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Abstract
Fault attacks have gained particular attention in recent years
as they present a severe threat to security in rapidly rising
Internet-of-Things (IoT) devices. IoT devices are generally
security-critical and resource-constrained. Therefore, any
security protocol deployed in these devices has to satisfy
several constraints such as small area footprint, low power,
and memory consumption. Combinational circuit implemen-
tation of S-box is preferable over look-up table (LUT) in
terms of memory consumption as the memory operations
are usually the costliest part of lightweight cipher implemen-
tations. In this work, we analyze the S-box of AES against
a novel fault analysis technique, Semi-Permanent Stuck-At
(SPSA) fault analysis. We pinpoint hotspots in an optimized
implementation of AES S-box that weaken the cryptographic
properties of the S-box, leading to key recovery attacks. Our
work investigates new vulnerabilities towards fault analysis
in combinational circuit implementation.

CCSConcepts: • Security andPrivacy→ Security inhard-
ware;Cryptography; •Computer systems organization
→ Embedded and cyber-physical systems; Dependable and
fault-tolerant systems and networks.

Keywords: Fault attacks, AES, Lightweight ciphers, Combi-
national circuit, Semi-permanent, Stuck-at.

1 Introduction
Over the past two decades, fault analysis attacks have emerged
as strong implementation-based attacks, especially, to em-
bedded devices that run lightweight encryption and authen-
tication operations. These devices, even though employing
cryptographic primitives that exhibit provable security and
are mathematically robust, are rendered weak to fault analy-
sis attacks. The idea of fault attacks was first demonstrated
on RSA cryptosystem in the seminal work of Boneh et al. [4].
Fault analysis involves malicious alteration of intermedi-
ate data/instruction in the normal execution of the cryp-
tographic algorithm in embedded devices. This alteration,
depending on spatio-temporal characteristics of the injected
fault, and fault propagation characteristics of the algorithm
implementation, leads to information leakage of the secret
key embedded in the device through a set of faulty and fault-
free ciphertexts.

The fault attacks on cryptographic primitives have been
categorized in to many classes based on the attack principle,
which comprise differential fault analysis [2], fault sensitivity
analysis [12], differential fault intensity analysis (DFIA) [10],
safe error attacks [3], and differential behavior analysis [17].
Unlike conventional fault analysis techniques, such as DFA
and algebraic fault analysis (AFA) [6] that require both faulty
and fault-free ciphertexts corresponding to the same set of
input plaintexts, statistical fault analysis (SFA) [9] considers
only faulty ciphertexts. SFA-based techniques gained popu-
larity as these techniques are based on the ciphertext-only
attack model, the weakest attack model.
In 2018, Dobraunig et al. [8] proposed another statistical

approach called Statistical Ineffective Fault Analysis (SIFA)
exploits information about the faults that do not corrupt
the intermediate data, thus leaking information about the
data values that do not participate in a specific operation
during execution. Subsequently, Zhang et al. [18] proposed
Persistent Fault Analysis (PFA), wherein a fault once injected
persists in the system for a longer duration. PFA gained
importance due to its effectiveness and relaxed fault model.

Each of the above-mentioned fault analysis techniques is
based on a different fault model and attacker capabilities, and
hence, requires varying attack efforts. In existing literature,
majority of fault analysis techniques focus on fault injection
in memory cells as well as registers [2, 3, 10, 12]. However,
fault injection in the combinational circuits of cryptographic
implementations and associated security vulnerabilities has
not been investigated. It is imperative to investigate this
aspect when compact and especially resource-constrained
hardware implementations of crypto-primitives are increas-
ingly adopted in IoT devices.

In this paper, we demonstrate a novel fault analysis tech-
nique, termed as Semi-Permanent Stuck-at (SPSA) fault anal-
ysis on combinational implementations of cryptographic
primitives, such as Sboxes, in block ciphers. The contribu-
tions of this work are as follows,

• We investigate a Semi-Permanent Stuck-at (SPSA) fault
analysis technique to evaluate the security of hardware
implementations of cryptographic primitives against
fault attacks.

• We pinpoint hotspots that result in crucial vulnera-
bilities in an optimized implementation of AES Sbox
towards SPSA faults.
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• We discuss sensitization model to quantify the amount
of information an SPSA fault leaks when induced at a
specified fault location.

2 Semi-permanent Stuck-at fault analysis
In this section, we describe the fault model, the threat model,
and the attack procedure in the proposed semi-permanent
stuck-at fault analysis (SPSA).

