic algorithm generating shares one by one, i.e., it
takes the secret s ∈ S and the shares of first t − 1 parties as inputs and
outputs the t-th share,

SHARE(s, shs1, sh
s
2, . . . , sh

s
t−1) = shst

where shs1, sh
s
2, . . . , sh

s
t−1 are the first t− 1 shares.

2. CORRECTNESS: For every t, every secret s ∈ S and every subset A ∈
TY es ∩ 2[t], we have RECON({shsi}i∈A, A) = s.

3. SECURITY: For every t, any two secrets s1 6= s2 ∈ S and every subset
B ∈ TNo ∩ 2[t], the distributions of shares {shs1i }i∈B and {shs2i }i∈B are
identical. The probability is over the randomness of the SHARE.

Similarly, we can define the evolving threshold access structure and evolving
ramp access structure.

8

Definition 7 (Evolving Threshold Access Structures) An evolving access
structure T = (TY es, TNo) is called an evolving k-threshold access structure if for
every t ∈ N, TY es ∩ 2[t] = {A ∈ 2[t] : |A| ≥ k} and TNo ∩ 2[t] = {B ∈ 2[t] : |B| ≤
k − 1}.

Definition 8 (Evolving Ramp Access Structures) An evolving access struc-
ture T = (TY es, TNo) is an evolving (b, g)-ramp access structure if for every
t ∈ N, TY es ∩ 2[t] = {A ∈ 2[t] : |A| ≥ g} and TNo ∩ 2[t] = {B ∈ 2[t] : |B| ≤ b}.

A secret sharing scheme realizes evolving k-threshold ((b, g)-ramp) access struc-
ture is called evolving k-threshold ((b, g)-ramp resp) secret sharing scheme.

In [8], they can also consider an evolving access structure T with dynamic
threshold, i.e., the threshold grows with the time. Note that such definition is a
generalization of evolving access structure and is thus even more difficult to be
realized. Recall that Tt = (TY es ∩ 2[t], TNo ∩ 2[t]).

Definition 9 (Evolving Access Structures with dynamic threshold) An
evolving access structure T has a sequence of thresholds k1, k2, . . . if for every
t ∈ N Tt is a kt-threshold access structure over t parties.

Remark 1 There is an equivalent definition for this access structure. Let T be
an evolving access structure with a sequence of thresholds k1, k2, Given a
subset of parties A = {i1, . . . , ir}, then

– A is authorized if there exists an ` ≤ r with ` ≥ ki` .
– A is unauthorized if for any ` ≤ r, it holds ` < ki` .

In [1], they propose a ramp version of this access structure. They consider
the evolving ramp access structure with its gap growing with the time.

Definition 10 (Evolving ramp Access Structures with dynamic gap [1])
Let b(t) and g(t) be the two non-decreasing functions. An evolving access struc-
ture T = (TY es, TNo) is an evolving (b(t), g(t))-ramp access structure if for every
t ∈ N, TY es∩2[t] = {A ∈ 2[t] : |A| ≥ g(t)} and TNo∩2[t] = {B ∈ 2[t] : |B| ≤ b(t)}.

The evolving secret sharing schemes realizing these access structures are named
accordingly.

We can also define the evolving arithmetic secret sharing scheme by con-
sidering the square of an evolving secret sharing scheme. In this work, we only
consider the evolving arithmetic ramp secret sharing scheme. The formal defini-
tion is given as follows.

Definition 11 Π is an evolving arithmetic (b(t), g(t), h(t))-ramp secret sharing
scheme if the followings hold,

1. Π realizes an evolving (b(t), g(t))-ramp access structure.

9

2. For every t ∈ N and any subsets A ⊆ [t] of size h(t), we have

RECON({shai shbi}i∈A, A) = ab,

where (sha1 , . . . , sh
a
t) and (shb1, . . . , sh

b
t) are the shares corresponding to secret

a and b respectively. In other words, one can recover the product of two secrets
by given the component-wise product of any h(t) shares.

3 Evolving Threshold Secret Sharing Scheme

In this section, we present the evolving secret sharing schemes realizing the evolv-
ing threshold access structure and the evolving access structure with dynamic
threshold.

3.1 Constant Threshold Case

We first present a weak version of our evolving k-threshold secret sharing scheme
with share size at most k2 log t. This weak version will be a basic scheme for our

final version which achieves share size k
r+1
r log t for any integer r. Although

this scheme is slightly worse than the state-of-the-art scheme proposed in [7],
there is a prominent feature in our scheme which does not hold in any other
constructions. Our construction only makes use of Shamir secret sharing scheme
which preserves the multiplicative property. Such property is a key ingredient for
secure multi-party computation. We observe that in very restrictive condition,
our scheme is somewhat multiplicative. Besides, the approach we take for the
evolving threshold secret sharing scheme also sheds a light on the construction of
evolving secret sharing scheme with dynamic threshold. This observation leads
to a most efficient evolving secret sharing scheme with dynamic threshold. Our
share size is log t multiplicative factor smaller than that of the scheme in [8].

Theorem 1. There exists an evolving k-threshold secret sharing scheme of share
size k2 log t. Moreover, the share of each party consists of k shares generated by
the Shamir secret sharing scheme.

Proof. Like the approach in other works, we partition parties into different gen-
erations. We use the term the j-th party in the i-th generation to specify this
party. One can easily convert it to its index in the sequence of all parties. The set
of parties in the i-th generation is {k, k + 1, . . . , . . . , qk

i+1}. The first k − 1 slots
are left for the ”virtual” parties on purpose. Those shares held by the virtual
parties in this generation will be used as a secret to be shared among parties in
the next generation.

