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Abstract. In this work we consider information-theoretically secure
MPC against an mixed adversary who can corrupt tp parties passively, ta
parties actively, and can make tf parties fail-stop. With perfect security,
it is known that every function can be computed securely if and only if
3ta+2tp+tf < n, and for statistical security the bound is 2ta+2tp+tf < n.

These results say that for each given set of parameters (ta, tp, tf ) respect-
ing the inequality, there exists a protocol secure against this particular
choice of corruption thresholds. In this work we consider a dynamic adver-
sary. Here, the goal is a single protocol that is secure, no matter which set
of corruption thresholds (ta, tp, tf ) from a certain class is chosen by the
adversary. A dynamic adversary can choose a corruption strategy after
seeing the protocol and so is much stronger than a standard adversary.

Dynamically secure protocols have been considered before for computa-
tional security. Also the information theoretic case has been studied, but
only considering non-threshold general adversaries, leading to inefficient
protocols.

We consider threshold dynamic adversaries and information theoretic
security. For statistical security we show that efficient dynamic secure
function evaluation (SFE) is possible if and only if 2ta + 2tp + tf < n,
but any dynamically secure protocol must use Ω(n) rounds, even if
only fairness is required. Further, general reactive MPC is possible if
we assume in addition that 2ta + 2tf ≤ n, but fair reactive MPC only
requires 2ta + 2tp + tf < n.

For perfect security we show that both dynamic SFE and verifiable secret
sharing (VSS) are impossible if we only assume 3ta + 2tp + tf < n and
remain impossible even if we also assume tf = 0. On the other hand,
perfect dynamic SFE with guaranteed output delivery (G.O.D.) is possible
when either tp = 0 or ta = 0 i.e. if instead we assume 3ta + tf < n or
2tp + tf < n. Further, perfect dynamic VSS with G.O.D. is possible
under the additional conditions 3ta + 3/2tf ≤ n or 2tp + 2tf ≤ n. These
conditions are also sufficient for dynamic perfect reactive MPC.
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1 Introduction

In secure multiparty computation (MPC) a set of n parties want to compute an
agreed function on inputs held privately by the parties such that the intended
result is the only new information released. We want that this holds, even if
some parties are corrupted by an adversary. One may consider different types
of corruption: passive corruption, where the adversary observes the state of the
party as it executes the protocol, active corruption where the adversary controls
the action of the party, and finally fail-stop corruption where the corrupted party
is honest, but can be forced to stop the protocol prematurely.

In most of the work on MPC, it is assumed that the adversary does only
passive or only active corruption. However, in [FHM98] the notion of a mixed
adversary was studied, that is, one that can corrupt ta players actively, tp players
passively, and can fail-stop corrupt tf players. It was shown that every function
can be computed securely with perfect security if and only if 3ta + 2tp + tf < n,
while for statistical security the bound is 2ta+ 2tp+ tf < n. This was for the case
of a synchronous network with secure point-to-point channels and additionally a
broadcast channel in the case of statistical security (which is also the network
model we use in this paper).

A mixed adversary protocol is more flexible and hence is sometimes preferable
in practice: if we consider only active corruptions then for perfect security we
must always assume less than n/3 corruptions. But if we make the realistic
assumption that a large number of players might crash while only a small number
of players are actively corrupted, we can tolerate faulty behavior by more than
n/3 players. For instance, we can tolerate that ta is about n/9 while tf is about
2n/3.

It is important to understand what these feasibility results actually mean:
namely what they say is that for each given set of parameters (ta, tp, tf ) respecting
the inequality, there exists a protocol secure against this particular choice of
corruption thresholds. We will call such a choice a corruption strategy in the
following. However, one may instead consider a fundamentally different type of
adversary, known as a dynamic adversary. Here, the goal is to design a single
protocol that is secure for any corruption strategy that respects the inequality. In
other words, a dynamic adversary can choose a corruption strategy after seeing
the protocol and so is clearly much stronger than a standard adversary.

The feasibility of dynamically secure protocols has been considered before
for computational security in [HLM13], where the notion of a dynamic adversary
was introduced, but where only passive and active corruptions were considered.
In [PR19], the exact round complexity for MPC in this model was determined.
In particular, it was shown that the number of rounds must be linear in n, in
contrast to the non-dynamic case, where constant round is possible.

The case of information theoretically secure dynamic MPC has also been
(indirectly) considered before, in [BFH+08] and [HMZ08], where security against
general mixed adversaries was studied. A general mixed adversary may choose to
actively, respectively passively, respectively fail corrupt players in three different
subsets, where the triple of subsets must be chosen from a family of triples known
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as an adversary structure. Since the actual triple (corruption strategy) chosen
by the adversary is not given to the protocol, this model also covers the mixed
dynamic adversary model we described above. In a nutshell, our model is the
threshold version of the general mixed adversary model, where the adversary
is limited to adversary structures described only by subset sizes ta, tp and tf .
In [BFH+08] and [HMZ08] combinatorial characterizations were given of those
adversary structures for which one can achieve MPC with guaranteed output
delivery and perfect, respectively statistical security. The protocols presented in
these works all have complexity polynomial in the size of the adversary structure,
i.e., in the number of subsets it contains. This means that the complexity is
typically exponential in the number of players, even when restricting to the
threshold case.

This state of affairs leaves open a number of important questions: First, can
we achieve complexity polynomial in the number of players in the threshold case?
Second, must the number of rounds be Ω(n) also for the case of information
theoretic security? Note that the lower bound for computational security from
[PR19] does not cover our case: while we consider a stronger form of security, the
number of corruptions is smaller (since otherwise perfect or statistical security is
not possible) and it is not clear whether this might allow for constant rounds
protocols (which indeed we know exist for the non-dynamic case). Finally, while
the result in [BFH+08] and [HMZ08] characterize the adversary structures for
which dynamic MPC with guaranteed output delivery is possible, it might be
the case that weaker security guarantees such as security with abort or fairness
can still be achieved for a larger class of structures.

1.1 Our Contribution

In this work we focus on (threshold) dynamic mixed adversaries in the information
theoretic setting, and we give some answers to the above open questions, which,
to the best of our knowledge have not been considered before. Our primary focus
is to determine feasibility conditions (in terms of thresholds (ta, tp, tf )) that
are necessary and sufficient for information theoretic secure function evaluation
(SFE) and reactive MPC against dynamic mixed adversaries for two different
security levels – namely, (a) Fairness (i.e. adversary gets the output only if honest
parties do) and (b) Guaranteed Output Delivery (G.O.D i.e., the adversary
cannot prevent honest parties from obtaining the output)

Along the way of addressing the above primary questions of interest, we also
touched upon the following two dimensions for some classes of protocols (which
we elaborate below) that give further insight about protocols secure against
dynamic adversaries – (a) round complexity and (b) security with abort (weaker
notion of security where the adversary may obtain the output while honest parties
do not).

We elaborate on our results below – note that whenever we say that some
security goal can be (efficiently) achieved, we mean that there is a protocol
achieving it with complexity polynomial in the number of players.
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We will be considering separately two types of functionalities. The first is
Secure Function Evaluation (SFE), that is, functionalities that simply receive
input and deliver some function of the inputs. This should be contrasted with
the stronger notion reactive MPC, that is, functionalities that keep state and can
receive inputs and deliver outputs several times.

An important example of a reactive functionality is Verifiable Secret-Sharing
(VSS), where a dealer inputs a secret value, and the functionality will later reveal
it, on request from all honest players. We note for future reference that in any
setting where both VSS and SFE is possible, we can also do general reactive
MPC. Namely we can use the standard approach where players provide input
to the reactive functionality by doing VSS. We can now compute on the inputs
using an SFE that takes the VSS shares as input, it then delivers the desired
outputs as well as a set of VSS shares to the players to define the new state.

To state our results, we will need the concept of a threshold adversary structure.
Such a structure is a set S of corruptions strategies that the adversary can choose
from, i.e., a set of triples (ta, tp, tf ). Note that a bound such as 2ta + 2tp + tf < n
can be thought of as shorthand for an adversary structure, namely the one
containing all triples satisfying the inequality.

1.1.1 Statistical Security In a nutshell: for statistical security, we obtain
tight characterisations for feasibility of dynamic SFE and dynamic reactive MPC.

In more detail: For statistical security we show that dynamically-secure SFE
with G.O.D is possible for a dynamic adversary that respects 2ta + 2tp + tf < n.
This completes the picture, since even non-dynamic SFE is impossible if the
inequality is violated.

Considering reactive MPC, we first establish the conditions for existence of
dynamic VSS. Let S be a threshold adversary structure. Let RS be the maximal
value of ta + tp than can occur in S and let FS be the maximal value of ta + tf . It
is easy to see (and also follows from the results in [HMZ08]) that dynamic VSS
with G.O.D. is impossible if RS + FS ≥ n. We show that efficient dynamic VSS
with G.O.D. is possible for any S that satisfies RS + FS < n, and also satisfies
the general feasibility condition 2ta + 2tp + tf < n. An example of an adversary
structure S that would satisfy this condition is (the set of all triples satisfying)
2ta + 2tp + 2tf < n. But other tradeoffs between the parameters are also possible.

From this we conclude that reactive MPC with G.O.D. is possible for an
adversary structure S if and only if RS + FS < n and 2ta + 2tp + tf < n holds
for all triples in S.

On the other hand, we show that VSS with fair reconstruction only requires
2ta + 2tp + tf < n, and from this we conclude that fair reactive MPC is possible
if and only if 2ta + 2tp + tf < n.

1.1.2 Perfect Security In a nutshell: for perfect security, we obtain tight
characterisations for feasibility of dynamic SFE and dynamic reactive MPC with
G.O.D., in the cases where either ta = 0 or tp = 0. We obtain a general tight
characterisation for feasibility of VSS with fair reconstruction.
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In more detail: For perfect security, the feasibility condition for a non-dynamic
adversary is 3ta + 2tp + tf < n, this of course must be satisfied for dynamic
protocols to exist. However, we show that even if we assume tf = 0 (so the
adversary must respect 3ta + 2tp < n), dynamic SFE with security with abort is
impossible, so in particular G.O.D. is also impossible (from the study in [BFH+08]
one can derive a similar result that only rules out G.O.D.). It is then natural to
consider what happens if we weaken the adversary in the other two ways that
come to mind, namely by setting tp = 0 or ta = 0, so the adversary must respect
3ta + tf < n or 2tp + tf < n. It turns out that in these two cases, efficient perfect
G.O.D. dynamic SFE is possible. While allowing a maximal number of active,
or of passive corruptions are natural cases to consider, other tradeoffs (where
all three parameters can be non-zero) may also allow for efficient and perfect
G.O.D. dynamic SFE (non-efficient such protocols are implied by the results in
[BFH+08]). We leave the exploration of this for future work.

For reactive MPC, we derive from the results in [BFH+08] that dynamic VSS
with G.O.D. is impossible assuming only the non-dynamic feasibility condition
3ta + 2tp + tf < n, and remains impossible even if we assume tf = 0. Similarly
to the case of SFE, we then explore what happens if we weaken the adversary in
the other two natural ways, by setting ta = 0 or tp = 0. For the case of ta = 0,
we show that the condition 2tp + 2tf ≤ n ∧ 2tp < n is necessary and sufficient
for dynamic G.O.D. VSS. When tp = 0, we show that 3ta + 3/2tf ≤ n ∧ 3ta < n
is necessary and sufficient for dynamic G.O.D. VSS.

For the parameter ranges where the positive VSS results apply, we also have
SFE, so by combining the two, we conclude: when ta = 0, general dynamic MPC
with G.O.D. is possible if and only if 2tp + 2tf ≤ n ∧ 2tp < n. when tp = 0 it is
possible if and only if 3ta + 3/2tf ≤ n ∧ 3ta < n.