2.1 Fault Model
A fault model is a representation that denotes the alteration
in the normal construction or normal operation of an elec-
trical device or an algorithm. These representations enable
predicting the consequences of a given fault. In general, fault
models are used in the detection of manufacturing defects
in integrated circuits (ICs). However, in fault attacks, defects
are introduced maliciously in the device executing a crypto-
graphic operation to obtain secret information. A fault model
includes fault type (bit-flip/ stuck-at/ set-reset, etc.),required
control on fault injection (precise/ relaxed), duration of ef-
fect of fault (transient/ permanent/ persistent/ intermittent/
semi-permanent), location of fault injection (memory cell/
register/ logic circuit), and assumptions about the cipher im-
plementation (serial/ round rolled/ software/ hardware). In
this section, we present a novel fault model termed as Semi-
Permanent-Stuck-At (SPSA) fault model. The proposed SPSA
fault model is based on two properties of injected faults: 1)
A Stuck-at 0 (1) type of fault needs to be introduced in the
specific locations in the Sbox circuit. 2) The fault should per-
sist in the circuit for the desired duration, i.e., between fault
injection and fault release, called Semi-permanent fault. As
a semi-permanent fault is introduced with the help of two
events this fault can be referred to as Double Event Transient
(DET) [14].

Owing to the Total Ionizing Dose (TID) effect [16] in elec-
tronic devices, when nano-focused X-ray beam is injected at a
specified location in the targeted circuit for a longer duration,
it induces a semi-permanent fault. Once the fault is induced
it remains in the circuit until a heat annealing treatment
is performed to release the fault injected earlier. To induce
a stuck-at-0(1) fault in the circuit at the input/output of a
specified logic gate, the adversary makes a selected NMOS
transistor conductive and PMOS transistor blocked [1]. The
respective CMOS cell can be stuck at a logic value 0 or 1
based on the implemented functionality. Fluorescence map-
ping can be used to locate the targeted transistors, whereas
the desired precision in beam triggering time can be achieved
using a digital oscilloscope.

2.2 Threat Model
We assume that the adversary is aware of the implementa-
tion details of the Sbox in the targeted cipher and capable
of introducing Semi-permanent stuck-at faults at desired

locations in the Sbox circuit. After fault injection, the adver-
sary waits for the faulty device to perform encryptions to
collect sufficient number of faulty ciphertexts to be used in
the analysis to recover the secret key.

2.3 Attack procedure
An adversary performs the following five steps to mount an
attack on the targeted cipher implementation in the proposed
SPSA fault analysis method.

2.3.1 Identify hotspots : In this phase, an adversary an-
alyzes the fault propagation behavior of each fault point in
the combinational circuit implementation of targeted Sbox
against SPSA-0 and SPSA-1 faults, thereby locate the hotspots.
Hotspots are fault locations that, when subjected to a par-
ticular fault, either alter the probability distribution of Sbox
outputs from uniform to non-uniform or affect the targeted
element’s cryptographic properties, such as nonlinearity,
algebraic degree, etc. This analysis can be done through
simulations.

Consider a 2× 2 toy Sbox shown in Figure 1, and its corre-
sponding logic circuit as depicted in Figure 2. The input 𝑋0
and 𝑌0 are the most significant input and output bits (MSBs)
of the Sbox, respectively. The circuit has three intermediate
wires, referred to as fault points, where an SPSA fault can be
injected. Each fault point can take three possible values: semi-
permanent stuck-at-0 denoted as SPSA-0, semi-permanent
stuck-at-1 denoted as SPSA-1, and fault-free. A fault point is
fault-free if a fault is not injected at that point. In Figure 2, 𝑓1,

𝑥 0 1 2 3
𝑆 (𝑥) 3 0 1 2

Figure 1. Example Sbox S Figure 2. Combinational circuit

𝑓2, and 𝑓3, represent fault-points that can acquire any of the
three possible values, thus, resulting in 33 = 27 fault com-
binations including a non-faulty output or correct output.
Figure 4 and Figure 6 illustrate effects of two different fault
combinations: SPSA-0 at 𝑓1 and SPSA-1 at 𝑓2, respectively.
The faulty Sboxes, 𝑆1 (𝑥) and 𝑆2 (𝑥) corresponding each fault
combination are shown in Figure 4 and Figure 6. Entries
in the red color text in faulty Sboxes indicate faulty values
generated due to the presence of respective SPSA faults. 𝑆1
is a biased mapping exhibiting a non-uniform distribution
of output values that an attacker can exploit in statistical
analysis to retrieve the secret key. Whereas 𝑆2 is a linear
bijection resulting in an effortless key recovery attack.
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Figure 3. Fault combination-I

