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Abstract.
The isogeny-based post-quantum schemes SIKE (NIST PQC round 3 alternate can-
didate) and CSIDH (Asiacrypt 2018) have received only little attention with respect
to their fault attack resilience so far. We aim to fill this gap and provide a better
understanding of their vulnerability by analyzing their resistance towards safe-error
attacks. We present four safe-error attacks, two against SIKE and two against a
constant-time implementation of CSIDH that uses dummy isogenies. The attacks
use targeted bitflips during the respective isogeny-graph traversals. All four attacks
lead to full key recovery. By using voltage and clock glitching, we physically carried
out two of the attacks - one against each scheme -, thus demonstrate that full key
recovery is also possible in practice.
Keywords: post-quantum cryptography · isogeny-based cryptography · fault at-
tacks

1 Introduction
The youngest field of post-quantum cryptography that is studied within NIST’s standard-
ization process is isogeny-based cryptography, which was first described in 2006 [1, 2].
Some years later, in 2011, De Feo et al. presented a fast cryptographic scheme based on
isogenies, named SIDH (Supersingular Isogeny Diffie-Hellman) [3]. SIDH was used to cre-
ate the key encapsulation mechanism SIKE (Supersingular Isogeny Key Encapsulation) [4],
which was submitted to NIST’s standardization process and selected as round 3 alternate
candidate, i.e., SIKE is considered promising, but needs to be further studied before being
considered for standardization. In 2018, Castryck et al. presented another isogeny-based
system, called CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) [5]. Unlike
SIKE, CSIDH is non-interactive, making it a potential drop-in replacement for current
Diffie-Hellman schemes. CSIDH has not been submitted to NIST’s standardization pro-
cess because it was designed only after the submission deadline had passed. Although the
actual security of the suggested CSIDH parameters against quantum attacks was recently
questioned [6, 7], CSIDH is still a promising and widely discussed isogeny-based scheme.
However, the recent quantum attacks show that the young field of isogeny-based cryptog-
raphy has not been sufficiently studied with respect to (quantum) cryptanalysis yet. Also,
the physical security of isogeny-based schemes has not been sufficiently studied yet.

In this work, we analyze the physical security of SIKE and CSIDH. Physical attacks
allow attackers to deduce secret information of an algorithm by observing or modifying
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the platform it operates on. In a passive (or side-channel) attack, the attacker analyzes
physical information that they can measure while cryptographic operations are computed.
In an active attack, on the other hand, the attacker directly interacts with the running
algorithm, causing a change in its operations through which information can be extracted.
Hence, active attacks are also called fault attacks.

Analyzing SIKE and CSIDH with respect to a specific fault attack is the focus of
this work. We analyze both schemes regarding their vulnerability towards safe-error at-
tacks. Safe-error attacks have been first published by Yen and Joye in 2000 [8]. They
suggested that by inducing transient faults, an implementation leaks one bit of informa-
tion depending on whether the algorithm results in an error or not. Yen and Joye first
described attacks on smart cards using a square-and-multiply algorithm and later applied
safe-error attacks on the Montgomery ladder, showing that by perturbing memory during
computation, one can deduce one bit of secret information [9]. Safe-error attacks are par-
ticularly interesting because even if the algorithm were to detect a fault in its operation,
it will still leak information. Hence, standard countermeasures, like checking for faults
and outputting a random value in case a fault was detected, still provide the attacker
with information and therefore are not sufficient to protect an implementation against
safe-error attacks.

Safe-error attack mitigations usually do not feature in current implementations, render-
ing them vulnerable against these attacks, see, e.g., [10]. Also our work shows that recent
implementations of isogeny-based schemes do not provide explicit protection against safe-
error attacks. This is concerning especially since some of our attacks are similar to attacks
that have long been known in the ECC community, e.g., [8, 9].

Our Contribution. The focus of this work is to analyze SIKE and CSIDH with respect
to safe-error attacks. To the best of our knowledge, SIKE has not been studied with
respect to these attacks before.

We develop attack scenarios for SIKE and CSIDH and demonstrate the feasibility of
the presented safe-error attacks by performing practical experiments. The experiments
were performed against C implementations of SIKE and CSIDH on a ChipWhisperer board
with an ARM Cortex-M4 processor as target core. The implementation of CSIDH that
we attacked is a constant-time implementation based on dummy isogenies. We achieve
full key recovery of all n bits of the secret key within Opnq interactions for two of the four
attacks laid out in this paper. We discuss possible countermeasures and their performance
impact. The code used for this work is available1 in the public domain, which includes
the modified CSIDH and SIKE Cortex-M4 implementation and all attack scripts.

The attack against SIKE that we carried out practically can analogously be applied
to B-SIDH [11].

Related work. Although isogeny-based cryptography provides promising candidates for
quantum-resistant public-key schemes, only few results regarding the physical security of
isogeny-based cryptography in general and SIDH [12–15], SIKE [16], and CSIDH [17–19] in
particular exist. Galbraith et al. presented the first fault attack on SIDH, together with
corresponding countermeasures [13]. In [12], Koziel et al. propose different zero-value
attacks on SIDH. Based on loop-abort fault injection, Gélin and Wesolowski presented
side-channel and fault attacks against isogeny-based primitives [14]. The first published
physical attack on SIKE was a power side-channel attack exploiting differences in cal-
culations depending on the secret key [16]. Ti proposed in [15] a fault attack on SIDH
by changing the base point to a random point via fault injection. In [20], Tasso et al.
presented the first experimental realization of Ti’s theoretical fault attack and proposed
countermeasures against this attack. Cervantes-Vázquez et al. [18] analyzed CSIDH for

1https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
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potential attacks by reviewing and improving the constant-time implementations of [21]
and [22]. Furthermore, they proposed a dummy-free CSIDH algorithm. A recent work [17]
presents safe-error and further fault attacks, together with countermeasures, on a constant-
time CSIDH implementation with dummy isogenies. The attack against CSIDH that we
carried out practically attacks the resulting implementation of [17]. LeGrow and Hutchin-
son [19] suggest to randomize the order of execution of isogenies to increase the number of
attacks required when attacking dummy-based constant-time implementations of CSIDH.

