
Simpira Gets Simpler:
Optimized Simpira on Microcontrollers

Minjoo Sim1, Siwoo Eum1, Hyeokdong Kwon1, Kyungbae Jang1,
Hyunjun Kim1, Hyunji Kim1, Gyeongju Song1,

Wai-Kong Lee2, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{ minjoos9797, shuraatum, korlethean, starj1023,

khj930704, khj1594012, thdrudwn98, hwajeong84}@gmail.com
2Department of Computer Engineering,

Gachon University, Seongnam, Incheon (13120), Korea,
waikonglee@gachon.ac.kr

Abstract. Simpira Permutation is a Permutation design using the AES
algorithm. The AES algorithm is the most widely used in the world, and
Intel has developed a hardware accelerated AES instruction set (AES-
NI) to improve the performance of encryption. By using AES-NI, Simpira
can be improved further. However, low-end processors that do not sup-
port AES-NI require efficient implementation of Simpira optimization. In
this paper, we introduce a optimized implementation of a Simpira Per-
mutation in 8-bit AVR microcontrollers and 32-bit RISC-V processors,
that do not support the AES instruction set. We firstly pre-computed
round keys and omitted the Addroundkey. Afterward, the MixColumn
and InvMixColumn of the final round (i.e. 12-th), which were added un-
necessarily due to characteristics of Simpira using AES-NI, were omitted.
In the AVR microcontroller, the Addroundkey consists of 16 operations,
but it has been optimized by eliminating operations where the value of
roundkeys is 0x00, omitting Addroundkey to 4 operations. In the RISC-
V processor, it is implemented using a same optimization technique of
AVR implementation. We have carried out experiments 8-bit ATmega128
microcontroller and 32-bit RISC-V processor, which shows up-to 5.76×
and 37.01× better performance enhancement than reference codes for
the Simpira Permutation, respectively.

Keywords: AES · Software Implementation · Simpira Permutation ·
8-bit AVR Microcontroller · 32-bit RISC-V Processor

1 Introduction

AES (Advanced Encryption Standard) is an encryption algorithm that adopted
by the National Institute of Standards and Technology (NIST) in 2001 [1]. Since
then, AES block cipher has become the most used encryption algorithm in the
world. In 2008, Intel developed an instruction set (AES-NI [2]) to improve the



2 Seo et al.

performance of AES encryption/decryption as an extension of the x86 instruc-
tion set. In addition, the AES instruction set was developed to improve AES
performance in ARM processors.

Simpira Permutation proposed an efficient permutation with AES Round
function using the AES instruction set [3]. However, the proposed Simpira per-
mutation cannot be used generally, because many kinds of processors do not
support the AES instruction set. In this paper, we propose an optimal imple-
mentation of Simpira Permutation on an 8-bit AVR microcontroller and a 32-bit
RISC-V processor that does not provide the AES instruction set. Main contri-
butions of this work are as follow:

1.1 Contributions

– Optimized Simpira on the 8-bit AVR architecture. An ATmega128
processor is one of Atmel AVR family, which is the most commonly used
in practice. We propose an optimized implementation of Simpira on the
ATmega128 processor. The Simpira Permutation uses AES algorithm, but
the target processor does not support AES-NI instruction set. Since AES-NI
is not available, we have used existing AES to enable Simpira to behave the
same as AES-NI instruction set to operate on the target processor.
To implement the Simpira, some offset functions are optimized away. For
instance, the last round of Mixcolumns and InvMixcolums can be omitted
because it can be operated in the opposite way. Some of AddRoundKey
functions uses 0x00 roundkeys. Since it has no effect on the result value,
it is operated by 16 times. With optimization techniques, the proposed im-
plementation requires only 4 times of computations. We have carried out
experiments shows up-to 5.76× better performance enhancements than ref-
erence code for the Simpira Permutation.