𝑥 0 1 2 3
𝑆1 (𝑥) 3 0 3 0

Figure 4. Faulty Sbox 𝑆1

Figure 5. Fault combination-II

𝑥 0 1 2 3
𝑆2 (𝑥) 1 0 3 2

Figure 6. Faulty Sbox 𝑆2

2.3.2 Select most promising fault-points : An adver-
sary chooses the optimal fault-combination for fault injec-
tion among the identified vulnerable hotspots in step (i). The
choice of fault-combination depends on several factors such
as attackers capability, analysis method for key recovery,
residual key search space after analysis, etc.

2.3.3 Inject desired SPSA fault(s): An adversary injects
chosen SPSA faults in the S-box circuit. Due to the semi-
permanent characteristic the SPSA can be injected much
before the encryption starts and thus does not need precise
time synchronization.

2.3.4 Data Collection : Adversary collects faulty cipher-
texts to be used in analysis for key recovery. Once the suffi-
cient number of faulty ciphertexts are obtained, the adver-
sary releases the fault by heat annealing.

2.3.5 Key recovery fromcollected ciphertexts : In this
phase, attacker recovers the secret key from collected faulty
ciphertexts of unknown plaintexts or chosen plaintexts de-
pending on the method of analysis. In order to recover the
secret key, the proposed SPSA fault model can be coupled
with multiple cryptanalysis techniques depending on the
most vulnerable hotspot in the circuit. For example, 1) An
SPSA fault at some fault-point may result in non-uniform
S-box mapping and hence a good candidate for statistical
analysis techniques such as elimination of impossible key
candidates based on non-uniform distribution of S-box out-
put values, Square Euclidean Imbalance (SEI) distinguisher,
etc. 2) A different SPSA fault at a different fault-point may
negatively affect cryptographic properties of the S-box such
as nonlinearity, differential uniformity, or correlation immu-
nity, thereby resulting in weakened resilience against linear
cryptanalysis, differential cryptanalysis, or correlation or sub-
set attacks, respectively.

3 Analyzing AES S-box with SPSA faults
In this section, we demonstrate the proposed SPSA fault
analysis on AES Rijndael Sbox.

3.1 AES
In October 2000, Rijndael [7] cipher was chosen as the Ad-
vanced Encryption Standard, commonly known as AES. AES
is a substitution permutation (SPN) based cipher that runs
in 𝑁 rounds where 𝑁 is 10 for AES-128 and 14 for AES-256.
The input data block of 128 bits is considered as a 4 × 4 ma-
trix of bytes, called state matrix. The state matrix is updated
through 𝑁 rounds. Each round except the last performs four
operations, namely SubBytes, ShiftRows, MixColumns, and
AddRoundKey. A key schedule is used to generate 𝑁 + 1
round keys to be used in the AddRoundKey operation. The
round operations are described briefly:
(1) SubBytes (SB) is the substitution step where an 8 × 8

non-linear function called Sbox is applied on each byte
in the state matrix.

(2) ShiftRows (SR) performs a cyclic rotation on each row
of the state.

(3) MixColumns (MC) linearly combines the elements in
each column using a constant matrix. The last round
does not execute this operation.

(4) AddRoundKey operation performs an XOR between
the intermediate state matrix and round key.

We present the analysis on combinational circuit imple-
mentation of an optimized S-box of AES towards the pro-
posed SPSA fault vulnerability. AES uses a 8-bit bijective
Sbox, which has a large fault space. Several optimized imple-
mentations of AES Sbox have been proposed in the literature
[5, 11, 13, 15]. The implementation proposed by Boyar et
al. in [11] is optimal in gate count and circuit depth for both
reverse and forward directions. Hence, we choose this im-
plementation for our analysis. The chosen implementation
requires 125 gates, and its circuit depth in both forward and
reverse directions is 16.