Concurrently to our work, several PQC schemes have been analyzed with respect to
safe-error attacks [10]. However, isogeny-based schemes are not covered in this work.

Organization. In Section 2, we present necessary background on SIKE, CSIDH, and
safe-error attacks. In Sections 3 and 4, we present safe-error attacks on SIKE and CSIDH,
respectively. In Section 5, we explain how to perform the described safe-error attacks
on a real device and present full key recovery. We discuss possible countermeasures in
Section 6 and conclude this work in Section 7.

2 Background
We first discuss implementation details of SIKE and CSIDH. For readers not familiar with
isogenies, we refer to [23]. Afterwards, the introduction to safe-errors shows the pattern
common to the attacks and how they work.

2.1 SIKE
SIKE (Supersingular Isogeny Key Encapsulation) is an interactive key encapsulation us-
ing supersingular elliptic curves [4]. SIKE has passed into the third round of the NIST
process2 as alternate candidate for future standardization. To achieve the goal of becom-
ing standardized it will need to be studied further, especially with respect to efficiency
improvements and all aspects of misuse resistance. SIKE uses SIDH internally, and SIDH
will be the main target of the attacks presented in the following section. For a detailed
overview of SIDH as used in SIKE, we refer to [4].

SIDH is constructed as follows: A public prime p “ 2e23e3 ´ 1 such that 2e2 « 3e3 is
chosen, as well as two points on the torsion group associated to their base: P, Q P E0r2e2 s

or E0r3e3 s. These represent the respective public generators. The rest of the algorithm
is computed over Fp2 . At the start of the exchange, each party agrees on picking a base
of either 2 or 3 as long as they differ between them. Afterwards, each party generates a
private key sk P Fp2 . Of note here is that in the efficient implementation of [4], three points
are used. The third point is R “ P ´Q and is used to speedup the computation through a
three-point ladder [24](cf. Algorithms 1 and 4, and Listing 1). Using these generators as
well as their private key, each party then computes their public curve E2 or E3. This curve
is calculated through a chain of e2 2-isogenies, or e3 3-isogenies respectively. Each isogeny
uses a generator of the form xP ` rsksQy as the kernel. The projection of the other party
basis point and this curve are then sent to the other party, where the same procedure is
repeated to arrive at the curve E2{3 and E3{2. These two curves are isomorphic to each
other and thus the parties have arrived at a shared secret: the j-invariant of E2{3 and
E3{2, respectively.

The submitted implementation from round 3 is constant-time and already includes
several countermeasures against fault attacks. The implementation is secure against the
attack presented in Section 3.1, but vulnerable to the second one as presented in Sec-
tion 3.2.

2https://doi.org/10.6028/NIST.IR.8309
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352 // Main loop
353 for (i = 0; i < nbits; i++) {
354 bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
355 swap = bit ^ prevbit;
356 prevbit = bit;
357 mask = 0 - (digit_t)swap;
358

359 swap_points(R, R2, mask);
360 xDBLADD(R0, R2, R->X, A24);
361 fp2mul_mont(R2->X, R->Z, R2->X);
362 }

Listing 1: LADDER3PT – SIKE

2.2 CSIDH
CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) describes a non-interactive
key exchange using supersingular elliptic curves [5]. For a more detailed overview of the
key exchange, we refer to [5].

CSIDH is constructed as follows: A prime p is chosen of the form p “ 4¨ℓ1¨¨¨ℓn´1, where
the ℓi are small pairwise distinct odd primes. The rest of the algorithm is computed in Fp.
The algorithm uses elliptic curves in Montgomery form: E0 : y2 “ x3 `Ax2 `x. To begin,
each party generates a secret key pe1, . . . , enq, where each ei is sampled uniformly random
from the interval r´m, ms with m P N. The key exchange is then prepared by calculating
the elliptic curve associated with the secret key: For each ei a total of abspeiq ℓi-isogenies
have to be calculated. The sign of ei represents the direction taken in the respective
ℓi-isogeny graph. As the composition of isogenies is commutative, each computed curve
will be isomorphic no matter in which order they are calculated. The isognies are then
chained to compute the public curve associated to the secret key: E0

pe1,...,enq
ÝÝÝÝÝÝÑ EA. Bob

does the same to calculate EB . The parameter of the curves EA and EB correspond to
the public keys and are then exchanged and each party repeats their isogeny calculation
using the other’s public key as the starting curve: Alice calculates EB

pe1,...,enq
ÝÝÝÝÝÝÑ EBA and

Bob calculates EAB in a similar fashion. The final curves EBA and EAB are the same,
and the shared secret is the A parameter of this curve in Montgomery form.

The straightforward implementation of the algorithm would be highly variable in time,
since different amounts of isogenies need to computed, depending on the secret key. It
would be easy for an attacker to trace the amount of isogenies calculated and their degree
as isogenies with a larger degree require more computational effort. In 2019 Meyer et
al. have presented a constant-time implementation of CSIDH [21]. The authors tackle
this issue by making the amount of isogeny evaluations constant, thus only leaking the
degree of the isogenies themselves and not the exact number of them. This follows from
the aforementioned fact that higher degree isogenies take longer to construct and, e.g.,
could be recovered through a timing attack. They achieve this by calculating ”dummy”
isogenies which serve as extra computational time to thwart timing attacks from finding
the real amount of isogenies of a given degree. Further, they change the interval from
which the secret key parts are sampled from r´m, ms to r0, 2ms so that an attacker
cannot tell apart secret keys with unbalanced positive and negative parts. Unfortunately,
these dummy calculations have added a new attack vector: loop-abort attacks. Such an
attack was first described in passing by Cervantes-Vázquez et al. in [18]. In [17] the
approach using dummy isogenies has been further refined. Campos et al. analyzed the
constant-time implementation for fault-injection attacks. This resulted, among others, in
added safeguards to the point evaluation and codomain curve algorithm. However, these
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Algorithm 1: xDBLADD
1 function xDBLADD