– Optimized Simpira on the 32-bit RISC-V architecture. A RISC-
V is an open source computer CPU architecture. We presents the optimal
implementation of Simpira, whose permutation is implemented with the AES
algorithm. However, on a 32-bit RISC-V processor does not support AES-
NI instruction sets. In particular, we optimized by omitting the operation
using the optimized AES algorithm. We have carried out experiments shows
up-to 37.01× better performance enhancement than reference code for the
Simpira Permutation.

– First optimized-implementation for Simpira on 8-bit AVR mirco-
controller and 32-bit RISC-V processor. The implementation on the
low-end processor for Simpira, an algorithm used inside SPHINCS+ [4] and
an algorithm that advanced to the NIST PQC Round3, has not yet been
explored before except for the implementation on the ARM processor.

2 Related Works

2.1 AES



Simpira Gets Simpler 3

Algorithm 1 AES Algorithm

procedure AES(state, rk)
1: R ← Rounds− 1
2: for i = 1 to R do
3: state ← SubBytes(state)
4: state ← ShiftRows(state)
5: state ← MixColumns(state)
6: state ← Addroundkey(state, rk)
7: end for
8: state ← SubBytes(state)
9: state ← ShiftRows(state)

10: state ← Addroundkey(state, rk)
11: return state
end procedure

The AES(Advanced Encryption Standard) is a symmetric block cipher that
uses the identical key for encryption and decryption. It is composed of 128-
bit blocks, and the number of rounds is 10, 12, and 14 according to the key
length of 128-bit, 192-bit, and 256-bit, respectively. In the encryption process,
the MixColumns step is performed in all rounds except the last round, and every
round goes through the SubBytes, ShiftRows, and AddRoundKey steps.

Each encryption step proceeds as follows. SubBytes applies the same 8-bit
S-Box to each byte of the internal state. ShiftRows shifts the k-th row to the left
by k-bytes. MixColumns multiplies each column by a diffusion matrix through
GF (28). AddRoundKey adds the round key, which is derived from key extension
using secret key [1]. The overall operation codes are detailed in Algorithm 1.

2.2 Simpira Permutation

Simpira Permutation uses the AES round functions. If the roundkey used in
AddRoundKey in the AES block cipher is set to a publicly known fixed value,
it can be used as an encryption permutation with the same output value when
the input value is the same. Also, AES encryption spreads all bits to other
bytes during 2 rounds. For this reason, one round of Simpira consists of 1 and 2
rounds of AES. To use it as a permutation, a fixed value is used for the roundkey
used in AddRoundKey of AES. Therefore, the output value is fixed, because the
roundkey is fixed [3].

At this time, it is not safe to set the fixed roundkey value to 0x00. A fixed
roundkey is used by utilizing the round constant. The overall algorithm is the
same as Algorithm 2. The roundkey Z used in the 5 line of the Algorithm 3 means
a roundkey in which all roundkey values are 0x00. That is, a fixed roundkey using
a round constant and a round key with 0x00 are used alternately. Simpira block
size increases in 128-bit units because it uses the round function of AES. In
b × 128-bit, there is a difference in the algorithm depending on the parameter



4 Seo et al.

Algorithm 2 Simpira Algorithm

procedure Simpira(state, rk)
1: R ← 6
2: for c = 1 to R do
3: state ← Fc,b(state)
4: end for
5: state ← InvMixColumns(state)
6: return state
end procedure

Algorithm 3 Fc,b Algorithm (b=1)

procedure Fc,b(state)
1: RK[0] = 0x00⊕ c⊕ b
2: RK[4] = 0x10⊕ c⊕ b
3: RK[8] = 0x20⊕ c⊕ b
4: RK[12] = 0x30⊕ c⊕ b
5: return AES(AES(state,RK), Z)
end procedure

𝑥!
𝑏 = 1

ff𝐹!,#

Fig. 1: Structure of Simpira about b = 1; c is a counter that is initialized by one,
and incremented after every use of Fc,b, Every Fc,b consists of two AES round,
where the round constants that are determined from (c, b) where b is number of
blocks

(b). In this paper, b is set to 1 where b is number of blocks, it is used as a
standard.