Let s be the secret to be shared. We start with 0-th generation. The dealer
does the following:

– Share the secret s via a k-threshold Shamir secret sharing scheme over Fqk
and denote its shares by (sh01, sh

0
2, . . . , sh

0
qk).

10

– Assign the share sh0t to the t-th party in the 0-th generation.

Note that sh01, . . . , sh
0
k−1 are not held by any party from the 0-th generation.

These k−1 shares will be used as a secret to be shared among the parties in the
next generation.

Now, we turn to the description of the g-th generation. Since the share of
parties in the (g − 1)-th generation has been generated, denote by shg−1t the
share held by the t-th party in the (g − 1)-th generation. When the first party
in the g-th generation arrives, the dealer does the following

– For j < k, share the secret shg−1j via a j-threshold Shamir secret sharing
scheme over Fqkg+1 and denote by its shares (shgj,1, sh

g
j,2, . . . , sh

g

j,qk
g+1).

– Share the secret s via a k-threshold Shamir secret sharing scheme and denote
its shares by (shgk,1 , sh

g
k,2, . . . ,sh

g

k,qk
g+1).

– Assign the share shgt = (shg1,t , sh
g
2,t, . . . , sh

g
k,t) to the t-th party in the g-th

generation.

In general, the t-th party (either virtual or real) in the g-th generation holds the

share shgt = (shg1,t , sh
g
2,t, . . . , sh

g
k,t) for t = 1, . . . , qk

g+1

.

We proceed to the reconstruction. Assume that we have an authorized set
of size k in which there are ci parties from i-th generation. Assume g is the
biggest index with cg > 0. If cg = k, we are done as the secret is shared among
parties in the g-th generation via a k-threshold Shamir secret sharing scheme.
Otherwise, according to our scheme, the cg parties from the g-th generation can

recover cg secrets shg−11 , . . . , shg−1cg which are shares held by cg virtual parties
from the (g − 1)-th generation. During this process, we obtain cg new shares
for the (g− 1)-th generation by sacrificing the cg shares for the g-th generation.
We can continue in this manner until that we collect k shares belonging to the
same generation. Then, we can recover the secret by running the reconstruction
algorithm of k-threshold Shamir secret sharing scheme.

The privacy argument is rather simple. We observe that since in each genera-
tion, the secret s is only shared via a k-threshold Shamir secret sharing scheme.
Since any k − 1 parties can only recover at most k − 1 shares for the same gen-
eration, the parties in the unauthorized set will learn nothing about the secret.

As for the share size, we observe that for the g-th generation, the secret size
for each Shamir secret sharing scheme is at most k× kg log q = kg+1 log q which
is at most the share size. Thus, the Shamir secret sharing scheme over Fqkg+1

is big enough to share such secret. Since we only use k Shamir secret sharing
schemes in the g-th generation, the share size is kg+2 log q for each party in this
generation. The first party in the g-th generation is at least the qk

g

-th party in
the sequence of all parties. Thus, the share size at most k2 log t for the t-th party
in the sequence of all parties.

Remark 2 Although this scheme only invokes the Shamir secret sharing scheme,
it is not multiplicative. However, we can modify this construction to make it

11

somewhat multiplicative. There is a tool called reverse multiplication friendly
embedding [3] which can map an element in the extension field to a vector in
the base field while keeping the multiplication. A pair (φ, ψ) is called an (k,m)q-
reverse multiplication friendly embedding if φ : Fkq → Fqm and ψ : Fqm → Fkq are
two Fq-linear maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ Fkq and ∗ is a component-wise product. Note that the secret of our
Shamir secret sharing scheme is shgt = (shg1,t , sh

g
2,t, . . . , sh

g
k,t). φ can map shgt

to an element in the extension field while keeps the multiplication. It remains
to show that we can collect enough shares so as to recover the product of the
secrets. Assume that A is a set containing 2k − t parties in the g-th generation
and 2t parties in the (g + 1)-th generation. Note that each party in our scheme
holds k Shamir secret sharing scheme whose threshold value is 1, . . . , k. Thus, the
product of shares held by these 2t parties can recover the product of the secrets
that is shared by the `-threshold Shamir secret sharing scheme for ` = 1, . . . , t.
These t product of the secrets together with 2k− t parties in the g-th generation
can recover the product of the secrets of this evolving secret sharing scheme. By
slight modification to our scheme, we can show that it is possible to obtain the
same result for parties in two non-adjacent generations. As a comparison, the
previous threshold constructions can only recover the product of the secrets if
there are at least 2k parties in the same generation. Since the application of this
scheme is very restrictive, we will not expand it in detail.

This scheme is simple but not very efficient. We next show how to modify
our scheme to reduce the share size to any number close to k log t. Observe that
the share size of the i-th generation is k times bigger than the share size of the
(i− 1)-th generation. This happens because we use the share held by the virtual
parties from the (i − 1)-th generation as a secret shared among parties in the
i-th generation. To reduce the share size, we need to connect the parties in the
i-th generation with the virtual parties in earlier generation.. More precisely, we
first apply this evolving k-threshold secret sharing scheme described above to
generate the shares of our first r + 1 generations. Then, for the party starting
from the g-th generation with g > r, the secret they share is the share held
by the virtual parties from the (g − r)-th generation instead of the (g − 1)-th
generation. We will see that this modification can significantly bring down the
growth rate of our field size.