Input: pXP : ZP q, pXQ, ZQq, pXQ´P : ZQ´P q, and pa`
24 : 1q pA ` 2C : 4Cq

Output: pXr2sP : Zr2sP q, pXP `Q, ZP `Qq

2 t0 Ð XP ` ZP

3 t1 Ð XP ´ ZP

4 Xr2sP Ð t2
0

5 t2 Ð XQ ´ ZQ

6 xP `Q Ð XQ ` ZQ

7 Zr2sP Ð t2
1

8 t1 Ð t1 ¨ XP `Q

9 t2 Ð Xr2sP ¨ ´Zr2sP

10 Xr2sP Ð Xr2sP ¨ Zr2sP

11 XP `Q Ð a`
24 ¨ t2

12 ZP `Q Ð t0 ´ t1
13 Zr2sP Ð XP `Q ` Zr2sP

14 XP `Q Ð t0 ` t1
15 Zr2sP Ð Zr2sP ¨ t2
16 ZP `Q Ð Z2

P `Q

17 XP `Q Ð X2
P `Q

18 ZP `Q Ð XQ´P ¨ ZP `Q

19 XP `Q Ð ZQ´P ¨ XP `Q

20 return pXr2sP : Zr2sP q, pXP `Q, ZP `Qq

safeguards do not protect against the attack described in Section 4.1, as the attacker
assumed in this paper has a different threat model.

Following [21] Onuki et al. proposed to speed-up the implementation by reverting the
secret key part interval to r´m, ms and guarding against unbalanced keys by using two
points instead of one [22]. This change, however, has introduced a possible new attack
vector as described in Section 4.2.

2.3 Safe-Error Attacks
In [8], Yen and Joye introduce a new category of active attacks, so called safe-error attacks.
In this kind of attacks, the adversary uses fault injections to perturb a specific memory
location with the intent of not modifying the final result of the computation: the algorithm
may overwrite or throw away modified values, making them "safe errors". The presence or
absence of an error then gives insight into which codepath the algorithm executed. Two
kinds of safe-error attacks exist: in a memory safe-error (M safe-error) attack, the attacker
modifies the memory, i.e., in general these attacks focus on specific implementations [9,
25, 26]. In a computational safe-error (C safe-error) attack, however, the computation
itself is attacked through, e.g., skipping instructions. Hence, C safe-error attacks rather
target algorithmic vulnerabilities [9, 26].

The general construction of a safe-error attack is as follows:
Suppose an algorithm iterates over secret data. It then branches and does slightly

different calculations depending on whether a given bit in the secret data is equal to 0
or 1. The algorithm presented in Algorithm 3 has been secured against timing side-channel
attacks by consuming the same time in each branch. Precisely this predictability, enforced
to thwart timing attacks, makes safe-error attacks easier to carry out, as these attacks
require timed fault-injections. When implementing countermeasures, implementers thus
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Algorithm 2: CSIDH Algorithm by Onuki et al.
Input: A P Fp, m P N, a list of integers pe1, . . . , enq P r´m, msn and n distinct

odd primes ℓ1, . . . , ℓn s.t. p “ 4
ś

i ℓi ´ 1.
Output: B P Fp, m P N s.t. EB “ ple1

1 ¨ ¨ ¨ le2
n q ˚ EA, where li “ pℓi, π ´ 1q for

i “ 1, . . . , n, and π is the p-th power Frobenius endomorphism of EA.
1 Set e1

i “ m ´ |ei| for i “ 1, . . . , n
2 while some ei ‰ 0 or e1

i ‰ 0 do
3 Set S “ ti|ei ‰ 0 or e1

i ‰ 0u

4 Set k “
ś

iPS ℓi

5 Generate points P0 P EArπ ` 1s and P1 P EArπ ´ 1s by Elligator
6 Let P0 Ð rpp ` 1q{ksP0 and P1 Ð rpp ` 1q{ksP1
7 for i P S do
8 Set s the sign bit of ei

9 Set Q “ rk{ℓisPs

10 Let P1´s Ð rℓisP1´s.
11 if Q ‰ 8 then
12 if ei ‰ 0 then
13 Compute an isogeny ϕ : EA Ñ EB with ker ϕ “ xQy

14 Let A Ð B, P0 Ð ϕpP0q, P1 Ð ϕpP1q, and ei Ð ei ´ 1 ` 2s

15 else
16 Dummy computation
17 Let A Ð A, Ps Ð rℓisPs, and e1

i Ð e1
i ´ 1.

18 Let k Ð k{ℓi

19 return A

have to investigate all implications that these countermeasures have. However, since
some side-channel attacks, e.g., timing attacks, are generally easier to carry out than
other physical attacks, e.g., safe-error attacks, it can still be the right decision to fix a
specific vulnerability by enabling other, practically less relevant attacks. In application-
related implementations, explicit branching on secret data is usually avoided. However,
the different memory access patterns still occur due to the structure of the respective
algorithm. As we show in Section 3.1, using a constant time swap algorithm instead of
condition branching is not sufficient and may even provide an additional attack vector.

Analyzing the read and write patterns of Algorithm 3 and classing them according to
the state that they occur in allows to look for differences that could be exploitable. These
differences can be rendered in a table, such as Table 1. This allows for visual inspection
of differences.

This representation makes it immediately clear that even though the same method is
being called, it affects different data. This allows an attacker to exploit the difference
between the two branches by modifying one memory location and checking whether a
safe-error occurred.