3.2 SPSA Analysis and Observations on AES Sbox
Boyar et al. [11] presented an optimized implementation
of AES Sbox as shown in Fig. 7. We evaluated the same
implementation in our analysis. The circuit has 125 gates,
and there are 250 fault-points. For analysis, we consider only
125 fault points, i.e., each gate’s output is a fault-point. If
a faulty output is fed as input to multiple gates, then all
those inputs become faulty. If multiple fault-points can be
faulty at the same time, then there is a total 125𝐶1 + 125𝐶2 +
. . . 125𝐶125 = 2125 − 1 fault combinations. Since, each fault-
point can be either stuck-at-0 or stuck-at-1, this results in
(3125 − 1) possible fault combinations. This is a large fault
space which is infeasible for an exhaustive test. Therefore,
for analysis, we choose fault combinations that contain at-
most two fault-points, i.e., (2 × 125𝐶1) + (22 × 125𝐶2) = 31250
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Figure 7. Optimized AES Sbox circuit [11]. Inputs to the Sbox are denoted as𝑈 0, . . . ,𝑈 7 and outputs are denoted as 𝑆0, . . . , 𝑆7.
Symbols +, ×, and # represent 𝑋𝑂𝑅, 𝐴𝑁𝐷 , and 𝑋𝑁𝑂𝑅 operations, respectively.

fault combinations. We observe that the residual key-space
for last round key of AES can be reduced by upto 3416 ≈ 281.
However, we could not test the entire fault-space of 3125 − 1
fault combinations in AES. As a result, there may exist an
optimal set of fault combinations that may further reduce
the residual key-space. We consider optimizing this residual
key space as a future scope of this work.

The observations from our experiments show that major-
ity of fault-points when subjected to SPSA faults, severely
disrupt the distribution of Sbox output values, i.e., the faulty
Sbox outputs are non-uniformly distributed. For instance,
when an SPSA-0 fault is injected at fault-point 𝑇1, 128 ele-
ments among 256 possible output elements occur with 𝑧𝑒𝑟𝑜

probability, i.e., absent from S-box output. These absent ele-
ments at faulty Sbox output affect the balancedness property
of the Sbox. Therefore, based on this observation, we define
Imbalance Factor as follows.

𝑁𝑎𝑒 = {𝐶𝑜𝑢𝑛𝑡 (𝑦) |𝑦 ∈ 𝑆 (𝑥) ∧ 𝑦 ∉ 𝑆∗ (𝑥)} (1)

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑁𝑎𝑒

2𝑛
(2)

where 𝑆 (𝑥), 𝑆∗ (𝑥) represent original and faulty 𝑛-bit Sboxes,
respectively and 𝑁𝑎𝑒 denote number of non-occurring ele-
ments at the output of faulty Sbox 𝑆∗ (𝑥). Hence, if in a 8 × 8
faulty Sbox 𝑆∗ (𝑥), 50 elements among 256 possible elements
do not occur at the output then Imbalance Factor of 𝑆∗ (𝑥)
is 0.195. The value of Imbalance Factor of an Sbox 𝑆 can be
between 0 and 1 i.e. 0 ⩽ 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑆) ⩽ 1. A 𝑍𝑒𝑟𝑜

value of the Imbalance Factor indicates that the Sbox is bal-
anced. In contrast, a higher value of the Imbalance Factor
indicates an extremely imbalanced Sbox, which is vulnerable
to several attacks such as Subset cryptanalysis, statistical
distinguishers, etc.
Table 1 presents the cryptographic properties of faulty

Sboxes corresponding to specific SPSA fault/s at chosen fault-
point/s in the AES Sbox implementation provided in Fig. 7.

It presents possible attack threats due to the weaken crypto-
graphic properties. First row of the table shows properties
of original non-faulty Sbox.

4 Sensitization Model in SPSA Fault
Analysis

In this section, we model the sensitization of a fault injected
at a node to the output of Sbox. We consider that an injected
SPSA-0 or an SPSA-1 fault when sensitized and propagates
the fault to the output, it eases the attacker’s effort to recover
the key. An Sbox 𝐹 : {0, 1}𝑛 ↦→ {0, 1}𝑛 comprises of 𝑛 coordi-
nate functions defined as, 𝐹 (𝑥) : (𝑓𝑛−1 (𝑥), 𝑓𝑛−2 (𝑥), . . . , 𝑓0 (𝑥))
for all 𝑥 ∈ {0, 1}𝑛 . From this definition, 𝑓𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1,
is called a coordinate function of 𝐹 . Suppose under SPSA
fault model, Sbox 𝐹 (𝑥) : (𝑓𝑛−1 (𝑥), . . . , 𝑓0 (𝑥)) is changed to
𝐹 ∗ (𝑥) : (𝑓 ∗𝑛−1 (𝑥), . . . , 𝑓 ∗0 (𝑥)).