Theorem 2. For any integer r > 0, there exists an evolving k-threshold secret

sharing scheme of share size k
r+1
r log t. Moreover, the share of each party consists

of k shares generated by the Shamir secret sharing scheme.

Proof. The sharing algorithm for the first r + 1 generations is exactly the same
as that in our previous theorem except that we leave 2k− 2 slots for the virtual
parties. We briefly review this scheme. The set of parties in the i-th generation
is {2k−1, 2k, . . . , . . . , qk

i+1}. The first 2k−2 slots are left for the virtual parties

12

on purpose. When the first parties in the i-th generation with i ≤ r arrives, the
dealer does the following,

– For j < k, share the secret shi−1k−1+j via a j-threshold Shamir secret sharing

scheme over Fqki+1 and denote its shares by (shij,1, sh
i
j,2, . . . , sh

i
j,qki+1).

– Share the secret s via a k-threshold Shamir secret sharing scheme sharing
over Fqki+1 and denote its shares by (shik,1 , sh

i
k,2, . . . ,sh

i
k,qki+1).

– Assign shit = (shi1,t, . . . , sh
i
k,t) to the t-th party in the i-th generation.

Note that shit = (shi1,t, . . . , sh
i
k,t) for i = 1, . . . , 2k− 2 are held by 2k− 2 virtual

parties. The first k− 1 shares will become secrets to be shared among parties in
the (i+ r)-th generation and the second k − 1 shares will become secrets to be
shared among parties in the (i+ 1)-th generation.

Next we proceed to the g-th generation with g > r. Let `g = bkr+1+ g−r
r c.

It holds that
`g
`g−1

= k
1
r . The set of parties in the g-th generation is {k, k +

1, . . . , q`g} while the set of virtual parties is {1,. . . ,k-1}. When the first party in
the g-th generation arrives, the dealer does the following

– For j < k, share a secret shg−rj via a j-threshold Shamir secret sharing
scheme over Fq`g and denote its shares by (shgj,1, sh

g
j,2, . . . , sh

g

j,q`g
).

– Share the secret s via a k-threshold Shamir secret sharing scheme over Fq`g
denote its shares by (shgk,1 , sh

g
k,2, . . . ,sh

g

k,q`g
).

– Assign shgt := (shg1,t, . . . , sh
g
k,t) to the t-th party in the g-th generation.

We proceed to the proof of reconstruction. Assume that we have an autho-
rized set A of size k in which there are cg parties from the g-th generation
such that g is the largest integer with cg > 0. If cg ≥ k, we can recover the
secret immediately. Otherwise, if g > r, these cg shares can recover cg shares
shg−r1 , . . . , sh

cg
g−r held by cg virtual parties in the (g − r)-th generation. This

means we obtain cg new shares for the (g − r) generation by sacrificing the cg
shares for the g-th generation. Then, we move to the (g− 1)-th generation. One
can continue in this manner until either collecting k shares for the same gener-
ation or reaching the r-th generation. For the former case, we can recover the
secret immediately. For the latter case, we obtain shares held by the parties from
the first r+ 1 generations. Note that some of them might be held by the virtual
parties. However, there are in total still k shares held by k different parties as this
set is authorized. Observe that for g < r, the k− 1 secrets shared among parties
in the (g + r)-th generation shg1, . . . , sh

g
k−1 is different from the secret shared

among parties in the (g+1)-th generation shgk, . . . , sh
g
2k−2. This ensures that the

secrets we recover from different generations will not collide with each other. We
can now safely apply the same reconstruction algorithm of the evolving secret
sharing scheme in our previous theorem to recover the secret s.

The privacy argument is obvious since when we recover the shares we lose
the same amount of shares. For example, let A be an unauthorized set in which
there are ci parties from the i-th generation. Let g be the biggest index with

13

cg > 0. Since A is not authorized, we have cg < k. All they can do is to use
these cg shares to recover cg secrets which are the shares of parties from earlier
generation. Then, we can discard these cg shares from the g-th generation. Now,
we still got the same amount of shares but we move to an earlier generation.
Thus, we can apply the induction to reach the conclusion.

As for the share size, we first show that the secret size is at most the share size
for any of our threshold Shamir secret sharing scheme. For the g-th generation
with g ≤ r, we can simply apply the same argument in our previous theorem.
For the g-th generation with g > r, as the secret is the share for the (g − r)-
th generation, the secret size for each Shamir secret sharing scheme is at most
k× `g−r log q ≤ `g log q. Thus, the Shamir secret sharing scheme over Fq`g is big
enough to share such secret. Finally, we turn to bound the share size. For the
first party in the g-th generation with g > r, her index in the sequence of all
parties is at least q`g−1 while her share size is `g log q. Thus, the share size of our

scheme is at most k
r+1
r log t.

3.2 Dynamic Threshold Case

Theorem 3. For any sequence of threshold value {k1, k2, . . . , kt, . . .} that define
a dynamic access structure, there exists an evolving secret sharing scheme for
sharing one bit secret in which the share size of the t-th party is at most t4. 5

Proof. As usual, we partition the parties into different generation. First of all,
we assume that the threshold value for parties in each generation is the same.
This assumption will make our scheme easy to describe. Then, we will show how
to extend it to handle different threshold values in the same generation. Let
ai = 22

i+1

and we have ai+1 = a2i .