Example: Let’s assume we try to attack the first branch, when Si “ 0. During the
calculate routine, we modify the memory used by the variable K in such a way that it
does not change the result of the computation. This is done by perturbing the memory
once the given memory location is not read anymore, but before it is being potentially
written to. After the calculate routine has executed, either K or P has been overwritten.
If our guess of Si “ 0 was correct, due to being overwritten after being perturbed by
the fault, K now holds again correct information in context of the algorithm. Letting

6



Algorithm 3: A toy algorithm vulnerable to a variable-access attack
Input: S the n-bit secret key
Output: a public message M

1 M Ð 1
2 K Ð 0
3 P Ð 0
4 for i P 0..n do
5 if Si “ 0 then
6 K Ð calculatepSi, P, Kq

7 else
8 P Ð calculatepSi, K, P q

9 M Ð M ` K ˚ P

10 return M

Table 1: Access patterns depending on the i-th bit of the secret key

Condition Read Variables Written Variables
Si “ 0 P, K K
Si “ 1 P, K P

the algorithm finish leaks the information whether our guess was correct: If it finishes
normally, Si was indeed 0. If we assume that M is known and verifiable, we can check to
see if the outcome was wrong, or, simpler, an error occurred. If either happened, then Si

was 1, as the faulted K did not get overwritten and subsequently changed the calculation.
This attack needs to be then repeated n times to fully recover the secret key S.

3 Attacks on SIKE
In this section, we analyze the implementation of SIKE submitted to round 3 of NIST’s
standardization process [4] in the context of safe-error attacks. First, we describe a mem-
ory safe-error attack in Section 3.1, then we describe a computational safe-error attack in
Section 3.2. For both attacks, we assume that the victim has a static secret key. Both
the encapsulator and the decapsulator can be the victim of this attack.

3.1 M-Safe Attack on SIKE
We first give a high-level overview on how the attack is constructed. Then, we give a more
detailed analysis of the individual steps of the attack.

As shown in Section 2.1 each SIKE participant has their own secret key m P Fp2 .
This key is used to calculate the subgroup xP, rmsQy representing the kernel of their
secret isogeny. The point multiplication rmsQ is performed through a three-point ladder
algorithm as seen in Algorithm 4. Important here is that the LADDER3PT function
is called with the secret key m as the first argument. The attacker requires the following
capabilities: They need to be able to introduce a memory fault during a specific point of
execution, as well as be able to verify the result of a given SIKE run. Both the shared
secret as well as any execution errors need to be known afterwards. The attack proposed
in this section then follows three parts:

With the goal of extracting an n-bit secret key, the attacker

1. initiates a SIKE key agreement,

7



Algorithm 4: The 3-Point Ladder
1 function LADDER3PT

Input: m “ pml´1, ..., m0q2 P Z, pxP , xQ, xQ´P q, and pA : 1q

Output: pXP `rmsQ : ZP `rmsQq

2 ppX0 : Z0q, pX1 : Z1q, pX2 : Z2qq Ð ppxQ : 1q, pxP : 1q, pxQ´P : 1qq

3 a`
24 Ð pA ` 2q{4

4 for i “ 0 to l ´ 1 do
5 if mi “ 1 then
6 ppX0 : Z0q, pX1 : Z1qq Ð xDBLADDppX0 : Z0q, pX1 : Z1q, pX2 : Z2q, pa`

24 : 1qq

7 else
8 ppX0 : Z0q, pX2 : Z2qq Ð xDBLADDppX0 : Z0q, pX2 : Z2q, pX1 : Z1q, pa`

24 : 1qq

9 return pX1, Z1q

Table 2: Access patterns depending on the ith-bit of the secret key

Condition Read Variables Written Variables
mris “ 0 pX0, Z0q, pX1, Z1q, pX2, Z2q pX0, Z0q, pX2, Z2q

mris “ 1 pX0, Z0q, pX1, Z1q, pX2, Z2q pX0, Z0q, pX1, Z1q

2. introduces a memory fault of any kind (bit-flip, scrambling,...) during the i-th
iteration of LADDER3PT, and

3. uses the result of the SIKE run to obtain the value of the i-th bit of the secret key.

Steps 1 to 3 have to be repeated n times to reconstruct the complete secret key.
In detail, this means that the attack on this three-point ladder algorithm follows the

schema as described in Section 2.3. Depending on a given bit of the secret key, different
variables are modified. This can be seen in Table 2. In this case either pX1, Z1q or pX2, Z2q

are passed to xDBLADD. Without loss of generality, let’s assume for the rest of this
section that we attack m and that the guess for the i-th bit is mris “ 1. By following
the general outlines of a safe-error attack one needs to modify pX1, Z1q between its last
use and the moment it gets written to. Such a moment exists in Algorithm 4 Line 6 (cf.
Section 2.1): pX1, Z1q is passed to the xDBLADD subroutine as the second argument,
thus pXQ, ZQq = pX1, Z1q in Algorithm 1 (cf. Section 2.1). pX1, Z1q is passed as the
third argument in Line 8, this difference is dependent on the secret key. The xDBLADD
method (as seen in Line 6 in Algorithm 1) then returns two values, one of which is assigned
to pX1, Z1q in Algorithm 4. In the xDBLADD routine from Line 6 onwards, pXQ, ZQq

is no longer read, and thus the value of pX1, Z1q stays unused until the function returns.
This is where the attacker executes the active attack, by scrambling the values backing
pXQ, ZQq, i.e., pX1, Z1q. If the attack on the memory location of pX1, Z1q was successful
and our guess was correct, the algorithm will, upon return, overwrite our modification and
finish without encountering an error. One can thus conclude that mris “ 1. Should our
guess of mris “ 1 be incorrect, then the algorithm computes a mismatching shared secret
or raises an error. In this case, mris “ 0. Either way, a single bit of information is gained
of the secret key. Consequently, all n bits of the static secret key m can be read by this
method and the full key can be recovered through n runs of this attack. The complete
attack thus consists of these steps:

1. The attacker observes a normal SIKE key agreement.

8



2. As xDBLADD gets called during LADDER3PT, overwrite pX1, Z1q on the i-th
iteration and observe the final result.

3. If the SIKE de/encapsulation fails, we know that pX1, Z1q did not get overridden.
Thus mris “ 0 otherwise mris “ 1.

Repeat steps 1 to 3 n times to recover the complete n-bit secret key.
The SIKE implementation in [4] has several parameter sets, each influencing the range

of possible values of the secret key. For example, SIKEp610 has an exponent e2 “ 305
with an estimated NIST security level 3 [4]. The private key m is thus sampled from
t0, ..., 2305 ´ 1u, giving the private key 305 bits of total length. Therefore an attacker,
trying to attack a SIKEp610 instantiation, would need to repeat the attack at least 305
times to achieve full key recovery.