2.3 8-bit AVR Microcontroller

The low-end 8-bit AVR microcontroller is an 8-bit RISC single chip based on Har-
vard architecture. Mainly used in low-power environments, there are currently
several types of AVR microcontrollers, with various peripherals and memory
sizes. In this paper, ATmega128, which is the most widely used in the Atmega
class, is used. The ATmega128 can use 133 RISC instructions and has 32 8-bit
general purpose registers. It has 128 KB of flash memory, 4 KB of EEPROM
and 4 KB of SRAM [5]. Instructions used to implement the optimized Simpira
cipher are summarized in Table 1.



Simpira Gets Simpler 5

Table 1: Summarized instructions set of efficient Simpira implementations on 8-
bit AVR microcontrollers; Rd: destination register, Rr: source register, X, Y, Z:
indirect address register (X{R27 : R26}, Y {R29 : R28} and Z{R31 : R30}),
PC: loaded with the contents of the Z-register, C: carry flag, K: constant data, k:
constant address.
Instruction Operands Description Operation #Clock

ADD Rd, Rr Add without Carry Rd ← Rd + Rr 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr 1

MOV Rd, Rr Copy Register Rd ← Rr 1

MOVW Rd, Rr, Rr Copy Register Pair Rd+1:Rd ← Rr+1:Rr 1

LPM Rd, Z Load Program Memory Rd ← Z 3

BRCC k Branch if Carry Cleared if(C = 0) then PC ← PC + k + 1 1/2

LD Rd, X(or Y, Z) Load Indirect Rd ← X(or Y, Z) 2

LDI Rd, K Load Immediate Rd ← K 1

ST X(or Y, Z), Rr Store Indirect X(or Y, Z) ← Rr 2

PUSH Rr Push Register on Stack STACK ← Rr 2

POP Rd Pop Register from Stack Rd ← STACK 2

Table 2: Purpose of registers in 32-bit RISC-V processor.
Register Description Saver

zero(x0) zero register caller

ra(x1) return address register caller

sp(x2) stack pointer register callee

gp(x3) global pointer register caller

tp(x4) thread pointer register caller

a0∼a7 function arguments and return value registers caller

s0∼s11 saved registers callee

t0∼t6 temporal registers caller

2.4 32-bit RISC-V Processor

RISC-V is an open source developed at UC Berkeley since 2010. Unlike ARM
processors, which have the greatest influence, this is a computer CPU structure
that can be used for free without paying a license. RISC-V has developed 32-bit,
64-bit, and 128-bit devices. The RISC-V instruction set architecture (ISA) is di-
vided into RV32I, RV64I, and RV128I according to the supported bit size. In this
paper, the 32-bit RV32I instruction set is used. A 32-bit RISC-V processor has
32 32-bit registers. The purpose of each register is as shown in Table 2. Among
them, there are sp registers and s0 ∼ s11 registers as callee-saved registers that
preserve the value before using the register and return the value after use.

3 Proposed Method

3.1 Optimized Implementation of Simpira on 8-bit AVR
microcontroller

Constant Roundkey Pre-compute. Since the AES algorithm used in Simpira
uses a round constant unlike the original AES extended roundkey, it is possible



6 Seo et al.

Table 3: Summarized instructions set of efficient Simpira implementations on 32-
bit RISC-V processors; Rd: destination register, Rs: source register, K: constant
data, J: constant address. [6]
Instruction Operands Description Operation