The simplified case: In this case, we assume that the threshold value in
the same generation is the same, i.e., let k′i be the threshold value of the i-th
generation. As usual, we use the term the j-th party in the i-th generation to
specify this party. One can easily convert it to its index in the sequence of all
parties. The set of parties in the i-th generation is {1, . . . , ai}. The set of virtual
parties in the i-th generation is {ai+1, . . . , ai+k′i−1}. Denote by shit the share
held by the t-th party in the i-th generation. When the first party in the i-th
generation arrives, the dealer does the following

– For ` ∈ {1, . . . , k′i−1−1}, share a secret shi−1` via an (`+k′i−k′i−1)-threshold
Shamir secret sharing scheme over F2ai−1 . This Shamir secret sharing scheme
yields ai + k′i − 1 shares (shi`,1, . . . , sh

i
`,ai

, . . . , shi`,ai+k′i−1
).

– Share the secret s via a k′i-threshold Shamir secret sharing scheme. This
Shamir secret sharing scheme yields ai+k

′
i−1 shares (shik′i−1,1

, . . . , shik′i−1,ai+k
′
i−1

).

5 We emphasize that there is no log factor in our bound. This is because our field size
is exponentially bigger than the number of parties which incurs an t multiplicative
factor.

14

– Assign the share shit := (shi1,t, . . . , sh
i
k′i−1,t

) to the t-th party in the i-th

generation.

For 0-th generation, the dealer only invoke a k′0-threshold Shamir secret sharing
scheme to share secret s since there does not exist any generation ahead of it.
The shares shit for t = ai + 1, . . . , ai + k′i − 1 are held by the t-th virtual parties
in the i-th generation.

We now move to the reconstruction argument. Assume that A is an autho-
rized set that contains ci parties from the i-th generation. Let f be the smallest
index with cf > 0. Since A is authorized, there must exist generation index g

such that
∑g
i=f ci ≥ k′g and for any ` < g, we have

∑`
i=f ci < k′`. First of all,

from these two inequalities, we obtain that cg > k′g − k′g−1. This implies that
these cg parties from the g-th generation can recover cg − (k′g − k′g−1) shares

shi−1ai−1+1, . . . , sh
i−1
ai−1+cg−(k′g−k′g−1)

. Now, we have
∑g
i=f ci − (k′g − k′g−1) ≥ k′g−1

shares for the first (g−1) generations. It follows that A is still an authorized set.
We can continue in this manner until we arrive at the f -th generation. Then, we
obtain

∑g
i=f ci−(k′g−k′f) ≥ k′f shares held by the parties in the f -th generation.

It is clear that we can now reconstruct the secret s with these shares.

Regarding the privacy, assume that A is an unauthorized set that contains
ci parties from the i-th generation. Let g be the largest index with cg > 0.

Then, for any ` ≤ g,
∑`
i=0 ci < k′`. As we know, to reconstruct the secret s,

we need at least k′` shares from the parties in the `-th generation. It is clear
that the cg parties in g-th generation alone can not reconstruct the secret s as
cg < k′g. In this case, these cg parties in g-th generation can recover at most
cg − (k′g − k′g−1) shares held by virtual parties in the (g − 1)-th generation. We

now have (
∑g−1
i=0 ci)+cg−(k′g−k′g−1) < k′g−1 shares for the first g−1 generations.

We can apply the induction to finish our proof.

Regarding the share size, we first note that the field size of our Shamir secret
sharing scheme is big enough. The secret shared among the g-th generation has
the form

shg−1` = (shg−11,` , . . . , sh
g−1
k′g−2,`

) ∈ Fk
′
g−2

2ag−2 .

Thus, the size of our secret is at most k′g−2 × log(2ag−2) < ag−2 × ag−2 = ag−1.
Moreover, since the party in the g-th generation hold k′g−1 ≤ ag−1 shares of
Shamir secret sharing scheme, the share held by each party in the g-th generation
is of size at most ag−1 log 2ag−1 = a2g−1. Thus, the share size of the first party in
this generation is at most t2.

The general case: We now proceed to the general case that the threshold
value for parties in the same generation may vary. We refer the (g, t)-th party
to the t-th party in the g-th generation. It is clear that (i1, t1)-th party arrives
before (i2, t2) if i1 < i2 or i1 = i2 and t1 < t2. One can see that it is a totally
ordered set. The set of parties in the g-th generation is {1, 2, . . . , ag}. We denote
by k(g,t) as the threshold value of (g, t)-th party. We set k′g be the threshold

15

value for the last party in the g-th generation, i.e., k′g = k(g,ag). The set of
virtual parties in the g-th generation is {ag + 1, . . . , ag + k′g − 1} which means
they are placed at the end of this generation. By setting the threshold value of
virtual parties k′g, we can treat these virtual parties as the last real party in this
generation.

When the first party in the g-th generation arrives, the dealer does the fol-
lowing:

– Invoke the evolving secret sharing scheme described in the simplified case to
generate the share shgr := (shg1,r, . . . , sh

g
k′g−1,r

) for r ∈ {1, . . . , ag + k′g − 1}.
Assign shgr to the r-th party in this generation.

– Let t range over [1, ag − 1] and do the following:

• For ` ∈ {1, . . . , k′g−1}, share the secret shg−1ag−1+`
(the share held by the

`-th virtual party in the (g− 1)-th generation) via an (`+ k(g,t)− k′g−1)-
threshold Shamir secret sharing scheme over F2ag−1 . This Shamir secret
sharing scheme yields t shares (st`,1, . . . , s

t
`,t).