Finally, we show that for dynamic perfect VSS with fair reconstruction, the
non-dynamic bound 3ta + 2tp + tf < n is necessary and sufficient. Since the
conditions for SFE are stronger, this shows that dynamic, perfect and fair reactive
MPC is possible whenever dynamic perfect SFE is possible.

1.1.3 Round Complexity of Dynamic Statistical SFE We show that,
even if the protocol is only required to be fair, any dynamic statistically secure
SFE protocol must use Ω(n) rounds. This shows that dynamic security comes at
a price in this setting. Namely, against a non-dynamic adversary, we can have
constant-round statistically (in some cases even perfectly) secure protocols for any
function, if we do not demand that protocol is efficient in terms of computational
complexity [IK02]. Furthermore, it is well-known that even if we do insist on
computational efficiency, we can still have constant round SFE for a large class
of functions.

Our dynamically secure SFE protocol completes the picture as it can be
instantiated to require only O(n) rounds 1.

Figure 1 shows a more concise overview of our contributions.

1 In a bit more detail, our construction needs as subprotocol a general non-dynamic SFE
protocol π, and the complexity we obtain is n times that of π. Efficient non-constant
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General non-dynamic
feasibility condition

Positive results Negative results

SFE

Statistical
2ta + 2tp + tf < n

GOD SFE
Fairness requires
Ω(n) rounds

Perfect
3ta + 2tp + tf < n

GOD SFE, if
ta = 0 / tp = 0

SFE with abort
if tf = 0

Reactive
MPC

Statistical
2ta + 2tp + tf < n

Fair MPC.
GOD MPC if
RS + FS < n

GOD VSS if
RS + FS ≥ n

Perfect
3ta + 2tp + tf < n

Fair MPC whenever
SFE is possible.
GOD MPC if:

ta = 0 & 2tp + 2tf ≤ n
tp = 0 & 3ta + 3/2tf ≤ n

GOD VSS if:
tf = 0

ta = 0 & 2tp + 2tf > n
tp = 0 & 3ta + 3/2tf > n

Fig. 1. Overview of the results presented in this paper. (ta, tp, tf ) refers to the
thresholds for active, passive and fail-stop corruptions respectively. RS denotes
the maximal number of player states the adversary can read and FS is the
maximal number of players that can abort, where S is the set of corruption
strategies the adversary can choose from. The positive results all assume the
general feasibility condition listed in the first column, in some cases additional
conditions are listed as required.

Open Questions. As mentioned above, some intriguing questions left open by
our work include (but are not limited to) the following directions – (a) Exploring
dimensions of round complexity (which we addressed for fair statistical SFE)
and security with abort (which we addressed for perfect SFE, to strengthen
our negative result) for other classes of protocols. (b) We chose to determine
the additional feasibility conditions for protocols with perfect security allowing
maximal active or passive corruption. However, other tradeoffs (where ta, tp, tf
are all non-zero) may also be possible, exploring this is left open by our work.

1.2 On Modeling of Fail-Stop Corruptions

One may consider two types of fail-stop corruptions, based on whether the
adversary is allowed to see the messages that fail-stop parties would send to

round protocol π exists for all functions, so our construction is always efficient if
we do not insist on asymptotically tight (but still polynomial) round complexity.
However, if π is constant round we obtain O(n) rounds. Such a protocol π exists for
all functions but is not always computationally efficient. Of course, it would be nice
if our O(n) result could be shown with computational efficiency for all functions, but
this would be extremely surprising: if the number of players is constant, it would
imply constant-round, information theoretically secure and computationally efficient
protocol for all functions. Doing this, even for a constant number of players, has been
open for decades and is probably a very hard problem. On the other hand, if the
function in question has an efficient non-dynamic constant-round protocol, as many
functions do, then we can use that one as subprotocol and get an efficient dynamic
O(n)-round protocol.
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corrupted parties during the round where they are set to crash, or not 2. We refer
to the former as “rushing fails” and the latter as “non-rushing fails”. Both models
require the adversary to specify, in the beginning of the round, the identity of
the parties intended to fail-stop in that round.

All our positive results hold against rushing fails (where the adversary is
stronger). Conversely, all our negative results hold even for non-rushing fails, with
the exception of the lower bound on the round complexity of statistically secure
SFE. We leave the round complexity for non-rushing fails as an open problem.

This refinement of how fail-stop is modelled does not seem to have been
considered in the literature before. Previous works consider non-rushing fails, and
in particular the general mixed adversary protocols in [BFH+08] and [HMZ08]
do not seem to be secure against rushing fails.

1.3 Technical overview

1.3.1 Secure function evaluation. To prove the lower bound on number of
rounds for statistical security, we create a sequence of attacks that will force the
protocol to use an additional round for each attack. This is inspired by Patra
et al. [PR19], but we need to design a completely new set of attacks for our
setting. This is because the existing result uses the interplay between passive and
active corruptions, whereas we must exploit fail-stop corruptions. This makes the
problem harder: for passive and active corruptions the adversary has access to the
state of the corrupted parties, while this is not the case for fail-stop corruptions.
The feasibility result for statistical security follows the template from Hirt et
al. [HLM13]: we first run a protocol with maximal threshold that will output a
set of secret-sharings. These contain additive shares of the result with different
thresholds and we then open these in a carefully chosen sequence. This prevents
the adversary from getting the output unfairly. Crucially, we generate shares in
the output “masked” with a random value (as opposed to just the output as
in previous works). The mask is given to all players, but the adversary will not
learn it if he only does fail-corruptions. We need this trick to tolerate a dynamic
adversary with rushing fails. If players fail or misbehave, we can eliminate them
and rerun to get G.O.D.

For perfect security, the impossibility result for SFE can be obtained by a
reduction to an impossibility result for 3 parties from Fitzi et al. [FHM98]. This
result basically says that if the adversary can corrupt one of the first two players
passively, or the third player actively, then the AND function cannot be computed
securely.

1.3.2 Reactive MPC. First of all, a simple reactive functionality such as
VSS does not allow secure computation per se, so lower bounds for SFE do not in
general carry over to the reactive setting. Conversely, as we explain in a moment,

2 In the case of statistical security, this includes the message that those parties were
about to send on the broadcast channel, even if no one is actively or passively
corrupted.
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for a dynamic adversary, it is sometimes the case that SFE is possible but VSS
is not. Hence, the results for reactive MPC are of a different nature.

For statistical security, impossibility of VSS with G.O.D when RS + FS ≥ n
follows easily: Recall that S is the set of corruption strategies the adversary can
choose from, RS is the maximal number of player states the adversary can read
and FS is the maximal number of players that can abort. This means that in
any VSS the secret must be determined from the state of the n− FS remaining
number of players. But since RS ≥ n− FS is the maximal value of ta + tp, this
means the adversary always learns the secret.

Note that if the goal was instead SFE, it would be an option to eliminate the
players who crashed and rerun the protocol, this will work as long as nothing
about inputs was revealed. But this does not always work for VSS: a dynamic
adversary can choose a large number of fail corruptions and only activate them
after the sharing phase is over. Note that this issue is specific for dynamic
protocols. A non-dynamic protocol is allowed to know that a large number of
fail corruptions may happen and this will allow it to run with a smaller privacy
threshold and survive the crashes.

On the other hand, if RS + FS < n, we show a construction of VSS protocol
with G.O.D that uses our statistical SFE upper bound to realize the sharing
with the appropriate threshold (to maintain privacy), followed by reconstruction
which is G.O.D. due to presence of sufficient number of honest and passively
corrupt parties. For the construction of VSS with fair reconstruction against
dynamic adversary (with no additional assumption), we re-use the technique of
secret-sharings with different thresholds.

The feasibility result for perfect fair VSS uses a modification of the technique
in [BGW88] based on bi-variate polynomials to get consistent secret-sharings of
the input with different thresholds, which we can then open gradually. As far as
we know, bi-variate polynomials have not been used for dynamic security before.
Notably, they work to create consistent secret-sharings whenever 3ta+2tp+tf < n,
despite this condition being insufficient for dynamic SFE and reconstruction with
guaranteed output delivery. In the setting of perfect security, we cannot rely on
authentication of shares for reconstruction, so we must rely on error-correction
instead. This means that the argument for fairness during the gradual opening
becomes very delicate: as the adversary is dynamic, we do not know the number
of errors and erasures in advance, but we still need to make sure that the error
correction will always either work correctly or return an error.

Lastly, we remark that some of the techniques described above are also
employed in our positive results related to the special cases of G.O.D. VSS with
ta = 0 and tp = 0. We refer to the respective technical sections for details. The
negative results for these cases are derived by translating the characterizations
of [BFH+08] to the threshold case, as we describe in Section 6. Notably, this
translation turned out to be non-trivial. The conditions from [BFH+08] are
complicated and it is not immediate to see what they say about the threshold
case. In particular, we exploit our positive result for fair VSS here, because it
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shows that one of combinatorial feasibility conditions from [BFH+08] is implied
already by 3ta + 2tp + tf < n and so can be ignored in our analysis.

1.4 Related Work

As mentioned earlier, the works of [HLM13,PR19] study dynamic adversaries
in the computational setting. In the information-theoretic setting, non-dynamic
mixed adversaries (where protocols are parameterized by thresholds (ta, tp, tf ))
have been studied in various works such as [FHM98,HLMR11,HM20].

As described earlier, information theoretic secure SFE and MPC against
general mixed adversaries was studied in [BFH+08,HMZ08]. Combinatorial char-
acterizations were given of the adversary structures that allow for SFE and
reactive MPC, with perfect security in [BFH+08] and statistical in [HMZ08]. Re-
call that the our dynamic adversary model is essentially a restriction of the general
mixed adversary model to the threshold case. However, as also explained earlier,
none of our positive results, nor negative results related to round complexity and
notions weaker than G.O.D, are implied from [BFH+08,HMZ08].

1.5 Overview of the Document

In Section 2 we introduce some preliminaries, including notation and the dynamic
security model we consider in this work. Then we proceed to presenting our main
contributions. Sections 3 and 4 present our impossibility results for SFE/reactive
MPC for statistical and perfect security, respectively. Then, we present feasibility
results for statistical SFE, statistical MPC and perfect VSS in Section 5.1, 5.2
and 5.3 respectively. In Section 6 we give a detailed study of the general adversary
results from [BFH+08] and [HMZ08] and what they imply for our case.

2 Preliminaries

2.1 Notation

In this work we consider a set P = {P1, . . . Pn} of n parties connected via
synchronous and secure point-to-point channels. For the statistical setting, we
additionally assume the presence of a broadcast channel. Let Astat and Aperf

denote a dynamic adversary who respects 2ta+2tp+tf < n and 3ta+2tp+tf < n
respectively. Composition of two functions, f and g (say, h(x) = g(f(x))) is
denoted as g ◦ f . We use [a, b] to denote the set {a, a+ 1, . . . , b}, for a ≤ b. We
let F denote a field.

2.2 Security Model

In this work we consider the stand-alone security model [Can00]. A party can be
either honest, passively corrupt, actively corrupt or fail-stop corrupt. Passively
corrupt parties share their internal state with the adversary, but behave honestly.
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The behavior of actively corrupt parties on the other hand is completely controlled
by the adversary.

Fail-stop parties are modeled as a property of the underlying network: The
adversary is allowed to specify, in every communication round, a subset of parties
that are intended to fail-stop, meaning that they stop participating in the protocol.
When a party is set to fail-stop by the adversary, it does not send any message to
any honest party, which in turns enables honest parties to agree on which parties
fail-crashed in a given round, as discussed below in Section 2.2.1. On the other
hand, the adversary is not allowed to read the internal state of the fail-stop parties.
However, he is allowed rushing fails i.e. the adversary can see the messages that
fail-stop parties would have sent to corrupt parties in the round they are set to
fail. This includes the messages sent over the broadcast channel in the statistical
setting (which assumes the presence of an additional broadcast channel), even
if no party is actively or passively corrupted. Notice that this does not happen
in the perfect security setting since in this case the broadcast channel can be
instantiated by protocols such as the efficient broadcast protocol of [AFM99]
that is secure against dynamic adversaries. These protocols are executed directly
on top of the secure point-to-point channels, so an adversary only corrupting
fail-stop parties will not get access to any message in these channels.