In the latest version of xDBLADD, as published for the third NIST PQC process
round [4], the authors have chosen to use a simultaneous double-and-add algorithm. This
implementation prevents this particular attack as there is no moment during execution
that P or Q is written before it is potientially read. This is also true during compilation:
the order of operations in the assembly stays the same. Nonetheless, future implementa-
tions have to make sure that they are not vulnerable when using a different algorithm.

3.2 C-Safe Attack on SIKE
Similar to the M safe-error attack on SIKE described in the previous section, the attack
described in this section exploits the difference in memory accesses depending on a bit of
the secret key. Again, each party generates their own private key m, used to generate the
subgroup xP ` rmsQy of their private isogeny (cf. Section 2.1). This point multiplication
P ` rmsQ is done through a three-point ladder as seen in Algorithm 4 and Listing 1 (cf.
Section 2.1). In the C implementation, published in [4], the authors use a constant-time
swapping algorithm to exchange the points R and R2 depending on the i-th bit of the
secret key (see Line 359 of Listing 1). The function is called swap_points and accepts
both points and a mask as input. We denote the i-th bit of the secret key as mris. The
mask of the swapping function is calculated as xorpmris, mri ´ 1sq, with a starting value
of 0 for mri ´ 1s if i “ 0. If the mask is 1 the points are exchanged, otherwise they are
left as is. This behavior can be exploited by meddling with this function call. It could for
example simply be skipped, or the computation of the mask be perturbed such that on a
0 mask it stays 0, but on a 1 mask the value is randomized. Assuming xorpmris, mri ´ 1sq

and an attacker skips this function call using an active attack on the i-th loop, the end
result will be unchanged. If the value had been xorpmris, mri ´ 1sq, then the end result
would be wrong, as the wrong point would have been used for the rest of the calculation.3
Since we know that in the first iteration mri ´ 1s is forced to 0, the mask is simply set to
the value of xorpmr0s, 0q “ mr0s. The second iteration of attack then knows the value of
mr0s and so on. Thus, in general the bit mris is leaked through a C safe-error. As the
keyspace for m is equal to r0, ..., 2e2 ´ 1s, similar to the attack in Section 3.1, the attack
needs to be repeated at least 305 times to achieve full key recovery when the parameter
set SIKEp610 is used.

4 Attacks on CSIDH
In this section, we analyse CSIDH with respect to safe-error attacks. We analyse two
recent implementations of CSIDH [17, 22]. Both implementations are constant-time im-
plementations, and both implementations achieve this kind of timing attack resistance

3Wrong shared secret or an error raised from the algorithm.
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Table 3: Access pattern depending on the secret key e during the key exchange

Condition Read Variables Written Variables
ei ‰ 0 P0, P1 P0, P1

ei “ 0 Ps where s is the sign bit of ei Ps

through dummy isogeny computations. The main difference between both implementa-
tions is that in [17], computations are done on one point only, while in [22], two points
are used. The analysis of both implementations with respect to safe-error attacks is pre-
sented in Section 4.1 and Section 4.2, respectively. For both of the presented attacks, it
is assumed that the victim uses a static secret key.

4.1 M Safe-Error Attack on an Implementation Using One Point
In [17] Campos et al. have evaluated possible physical attack vectors for CSIDH imple-
mentations using dummy isogenies. One threat model they did not consider, is one that
can introduce memory faults. This will be the focus of the attack in this section. The
attacker only needs to be able to change a single bit in a certain byte range. In [17],
during the execution of a dummy isogeny, the curve parameter A is not modified. If how-
ever a non-dummy isogeny is calculated, then the A parameter is changed corresponding
to the newly calculated curve. This leads to a possible attack vector: assume without
loss of generality that the algorithm is currently calculating isogenies of degree ℓi. If it
is currently calculating a dummy isogeny, a new parameter A is computed, but directly
discarded. If a real isogeny is calculated, that result is then used further. A fault injected
with the intent of modifying the parameter A can now discern if a real or dummy isogeny
is being calculated: if one attacks a real isogeny, the modified value will be propagated
and cause a mismatch of the final shared secret. If it was a dummy isogeny however, the
modified A was discarded and the shared secret is not impacted. This is now repeated for
each possible value of ei, so as to find out the first time a dummy isogeny is calculated.
The value of ei is then the amount of real isogenies that have been calculated for ℓi. In
the implementation in [17] ei is sampled from the range r0, 10s, therefore one needs on
average 5 attacks per ei to recover its value. In CSIDH-512 of [17] the secret key has
74 components, thus on average, an attacker would need to run 5 ˆ 74 “ 370 attacks to
recover the full key.

4.2 M Safe-Error Attacks on an Implementation Using Two Points
In [22], Onuki et al. have introduced a new algorithm that uses two points to calculate
the CSIDH action. This version has an issue similar to the one described in Section 4.1,
where the parameter A is discarded when calculating a dummy isogeny. Thus it has also
the potential for an M safe-error attack by attacking the A parameter assignment. Unlike
the implementation in [17], in [22] the range r´5, 5s is used for each ei. Even though
an attacker additionally needs to recover the sign of ei now, this reduces the amount of
overall attacks required to recover a single ei.