ADD Rd, Rs1, Rs2 Add Rd ← Rs1 + Rs2

XOR Rd, Rs1, Rs2 Exclusive OR Rd ← Rs1 ⊕ Rs2

MV Rd, Rs1 Copy Register Rd ← Rs1

SLLI Rd, Rs1, K Shift left logical immediate Rd ← Rs1 << K

SRLI Rd, Rs1, K Shift right logical immediate Rd ← Rs1 >> K

BNE Rs1, Rs2, J Branch not equal if(Rs1!=Rs2) Jump to J

JAL J Jump and link Jump to J

LW Rd, K(J) Load word Rd ← J + K

SW Rs1, K(J) Store word Rs1 → J + K

to calculate the value used as the roundkey in advance. Before entering the AES
round function in Algorithm 3, the roundkey is calculated in advance and the
AES round function operation is performed. In this paper, parameter (b) is set
to 1 because it is implemented for the case where the value of b (the number of
blocks) is 1. Since the roundkey always uses a fixed value due to the fixed value of
b, it is possible to calculate the roundkey in advance without having to recalculate
the roundkey every round during the operation of the Fc,b function. For this
reason, it is possible to pre-compute the roundkey. The operation (operation of
the round key) performed in lines 1 to 4 of Algorithm 3 can be omitted.

Omit AddRoundkey Function. Simpira runs 6 rounds. In this case, two AES
round functions are performed in one Simpira round. Among the round func-
tions of AES, the roundkey used in the Addroundkey function uses a constant
roundkey once and uses Z(all values of roundkey are 0x00) once. In other words,
two round keys are used per round and a total of 12 round keys. Since one round
key per round is 0x00, there are 6 round keys using 0x00 in a total of 6 rounds.
The operation of the Addroundkey function consists of the XOR operation of
State and roundkey. When XOR operation is performed with roundkey of 0x00
and State, the State value does not change.

The implementation of the existing Simpira study was implemented using
AES-NI. When using AES-NI instructions, the Addroundkey function cannot be
omitted. If the value of roundkey is 0x00, the Addroundkey function is executed.
Since proposed implementation does not use AES-NI and implements each AES
function, individually. In proposed implementation, it is possible to omit the
Addroundkey operation in which Z, where all roundkey values are 0x00, is used
among the Addroundkey functions. For this reason, we omitted a total of 12
Addroundkeys as 6 Addroundkeys.

Optimizing InvMixColumn. In line 6 of Algorithm 2, InvMixColumns op-
eration is performed. The round function of Simpira consists of the AES round



Simpira Gets Simpler 7

Algorithm 4 Optimized Addroundkey in AVR microcontrollers (.macro round);
R0, R4, R8, R12: input register, R18: temporary register, Y : indirect address
register

Input: R0, R4, R8, R12
Output: R0, R4, R8, R12
1: ld R18, Y+

2: eor R0, R18

3: ld R18, Y+

4: eor R4, R18

5: ld R18, Y+

6: eor R8, R18

7: ld R18, Y+

8: eor R12, R18

function. Performing InvMixcolumn operations at the end of the round is the
same result of omitting the Mixcolumn operations once in the round function
of AES. In other words, when the AES round function is used 12 times in Sim-
pira, the Mixcolumn operation is omitted in the final 12-th AES round function,
giving the effect of calculating the same InvMixcolumn. Therefore, it is more
efficient to omit the Mixcolumn operation once than implementing the InvMix-
column, separately. As a result, it is possible to optimize away Mixcolumn once
and InvMixcolumn.

Three optimization techniques listed above are equally applicable to 32-bit
RISC-V processors. The following technique cannot be applied on 32-bit RISC-V
processors, where it is applicable only for 8-bit AVR microcontrollers.

Optimized Addroundkey Function. The Addroundkey step in the existing
AES performs an XOR operation on the extended roundkey and the current
block bit by bit. Addroundkey executes one column at a time, and serves to
strengthen security by mixing the bits (current block) that have gone through
three stages: SubBytes, ShiftRows, and MixColumns. However, Addroundkey of
AES used in Simpira has a characteristic of using a fixed roundkey value. Using
a fixed roundkey value is vulnerable to security. The result of XOR operation,
the round constant, roundkey, and the number of blocks b (i.e. 1) are used as the
roundkey. As mentioned in the Constant Roundkey Pre-compute section, it is
possible to pre-compute the roundkey using the round constant, roundkey and
number of block b (i.e. 1) with this characteristic.