A protocol is secure if a real-world execution as described above can be made
indistinguishable by an ideal adversary (a.k.a. simulator) in an ideal execution.
In such execution there is a trusted party who evaluates the intended function f
faithfully. More precisely, all the parties begin by sending their input to a trusted
party, and the adversary sends a subset of fail-stop parties FI . Then the trusted
party evaluates f on these inputs, except it sets a default input for the parties in
FI . This models the fact that the adversary may fail-stop some parties before
they are even able to provide input. Next, the trusted party receives from the
ideal adversary another subset of fail-stop parties FO. In the setting of fairness
and abort security, the trusted party also receives from the ideal adversary a
potential abort signal. In case of abort security, the trusted party would return
the output of f to the adversary and relay this abort signal to all honest parties
and abort. In case of fairness, only the latter occurs (i.e. abort signal is relayed
but the output is not returned to the adversary). For reactive functionalities, the
adversary can choose to activate the abort signal or not in each phase of the
reactive functionality. In the setting of guaranteed output delivery (G.O.D.) such
signal is not allowed. Finally, if the trusted party did not stop from an abort
signal, it sends the output of f to the adversary and to the honest parties not in
FO.

Let us denote the output of all the parties in the ideal and real executions
by IDEALf,S((xi)

n
i=1) and REALf,A((xi)

n
i=1), where S and A are the ideal and

real-world adversaries, and the xi’s are the inputs. A protocol securely evaluates
the function f (with abort or fairness or G.O.D.) with perfect security if for
every non-uniform probabilistic polynomial-time adversary A for the real model,
there exists a non-uniform probabilistic polynomial-time adversary S for the ideal
model, such that the distributions IDEALf,S((xi)

n
i=1) and REALf,A((xi)

n
i=1) are
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identical for any set of inputs. The security is statistical, instead of perfect, if
the statistical distance between these two distributions is negligible (in some
statistical security parameter).

2.2.1 Detecting Fail-Stop Corruptions. If some party Pi does not receive
a message by some other party Pj in a given round, then Pi cannot conclude
that Pj is fail-corrupt since this behavior can be exhibited as well by actively
corrupt parties (which may, for example, stop sending messages to only some
subset of the parties). However, there is a simple method by which the parties
can detect which parties fail-stop in a given round. After every round, an extra
“heartbeat” round is added in which the parties must broadcast a constant bit
which signals they are still “alive”. If some party fails to broadcast such value,
then it is considered as fail-stop.3 Therefore, we assume that when an adversary
fail-corrupts a party in a particular round, then his identity is exposed to all
henceforth.

2.3 Definitions.

Verifiable Secret Sharing (VSS) [CGMA85]. A pair of protocols (πSh, πRec) for P ,
where a dealer D = P1 holds a private input s ∈ F (referred to as the secret) is a
VSS scheme tolerating A if the following requirements hold for every possible A
and for all possible inputs of D:

- Correctness: If D is honest, then the honest parties output s at the end of
πRec. Moreover, this is true for any choice of the random inputs of the honest
parties and A’s randomness.

- Strong Commitment: If D is corrupted, then at the end of the sharing phase
there is a value s∗ ∈ F such that at the end of πRec, all honest parties output
s∗, irrespective of the behavior of the corrupted parties.

- Privacy: If D is honest then A’s view during πSh reveals no information on s.
More formally, A’s view is identically distributed for all different values of s

While in the perfect setting, no error is allowed, statistical VSS allows a
negligible error in the properties of correctness and strong commitment.

3 Impossibility Results for Statistical Security

In this section, we present two negative results with respect to Astat i.e. a dynamic
adversary who respects 2ta + 2tp + tf < n. First, we present a lower bound on
the round complexity of statistical SFE (Section 3.1). Next, we present the
impossibility for statistical VSS (more generally, reactive MPC) (Section 3.2).

3 Observe that there may be false-positives, that is, parties who did not fail to send a
message in the actual round, but failed to send the signal bit in the heartbeat round.
However, this is acceptable in the protocols we consider in this work.
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3.1 Secure Function Evaluation

We show that the price of non-constant round complexity (Ω(n) rounds) is
necessary to design a statistical fair SFE against Astat. We state the formal
theorem below.

Theorem 1. There exist standard (non-reactive) functionalities f such that any
n-party (where n ≥ 4) fair SFE protocol computing f with statistical security
against a dynamic adversary must have Ω(n) rounds (specifically, at least n

4 + 1
rounds).

Proof. We assume n = 4` for simplicity, where ` ≥ 1. For the sake of contradiction,
assume the existence of an r-round statistically-secure MPC protocol π computing
a common output function f (that gives the same output to all) that achieves
fairness against Astat, where r = n

4 .
Consider an execution of π on the set of inputs (x1, . . . , xn) and the following

sequence of hybrids {H1, . . . ,Hr} described below. Each hybrid involves only
active corruptions and rushing fails. In hybrid Hi, let Sia, Sif , Wi = P \ (Sia ∪ Sif )
denote the set of active corruptions, fail-stop corruptions and honest parties
respectively.

H1: Astat chooses to corrupt a set S1a of n
4 parties actively, fail-stop corrupts

a different set S1f of (n2 − 1) parties and then does the following: Behave

honestly up to (and including) Round r − 1. In Round r, fail-corrupt S1f and

stay silent on behalf of S1a .
H2: Astat chooses to corrupt a set S2a(=W1) of (n4 + 1) parties actively, fail-stop

corrupts a different set of S2f of (n2 −3) parties and does the following: Behave

honestly (up to and including) Round r − 2. In Round r − 1, fail-corrupt S2f
and stay silent on behalf of S2a .

We generalize the above description to define the remaining sequence H3, . . . ,Hr.

Hi: Astat chooses to corrupt a set Sia(= Wi−1) of n
4 + (i − 1) parties actively,

fail-stop corrupts a different set of Sif of n
2 − (2i− 1) parties and does the

following: Behave honestly (up to and including) Round r − i. In Round
r − i+ 1, fail-corrupt Sif and stay silent on behalf of Sia.

We present a sequence of lemmas to complete the proof. Let µ = negl(κ)
denote the negligible probability with which security of π fails (where κ denotes the
statistical security parameter). Below, (x1, . . . , xn) denotes a specific combination
of inputs that are fixed across all hybrids.

Lemma 1. In H1, Astat obtains y = f(x1, . . . , xn) with probability at least 1−µ.

Proof. Since the dynamic adversary Astat started misbehaving only in the last
round, he must have received the entire communication throughout the protocol
(as per an execution where everyone is honest). Note that this includes the
messages that the fail-corrupt parties send to the actively corrupt parties in the
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last round as well (as we assume rushing fails). It now follows from correctness of
π (which holds with overwhelming probability 1− µ) that Astat gets the output
y = f(x1, . . . , xn) with probability at least 1− µ. Note that the output must be
computed on the fixed set of inputs (x1, . . . , xn) as the view of Astat is identically
distributed to an execution where everyone behaves honestly with respect to this
set of fixed inputs. ut

Lemma 2. Suppose Astat obtains y = f(x1, . . . , xn) with probability at least
1 − (i − 1)µ in Hi−1 (i ∈ {2, . . . , r}). Then, Astat in Hi can compute y =
f(x1, . . . , xn) at the end of Round (r− i+ 1) with probability at least 1− (i× µ).

Proof. Consider Hi−1. Fairness dictates that when Astat obtains the output
y = f(x1, . . . , xn) in Hi−1 (assumed to occur with probability 1− (i− 1)µ) 4, the
honest parties should also be able to compute the same output y = f(x1, . . . , xn),
even though parties in (Si−1a ∪Si−1f ) stopped communicating after Round (r−i+1).

The honest parties constituting Wi−1 = P \ (Si−1a ∪ Si−1f ) only interact amongst
themselves after Round (r − i + 1). Since fairness breaks with probability at
most µ, we can conclude that the combined view of parties in Wi−1 at the end
of Round (r− i+ 1) must suffice to compute the output with probability at least
1− [(i− 1)µ+ µ] = 1− (i× µ).

Next, recall that Astat actively corrupts Sia =Wi−1 in Hi. We claim that the
view of Astat in Hi is identically distributed to the combined view of parties in
Wi−1 in Hi−1. This is because Astat in Hi starts misbehaving only during Round
(r − i+ 1) and therefore must have received all incoming messages until Round
(r − i+ 1) as per an execution where everyone is honest. We can thus conclude
that Astat in Hi can compute y at the end of Round (r − i+ 1) with probability
at least 1− (i× µ).

ut

Lemma 3. In Hi (i ∈ {1, . . . , r}), Astat obtains y = f(x1, . . . , xn) at the end of
Round (r − i+ 1) with probability at least 1− (i× µ).

Proof. The proof follows directly from Lemma 1 - 2. ut

Lemma 4. There exists an adversarial strategy that breaches security of π with
overwhelming probability.

Proof. It follows from Lemma 3 that Astat in Hr obtains y = f(x1, . . . , xn) at the
end of Round 1 with probability at least 1− (r × µ) = 1− (n4 × negl(κ)) which
is overwhelming.

Thus, since Astat in Hr obtains output at the end of Round 1 itself, he can
breach privacy of honest parties by executing the residual attack - Specifically,
Astat can get multiple evaluations of f on various choices of inputs of corrupt
parties, while the inputs of the honest parties remains fixed. This may allow

4 Here, it is implicitly assumed that the function output depends on honest parties’
inputs i.e. it could not have been computed locally by Astat using corrupt parties’
inputs. Thereby, the argument for fairness can be invoked.
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Astat to learn more information about the honest parties’ inputs, beyond what is
allowed in the ideal world (where the adversary gets the output only for a unique
combination of inputs).

As a concrete example, suppose f(x1, . . . , xn) with x1 = (m0,m1), xi = bi
for i = 2 to n is defined as :

f(x1, . . . , xn) =

{
m0 if ⊕ni=2 bi = 0

m1 otherwise

where (m0,m1) denote a pair of messages and bi ∈ {0, 1} for i ∈ {2, . . . , n}.
Suppose P1 is an honest party in Hr. Firstly, we point that f satisfies the implicit
assumption mentioned earlier in Lemma 2 i.e. Astat (who does not corrupt P1)
cannot obtain the output of f using corrupt parties’ inputs. Thus, the sequence
of arguments above hold and there exists an adversarial strategy that allows
Astat in Hr to obtain both m0 and m1 – the adversary can learn this by locally
computing the output based on different choices of corrupt Pi’s input i.e. bi = 0
and bi = 1. This attack breaches privacy of honest P1. We have thus arrived at a
contradiction; completing the proof of Theorem 1. ut

Thus, Ω(n) rounds are necessary for fair statistically-secure MPC against a
dynamic adversary.

3.2 Reactive MPC

We present the feasibility of achieving reactive MPC with G.O.D against Astat

below, which also follows from the results in [HMZ08].

Theorem 2. Let S denote the set of corruption strategies that the dynamic
adversary can choose from. In the statistical setting, reactive MPC (such as VSS)
with G.O.D is impossible against a dynamic adversary if RS + FS ≥ n, where
RS is the maximal number of player states the adversary can read, while FS is
the maximal number of players the adversary can have abort the protocol.