Further, the CSIDH action as described in [22] has another M safe-error attack vector
that will be explained in this section. Table 3 shows the access patterns of two different
variables depending on a part of the secret key: only one point is overwritten when ei

equals 0 during the CSIDH action calculation at Line 17 in Algorithm 2 (cf. Section 2.2).
This opens up the potential of perturbing a given P0 or P1 and finding out if this had any
effect on the calculation. If there was no effect, then the sign of ei is equal to the index
of the point that was overwritten: 0 if positive, 1 if negative. This allows the attacker
to find the sign of a specific ei since the dependency between isogenies of degree ℓi and
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its running allows for attacking a specific degree ℓi [5]. Now let si be the sign of ei. In
total, Algorithm 2 does ei calculations of isogenies of order ℓi. After each calculation, it
decrements ei to keep track of how many more real isogenies need to be computed. Once
ei “ 0, only dummy operations are executed. The task is thus, to find out how many
real isogenies are calculated. One can run the following procedure to find the value of ei:
Start with n “ 0. Modify Psi after n iterations just before it is potentially overwritten,
and check the final result. If the shared secret is correct or n is larger than the maximal
possible value for ei, we know ei ă n at that point and we can stop the process, otherwise
ei ą n, increment n and retry. Once this procedure terminates, ei equals the amount of
calculated real isogenies. Applying this procedure repeatedly, one can deduce the whole
secret key pe1, . . . , enq. As [22] uses an instantiation where the private key elements can
range from ´5 to 5, in total 2.5 ` 1 “ 3.5 attacks are required per ei, as well as finding
si. In that instantiation, 74 elements are used per secret key, therefore an attacker would
need to run 74 ˆ 3.5 “ 259 attacks on average for the signs and the full key recovery in
total. The attack can be summarised as follows:

1. Reveal which ℓi is currently being computed from the length of computation.

2. On Line 17 in Algorithm 2 only Psi
is being assigned. Thus, perturbing the memory

of Psi
while rℓisPsi

is being calculated will allow to deduce whether i “ 0, or i “ 1.
From now on, we assume that si is known for each ei.

3. Knowing the sign allows us to now explicitly attack either P0 or P1 and thus find
out whether a real or dummy isogeny is being calculated.

If the final shared secret is correct, it was a real isogeny, otherwise it was a dummy. The
value of ei is equal to the count of real isogenies. Once all ei and their signs si have been
recovered, the full private key pe1, . . . , enq can be reconstructed.

5 Practical Experiments
In this section, we explain how to perform the described attacks on a ChipWhisperer

board and present the achieved security impact. In the case of SIKE, we present full
key recovery. In the case of CSIDH, due to the relatively long runtime on the target
architecture (« 7 seconds for the reduced version of CSIDH), we calculated the maximum
number of possible runs in advance and determined further attack parameters accordingly.

All practical attacks were implemented using the ChipWhisperer tool chain4 (version
5.3.0) in Python (version 3.8.2) and performed on a ChipWhisperer-Lite board with a 32-
bit STM32F303 ARM Cortex-M4 processor as target core. Based on available implemen-
tations, we wrote slightly modified ARM implementations of SIKEp434 and CSIDH512
to make them suitable for our setup. Security-critical spots remained unchanged. All bi-
naries were build using the GNU Tools for ARM Embedded Processors 9-2019-q4-major5

(gcc version 9.2.1 20191025 (release) [ARM/arm-9-branch revision 277599]) using the flags:
-0s -mthumb -mcpu=cortex-m4 -mfloat-abi=soft.

In all attack models the adversary aims to attack the calculation of the shared secret
in order to learn parts of the private key. The shared secrets are calculated without
randomness, i.e., points and private keys used were computed in advance. Both in the
case of SIKE and CSIDH, the adversary is able to randomise variables or skip instructions
by injecting one fault per run. Furthermore, we assume that the attacker is able to
trigger and attack the computation of the shared secret multiple times using the same pre-
computed private keys. However, in a real environment the attacker is limited to observe

4https://github.com/newaetech/chipwhisperer, commit fa00c1f
5https://developer.arm.com/
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the impact of a fault injection (whether both shared secrets are equal or not), by noticing
possible unexpected behaviour in the protocol. Although static keys are mostly used in
server environments where such invasive fault attacks are not feasible, Noack et al. [27]
described exemplary environments and challenge-response scenarios where such static-key
attacks can be deployed. Furthermore, CSIDH provides a non-interactive (static-static)
key exchange with full public-key validation.

5.1 Attacks on SIKE
Since the current implementation [4] is immune to the attack described in Section 3.1, we
focus on the attack explained in Section 3.2. As described, the adversary deploys safe-error
analysis to recover the private key during the computation of the three-point ladder. Since
the attacked algorithm runs in constant time, an attacker can easily locate the critical
spot, which in our case represents the main loop within the ladder computation. Thus,
an attacker who can accurately induce any kind of computational fault inside that spot
at the i-th iteration, may be able to deduce if the i-th bit of the private key is set or not,
i.e, ski “ 0 or ski “ 1 according to whether the resulting shared secret is incorrect or not.
Thus, in this model the required number of injections for a full key recovery only depends
on the length of the private key. In this setup, the fault is injected by suddenly modifying
the clock (clock glitching), thus, forcing the target core to skip an instruction.

The SIKEp434 Cortex-M4 implementation6 from [28] available at the pqm4 project [29]
provided the basis for our implementation. However, this attack can be applied to all avail-
able software implementations of SIKE7 including the round-3 submission [4] to NISTs
standardisation process. More precisely, the code part that represents this vulnerability
remains the same across all available implementations.

Results. We assume that the attacker knows critical spots within the attacked loop
(cf. Listing 1) which reveal one bit of the private key after a single fault injection with
high accuracy. As shown in this work, such spots and the corresponding suitable parame-
ters for the injection (e.g., width and internal offset of the clock glitch) can be empirically
determined in advance with manageable effort.

In order to determine the success rate for each individual of the 218 bits of the private
key, we performed 21,800 fault injections (100 injections for each bit) and achieved a
relatively high accuracy. More precisely, we obtained on average over all bits 100% (leading
to an error probability p0 “ 0, as denoted in Fig. 1) accuracy for the case ski “ 0 and an
accuracy of over 86% (denoted as p1 in Fig. 1) for the case ski “ 1. As shown in Fig. 1,
only 5 fault injections are required for each bit, thus 1,090 injections in total to achieve a
success rate above 99% for full key recovery. Since in our inexpensive setup a single run
takes about 12 seconds, full key recovery requires about 4 hours.