• Assign the (g, t)-th party the share of the form((
st1,t, . . . , s

t
k′g−1,t

)
, . . . ,

(
s
ag−1
1,t , . . . , s

ag−1

k′g−1,t

)
, shgt

)
.

For party in the 0-th generation, the dealer only keeps the virtual party that
shares the secret s. We note that the share held by the last party and all the vir-
tual parties in each generation is exactly the same as they hold in the simplified
case.

The reconstruction works as follows. Assume that there is an authorized set
A = {(i1, t1), (i2, t2), . . . , } such that there are ci parties from the i-th generation
in A and (i1, t1) < (i2, t2) < · · · is ordered. Since A is authorized, there must
exist an r such that r ≥ k(ir,tr) and ` < k(i`,t`),∀` < r. Let b = |{(ir, t) ∈
A : t ≤ tr}|, i.e., the number of parties from the tr-th generation in A that

arrives no later than (ir, tr)-th party. Observe that r = b +
∑ir−1
i=i1

ci ≥ k(ir,tr)

and
∑ir−1
t=i1

ct < k′ir−1. This implies b > k(ir,tr) − k′ir−1 and thus these b parties
from the ir-th generation can recover b − (k(ir,tr) − k′ir−1) shares held by the
virtual parties in the (ir−1)-th generations. We replace these b parties in A with
b−(k(ir,tr)−k′ir−1) virtual parties in the (ir−1)-th generation. The resulting set
A is of size r− (k(ir,tr) − k′ir−1) ≥ k′ir−1. Now, we can invoke the reconstruction
scheme from the simplified case to recover the secret as A is still an authorized
set.

Regarding the privacy issue, assume A = {(i1, t1), . . . , (ir, tr)} is any unau-
thorized set with ci parties from the i-th generation. This means that ` < ki`,t`
for any ` ≤ r. We first argue that (ir, tr)-th party does not help to recover the
secret. It is clear that shares held by the cir parties from the ir-th generation
alone can not reconstruct secret s. The only thing the (ir, tr)-th party can do is
to work with another cir −1 parties from the same generation to recover at most

16

cir − (k(ir,tr)−k′ir−1) shares held by the virtual parties in the (ir−1)-th genera-
tion. Now, we can replace these cir parties with these cir−(k(ir,tr)−k′ir−1) virtual
parties as their shares are already used. We treat these cir − (k(ir,tr) − k′ir−1)
virtual parties the same as the last parties in the (ir − 1)-th generation since
they have the same threshold value. Compared with our previous set A, the only
difference is this replacement. We note that the privacy condition still holds as

cir − (k(ir,tr) − k
′
ir−1) +

ir−1∑
t=0

ct = r − (k(ir,tr) − k
′
ir−1) < k′ir−1.

The induction now works because we reduce the generation index of its last party
in A. Therefore, we can claim that the (ir, tr)-th party does not help to recover
the secret. Remove this party from set A and we can apply the same argument
to the (ir−1, tr−1)-th party. This desired result follows from the induction.

Regarding the share size, we first note that the field size of our Shamir secret
sharing scheme is big enough. The same argument from the simplified case show
that the size of our secret is at most k′g−2 × log 2ag−2 < ag−2 × ag−2 = ag−1.6

Moreover, since the party from g-th generation hold at most k′g−1×ag ≤ ag−1ag
shares of Shamir secret sharing scheme over F2ag−1 . As the index of the first
party in the g-th generation is at least ag−1, the share size of this party is at
most t4.

We can also consider the condition that the sequence of threshold value is a
function in t, the index of the party. If this function grows slowly, we can reduce
the share size.

Theorem 4. Let {k1, k2, . . . , kt, . . .} that define a dynamic access structure. If
kt = btβc for some constant β ∈ (0, 1), there exists an evolving secret sharing
scheme for sharing one bit secret in which the share size of t-th party is at most
O(t4β).

Proof. We use the scheme in the general case in Theorem 3 with some modi-
fications. Recall that ag = 22

g+1

= a2g−1. We have that the threshold value of

the (g, t)-th party is k(g,t) ≤ aβg .7 The Shamir secret sharing scheme used in the
g-th generation is now defined over F

2
baβ
g−1
c instead of F2ag−1 since the secret

it share is shg−1r := (shg−11,r , . . . , sh
g−1
k′g−2,r

) ∈ Fk
′
g−2

2
baβ
g−2
c

whose share size is at most

k′g−2 × ba
β
g−2c < ba

β
g−1c. We observe that if two adjacent parties (g, r)-th party

and (g, r + 1)-th party have the same threshold value, they can share the same
Shamir secret sharing scheme. This is exactly what we do in the simplified case.
In this sense, the sharing algorithm simply skip the iteration t = r and go s-
traight to t = r+ 1. Observe that there are at most tβ different threshold values

6 The threshold value must be smaller than the index of this party.
7 For simplicity, we assume that the last party in the g-th generation is the ag-th party

in the sequence. This will not change the asymptotic property of our share size

17

among t parties. This reduce the number of shares from k′g×ag to k′g×k′g = a2βg .

Now, the share size of the first party in the g-th generation is at most O(t4β).