Proof. Assume by contradiction that there exists a statistical VSS π = (πSh, πRec)
(where πSh and πRec denote sharing and reconstruction protocols respectively)
that achieves G.O.D against a dynamic adversary Astat who can choose any
strategy from S, where RS + FS ≥ n. Suppose Astat behaves honestly during πSh
which completes successfully and then fail-crashes FS ≥ n−RS parties during
πRec. This would violate G.O.D as the secret cannot be determined from the
state of the remaining n− FS ≤ RS parties (otherwise, the adversary could have
learnt the secret as it can read the state of up to RS parties).

ut

The above result shows that Astat must satisfy the additional condition of
RS+FS < n for VSS with G.O.D to be feasible. In fact, this condition is not only
necessary, but also sufficient for dynamic VSS and reactive MPC with G.O.D as
shown by our construction in Appendix C.1
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Lastly, we remark that the above argument can be viewed in terms of (ta, tp, tf )
as the condition 2ta+2tf ≤ n being necessary for VSS with G.O.D (in addition to
2ta+2tp+tf < n respected by Astat) against Astat. This is because if 2ta+2tf > n,
an adversary aborting on behalf of ta + tf > n/2 parties during πRec violates
G.O.D; as the secret cannot be determined from the state of the remaining
n− ta − tf < n/2 parties (follows from privacy during πSh).

4 Impossibility Results for Perfect Security

In this section, we present two negative results with respect to Aperf i.e a dynamic
adversary who respects 3ta + 2tp + tf < n - We prove the impossibility of perfect
SFE with abort and perfect VSS with G.O.D against Aperf in Section 4.1 and 4.2
respectively.

4.1 Secure Function Evaluation

We show that perfect dynamic SFE is impossible. In fact, our impossibility
argument is stronger than the above statement in two aspects - First, it holds
even if the perfect SFE protocol against Aperf is only required to achieve the
weaker security notion of security with abort (adversary may get the output
while honest parties do not; implied by fairness and G.O.D). Second, it holds
even against a weaker dynamic adversary who is allowed only active and passive
corruptions (i.e. tf = 0).

Theorem 3. There exists a standard (non-reactive) functionality f for which
no n-party protocol computing f can achieve perfect security with abort (implied
by fairness and G.O.D) against a dynamic adversary, even if tf = 0.

Proof. We present the argument for n = 5 for simplicity. The proof can be
extended in a natural manner for n > 6 (elaborated in Appendix A.2).

For the sake of contradiction, we assume a protocol π that achieves perfect
security with abort against Aperf and computes the function f(x1, x2, x3, x4, x5)
among the set of parties {P1, P2, P3, P4, P5}. Here xi denotes Pi’s input where
x1 and x2 are single bit values and x3 = x4 = x5 = ⊥. Suppose f computes
(x1 ∧ x2) i.e the logical AND of the input bits of P1 and P2.

Next, we present the transformation of the 5-party perfectly secure protocol π
computing f to a 3-party perfectly secure protocol π′ that computes f ′(x′1, x

′
2, x
′
3)

among {P ∗1 , P ∗2 , P ∗3 }. Here x′i denotes the input of P ∗i where x′1 and x′2 are single
bit values and x′3 = ⊥. Let f ′ be defined as the logical AND of the input bits of
P ∗1 and P ∗2 i.e (x′1 ∧ x′2). π′ proceeds as follows:

- P ∗1 emulates the role of {P1, P3} in π using input x′1 = x1.

- P ∗2 emulates the role of {P2, P4} in π using input x′2 = x2.

- P ∗3 emulates the role of P5 in π using input ⊥.

15



It follows from correctness of π that π′ should result in correct output (x′1∧x′2)
and thereby computes f ′. Next, recall that π can tolerate up to 2 passive
corruptions or 1 active corruption among 5 parties (satisfying 3ta + 2tp < 5)
and therefore must be secure in scenarios of (a) passive corruptions of {P1, P3}
(b) passive corruptions of {P2, P4} and (c) active corruption of P5. It is easy
to check from the transformation that these scenarios translate to (a) passive
corruption of P ∗1 (b) passive corruption of P ∗2 and (c) active corruption of P ∗3
respectively. We can thus conclude that π′ achieves security with abort against
an adversary who can choose among the above 3 corruption options. However,
this contradicts the impossibility result of [FHM98] (elaborated in Appendix
A.1) which proves that no 3-party perfectly-secure protocol (achieving security
with abort) among {P ∗1 , P ∗2 , P ∗3 } computing (x′1 ∧ x′2) can be secure against an
adversary that passively corrupts either P ∗1 or P ∗2 or actively corrupts P ∗3 . We
have thus arrived at a contradiction, completing the proof of Theorem 3. ut

Lastly, we point that the above argument exploits only active and passive
corruptions, and thereby holds even when tf = 0. This is in contrast to the
scenarios of other weaker dynamic adversaries with ta = 0 and tp = 0 as
demonstrated by our upper bounds in Appendix C.2.

4.2 Reactive MPC

Here, we observe that the non-dynamic feasibility condition 3ta + 2tp + tf < n is
not sufficient for perfect VSS, not even if tf = 0.

Theorem 4. The requirement 3ta + 2tp < n does not allow for perfect VSS with
G.O.D against a dynamic adversary, when n ≥ 7.

This follows from Lemma 14 in Section 6. It shows that even if we assume
3ta + 2tp < n it can still be the case that the Crec condition from [BFH+08] is
violated, and this condition was shown in [BFH+08] to be required for robust
reconstruction of a secret shared value.

The feasibility of dynamic perfectly-secure VSS with G.O.D for the special
cases of ta = 0 and tp = 0 are investigated in Appendix C.3.

5 Positive Results

5.1 SFE with Statistical Security

Let f be an n-input function with a single output. In this section we present a
statistically secure protocol against a dynamic adversary that has G.O.D. and
uses at most O(n) rounds, regardless of the complexity of the function f . We
begin by introducing in Sections 5.1.1 and 5.1.2 the necessary building blocks for
our protocol from Section 5.1.3, namely robust sharings and levelled sharings,
respectively. The former sharings are useful for secret-sharing a value while
ensuring that, at reconstruction time, either the honest parties get the secret
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Function fd,statsh (s)

Implicit input: Q ⊆ P.

1. Sample a random polynomial g(x) ∈ F[x] of degree at most d such that
g(0) = s, where F denotes a finite field with |F| > n.

2. Let si = f(i) for Pi ∈ Q.
3. For i, j such that Pi, Pj ∈ Q, sample Kji = (αji, βji) ∈ F2 and let mij =

αji · si + βji.
4. Let bi be the tuple (si, {mij}nj=1, {Kij}nj=1).
5. Output (bi)Pi∈Q, where bi is intended for party Pi.

Fig. 2. Functionality for generating Shamir sharings together with authentication
information

or they output a set of identified corrupt parties, whereas the latter sharings
are used to ensure that this reconstruction is done in a fair way, that is, if the
adversary disallows the honest parties from learning the secret (which identifies
some corrupt parties in the process), the adversary cannot get the secret himself.

5.1.1 Robust Sharings. At the core of our techniques lies the ability of the
honest parties to identify which shares are correct when opening some secret-
shared value. This is captured by the function fd,statsh (s), presented in Fig. 2,
which produces the shares of a secret s together with the additional information
that the parties need to identify incorrect shares. This technique is motivated by
the VSS in [RB89]. The function takes an implicit parameter Q ⊆ P that, as we
will see later on, denotes the actual set of parties among which the computation
takes place.

Throughout the rest of this section we denote by [s]d the output of fd,statsh (s)
produced by an ideal functionality, where the set Q is implicit from context. The
protocol πdStatRec in Fig. 3 is used by the parties to reconstruct a shared value [s]d.
The protocol guarantees that the parties either reconstruct the secret correctly,
or they output a set of corrupt parties who misbehaved in the protocol. The
protocol also takes as an additional input a set of parties Q ⊆ P among which the
secret is shared and who will participate in the protocol. We denote by t′a, t′p and
t′f the number of active, passive and fail-stop corrupt parties in Q, and we write
n′ = |Q|. As we will see later, the idea is that the parties in P \ Q are parties
who have been previously identified as corrupt, so they will not participate in the
current reconstruction. In particular, the bound 2t′a + 2t′p + t′f < n′ also holds
for the set Q.

Before we prove the security properties of πdStatRec, we present the following
useful lemma. Its proof is standard and is presented in Section B in the appendix.
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Protocol πdStatRec

Input: A shared value [s]d among a set of parties Q ⊆ P where 2t′a+ 2t′p+ t′f <
n′.
Output: Secret s or ⊥ with two sets A,F ⊆ Q of identified active and fail-stop
corrupt parties, respectively.

1. Each party Pi ∈ Q broadcasts its share si together with {mij}nj=1.
2. Let F1 be the set of parties who fail-stopped during the first round above.

If |Q \ F1| ≤ d, then output ⊥ together with the pair of sets (∅,F1).
3. Else, each party Pj ∈ Q \ F1, having {Kji = (αji, βji)}ni=1, checks for i

such that Pi ∈ Q \ F1 whether mij
?
= αji · si + βji holds. For every i that

does not satisfy this equality, Pj broadcasts (accuse, Pi).
4. Let F2 ⊆ Q \ F1 be the set of parties who fail-stopped during the previous

“accusation” round. Initially all parties set A = ∅. For every party Pi such
that at least d(n′′ + 1)/2e messages (accuse, Pi) were broadcasted, where
n′′ = n′ − |F1| − |F2|, all parties in Q \ (F1 ∪ F2) add Pi to A.

5. If |Q \ (A ∪ F1 ∪ F2)| > d, then use the shares {si}Pi∈Q\(A∪F1∪F2) to
reconstruct s using polynomial interpolation. Else, output ⊥ and the pair
(A,F1 ∪ F2).

Fig. 3. Protocol for reconstructing Shamir sharings with authentication informa-
tion

Lemma 5. Consider an actively corrupt party Pi and an honest party Pj in
Q \ (F1 ∪ F2) in protocol πdStatRec. Let si be Pi’s share in [s]d, and suppose Pi
broadcasts s′i 6= si in the first step. Then, with probability at least 1 − 1

|F| , Pj
broadcasts (accuse, Pi) in the accusation round.

With the lemma at hand it is easy to prove the following proposition, which
presents the properties of πdStatRec.

Proposition 1. Suppose a robust sharing [s]d ← fd,statsh (s) is used as an input
to πdStatRec and assume that |F| > 2κ.5 If a value s′ is produced as the output then,
with overwhelming probability, it holds that s′ = s. Otherwise, if ⊥ is the output,
then the sets A and F produced by the protocol consist of exactly the malicious
parties who lied about their share or MAC and the fail-stop parties, respectively.
In particular, |Q| − |A ∪ F| ≤ d.

Proof. Let [s]d =
(
(si, {mij}nj=1, {Kij}nj=1)

)n
i=1

. We begin by proving that the
set A computed by the parties after the accusation phase consists of exactly
the parties who lied about their share, with overwhelming probability. To see
that every party who lies about his share is included in this set consider a
malicious party Pi who engages in such behavior. Due to Lemma 5, all honest

5 This restriction is easily removed by modifying the sharing mechanism to include
multiple key-tag pairs.
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Function fα,βsLevSh(s)

Implicit input: Q ⊆ P.
Output: (α, β)-levelled-sharing of s denoted by 〈s〉α,β .

1. Sample a random elements sα, . . . , sβ ∈ F such that
∑α
d=β sd = s

2. For d = β, . . . , α call [sd]d = fd,statsh (sd) using the set Q.
3. Output ([sβ ]β , . . . , [sα]α), where the i-th entry in each [sd]d is intended for

party Pi.

Fig. 4. Functionality to generate levelled-sharings of a secret

parties in Q \ (F1 ∪ F2) broadcast (accuse, Pi) with overwhelming probability.
Furthermore, we know that t′f ≥ |F1| + |F2| and also 2t′a + 2t′p + t′f < n′, so

2t′a + 2t′p < n′ − |F1| − |F2| = n′′. In particular, there are at least dn
′′+1
2 e honest

parties in Q \ (F1 ∪ F2), so Pi will get enough accusations to be put in A.