Figure 2 summarizes the values for each roundkey. Among RK[0] ∼ RK[15],
it can be seen that only the values corresponding to RK[0], RK[4], RK[8], and
RK[12] are XOR operation with the round constant. Using these characteristics,
RK[0], RK[4], RK[8], and RK[12] can result in different roundkey values for
each round by performing XOR operations with the bit values corresponding
to the current block. However, other roundkey values are fixed at 0x00. When
we perform XOR operations on bits corresponding to this roundkey and the
current block, values do not change when comparing with pre-operation values.

Therefore, using the feature that there is no change in value when XOR
operation is performed with 0x00, except for operations on RK[0], RK[4], RK[8],



8 Seo et al.

Fig. 2: Values of each roundkey; RK = Roundkey, c is a counter that is initialized
by one, and incremented after every use of Fc,b, Every Fc,b consists of two AES
round, where the round constants that are determined from (c, b), b is number
of blocks.

Table 4: Evaluation result of Addroundkey on 8-bit AVR microcontrollers (in
terms of speed; clock cycles).

No optimization Optimization

48 12

and RK[12]. Other roundkeys it is possible to omit the XOR operation because
the result is the same as when it is not performed. The algorithm applying the
optimized Addroundkey can be found at 4.

In this paper, we omit the rest of the operations except RK[0], RK[4], RK[8],
and RK[12] whose values change, reducing the operations of Addroundkey of
the existing from 16 operations to 4 operations using Simpira’s characteristics.
Comparison results are shown in Table 4. For the Addroundkey operation, 48
cycles were obtained when the same operation was performed as before, whereas
12 cycles were obtained for this work. As a result, it reflects a performance
improvement by 4.0×.

We implemented each module for Subbytes, Shiftrows, MixColumns, and
Addroundkey of Simpira to call the module as needed. By implementing it as a
Modularization, it is possible to efficiently manage the code.

Using an optimized AES implementation. For the optimal implementation
of Simpira on the AVR microcontroller, it is necessary to firstly implement the
optimization of the AES algorithm. Aoki et al. came up with an approach that
greatly reduces the amount of XOR operations required in the Mixcolumns
step that works in Grøstl [7]. Through the approach of Aoki et al, Feichtner
has been shown that multiplication operations are possible without additional
overhead [8]. The hash function Grøstl, an AES-based algorithm, uses the same
Sbox as AES, and Grøstl’s Mixcolumns and AES’s Mixcolumns do similar things.
Therefore, in this paper, MixColumns is implemented similarly to Feichtner’s
approach.



Simpira Gets Simpler 9

3.2 Optimized Implementation of Simpira on 32-bit RISC-V

Simpira Optimized Implementation. The optimization technique in 32-bit
RISC-V processors uses the same technique used in 8-bit AVR microcontrollers.
The first is the pre-computation of the roundkey. The second is the omission of
the Addroundkey function. Since RISC-V processor does not support AES-NI
instruction sets, it is possible to omit Addroundkey where Z is used. The imple-
mentation when roundkey is Z is the same as Algorithm 5. Algorithm 5 omits
four commands to load the roundkey and four commands to XOR operations,
rather than when the Constant roundkey is used, resulting in a total of eight
commands being optimized. Third, it is omitting InvMixcolumn.

Using an optimized AES implementation. For the optimal implementa-
tion of Simipra on 32-bit RISC-V processors, it is necessary to firstly implement
the optimization of the AES algorithm. It is implemented by referring to Ko
Stoffelen’s [9] implementation of AES optimization on the RISC-V processor.
In [9], the fastest implementation of encryption for a single block utilizes large
lookup tables called T-tables, which combine the various steps of a round func-
tion. Encryption of a single 16-byte block is performed in 912 clock cycles. This
uses 24 bytes on the stack to store callee-save registers and 4KiB lookup table.