Remark 3 We note that all of above scheme can be transformed to a robust
evolving secret sharing scheme by applying the transformation in [8] as our
scheme is linear. Let us sketch the proof. We only apply the Shamir secret
sharing scheme which is a linear secret sharing scheme. Clearly, it holds for
the first generation. By induction, we can show that for the g-th generation,
this Shamir secret sharing scheme preserves the linear relationship between the
secret and the share. This completes the proof. The same argument can also be
applied to the ramp evolving secret sharing scheme presented in the next section.

4 Evolving Ramp Secret Sharing Schemes

If we want to construct ramp secret sharing schemes with constant-sized shares,
it is natural to consider secret sharing schemes based on function fields, or e-
quivalently algebraic geometry codes as Chen and Cramer did in [4].

Let us first introduce function fields of one variable over finite fields and
algebraic geometry codes very briefly. The reader may refer to the books [10, 11]
for the details on this topic. For convenience of the reader, we start with some
background on global function fields over finite fields. The reader may refer to
[10] for detailed background on function fields and algebraic-geometric codes.

For a prime power q, let Fq be the finite field of q elements. An algebraic
function field over Fq in one variable is a field extension F ⊃ Fq such that F is
a finite algebraic extension of Fq(x) for some x ∈ F that is transcendental over
Fq. The field Fq is called the full constant field of F if the algebraic closure of Fq
in F is Fq itself. Such a function field is also called a global function field. From
now on, we always denote by F/Fq a function field F with the full constant field
Fq.

A discrete valuation of F/Fq is a map from F to Z∪{+∞} satisfying certain
properties (see [10, Definition 1.19]). Then each discrete valuation ν from F/Fq
to Z ∪ {+∞} defines a valuation ring O = {f ∈ F : ν(f) ≥ 0} that is a local
ring [10, Theorem 1.1.13]. The maximal ideal P of O is given by P = {f ∈
F : ν(f) > 0} and it is called a place. We denote the valuation ν and the
local ring O corresponding to P by νP and OP , respectively. The residue class
field OP /P , denoted by FP , is a finite extension of Fq. The extension degree
[FP : Fq] is called degree of P , denoted by deg(P). A place of degree one is
called a rational place. For a nonzero function z ∈ F , the principal divisor of
z is defined to be div(z) =

∑
P∈PF νP (z)P . The zero and pole divisors of z are

defined to be div(z)0 =
∑
νP (z)>0 νP (z)P and div(z)∞ = −

∑
νP (z)<0 νP (z)P ,

respectively. Then we have deg(div(z)) = 0, i.e, deg(div(z)0) = deg(div(z)∞).
For two functions f, g ∈ F and a place P , we have νP (f+g) ≥ min{νP (f), νP (g)}
and the equality holds if νp(f) 6= νP (g) (note that νP (0) = +∞). This implies
that f + g 6= 0 if νP (f) 6= νP (g).

18

If F is the rational function field Fq(x), then every discrete valuation of F/Fq
is given by either ν∞ or νp(x) for an irreducible polynomial p(x), where ν∞ is
defined by ν∞(f/g) = deg(g)− deg(f) and νp(x)(f/g) = a− b with p(x)a||f and

p(x)b||g for two nonzero polynomials f, g ∈ Fq[x]. It is straightforward to verify
that the degrees of places corresponding to ν∞ and νp(x) are 1 and deg(p(x)),
respectively.

Let PF denote the set of places of F . The divisor group, denoted by Div(F), is
the free abelian group generated by all places in PF . An elementD =

∑
P∈PF nPP

of Div(F) is called a divisor of F , where nP = 0 for almost all P ∈ PF .
We denote np by νP (D). The support, denoted by Supp(D), of D is the set
{P ∈ PF : nP 6= 0}. Thus, Supp(D) of a divisor D is always a finite subset of
PF . For a divisor D of F/Fq, we define the Riemann-Roch space associated with
D by

L(D) := {f ∈ F ∗ : div(f) +D ≥ 0} ∪ {0},

where F ∗ denotes the set of nonzero elements of F . Then L(D) is a finite di-
mensional space over Fq and its dimension dimFq L(D) is determined by the
Riemann-Roch theorem which gives

dimFq L(D) = deg(D) + 1− g + dimFq L(W −D),

where g is the genus of F and W is a canonical divisor of degree 2g−2. Therefore,
we always have that dimFq L(D) ≥ deg(D) + 1 − g and the equality holds if
deg(D) ≥ 2g− 1 [10, Theorems 1.5.15 and 1.5.17].

As we have to regenerate the secret and shares of the previous generation in
a coming generation, we need the following lemma.

Lemma 2. Let F/Fq be a function field of genus g. Let Q,P1, P2, . . . , Pt be t+1
pairwise distinct rational places. If m ≥ t+ 2g− 1, then the set

{(f(P1), f(P2), . . . , f(Pt)) : f ∈ L(mQ)}

is equal to Ftq.

Proof. Consider the map

π : L(mQ)→ Ftq; f 7→ (f(P1), f(P2), . . . , f(Pt)).

Then π is Fq-linear with kernel L
(
mQ−

∑t
i=1 Pi

)
. Hence, by the Riemann-

Roch Theorem, we have

dimFq Im(π) = dimFq L(mQ)−dimFq L

(
mQ−

t∑
i=1

Pi

)
= m−g+1−(m−t−g+1) = t.

This forces that Im(π) = Ftq. The desired result follows.

Let p ≥ 5 be a prime power and let q = p2. Consider the Garicia-Stictenoth
function field tower {Fi/Fq} given in Appendix A.