In the opposite direction, we now argue that no honest party is placed in A.
For this, it suffices to observe that no honest party will accuse another honest
party, and the adversary can produce at most b(n′′ − 1)/2c accusations, which is
strictly less than the minimal number of accusations required for placing a party
in A.

With the above analysis at hand it is easy to prove the proposition: The
shares of parties from Q \ (A∪F1 ∪F2) are correct, so if there are at least d+ 1
of them the secret can be reconstructed correctly. If reconstruction is not possible
it is because there are not enough shares, that is, |Q| − |A ∪ F1 ∪ F2| ≤ d. ut

5.1.2 Levelled Sharings. Proposition 1 shows that an adversary cannot
make the honest parties reconstruct an incorrect value without revealing the
identity of some of the corrupt parties. However, a negative aspect of the protocol
πdStatRec above is that it is not fair: The adversary can learn the secret after the
parties broadcast their shares, and it can send incorrect shares so that the other
parties do not learn the secret. To obtain a fair reconstruction protocol we use
the levelled-sharing idea from [HLM13,PR19], by which a secret is shared first
additively, and then each additive share is distributed using the sharing function
fd,statsh from above, parameterized by different degrees.

We present the details of this technique below. First we define the function
fα,βsLevSh(s) that is analogous to fd,statsh (s) and takes care of generating levelled
shares of the secret s. This function, presented in Fig. 4, is parameterized by
two positive integers α ≥ β, and produces [·]-sharings of additive shares of secret

using degrees that vary from β to α. As fd,statsh , fα,βsLevSh also accepts a set Q ⊆ P.

Similarly to [s]d and fd,statsh , we denote by 〈s〉α,β the output of fα,βsLevSh(s)
produced by an ideal functionality. Notice that these sharings preserve the
privacy of the secret as long as the adversary controls at most α shares, since this
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Protocol πα,βsLevRec

Input: A shared value 〈s〉α,β and a set of partiesQ ⊆ P where 2t′a+2t′p+t′f < n′.
Output: Secret s or ⊥ with two sets A,F ⊆ Q of identified active and fail-stop
corrupt parties, respectively.

1. For d = α, . . . , β each party Pi ∈ Q does the following.
(a) Call πdStatRec([sd]d).
(b) If the output is sd, then continue. Else, if the output is ⊥ and the pair

of sets (A,F), then stop and output ⊥ together with the pair (A,F).
2. Output s = sα + · · ·+ sβ .

Fig. 5. Protocol for reconstructing levelled-sharings

implies that the adversary cannot learn the additive share sα. Protocol πα,βsLevRec

in Fig. 5, which is analogous to πdStatRec, shows how the parties can reconstruct

at 〈·〉α,β-sharing while satisfying fairness, that is, either all parties learn the

secret correctly or no one does. This, together with other properties of πα,βsLevRec,
is formalized in Proposition 2 below.

Proposition 2. Assume that an (α, β)-levelled sharing 〈s〉α,β ← fα,βsLevSh(s) is

used as input in protocol πα,βsLevRec. Then the following holds:

– Correctness. If the parties output a value different to ⊥, then this value
equals the correct secret s.

– Fault-Identification. If the adversary disrupts the reconstruction of [sd]d,
then the parties output a pair of sets A,F ⊆ Q of actively and fail-stop
corrupt parties, respectively, where |F ∪ A| ≥ |Q| − d.

– Fairness. If the opening of [sj ] (where j > β) results in abort, then the
adversary does not learn sj−1.

Proof. Correctness and fault-identification follow directly from Proposition 1,
so it suffices to show the fairness property. First, we assume, for simplicity in
the notation, that tp = 0. This is without loss of generality since active and
passive corruptions cost the same to the adversary, but passive corruptions are
less powerful. We begin by noticing that, in protocol πdStatRec, the honest parties
fail to open [sj ]j if the set Q \ (A ∪ F1 ∪ F2) has at most j parties, that is, if

n′ − |A| − |F1| − |F2| ≤ j. On the other hand, for the adversary to learn sj−1
it needs to obtain at least j shares. We note that while the dynamic adversary
(with rushing fails) who disrupts the reconstruction of sj would be able to see the
messages (i.e. the shares) of the fail-corrupt parties corresponding to sj ; he would
not be able to see their shares corresponding to sj−1. Therefore, the adversary
would have access to only t′a shares (the ones corresponding to the actively
corrupt parties in Q) corresponding to sj−1 implying that t′a ≥ j must hold for
the adversary to learn sj−1. However, since 2t′a + t′f < n′ = Q, |F1|+ |F2| ≤ t′f
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Protocol πstat
god

Inputs: Party Pi has input xi, for i = 1, . . . , n.
Output: y = f(x1, . . . , xn).
Building blocks: Function fα,βsLevSh (Fig 4) and Protocol πα,βsLevRec (Fig 5)

Initialize Q := P, n′ = n.

1. If n′ ≥ 3, parties in Q use πStatBase to compute (r, 〈ŷ〉dn
′/2e−1,1), where r

denotes a random element in F, ŷ = f(x1, . . . , xn) + r (default inputs used

for parties in P \ Q) and 〈ŷ〉dn
′/2e−1,1 ← f

dn′/2e−1,1
sLevSh (ŷ). Else, parties in

Q use πStatBase to compute (r, ŷ) directly (as there are no active / passive
corruptions, only potential fail-stop corruptions).
– If at any round a party Pi ∈ Q is detected as fail-stop, then the parties

update Q ← Q \ {Pi}, n′ = |Q| and repeat step 1.

– Else, the parties in Q obtain (r, 〈ŷ〉dn
′/2e−1,1).

2. Parties in Q run π
dn′/2e−1,1
sLevRec (〈ŷ〉dn

′/2e−1,1). If it returns the value ŷ then the
parties output y = ŷ− r. Else, the protocol outputs a pair of sets A,F ⊆ Q.
Parties update Q ← Q \ (A ∪ F), n′ = |Q| and repeat step 1.

Fig. 6. Protocol for SFE with statistical security and G.O.D.

and |A| ≤ t′a, we have that t′a < n′ − t′a − t′f ≤ n′ − |A| − |F1| − |F2| ≤ j, so we
conclude that the adversary cannot reconstruct sj−1. ut

5.1.3 A Protocol with GOD. Now we are ready to describe our main
protocol πstat

god , which appears in Fig. 6 and is inspired in the protocol from [PR19],
that achieves GOD with low round complexity by first executing a constant-round
protocol with identifiable abort to compute levelled sharings and then performing
a gradual opening of these levelled sharings. In the protocol we let πStatBase be a
constant-round non-dynamic statistically secure protocol with G.O.D. against
a dishonest minority, which can be instantiated for example using randomizing
polynomials [IK02], together with a non-constant round protocol like [BFO12],
or the more efficient and recent protocol from [GSZ20]

While [PR19] involves levelled sharings of the output of f , we use the constant
round protocol πStatBase to choose a random element (to be used as a mask) and
compute levelled sharings of the “masked” output. The mask is given on clear to
the honest parties as output of πStatBase (along with the levelled sharings) but
would not be available to an adversary that performs only fail-stop corruptions.
Looking ahead, this modification helps us tolerate rushing fails in the last round
of the protocol.

Lemma 6. Protocol πstat
god terminates in O(n) rounds.
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Proof. To prove the lemma, we show via an inductive argument that the round
complexity of πstat

god when executed among n′ parties is bounded by Rn′ + n′ 6

where R is a constant denoting the round complexity of πStatBase.
Base Case: Suppose n′ = 1 or 2. Then, it follows from the protocol description

that the parties participate in πStatBase to compute (r, ŷ) directly, which may
result in abort at most once (when 1 fail-corruption occurs corresponding to
n′ = 2). Thus, it is easy to see that πstat

god terminates in less than Rn′ + n′ rounds;
completing the base case.

Strong Induction Hypothesis (n′ ≤ k): Next, suppose that the statement is
true for n′ ≤ k parties.

Induction Step (n′ = k + 1): Consider an execution of πstat
god among n′ = k + 1

parties. Then, there are 3 exhaustive possibilities:
First, suppose neither Step 1 nor Step 2 fails. Note that Step 2 incurs round

complexity 2(dn′/2e − 1) < n′ (as π
dn′/2e−1,1
sLevRec (·) involves dn′/2e − 1 invocations

of the 2-round subprotocol πdStatRec ). Thus, the total round complexity over Step
1 and Step 2 is bounded by R+ n′ < n′R+ n′.

Next, suppose Step 1 fails. Then, it must be the case that at least one fail-
corrupt party is eliminated and the protocol is re-run among n′ − 1 = k parties.
Therefore, the round complexity is at most R (for the failed run) + (kR + k)
(via induction hypothesis) which totals up to (k + 1)R+ k < n′R+ n′.

Lastly, suppose Step 1 succeeds but Step 2 fails during the reconstruction
of summand ŷi (i ∈ [1, dn′/2e − 1]). From Proposition 2, it holds that at least
n′− i parties are eliminated and thereby at most i parties participate in the next
re-run. Therefore, the round complexity is R (for Step 1) + 2(dn′/2e − i) (for
Step 2 of the failed run) + iR + i (induction hypothesis for i ≤ k parties) which
totals up to (i+ 1)R+ 2dn′/2e− i < n′R+n′. This completes the induction step.

This completes the proof via induction that the statement is true for all n′ ≥ 1.
We can thus conclude that πstat

god , when executed among n parties, terminates
within Rn+ n = O(n) rounds. ut

Theorem 5. Protocol πstat
god evaluates the function f in O(n) rounds with statis-

tical security against Astat.

The formal simulation-based proof of this theorem appears in Section B in
the appendix. However, here we provide an intuition for the security argument.
First, as we saw in Lemma 6, the protocol produces output within O(n) rounds.
However, in order to maintain privacy, it must be the case that before every
re-run the adversary is not able to learn anything about the honest parties’ inputs
(else, Astat may be able to carry out a residual attack, for example, by using
different inputs for the corrupt parties).

To see the adversary learns nothing right before a re-run, we argue informally
as follows. First, if the re-run happens in the middle of the execution of πStatBase,
Astat does not learn anything because of the privacy of the protocol. Also, if the
re-run takes place at the end of this protocol, then privacy is maintained because

6 This is a loose bound chosen for simplicity as it suffices for our purpose.
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of the privacy of the sharings 〈ŷ〉dn
′/2e−1,1

, given that Astat gets to see at most
dn′/2e − 1 sharings at this stage.

Now we analyze what happens if the re-run takes place due to failure in
the reconstruction of some [ŷd]d. If d > 1, then the privacy of the output is
maintained since, from the fairness property in Proposition 2, disrupting the
reconstruction of [ŷd]d makes the adversary unable to learn the additive share
ŷd−1, which is necessary to learn ŷ. Now, suppose reconstruction of [ŷ1]1 is
the first to fail, then the fault identification property in Proposition 2 and the
condition 2t′a+2t′p+t′f < n′ imply that 1 ≥ |Q|−|F ∪A| ≥ n′−t′f −t′a > t′a+2t′p.
This implies that t′a = t′p = 0 and t′f = n′ − 1 must hold. More specifically, Astat

must have disrupted reconstruction of [ŷ1]1 using (n′−1) fail-stop corruptions. In
this case, since Astat has access to the messages sent over the broadcast channel
during the reconstruction of all summands, including the shares broadcast by the
fail-corrupt parties during reconstruction of [ŷ1]1, he would be able to learn ŷ.
However, we argue that fairness is still maintained as Astat (with t′a = t′p = 0 and
t′f = n− 1) does not have access to the internal state of any party (recall that
the adversary is not allowed to read the internal state of the fail-stop parties).
In particular, this means that even if the adversary participates honestly during
πStatBase (i.e. does not make any of the fail-stop parties crash), still he does not
learn the output of πStatBase and thereby the random mask r. This is because
the output of πStatBase cannot be learned from just the public transcript of the
protocol but also requires the internal state of at least one participant. We can
thus infer that Astat has no information about the random mask r, which is
necessary to learn the output y = ŷ − r. This completes the intuition.