As a result, the optimization implementation is shown in the Figure 3. The
Figure 3 shows the basic structure of Simpira and the structure after optimiza-
tion.

4 Evaluation

This section introduces the evaluation of the proposed implementation. There are
no comparative groups because we firstly implemented this on target processors.
This compares the performance of each platform’s Simpira C implementation
and Assembly implementation by setting the optimized level to -O3. The per-
formance evaluation is measured in terms of execution timing (i.e. clock cycle).

4.1 8-bit AVR Microcontroller

The proposed implementation measures the ATmega128 microcontroller in the
AVR microcontroller. The source code was implemented through the Microchip
Studio Framework, and compiled with compile option-O3. Since Simpira has
never been implemented on an AVR microcontroller, the reference code is ported
to the AVR microcontroller and results and performance are compared. Com-
parison results are shown in Table 5. A Reference C code takes 14,334 cycle.
And optimized assembly implementation takes 2,862 cycle, while the proposed
optimization implementation in assembly language achieved 1,052 cycle. As a
result, it confirmed that there is a 5.76× performance improvement over C im-
plementation.



10 Seo et al.

Algorithm 5 Implementation of AES round function when the roundkey is Z
in RISC-V processors (.macro zround); X0 ∼ X3: input state register, Y 0 ∼
Y 3: output state register, LUT0 ∼ 3: look up table address, C: constant value
(0xff0) register, T0 ∼ 4: temp registers.

Input: X0, X1, X2, X3
Output: Y 0, Y 1, Y 2, Y 3
1: andi T0, X0, 0xff

2: andi T1, X1, 0xff

3: andi T2, X2, 0xff

4: andi T3, X3, 0xff

5: slli T0, T0, 4

6: slli T1, T1, 4

7: slli T2, T2, 4

8: slli T3, T3, 4

9: add T4, T0, LUT1

10: lw Y0, (T4)

11: add T4, T1, LUT1

12: lw Y1, (T4)

13: add T4, T2, LUT1

14: lw Y2, (T4)

15: add T4, T3, LUT1

16: lw Y3, (T4)

17: srli X0, X0, 4

18: srli X1, X1, 4

19: srli X2, X2, 4

20: srli X3, X3, 4

21: and T0, X1, C

22: and T1, X2, C

23: and T2, X3, C

24: and T3, X0, C

25: add T4, T0, LUT3

26: lw T0, (T4)

27: add T4, T1, LUT3

28: lw T1, (T4)

29: add T4, T2, LUT3

30: lw T2, (T4)

31: add T4, T3, LUT3

32: lw T3, (T4)

33: xor Y0, Y0, T0

34: xor Y1, Y1, T1

35: xor Y2, Y2, T2

36: xor Y3, Y3, T3

37: srli X0, X0, 8

38: srli X1, X1, 8

39: srli X2, X2, 8

40: srli X3, X3, 8

41: and T0, X2, C

42: and T1, X3, C

43: and T2, X0, C

44: and T3, X1, C

45: add T4, T0, LUT0

46: lw T0, (T4)

47: add T4, T1, LUT0

48: lw T1, (T4)

49: add T4, T2, LUT0

50: lw T2, (T4)

51: add T4, T3, LUT0

52: lw T3, (T4)

53: xor Y0, Y0, T0

54: xor Y1, Y1, T1

55: xor Y2, Y2, T2

56: xor Y3, Y3, T3

57: srli X0, X0, 8

58: srli X1, X1, 8

59: srli X2, X2, 8

60: srli X3, X3, 8

61: and T0, X3, C

62: and T1, X0, C

63: and T2, X1, C

64: and T3, X2, C

65: add T4, T0, LUT2

66: lw T0, (T4)

67: add T4, T1, LUT2

68: lw T1, (T4)

69: add T4, T2, LUT2

70: lw T2, (T4)

71: add T4, T3, LUT2

72: lw T3, (T4)

73: xor Y0, Y0, T0

74: xor Y1, Y1, T1

75: xor Y2, Y2, T2

76: xor Y3, Y3, T3



Simpira Gets Simpler 11

Fig. 3: (Top) original Simpira structure / (Bottom) optimized Simpira structure.