19

(1) For i ≥ 1, put gi = g(Fi) and let Ni = (q − 1)pi−1. Label Ni + 2 Fq-rational

place of Fi by Qi, P
(i)
0 P

(i)
1 , P

(i)
2 , . . . , P

(i)
Ni

. Then we have Ni/gi ≥ p−1 for all
i ≥ 2.

(2) Fix an integer m1 such that m1

q−1 ∈ (1
p + 2

p−1 , 1). Put γ = m1

q−1 and set
mi = γNi for all i ≥ 1.

Based on choice of the above parameters, for any i ≥ 1 we have

mi+1 = γNi+1 = Ni −Ni + γNi+1 = Ni −
1

p
Ni+1 + γNi+1

≥ Ni +

(
γ − 1

p

)
(p− 1)gi+1 ≥ (1 +Ni) + 2gi+1 − 1.

(1)

Now we construct our first evolving secret sharing scheme. Let s ∈ Fq be a secret.

– Generation 1: Randomly choose a function f1 in the Riemann-Roch space

L(m1Q1) subject to f1(P
(1)
0) = s. The shares are sh

(1)
i := f1(P

(1)
i) for 1 ≤

i ≤ N1. Note that this is just a Shamir secret sharing scheme.
– Generation 2: As m2 ≥ N1 + 2g2, by Lemma 2, we can randomly choose

a function f2 in the Riemann-Roch space L(m2Q2) subject to f2(P
(2)
i) =

f1(P
(1)
i) for i = 0, 1, 2, . . . , N1. The shares in generation 2 are sh

(2)
i :=

f2(P
(2)
i) for 1 ≤ i ≤ N2.

– Generation n: Continue in the above fashion and assume that we have con-
structed shares sh

(n−1)
i for i = 1, 2, . . . , Nn−1. As mn ≥ Nn−1 + 2gn, by

Lemma 2, we can randomly choose a function fn in the Riemann-Roch s-

pace L(mnQn) subject to fn(P
(n)
i) = fn−1(P

(n−1)
i) for i = 0, 1, 2, . . . , Nn−1.

The shares are sh
(n)
i := fj(P

(n)
i) for 1 ≤ i ≤ Nn.

It is clear that the share size is log q = O(1). Furthermore, we claim:

the above scheme is a (αt, βt)-ramp evolving secret sharing scheme for
all t ∈ N , where α = γ − 1

p −
2
p−1 and β = pγ

1+(p−1)γ .

Let us prove the above claim now.

(i) Reconstruction:
• First of all, we claim that the secret s can be reconstructed by any mn+1

shares in [Nn]. This is because that (fn(Qn), fn(P
(n)
1 , . . . , fn(P

(n)
Nn

) is a
codeword of a q-ary [Nn + 1,mn − gn + 1,≥ Nn + 1−mn]-linear code.

• For m1 + 1 ≤ t ≤ N1, it is an (m1,m1 + 1)-threshold secret sharing
scheme. Thus, m1 + 1 = γN1 ≤ βt for all γ

βN1 ≤ t ≤ N1.
• Suppose that we have shown that the above secret sharing scheme has

reconstruction βt from the shares in [t] for all t ≤ Nn−1. Now let recon-
struction from shares in [t] with Nn−1 + 1 ≤ t ≤ Nn for n ≥ 2.
Case 1. For Nn−1 + 1 ≤ t ≤ 1−γ

1−βNn−1, let A be a subset of [t] of

size at least βt, then A ∩ [Nn−1] has size at least |A| + Nn−1 − t ≥

20

βt + Nn−1 − t ≥ γNn−1 ≥ mn−1 + 1. Thus, s can be recovered by the

shares {sh(n)
i }i∈A∩[Nn] = {sh(n−1)

i }i∈A∩[Nn−1].

Case 2. For 1−γ
1−βNn−1 < t ≤ Nn, let A be a subset of [t] of size at least

βt. As β = 2γ
1+γ , we have

βt > β × 1− γ
1− β

Nn−1 = pγNn−1 = γNn ≥ mn.

Since any mn + 1 shares can reconstruct the secret, the secret can be
reconstructed by the shares in A. This completes the proof for recon-
struction.

(ii) Privacy:
• For m1 + 1 ≤ t ≤ N1, it is an (m1,m1 + 1)-threshold secret sharing

scheme. Thus, m1 ≥ γN1 − 1 ≥ αt for all t ≤ N1.
• Let n ≥ 2. For Nn−1 + 1 ≤ t ≤ Nn, let A be a subset of [t] of size at

most αt, then

deg

mnQn −
∑

i∈[Nn−1]∪A

P
(n)
i − P (n)

0

 ≥ mn − (Nn−1 + |A|)− 1.

As mn− (Nn−1 + |A|)−1 ≥ γNn−Nn−1−αt−1 ≥ 2gn−1. Thus, there
exists a function f in the set

L

mnQn −
∑

i∈[Nn−1]∪A

P
(n)
i

 \ L
mnQn −

∑
i∈[Nn−1]∪A

P
(n)
i − P (n)

0

 .

Hence, f(P
(n)
0) 6= 0 and f(P

(n)
i) = 0 for all i ∈ [Nn−1]∪A. By multiplying

a nonzero constant, we may assume that f(P
(n)
0) = 1. Now for any

s′ ∈ Fq. Consider the function fn + (s′ − s)f . Then we have (fn + (s′ −
s)f)(P

(n)
0) = s′, (fn+(s′−s)f)(P

(n)
i) = fn(P

(n)
i) for any i ∈ [Nn−1]∪A.