For an input, 𝑥 ∈ {0, 1}𝑛 , we say that an SPSA-0 (SPSA-1)
fault gets sensitized to the output of faulty Sbox 𝐹 ∗ if there
exists at least a pair of coordinate functions, (𝑓𝑖 , 𝑓 ∗𝑖 ), 0 ≤ 𝑖 ≤
𝑛−1, such that for input 𝑥 ∈ {0, 1}𝑛 , 𝑓𝑖 (𝑥) ⊕ 𝑓 ∗𝑖 (𝑥) = 1. If, for
input 𝑥 , 𝑓𝑖 (𝑥) ⊕ 𝑓 ∗𝑖 (𝑥) = 0, we consider that the respective
fault does not get sensitized to the output of the coordinate
function. The sensitization of an SPSA fault to the output
of a coordinate function 𝑓𝑖 , over the entire input domain,
𝑥 ∈ {0, 1}𝑛 is captured by the correlation function, 𝐶𝑓𝑖 ,𝑓

∗
𝑖
,

between the fault-free coordinate function and its respective
faulty coordinate function as,

𝐶𝑓𝑖 ,𝑓
∗
𝑖
=

∑
𝑥 ∈{0,1}𝑛

(−1) 𝑓𝑖 (𝑥) ⊕𝑓 ∗𝑖 (𝑥) (3)

The correlation function, 𝐶𝑓𝑖 ,𝑓
∗
𝑖
, is the difference of the

number of input values 𝑥 for which 𝑓𝑖 (𝑥) ⊕ 𝑓 ∗𝑖 (𝑥) = 0 and
𝑓𝑖 (𝑥) ⊕ 𝑓 ∗𝑖 (𝑥) = 1. The sensitization of an SPSA-0 or SPSA-1
fault corresponding to the output of the coordinate function
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Fault point Fault type Imbalance
Factor Nonlinearity Differential

Uniformity Vulnerabilities

No-fault No-fault 0 112 4 –
{𝑇 1} {SPSA-0} 0.511 96 8 Statistical distinguishers
{𝑇 1} {SPSA-1} 0.511 98 4 Statistical distinguishers
{𝑇 12} {SPSA-0} 0.278 92 12 Linear cryptanalysis

{𝑇 12} {SPSA-1} 0.391 96 8 Statistical distinguishers
Linear cryptanalysis

{𝑇 62} {SPSA-0} 0.254 92 14 Linear cryptanalysis

{𝑇 62} {SPSA-1} 0.391 92 10 Statistical distinguishers
Linear cryptanalysis

{𝑇 75} {SPSA-0} 0.133 100 10 PFA[18] like analysis
{𝑇 75} {SPSA-1} 0.465 100 10 Statistical distinguishers
{𝑇 78} {SPSA-0} 0.133 100 10 PFA[18] like analysis
{𝑇 78} {SPSA-1} 0.465 100 10 Statistical distinguishers

{𝑇 83} {SPSA-0} 0.332 96 12 Statistical distinguishers
Linear cryptanalysis

{𝑇 83} {SPSA-1} 0.332 96 12 Statistical distinguishers
Linear cryptanalysis

{𝑇 128} {SPSA-0} 0.281 86 6 Linear cryptanalysis
{𝑇 128} {SPSA-1} 0.281 86 6 Linear cryptanalysis

{𝑇 1,𝑇 2} {SPSA-0} 0.641 76 80 Vulnerable to most of the
cryptanalytic attacks

{𝑇 1,𝑇 2} {SPSA-1} 0.636 76 64 Vulnerable to most of the
cryptanalytic attacks

{𝑇 1,𝑇 49} {SPSA-0} 0.651 80 16 Linear, Algebraic attacks
Statistical distinguishers

{𝑇 1,𝑇 50} {SPSA-1} 0.644 82 16 Linear, Algebraic attacks
Statistical distinguishers

{𝑇 1,𝑇 51} {SPSA-0, SPSA-1} 0.681 82 16 Linear, Algebraic attacks
Statistical distinguishers

Table 1. Hotspots for proposed SPSA analysis in AES Sbox optimized implementation as shown in Figure 7. Node outputs
{𝑇1,𝑇2, · · · ,𝑇140} are considered as fault-points.