Lastly, we analyze the complexity of the protocol πstat
god . It is easy to see

that if the subprotocol πStatBase is instantiated using an efficient protocol, then
πstat
god would have polynomial complexity (with complexity around n times that of
πStatBase). Since efficient non-constant round protocols [BFO12,GSZ20] exist for all
functions, our construction is always efficient if we do not insist on asymptotically
tight (but still polynomial) round complexity. This strictly improves over the
constructions in [HMZ08] which have complexity exponential in n.

However, if πStatBase is constant round, then we get O(n) rounds which is
asymptotically tight. Such a constant-round protocol exists for all functions but
is not always computationally efficient. As mentioned in the introduction, it
would be extremely surprising if tightness of O(n) rounds could be shown with
computational efficiency for all functions (as that would imply constant-round,
information theoretically secure and computationally efficient protocol for all
functions when n is a constant, which is a longstanding open question). On the
other hand, if the function in question has an efficient non-dynamic constant-
round protocol, as many functions do, then we can use that one to instantiate
πStatBase and get an efficient dynamic O(n)-round protocol.
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5.2 Fair VSS with Statistical Security

We saw in Section 3.2 that dynamic VSS with G.O.D. and statistical security is
impossible (without any additional restrictions). However, we observe that the
ideas of Section 5.1.3 can be extended to design a fair VSS.

For the sharing protocol, the parties execute πStatBase (a non-dynamic statis-
tically secure protocol with G.O.D. against a dishonest minority) to compute

(r, 〈ŝ〉dn/2e−1,1), where 〈ŝ〉dn/2e−1,1 represents the levelled-sharing of the “masked”
secret ŝ = s+ r, with s and r denoting the dealer’s input and the random mask

respectively. For reconstruction, parties execute π
dn/2e−1,1
sLevRec (〈ŝ〉dn/2e−1,1). If any

of the steps fail, the parties simply output ⊥ (re-runs can be avoided as the
goal is to achieve fairness). Else, the parties obtain ŝ and output the secret
s = ŝ− r. It is easy to check that privacy in case of honest dealer holds (as Astat

controls at most dn/2e − 1 parties actively / passively). Fairness and correctness

of reconstruction follow directly from fairness and correctness of π
dn/2e−1,1
sLevRec (·)

(Proposition 2). Lastly, fairness is also maintained against an adversary who
disrupts reconstruction of the last summand (i.e. the summand [ŝ1]1) during

π
dn/2e−1,1
sLevRec (〈ŝ〉dn/2e−1,1). Recall that this scenario occurs only when ta = tp = 0

and tf = n− 1 (elaborated in the informal argument of Theorem 5). In such a
case, the adversary learns ŝ but fairness is maintained as the adversary has no
information about the random mask r (as the output of πStatBase can be learnt
only if adversary has access to internal state of at least one participant), and
thereby the secret s.

The above result is summarized in the following theorem:

Theorem 6. In the statistical setting, there exists a VSS with fair reconstruction
against the dynamic adversary Astat.

Using the standard technique of verifiably secret-sharing the intermediate
states [HMZ08], the above VSS and the SFE upper bound of Section 5.1.3 can
be used to obtain a reactive MPC achieving fairness against Astat.

Theorem 7. In the statistical setting, there exists a fair MPC that can compute
any reactive functionality against the dynamic adversary Astat.

5.3 Fair VSS with Perfect Security

In this section we present a VSS protocol with fair reconstruction against Aperf .
The protocol design uses as a building block the modified variant of the VSS
protocol of [BGW88] (modification proposed in [Dwo90,DDWY93]). While it is
used for a fixed (ta, tp) in the work of [FHM98], we tweak the construction for
security against dynamic adversary.

The biggest issue appears in making reconstruction fair. A similar situation
was faced in Section 5.1.1 in the statistical setting, where, although cheating
parties could be detected, the adversary may learn the reconstructed value
while the honest parties do not. This was fixed by introducing the concept of
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Function fd,perfsh (s)

Implicit input: Q ⊆ P.

1. Sample a random polynomial g(x) ∈ F[x] of degree at most d such that
g(0) = s, where F denotes a finite field with |F| > n.

2. Let si = f(i) for Pi ∈ Q.
3. Output (si)Pi∈Q, where si is intended for party Pi.

Fig. 7. Generating sharings in the perfectly secure setting

levelled-sharings in Section 5.1.2, which is a method to ensure fairness when
reconstructing a shared value. To achieve fairness in our perfect VSS protocol, we
use again levelled-sharings in the context of perfect security. The main difference
lies on the method that is used to reconstruct individual sharings, since the case
of perfect security we can use error correction, instead of the authentication tags
developed in Section 5.1.1 for the statistical setting. The details are given below.

5.3.1 Secret Sharing Like in Section 5.1.1, we use Shamir secret sharing.
However, unlike the statistical setting, we do not need to authenticate the shares
in order to guarantee reconstruction. Instead, we can rely on the error correction
properties of Shamir secret sharing, as we show below.

The function fd,perfsh (s) that produces sharings of a secret s, which is analogous

to fd,statsh in Section 5.1.1, is described in Fig. 7. We denote by [s]d the output

of fd,perfsh (s) from an ideal functionality. To reconstruct a secret [s]d which is
d-shared among a set of parties Q (where |Q| = n′ and 3t′a + 2t′p + t′f < n′),

the protocol πdPerfRec (Fig. 8) is used in the perfect setting. As a basic building
block for this protocol we use a Reed-Solomon decoding algorithm πRSDec(d,W )
that takes as input a vector W of shares where some of these may be incorrect,
and either removes the errors if there are at most (|W | − d− 1)/2 of them, or
produces ⊥ (abort) if there are more than (|W | − d− 1)/2 errors. This can be
instantiated for instance by Berlekamp-Welch algorithm [BW].

The following lemma analyzes correctness of Protocol πdPerfRec.

Lemma 7. Suppose parties in Q participate in πdPerfRec using the shares computed
by [s]d, where d ≤ dn′/3e − 1. Then πdPerfRec either outputs the right secret s or
(⊥, C) such that |C| ≥ 1.

Proof. It follows directly from the properties of πRSDec that πdPerfRec either produces
the right secret s, or ⊥ together with a set C. It suffices to show that when |C| = 0
holds, then πdPerfRec must result in an output different to ⊥. This follows from
the fact that in such a case |W | = |Q| − |C| = |Q| = n′, so (|W | − d − 1)/2 =
(n′ − d− 1)/2. It can be checked that d ≤ dn′/3e − 1 implies that the quantity
above is lower bounded by dn′/3e − 1,which is bigger than the maximum number
of errors t′a and therefore error-correction succeeds. ut
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Protocol πdPerfRec

Input: A shared value [s]d among a set of parties Q ⊆ P where 3t′a+ 2t′p+ t′f <
n′.
Output: Secret s′ or ⊥ with a set C ⊆ Q of identified corrupt parties (either
fail-stop or actively corrupt).
Network Model: Broadcast can be realized using efficient broadcast protocol
of [AFM99] that is secure against dynamic adversaries.
Building Block: Decoding algorithm πRSDec(d,W ) that takes as input a vector
W of shares where some of these may be incorrect, and either removes the
errors if there are at most (|W | − d− 1)/2 of them, or produces ⊥ (abort) if
there are more than (|W | − d− 1)/2 errors.

1. Each Pi broadcasts its share si. Let C ⊆ Q be the set of parties who did not
send si. Let W denote the vector constituting the set of values sk where
Pk ∈ Q \ C.

2. Execute πRSDec(d,W ). If the output is s 6= ⊥, then output s. Else, output
⊥ and the set C.

Fig. 8. Protocol to reconstruct a d-shared secret in the perfect setting

5.3.2 Levelled-Secret Sharing. In the perfect setting, we use the function
fα,βpLevSh(v) defined in Figure 9 to generate (α, β)-levelled sharing of a secret s. This

function is analogous to the function fα,βsLevSh from Section 5.1.2 in the statistical

setting, with the only difference being that the function fd,perfsh is used to produce

the individual sharings, instead of fd,statsh . We denote by 〈s〉α,β the output of

fα,βpLevSh(s) produced by an ideal functionality.
To reconstruct a (α, β)-levelled shared secret s that has been shared among us-

ing parties in Q according to fd,perfsh (s) we use Protocol πα,βpLevRec from Fig. 10. This

protocol is an straightforward adaptation of Protocol πα,βsLevRec from Section 5.1.2

to the perfect setting, whose only difference with respect to πα,βsLevRec is the fact
that error correction, via Protocol πdPerfRec from Fig. 8 is used to reconstruct
individual sharings.

We prove the following useful lemmas regarding fα,βpLevSh(s) and Protocol

πα,βpLevRec.

Lemma 8. Suppose 〈s〉α,β ← fα,βpLevSh(s) is computed among parties in Q. Then
if t′a + t′p ≤ α, s is perfectly hidden from the adversary.

Proof. Since the adversary has access only to the shares received on behalf of
t′a + t′p ≤ α parties, it follows from property of Shamir secret sharing that he
has no information about the summand sα which is α-shared. Consequently, s
remains perfectly hidden from the adversary. ut
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Function fα,βpLevSh(s)

Implicit input: Q ⊆ P.
Output: (α, β)-levelled-sharing of s denoted by 〈s〉α,β .
Building Block: fd,perfsh (·) (Fig. 7)

1. Sample a random elements sα, . . . , sβ ∈ F such that
∑α
d=β sd = s

2. For d = β, . . . , α, call [sd]d = fd,perfsh (sd) using the set Q.
3. Output ([sβ ]β , . . . , [sα]α), where the i-th entry in each [sd]d is intended for

party Pi.

Fig. 9. Function to compute levelled-secret sharing in perfect setting

Protocol πα,βpLevRec

Input: A shared value 〈s〉α,β and a set of partiesQ ⊆ P where 3t′a+2t′p+t′f < n′.
Output: Secret s′ or ⊥ with set C of identified corrupt parties (either fail-stop
or actively corrupt).
Building Block: Protocol πdPerfRec (Fig 8)

1. For d = α, . . . , β each party Pi ∈ Q does the following.
(a) Call πdPerfRec([sd]d).
(b) If the output is sd, then continue. Else, terminate and output the output

of πdPerfRec([sd]d) i.e. (⊥, C).
2. Output s′ = sα + · · ·+ sβ .

Fig. 10. Protocol to reconstruct levelled-shared secret in perfect setting

Lemma 9. Suppose parties in Q participate in πα,βpLevRec using input 〈v〉α,β com-

puted by fα,βpLevSh(v). Then the following holds:

(i) Correctness: Each honest Pi outputs either s′ = v or (⊥, C) with |C| ≥ 1.

(ii) Fairness: If a dynamic adversary (with 3t′a + 2t′p + t′f < n′) disrupts the
reconstruction of sj (j ≥ 2), then it does not learn sj−1.

Proof. Correctness follows directly from the correctness of πdPerfRec (Lemma 7).
We present the argument for fairness below.