5.2 Attacks on CSIDH
Since the practical implementation is similar for both attacks, we show without loss of
generality how we realised the attack described in Section 4.1. The attacker aims to distin-
guish a real from a dummy isogeny. For this, they inject a fault during the computation
of an isogeny and observe if it impacts the resulting shared secret. In this attacker model
the adversary can target isogeny computations at positions of their choice and is further
able to trace the faulty isogeny computation to determine its degree. Due to non-constant
time computation within the calculation of the isogeny (e.g., a square-and-multiply ex-
ponentiation based on the degree [17, 21, 22]), the degree of a given isogeny might be
recovered with manageable effort, e.g., using Simple Power Analysis [30].

6https://github.com/mupq/pqm4, commit 20bcf68
7https://sike.org/#implementation
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Figure 1: Success rate for full key recovery as a function of the number of fault
injections per bit (SIKE) or isogeny (CSIDH), respectively. Let α be the number
of injections for each bit/isogeny. Since a single faulty shared secret is sufficient
to distinguish the cases, the success rate for full key recovery can be calculated by
P pαq “ rp0.5 ¨ p1 ´ Bp0, α, p1qqq ` p0.5 ¨ Bp0, α, p0qqqsλ, where λ equals the number of bits
in the case of SIKE and equals

řn
i“1rlog2pmiqs for all mi of the corresponding bound

vector m “ pm1, m2, . . . , mnq in the case of CSIDH, Bpk, n, pq “
`

n
k

˘

¨ pkp1 ´ pqn´k, and
p0, p1 correspond to the respective probabilities.

Table 4: Results for CSIDH attacking the first isogeny

key # of trials faulty shared secret accuracy
S1 “ p´1, 1q 2500 0.0% 100.0%
S2 “ p0, 1q 2500 92.4% 92.4%

In our setup, the fault is injected by temporarily under-powering the target core, i.e.,
by reducing for some clock cycles the value of the supply voltage of the attacked device
below the minimum value the device is specified for. Such an attack might lead to an
unpredictable state in the target variable during an assignment and can therefore be ap-
plied to attack the vulnerable spot regarding the co-domain curve A, as defined in Section
4.2. For illustration, the attacks occur during the calculation of the first isogeny, but
the other isogenies can be attacked similarly. The implemented attacks are based on the
implementation from [17].

Results.
As suggested in [17], in order to increase the number of attempts by reducing the time

required for a single run, we reduced the key space in CSIDH512 from 1174 to 32. Further,
all required values, e.g. points of corresponding order, were calculated in advance, leading
in total to a reduction from 15,721M to 115M clock cycles for a single run. Due to the
reduced key space, private keys are of the form S “ pe0, e1q, where ei P r´1, 1s. To obtain
results for both cases (dummy and real), we performed experiments using different private
keys. In the first case, the private key S1 “ p´1, 1q consists of real isogenies only. Thus,
attacks should not impact the computation of the shared secret. As expected, after 2,500
attempts, there is no faulty shared secret, achieving an accuracy of 100% (leading to an
error probability p0 “ 0, as denoted in Fig. 1). In the second case, however, the selected
private key S2 “ p0, 1q implies the calculation of a dummy isogeny since e0 “ 0. Hence,
fault injections should lead to a faulty shared secret. Here, we achieved an accuracy of over
92% (denoted as p1 in Fig. 1). Table 4 shows the achieved results of the applied attacks
in our setup. Hence, based on these numbers, we assume an attacker can distinguish real
from dummy isogenies with a single injection with high accuracy.

Since in dummy-based constant-time implementations of CSIDH (e.g., Meyer, Cam-
pos, and Reith (MCR) [21] or Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [22]), the
private key vector pe1, . . . , enq is sampled from an interval defined by a bound vector
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m “ pm1, m2, . . . , mnq, the number of fault injections required to obtain the absolute
value of a certain ei strongly depends on the corresponding bound vector. More precisely,
since the computation of a given degree ℓi occurs deterministically (real-then-dummy),
the attacker performs a binary search through the corresponding mi to identify the com-
putation of the first dummy isogeny. Thus, the number of attacks required to obtain the
absolute value of a certain ei depends only on the corresponding bound mi.

The achieved key space reductions are due to the fact that an attacker after a certain
number of attacks knows the absolute values for the private key vector pe1, . . . , enq. In the
case of the OAYT implementation of CSIDH512 (where ´mi ď ei ď mi, mi “ 5 for i “

0, . . . , 73), our approach leads to a private key space reduction from 2256 to 274 in the
worst case (ei ‰ 0 for i “ 0, . . . , 73) and to 267.06 in the average case after at least
222 ¨ 4 “ 888 fault injections for a success rate over 99%. The remaining key space can
be further reduced by a meet-in-the-middle approach [5] to about 234.5 in the average
case. For achieving a success rate over 99%, when attacking the MCR implementation
(where 0 ď ei ď mi, mi P r1, 10s for i “ 0, . . . , 73), at least 296 ¨ 4 “ 1184 injections are
required for full key recovery (cf. Fig. 1) since only positive values are allowed for the
private key vector. Considering the running time of the non-optimised implementation
of CSIDH512 of about 5 minutes for a single run in our setup, full key recovery would
require about 98 hours in the case of the MCR implementation and about 74 hours to
achieve the mentioned key space reduction in the case of the OAYT version.

Since recent works [6, 7] suggests that CSIDH-512 may not reach the post-quantum se-
curity as initially considered [5], some works recommend to increase the size of the CSIDH
prime p [6, 7, 31]. However, from a classical perspective, since the classical security only
depends on the size of the private key space, the number of prime factors ℓi remains
unchanged. Thus, apart from the longer running time due to possibly larger prime fac-
tors, increasing the quantum security has no further influence on the effectiveness of the
presented attack.