𝑓𝑖 is hence defined as,

𝑆
𝑓𝑖 ,𝑓

∗
𝑖

𝑆𝑃𝑆𝐴
=
1
2
−
𝐶𝑓𝑖 ,𝑓

∗
𝑖

2𝑛+1
=
1
2
−

∑
𝑥 ∈{0,1}𝑛

(−1) 𝑓𝑖 (𝑥) ⊕𝑓 ∗𝑖 (𝑥)

2𝑛+1
(4)

If an SPSA-0 or SPSA-1 fault injected at any fault loca-
tion in Sbox do not propagate to the output of a coordinate
function 𝑓𝑖 of the Sbox 𝐹 , the corresponding sensitization,
𝑆
𝑓𝑖 ,𝑓

∗
𝑖

𝑆𝑃𝑆𝐴
= 0 implies that the SPSA fault does not propagate to

the output of 𝑓𝑖 . In other words, the SPSA fault does not leak
information in the output ciphertext pattern as there are no
faulty ciphertexts. However, if SPSA-0 or SPSA-1 fault prop-
agates to the output of coordinate function 𝑓𝑖 of Sbox 𝐹 or all
input patterns, 𝑥 ∈ {0, 1}𝑛 , then 𝑆

𝑓𝑖 ,𝑓
∗
𝑖

𝑆𝑃𝑆𝐴
= 1. In other words,

for coordinate function 𝑓𝑖 , its corresponding sensitization,
𝑆
𝑓𝑖 ,𝑓

∗
𝑖

𝑆𝑃𝑆𝐴
defines the vulnerability or the amount of information

that a fault location leaks to the output ciphertext pattern.
The sensitization of an SPSA-0 or SPSA-1 fault when in-

jected at a fault location in an Sbox can affect one or multiple
coordinate functions of an Sbox. As a result, we define the
sensitization of an SPSA-0 or SPSA-1 fault to the output of
Sbox 𝐹 in terms of its coordinate functions, 𝑓𝑖 , 0 ≤ 𝑖 ≤ 𝑛−1, as
a tuple, 𝑆𝐹

𝑆𝑃𝑆𝐴
= (𝑆

𝑓𝑛−1,𝑓 ∗(𝑛−1)
𝑆𝑃𝑆𝐴

, . . . , 𝑆
𝑓0,𝑓

∗
0

𝑆𝑃𝑆𝐴
). If an SPSA-0 (SPSA-

1) fault does not leak any fault information to the output of
𝐹 , then for all 𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑆 𝑓𝑖 ,𝑓

∗
𝑖

𝑆𝑃𝑆𝐴
= 0. If there exists an

𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1, for which 𝑆
𝑓𝑖 ,𝑓

∗
𝑖

𝑆𝑃𝑆𝐴
≠ 0, the corresponding

SPSA-0 (SPSA-1) leaks fault information to the output 𝐹 , and

hence may be exploitable by the fault analysis adversary. We
demonstrate the sensitization of SPSA-0 and SPSA-1 faults
at some fault points for the coordinate functions in AES
Sbox implementation in Figure 8 and Figure 9. Figure 8 corre-
spond to fault points correspond to 𝑇75 and 𝑇78, and Figure 9
correspond to fault points 𝑇1, 𝑇12, and 𝑇83, respectively. In
Figure 9, as larger number of Sbox output values are not
occurring, the sensitization values at these fault points for
all corresponding Sboxes are significantly larger than that
of Figure 8. The sensitization values thus depict the strength
of fault points in leaking the fault information to the Sbox
values, and hence to the ciphertext values as well.

5 Conclusion
In this work, we propose semi-permanent stuck-at (SPSA)
fault analysis on the Sboxes of SPN block ciphers, which
results in key recovery from the collected faulty ciphertexts.
We propose parameters, imbalance factor and sensitization
of the coordinate functions of AES Sbox, that capture the
SPSA vulnerability of the different fault points in the Sbox
architecture. We investigated vulnerable hotspots on an op-
timized implementation of AES Sbox. We tested 31250 fault
combinations and observed several instances of single-point
SPSA faults that, when injected, restrict between 34 to 168
elements to occur at the output of substitution layer among
256 possible values. We evaluated essential cryptographic
properties of these faulty Sboxes and observed that several
single-point SPSA faults when injected can leave the cipher
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Figure 8. SPSA-0 and SPSA-1 fault sensitization values for
all coordinate functions of AES Sbox for fault points 𝑇75 and
𝑇78.

Figure 9. SPSA-0 and SPSA-1 fault sensitization values for
all coordinate functions of AES Sbox for fault points 𝑇1, 𝑇12
and 𝑇83.

implementation to be vulnerable to multiple cryptanalytic
attacks. We believe that our work will contribute to a more
comprehensive understanding of the security vulnerabilities
in the light of semi-permanent stuck-at faults.
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