Table 5: Evaluation result on AVR microcontrollers with the optimization level
-O3 in terms of execution timing (i.e. clock cycles); Notation (∗) indicates with
optimization techniques.

Reference C code This work This work∗
14,334 2,862 2,485

4.2 32-bit RISC-V Processor.

The proposed implementation is evaluated over the 32-bit RISC-V processor
using a RV32I. The source code was implemented through the Freedom Studio
Framework provided by SiFive. Similar to the results of AVR microcontrollers,
Simpira has no implementation results on 32-bit RISC-V processors. The refer-
ence C code is transplanted to RISC-V and the results are compared. Comparison
results are shown in Table 6. A Reference C code takes 39,842 cycle. And the
assembly implementation takes 1,106 cycle, while the optimized implementation
in assembly language achieved 1,052 cycle. As a result, it confirmed that there
is a 37.01× performance improvement over C implementation.



12 Seo et al.

Table 6: Evaluation result on RISC-V processors with the optimization level
-O3 in terms of execution timing (i.e. clock cycles); Notation (∗) indicates with
optimization techniques.

Reference C code This work This work∗
38942 1106 1052

5 Conclusion

In this paper, we propose an optimized implementation of Simpira Permuta-
tion on both an 8-bit AVR microcontroller and a 32-bit RISC-V processor. The
proposed techniques include the constant roundkey pre-computation and Ad-
dRoundKey, InvMixColumns operation omission. In AVR microcontrollers, the
operation of the 0x00 part of the Constant roundkey value is omitted. The
proposed technique confirmed the performance improvement of 5.7× in AVR
microcontrollers and 37.01× in RISC-V processors compared to the C imple-
mentation, respectively. This paper is the first Simpira Permutaion optimization
study on 8-bit AVR and 32-bit RISC-V that does not support AES-NI. As a
future research project, we propose the optimal implementation of various block
sizes of Simpira.

References

1. J. Daemen and V. Rijmen, “Reijndael: The advanced encryption standard.,” Dr.
Dobb’s Journal: Software Tools for the Professional Programmer, vol. 26, no. 3,
pp. 137–139, 2001.

2. K. Akdemir, M. G. Dixon, W. Feghali, P. G. Fay, V. Gopal, J. Guilford, E. Ozturk,
G. Wolrich, and R. Zohar, “Breakthrough aes performance with intel ® aes new
instructions,” 2010.

3. S. Gueron and N. Mouha, “Simpira v2: A family of efficient permutations using the
aes round function.,” in International Conference on Cryptology and Information
Security in Latin America, pp. 95–125, Springer, 2016.

4. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The sphincs+ signature framework,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2129–2146, 2019.

5. A. Corporation, “Atmega128(l) datasheet,” 2021.
6. A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-v instruction

set manual, volume i: User-level isa, version 2.1,” 2016.
7. K. Aoki, G. Roland, Y. Sasaki, and M. Schläffer, “Byte slicing grøstl optimized intel

aes-ni and 8-bit implementations of the sha-3 finalist grøstl,” in Proceedings of the
International Conference on Security and Cryptography, pp. 124–133, IEEE, 2011.

8. J. Feichtner, “Efficient grøstl-256 implementations for the avr 8-bit microcontroller
architecture,” 2012.

9. K. Stoffelen, “Efficient cryptography on the risc-v architecture,” in International
Conference on the Theory and Application of Cryptology and Information Security,
pp. 323–340, Springer, 2019.