6 Countermeasures
In this section we discuss general countermeasures against safe-error attacks and then

present concrete countermeasures for SIKE and CSIDH.
In safe-error attacks, a simple check of the final result before transmitting can still

leak one bit. This can be easily seen in the attack on SIKE in Section 3.2. If the
attacker successfully executes an attack, even if the result is checked for correctness, the
implementation will leak one bit: either the algorithm fails or it returns an unusable result,
or the induced error is overwritten, both of which represent a successful attack. This
makes efficient generic countermeasures hard to design, as, for instance, simply repeating
a calculation after a fault has been detected can be detected, too: an algorithm that
suddenly takes twice as long shows that the attack was successful.

Using infective computation [32], a succesfully induced fault directly, i.e., without the
necessity of checking, modifies the output value such that the faulty output does not allow
to reveal secret values. In case of safe-error attacks, this is also not a solution, since any
faulty output shows that the fault was successful. This is all an attacker needs to know
in case of safe-error attacks.

An effective countermeasure consists in redundant computation with consistency check,
i.e., calculating the susceptible operations repeatedly and then choose the value to be
output by majority vote. However, this is costly, since, assuming that an attacker can
realize a fault n times within a single computation of the algorithm, the susceptible
operations have to be computed 2 ¨ n ` 1 times. Since second-order faults, i.e., two faults
within one computation, are practical [33], this would require at least a fivefold repetition
of the susceptible operations.
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Another route, which is not in the hands of the implementer, is the selection of hard-
ware the algorithm executes on. Hardware-based detection of fault attacks through, for
instance, voltage sensing or intrusion detection, are possible ways of shutting down the ex-
ecution - independent of the effect of the fault on the computation - before any information
could have been leaked [34].

It is important to note that the attacks presented in this paper exploit secret-dependent
memory access. Implementations and future optimizations should thus take special care
to eliminate any such occurrence and treat them with the same rigour as secret-depending
timings. This also extends to ”branch-less” versions of algorithms, where, for instance, a
pointer is swapped depending on the bit of a secret key; this does not remove the secret
dependence of the underlying memory.

The discussion shows that to prevent safe-error attacks, the susceptible functions have
to be adjusted, as in [8].

6.1 Securing SIKE

As explained in Section 3.1, by using a simultaneous double-and-add algorithm within
xDBLADD [4], the particular M safe-error attack on SIKE can be prevented.

A possible countermeasure against the key recovery presented in Section 3.2 is to add
an additional check to the LADDER3PT algorithm. The attack relies on skipping the
swap_points method. Hence, a relatively inexpensive way of detecting an attack is to
verify whether the swap actually took place. Thus, in each loop the implementation would
save the current points, run the swap operation, and eventually check if the calculated
mask had the intended effect.

Although the proposed countermeasure to conditional point swaps from [17] could
be adapted to SIKE, the described approach (cf. [17], section VI, paragraph C, point
1) represents no real countermeasure. An attack in the case where no swap takes place
(decision bit = 0) does not lead to a false result (wrong point order), while attacking the
conditional swap in the case of a swap (decision bit = 1) the order check of the resulting
point should fail.

6.2 Securing CSIDH

Since the current CSIDH action algorithms branch on the secret key, it is a prime target
for exploitation. One possible way of making attacks more difficult is shown in [19]. Here,
LeGrow and Hutchinson show that using a binary decision vector to interleave the different
ℓi-isogenies, an attacker has to do more than 8x as many attacks to gain the same amount
of information.

Another approach is to choose an implementation that is dummy-free. So far however,
dummy-free implementations have come at the cost of being twice as slow [18]. Further
research might be able to close this performance gap and thereby completely eliminate
attacks based on dummy isogenies.

Securing CSIDH against physical attacks is clearly difficult and care has to be taken
to not accidentally enable another attack by fixing a specific vunerability. One such
occurrence are dummy isogenies, introduced as timing attack countermeasures in [21],
which allow an attacker to learn secret information through fault injections. Although
in this specific situation using dummy isogenies might be reasonable as timing attacks
are in general easier to carry out than fault injections, all implications a countermeasure
can have have always to be considered so that implementers can consciously reason about
trade-offs.
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7 Conclusion
This work shows how safe-error attacks can be applied to recent isogeny-based crypto-
graphic schemes. We presented four different attacks on the SIKE and CSIDH cryptosys-
tems. It is important to note that the resilience of SIKE against the attack described
in Section 3.1 solely depends on the structure of the actual implementation. As such,
any further implemententations need to make sure to not introduce the possibility of this
safe-error attack. We have shown how to practically realize two of these attacks and how
to achieve full key recovery in a static key context on both SIKE and CSIDH.

We discussed that securing cryptosystems against safe-error attacks is non-trivial. This
also partially explains why some of the attacks that we applied to isogeny-based crypto-
graphic schemes have similarly been known in the ECC community for a long time, and
yet have not been prevented in current implementations of SIKE and CSIDH. As safe-
errors exploit differences of computation and memory access depending on the secret key,
a simple check is not sufficient. It is equally important, that countermeasures against
certain attacks do not open ways for further safe-error attacks [25]. This can be the case
for example when implementing a simple consistency check, which might not trigger on
all injections, thus inadvertently leaking data. The same holds true for constant-time
implementations, which are designed to thwart timing attacks. The implementations of
CSIDH that we attacked in this work are constant-time, but based on dummy isogenies,
which enable our attack. CTIDH [35], a recent faster constant-time algorithm for CSIDH,
is also vulnerable to safe-error attacks. In this case, the attacks should occur during the
dummy operations within the MatryoshkaIsogeny (cf. [35], Section 5.2.2). Dummy-free
implementations, which do also exist, are probably not vulnerable to the attacks presented
in this paper; however, they are prone to timing attacks. Future research therefore needs
to find a way to secure CSIDH at the same time against timing and safe-error attacks.
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