This shows privacy.

In conclusion, we have the following result.

Theorem 5. Let p ≥ 5 be a prime power and let q = p2. Let γ be a real in the
interval (1

p + 1
p−1 , 1). Then there exists an (αt, βt)-evolving ramp secret sharing

scheme with secret and share sizes log q = O(1), where α = γ − 1
p −

1
p−1 and

β = pγ
1+(p−1)γ . Furthermore, the scheme (including share distribution and secret

reconstruction) for any t players can be constructed in time O(t3).

Theorem 6. If γ < 1
2 , then the evolving ramp secret sharing scheme given in

Theorem 5 is an evolving arithmetic (αt, βt, δt)-ramp secret sharing scheme with
δ = 2pγ

1−2γ+2pγ .

21

Proof. Let A be a subset of [t] with |A| ≥ δt.
First, let us assume that t ≤ N1. Assume that shares in A are {f(P

(1)
i)}i∈A

and {g(P
(1)
i)}i∈A for some f, g ∈ L(G1). Then δt > 2m1 for t > 2m1

δ = 2γ
δ N1 =

1−2γ+2pγ
p N1.

Now let us assume that Nn−1 < t ≤ Nn for some n ≥ 2. Assume that

shares in A are {f(P
(n)
i)}i∈A and {g(P

(n)
i)}i∈A for some f, g ∈ L(Gn). We also

assume that shares in A ∩ [N1] are {f1(P
(n−1)
i)}i∈A and {g1(P

(n−1)
i)}i∈A for

some f1, g1 ∈ L(Gn−1).

Case 1. If Nn−1 + 1 ≤ t < 1−2γ
1−δ Nn−1, then A ∩ [Nn−1] has size at least

|A| + Nn−1 − t ≥ δt + Nn−1 − t > 2γNn−1 ≥ 2mn−1 + 1. Thus, the product

f1(P
(n−1)
0)g1(P

(n−1)
0) of the secrets can be recovered by the shares

{f(P
(n)
i)g(P

(n)
i)}i∈A∩[Nn] = {f1(P

(n−1)
i)g1(P

(n−1)
i)}i∈A∩[Nn−1].

Case 2. For 1−2γ
1−δ Nn−1 ≤ t ≤ Nn, let A be a subset of [t] of size at least βt.

As δ = 2pγ
1−2γ+2pγ , we have

δt ≥ δ × 1− 2γ

1− δ
Nn−1 = 2pγNn−1 = 2γNn ≥ 2mn.

Since any 2mn + 1 shares can reconstruct the product secret, the product secret
can be reconstructed by the product shares in A. This completes the proof for
reconstruction.

References

1. Amos Beimel and Hussien Othman. Evolving ramp secret-sharing schemes. In
Dario Catalano and Roberto De Prisco, editors, Security and Cryptography for
Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-
7, 2018, Proceedings, volume 11035 of Lecture Notes in Computer Science, pages
313–332. Springer, 2018.

2. Amos Beimel and Hussien Othman. Evolving ramp secret sharing with a small gap.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYP-
T 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
I, volume 12105 of Lecture Notes in Computer Science, pages 529–555. Springer,
2020.

3. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized
complexity of information-theoretically secure MPC revisited. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 395–426. Springer, 2018.

4. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and
secure multi-party computations over small fields. In Cynthia Dwork, editor, Ad-
vances in Cryptology - CRYPTO 2006, pages 521–536, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

22

5. Arnaldo Garcia and Henning Stichtenoth. A tower of artin - schreier extensions of
function fields attaining the drinfeld - vlâdut bound. Inventiones Mathematicae,
121:211–222, 01 1995.

6. Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of some
towers of function fields over finite fields. Journal of Number Theory, 61:248C273,
12 1996.

7. Ilan Komargodski, Moni Naor, and Eylon Yogev. How to share a secret, infinite-
ly. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in Computer Science,
pages 485–514, 2016.

8. Ilan Komargodski and Anat Paskin-Cherniavsky. Evolving secret sharing: Dynamic
thresholds and robustness. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part II, volume 10678 of Lecture Notes in
Computer Science, pages 379–393. Springer, 2017.

9. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
10. Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing

Company, Incorporated, 2nd edition, 2008.
11. M. A. Tsfasman and S. G. Vlǎduţ. Algebraic-Geometric Codes. Springer, 1991.

A The Garcia-Stichtenoth tower

There are two function field towers by Garcia and Stichenoth [5, 6]. Let us make
use of the tower given in [5].

Let p be a prime power and let q = p2. The Garcia-Stichenoth tower given
[5] is defined recursively as follows. Let F1 = Fq(x1) and for n ≥ 1 let Fn+1 =

Fn(zn+1), where z2 satisfies the equation zp2 + z2 = zq+1
1 and zn+1 satisfies the

equation

zpn+1 + zn+1 =

(
zn
xn−1

)p+1

(2)

for all n ≥ 2.

Then the genus g(Fn) of Fn is given by

g(Fn) =

{
pn + pn−1 − p(n+1)/2 − 2p(n−1)/2 + 1 if n is odd;
pn + pn−1 − 1

2p
n/2+1 − 3

2p
n/2 − pn/2−1 + 1 if n is even.

Furthermore, the number of Fq-rational places of Fn is at least (q−1)pn−1 + 2p.

23