Suppose the reconstruction of sj is disrupted. Let |W | ≥ n′ − t′a − t′f + r
shares be broadcast during reconstruction, which includes the r shares that were
tampered on behalf of r actively corrupt parties. It follows from the correctness of
πRSDec used in πdPerfRec that reconstruction of sj would result in ⊥ only if there are
more than (|W |−j−1)/2 errors, that is, if |W | ≤ j+2r, or n′−t′a−t′f +r ≤ j+2r.
Recall that 2t′a + 2t′p < n′ − t′a − t′f (implied by 3t′a + 2t′p + t′f < n′). We can
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Protocol πdBGW

Input: A value s from the dealer P1, and a set of parties Q ⊆ P such that the
number of active, passive and fail-stop corrupt parties in this set, t′a, t

′
p and t′f

respectively, satisfy 3t′a + 2t′p + t′f < n′ := |Q|.
Output: Either “disqualified” (indicating that P1 is disqualified) or [s]d (i.e the

output of fd,perfsh (s))

1. P1 chooses a bivariate polynomial fd(x, y) of degree d in each variable with
fd(0, 0) = s. P1 sends the polynomial fi(x) = fd(x, i) and gi(y) = fd(i, y)
to Pi (i = 1, . . . , n).

2. Each pair of parties (Pi, Pj) exchange their cross-over points and check for

inconsistencies (i.e whether fi(j)
?
= gj(i) and fj(i)

?
= gi(j))

3. In case of any inconsistencies, the parties broadcast a complaint to the
dealer P1 including the relevant cross-over points.

4. P1 resolves the conflict between a pair, say (Pi, Pj) by broadcasting the
relevant cross-over point w.r.t. which the complaint was made. Correspond-
ing to the unhappy party (whose broadcast was inconsistent with the value
broadcast by P1), say Pi, P1 is supposed to broadcast fi(x) and gi(y). Each
party checks if these polynomials broadcast by P1 are consistent with the
ones they possess. If not, they broadcast a complaint accusing P1.

5. If there are more than dn′/3e − 1 accusations against P1, parties output
disqualified and stop.

6. If Pi was unhappy, it sets its polynomials fi(x), gi(y) as the ones broadcast
by P1 during complaint resolution Else, Pi uses the polynomials sent by
P1 privately in the beginning of the protocol. Let si = fi(0) denote the
respective share of Pi.

Fig. 11. An adaptation of the BGW VSS protocol [BGW88,Dwo90,DDWY93]

therefore infer that 2t′a + 2t′p < j + r, so t′a + t′p < (j + r)/2, which means that

the adversary has access to j+r
2 − 1 shares at most.

If r ≤ j, then j+r
2 − 1 ≤ j − 1, so the adversary learns at most j − 1 shares,

which leak no information about sj−1. It is then left to analyze the case r > j,
in which it holds that

r ≤ t′a ≤
2t′p + 2t′a

2
≤
n′ − t′a − t′f − 1

2
≤ |W | − r − 1

2
<
|W | − j − 1

2
.

This implies that |W | > 2r + j, which is a contradiction as we assumed above
that |W | ≤ 2r + j. ut

5.3.3 Perfectly Secure VSS with Fair Reconstruction We present
our protocol πperf

VSS for perfect VSS with fair reconstruction in Figures 12 and
13. In a nutshell, our protocol is obtained by using the BGW VSS protocol
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Protocol πperf
VSS, sharing phase

Let the set of participants Q be initialized to P, n′ = n, t′a = ta, t
′
p = tp, t

′
f = tf .

The sharing protocol involving a dealer P1 with secret s proceeds as follows:

1. P1 samples random elements s1, s2 . . . sdn′/2e−1 ∈ F such that∑dn′/2e−1
d=1 sd = s.

2. For each d from 1 to dn′/2e− 1, the parties in Q run πdBGW(sd) and proceed
as follows:
– If some party Pj is detected to fail-stop during the execution of πdBGW(sd),

then the parties set Q ← Q\{Pj} and re-run the sharing protocol from
the beginning.

– Else, if the dealer has been disqualified as the output of πBGW, parties
output disqualified and stop.

– Else, parties get [sd]d ← πdBGW(sd).
3. Parties output the levelled-sharings

〈s〉dn
′/2e−1,1 = ([s1]1 , . . . ,

[
sdn′/2e−1

]
dn′/2e−1

).

Fig. 12. Sharing phase of our protocol πperf
VSS for Verifiable Secret Sharing in the

perfect setting

[BGW88,Dwo90,DDWY93] as a building block to instantiate the functional-

ity fd,perfsh from Section 5.1.1, and then, for the reconstruction phase, Protocol

πα,βpLevRec is used to reconstruct the levelled sharing. Our adaptation of the BGW

VSS protocol appears in Protocol πdBGW in Fig. 11. As usual, the protocol also
takes as input a set of parties Q ⊆ P such that the number of active, pas-
sive and fail-stop corrupt parties in this set, t′a, t

′
p and t′f respectively, satisfy

3t′a + 2t′p + t′f < n′ := |Q|. The protocol guarantees that, on input s from a dealer
Pi ∈ Q, either the parties in Q obtain consistent shares [s]d, or the dealer is
detected as corrupt and disqualified.

We now analyze the properties of the VSS protocol πperf
VSS from Figures 12 and

13. First, the privacy of the secret s at the end of sharing phase holds since the
adversary cannot learn any information about sdn′/2e−1 at the end of sharing
protocol. This directly follows from the fact that the adversary has access to the
shares of at most dn′/2e − 1 parties since dn′/2e − 1 is the maximum value of
t′a+ t′p subject to 3t′a+2t′p+ t′f < n′. Next, it is easy to check that the correctness

of Protocol πperf
VSS holds due to correctness of πdPerfRec(·) (Lemma 7), that is, either

the output of the reconstruction phase is the right secret s, or ⊥.
Lastly we analyze fairness i.e. whether it is possible for the adversary to learn

the secret s shared by some honest dealer while the honest parties do not. To
this end, suppose reconstruction of sj fails. It follows from Lemma 9 that, if
j ≥ 2, then the adversary does not learn sj−1, which means it does not learn s
as sj−1 is a random mask required to reconstruct s. On the other hand, if j = 1,
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Protocol πperf
VSS, reconstruction phase

The fair reconstruction protocol of the VSS proceeds as follows:

1. For each d from dn′/2e − 1 down to 1, the d-shared value sd can be
reconstructed using πdPerfRec([sd]d) (Figure 10). If it returns s′d 6= ⊥, the
parties continue to reconstruction of sd−1. Else they output ⊥ and terminate.

2. If reconstruction of each among s1, s2 . . . sdn′/2e−1 is successful, the parties

output the secret s =
∑dn′/2e−1
d=1 s′d = s′.

Fig. 13. Reconstruction phase of our protocol πperf
VSS for Verifiable Secret Sharing

in the perfect setting

then the proof of Lemma 9 shows that 2(t′a + t′p) < j + t′a, which implies that
t′a + 2t′p < j = 1. From this we see that t′a = t′p = 0, so in this case fairness is
trivial as such an adversary would not have access to any of the messages sent
during πperf

VSS. This is because the communication throughout πperf
VSS is only over

pairwise-private channels (recall that broadcast in the perfect setting is realized
by adapting standard broadcast protocols that use pairwise-private channels),
thereby an adversary with t′a = t′p = 0 would not receive any message. This

completes the description and analysis of the perfect VSS protocol πperf
VSS with

fair reconstruction against dynamic adversary. This is captured in the following
theorem.

Theorem 8. The protocol πperf
VSS instantiates the fair VSS functionality with

perfect security against the adversary Aperf .

6 General Mixed Adversaries

In [BFH+08] and [HMZ08], SFE and MPC against general mixed adversaries was
studied. A general mixed adversary may choose to actively, respectively passively,
respectively fail corrupt players in three different subsets, where the triple of
subsets must be chosen from a family of triples known as an adversary structure.
Combinatorial characterizations are given of the adversary structures that allow
for SFE and reactive MPC, with perfect security in [BFH+08] and statistical in
[HMZ08].

Since the actual triple (corruption strategy) chosen by the adversary is not
given to the protocol, this model also covers the dynamic adversary model we
consider here. In a nutshell, our model is the general mixed adversary model,
where the adversary is limited to adversary structures described only by subset
sizes ta, tp and tf .

The set of players is called P . An adversary structure is a family of triples of
subsets of P , A = {(A,E, F )}, where the semantics is that the adversary may
choose to corrupt players in A actively, players in E passively and fail corrupt
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players in F . A must satisfy some natural monotonicity conditions, coming from
the fact that if a subset is corruptible, the adversary could always choose to
corrupt any smaller subset. Also, it is assumed that for any triple A ⊆ E,A ⊆ F .
This is done in [BFH+08] and [HMZ08] to simplify notation, the idea is that an
actively corrupt player can behave as if he was passively or fail corrupted.

We will define a threshold adversary structure T to be one where membership
of a triple (A,E, F ) in T can be decided based only on the sizes of A,E and F .
Let us define E′ = E \ A,F ′ = F \ A as the sets that are only passively, resp.
only fail corrupted. To get the connection to our parameters ta, tp and tf , we
define Sizes(T ) to be the family of triples (ta, tp, tf ) that occur as sizes of sets
(A,E′, F ′) induced by some triple (A,E, F ) ∈ T .

The type of question we ask in this paper can now be rephrased as: given a
threshold adversary structure T , what conditions must Sizes(T ) satisfy to allow
for SFE and MPC?

6.1 Statistical Security

In [HMZ08] two conditions are given on an adversary structure A.

C2 : ∀(A1, E1, F1), (A2, E2, F2) ∈ A : E1 ∪ E2 ∪ (F1 ∩ F2) 6= P

C1 : ∀(A1, E1, F1), (A2, E2, F2) ∈ A : E1 ∪ F2 6= P

It is shown that SFE against A is possible with statistical security if and only if
C2 is satisfied, and reactive MPC is possible if and only if both C1 and C2 are
satisfied.

Recall that we defined E′i and F ′i to be the sets that are only passively resp.
only fail corrupted, then the conditions can be written as A1 ∪A2 ∪ E′1 ∪ E′2 ∪
(F1 ∩ F2) 6= P and A1 ∪ E′1 ∪A2 ∪ F ′2 6= P

Note that by monotonicity, we can assume without loss of generality that
A1, A2 are disjoint, that E′1, E

′
2 are disjoint, and that one F ′-set is contained in the

other, as this allows us to achieve the same (family of) subset(s) E1∪E2∪(F1∩F2)
that occur in the condition. The same holds for C1. Hence for a threshold adversary
structure T where only set sizes matter, we can rewrite the conditions as follows:

Cth2 : ∀(t1a, t1p, t1f ), (t2a, t
2
p, t

2
f ) ∈ Sizes(T ) : t1a + t2a + t1p + t2p +min(t1f , t

2
f ) < n

Cth1 : ∀(t1a, t1p, t1f ), (t2a, t
2
p, t

2
f ) ∈ Sizes(T ) : t1a + t1p + t2a + t2f < n

These are well defined conditions, but not very useful: we would rather have a
criterion that describes what conditions a single triple ta, tp, tf must satisfy. It
turns out that the C2 is equivalent to the non-dynamic feasibility bound:

Lemma 10. A threshold adversary structure T satisfies C2 (or, equivalently,
Cth2 ) if and only if

∀(ta, tp, tf ) ∈ Sizes(T ) : 2ta + 2tp + tf < n
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Proof. Assume first C2 is satisfied. Then we can let (ta, tp, tf ) = (t1a, t
1
p, t

1
f ) =

(t2a, t
2
p, t

2
f ) in Cth2 and then 2ta + 2tp + tf < n follows immediately. Conversely,

assume that 2t1a + 2t1p + t1f < n and 2t2a + 2t2p + t2f < n. Adding these two
inequalities gives

t1a + t2a + t1p + t2p + (t1f + t2f )/2 < n

From this Cth2 follows, since min(t1f , t
2
f ) ≤ (t1f + t2f )/2. ut

For C1, we can define for any threshold adversary structure T , the following
two values:

RT = max(ta,tp,tf )∈Sizes(T )(ta + tp), FT = max(ta,tp,tf )∈Sizes(T )(ta + tf ).

Intuitively, RT is the maximal number of player states the adversary can read,
while FT is the maximal number of players the adversary can have abort the
protocol. It is now immediate that we have

Lemma 11. A threshold adversary structure T satisfies C1 (or, equivalently,
Cth1 ) if and only if RT + FT < n

This means that the threshold structures that allow for reactive MPC are
characterized, simply as exactly those that satisfy the above two lemmas.

We now give a more concrete characterization of some special cases that
satisfy the conditions, as they can be easier to work with. Suppose T satisfies
both C1 and C2. It is clear from C2 that RT < n/2. So if we do not assume any
stronger conditions than C2, we must have FT ≤ n/2. This is exactly the bounds
we arrived at earlier, 2ta + 2tp + tf < n and ta + tf ≤ n/2 (Theorem 2).

But it is also possible to choose a different tradeoff on the parameters, say
we demand 3ta + 3tp + tf < n, which implies C2 and RT < n/3. Then we can
satisfy C1 by asking that ta + tf ≤ 2n/3, which essentially allows for more fail
corruptions.

In general, we can consider any bound of the form αta + βtp + tf < n where
α, β ≥ 2 so C2 is satisfied. It is now not hard to see that the maximal value
of tp + ta is less than n/m where m = min{α, β}. So C1 will be satisfied, if
ta + tf ≤ n(m− 1)/m. To summarize:

Lemma 12. A threshold adversary structure T satisfies C1 and C2 if for all
(ta, tp, tf ) ∈ Sizes(T ) it holds that αta +βtp + tf < n and ta + tf ≤ n(m− 1)/m,
where α, β,m are numbers such that α, β ≥ 2 and m = min{α, β}.

6.2 Perfect Security

In [BFH+08] characterizations are given on adversary structures that allow for
perfectly secure SFE and MPC. They give the following condition

Cmult : ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ A : E1∪E2∪A3∪(F1∩F2∩F3) 6= P

and show that this and another condition called Cnrec is necessary and sufficient
for perfect SFE. However, the Cnrec is only needed to ensure that a secret-shared
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output can be revealed using levelled secret sharing, such that the reconstruction
is fair and if it fails, one can identify at least one corrupt player. Now, in the
proof of Theorem 8, we show that this is indeed possible efficiently for the entire
parameter range 3ta + 2tp + tf < n. If this condition is violated, not even non-
dynamic protocols exist, so we can ignore the Cnrec condition in our threshold
case.

We can translate Cmult condition to a condition on a threshold adversary
structure T exactly as above, to get

Cthmult : ∀(t1a, t1p, t1f ), (t2a, t
2
p, t

2
f ), (t3a, t

3
p, t

3
f ) ∈ Sizes(T ) : t1a+t2a+t3a+t1p+t

2
p+min(t1f , t

2
f , t

3
f ) < n

It is easy to see that Cthmult implies the inequality 3ta + 2tp + tf < n for all triples
in Sizes(T ) - by taking all the triples in the condition to be equal. However, the
converse is clearly false: one can choose maximal values such that t3a < n/3 and
t1p, t

2
p < n/2 (by having the other parameters be 0) and this clearly sums to more

than n.
So hence G.O.D. perfect dynamic SFE is not possible assuming only 3ta +

2tp + tf < n. Of course, this is no surprise, as we show in Theorem 3 that perfect
dynamic SFE is impossible under this assumption, even if we only require security
with abort.

The question then is to find a simpler complete characterization of the T ’s
that satisfy Cthmult. We leave the solution of this for future work, but a partial
answer is obtained in the following lemma:

Lemma 13. Sizes(T ) satisfies Cthmult if ∀(ta, tp, tf ) ∈ Sizes(T ) we have that
αta + βtp + tf < n where α ≥ β and 1/α+ 2/β ≤ 1.

Proof. We do the proof by analyzing how we can choose 3 triples from Sizes(T )
such that we maximize the sum in the condition. Since the sum contains the
summand min(t1f , t

2
f , t

3
f ) it is optimal to have t1f = t2f = t3f = m for some m.

Namely, having some tif be larger than the others would force tia, t
i
p to be smaller

without increasing the minimum. Further we should clearly choose maximal t3a
such that t3a < (n−m)/α. Now, since β ≤ α we maximize t1a + t1p by choosing
t1a = 0 and t1p maximal such that t1p < (n−m)/β. We see that then the sum will
be less than

(n−m)/α+ 2(n−m)/β +m ≤ n

by the assumption on α, β. ut

Note that it is clear from the proof that if we are after a general inequality of
form αta + βtp + tf < n, then 1/α + 2/β ≤ 1 is the weakest condition we can
put on α and β. So in this sense, the lemma is optimal.

We allow a larger number of active corruptions by choosing a smaller α, and
it is easy to see that α = 3 is the smallest value where the condition can be
satisfied, and we get that 3ta + 3tp + tf < n is sufficient. However, we may as
well consider the simpler 3ta + tf < n because in this case the “price” of active
and passive corruptions is the same and it is better for the adversary to corrupt
actively.
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However, we can also choose larger values of α, and this will allow β to be
smaller than 3. In the limit, we can take ta = 0 and then we can have β = 2, so
we get the condition 2tp + tf < n.

In [BFH+08], they also state the condition Crec.

Crec : ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ A : E1∪A2∪A3∪(F2∩F3) 6= P

And it is shown that reactive perfect MPC is possible if and only both Cmult
and Crec are satisified. The threshold version of this is

Cthrec : ∀(t1a, t1p, t1f ), (t2a, t
2
p, t

2
f ), (t3a, t

3
p, t

3
f ) ∈ Sizes(T ) : t1a+t2a+t3a+t1p+min(t2f , t

3
f ) < n

We can first easily see that the non-dynamic feasibility condition 3ta + 2tp +
tf < n is not sufficient to ensure that Cthrec is satisfied, not even if we also require
tf = 0. We have

Lemma 14. The requirement 3ta + 2tp < n does not imply Cthrec, for n ≥ 7.

Proof. The assumption allows us to choose (t1a, t
1
p, t

1
f ), (t2a, t

2
p, t

2
f ), (t3a, t

3
p, t

3
f ) as

(0, t1p, 0), (t2a, 0, 0), (t3a, 0, 0), where t2a, t
3
a are maximal such that they are smaller

than n/3 and t1p maximal smaller than n/2. It is easy to see that this will violate

Cthrec when n ≥ 7. ut

We now analyse the Cthrec condition for the two special cases we arrived at
above, where no passive or no active corruptions are allowed, and we want to
derive in each case the weakest possible additional condition we can put so that
Crec is also satisfied.

Lemma 15. Let T be the threshold adversary structure such that Sizes(T )
contains all triples satisfying tp = 0 and 3ta + tf < n. Construct a new structure
S ⊆ T by selecting from Sizes(T ) only those triples satisfying 3ta + 3/2tf ≤ n.
Then S satisfies Crec (and Cmult). Furthermore, if we do the same with the
weaker inequality 3ta + δtf ≤ n for δ < 3/2, then Crec is violated.

Proof. Let us assume an inequality 3ta + δtf ≤ n and figure out what δ needs to
be to ensure Crec.

The sum in the condition becomes t1a + t2a + t3a +min(t2f , t
3
f ), and as in the

previous lemma, it is optimal to have t2f = t3f = m for some m, where we know

that m ≤ n/δ. We can freely maximize t1a so it is less than n/3 (satisfying our
assumption 3ta + tf < n), while the largest value we can have for t2a, t

3
a is the

maximal value (n− δm)/3. Now, the sum is less than n/3 + 2(n− δm)/3 +m,
so to get Crec we need

n/3 + 2(n− δm)/3 +m ≤ n

which simplifies to
(3− 2δ)m ≤ 0

So this implies that if we want to allow fail corruptions at all, the smallest value
of δ that will work is δ = 3/2, any smaller value would violate the inequality. ut
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Lemma 16. Let T be the threshold adversary structure such that Sizes(T )
contains all triples satisfying ta = 0 and 2tp + tf < n. Construct a new structure
S ⊆ T by selecting from Sizes(T ) only those triples satisfying 2tp + 2tf ≤ n.
Then S satisfies Crec (and Cmult). Furthermore, if we do the same with the
weaker inequality 2tp + γtf ≤ n for γ < 2, then Crec is violated.

Proof. It is very easy to see that assuming the inequality 2tp + 2tf ≤ n, Crec
is satisfied, as the ta-summands are 0, tp summands are less than n/2 (as we
assume 2tp + tf < n) and tf summands are at most n/2. It is also clear that if
γ < 2, we can have min(t2f , t

3
f ) ≥ n/2 and Crec fails. ut
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A Supplement to Impossibility Results

A.1 Impossibility of [FHM98].

Lemma 17. Let f ′ denote a function computing the logical AND of two inputs
bits x′1 and x′2 held by P ∗1 and P ∗2 respectively. Then no 3-party protocol com-
puting f ′ among {P ∗1 , P ∗2 , P ∗3 } can achieve perfect security with abort against an
adversary that corrupts either P ∗1 or P ∗2 passively or P ∗3 actively.

Proof. Suppose by contradiction, there exists a 3-party protocol π′ computing f ′

that achieves perfect security with abort against an adversary that corrupts either
P ∗1 or P ∗2 passively or P ∗3 actively. Let Tij (1 ≤ i < j ≤ 3) denote the transcript
of the private communication between P ∗i and P ∗j and T denote the transcript of
the communication via broadcast channels. We consider the following sequence
of observations:

- T12 and T must be independent of x′1 and x′2. If not, consider the first message
in T12 or T that depends on the input of its sender, say P ∗1 . Then, a passively
corrupt P ∗2 can learn x′1 irrespective of x′2 (which should not be allowed as
per the ideal realization of f ′). Therefore, we can conclude that P ∗1 ’s output
cannot be determined by {T12, T} alone and should depend on the messages
received from both P ∗2 and P ∗3 i.e {T12, T13, T}.

- Consider two executions E1, E2 where (x′1, x
′
2) = (1, 0) and (x′1, x

′
2) = (1, 1)

respectively. Suppose no one misbehaves in E1, E2. Then the protocol must
result in all parties obtaining the correct output which is 0 and 1 respectively.
Assume that T, T12 is identical across E1, E2. This is possible based on the
above observation.

- Consider an execution E3 where (x′1, x
′
2) = (1, 1) where an actively corrupt

P ∗3 replaces his messages to P ∗1 , P
∗
2 with random strings. With some small

but non-zero probability, the view of P ∗1 may be identical to his view in E1

resulting in him outputting 0 which violates correctness. Note that this holds
even though π′ achieves security with abort as P ∗1 ’s view is identical to E1

where all parties behave honestly and therefore P ∗1 does not output ⊥.

We have thus arrived at a contradiction to our assumption that π′ is secure,
completing the proof of Lemma 17. ut

A.2 Generalization of Theorem 3.

The proof of Theorem 3 can be extended for n > 6 by tweaking the transformation
from the n-party protocol π to the 3-party protocol π′ in the following manner:
P ∗1 emulates the role of some set S1 of dn/2e − 1 parties, P ∗2 emulates another
disjoint set S2 of dn/2e − 1 parties and P ∗3 emulates the role of the remaining set
of parties S3, which comprises of 2 parties or 1 party (depending on whether n is
even or odd respectively). We see that the resulting protocol tolerates either a
passively corrupt P ∗1 , a passively corrupt P ∗2 or an actively corrupt P ∗3 , since these

38



correspond to passively corrupting S1, S2, or actively corrupting S3
7 respectively,

which is allowed by π as per assumption. The rest of the argument remains same
as before.

B Missing Proofs from Section 5

Lemma 18 (Lemma 5 restated). Consider an actively corrupt party Pi and
an honest party in Q \ (F1 ∪ F2) in protocol πdStatRec. Let si be Pi’s share in [s]d,
and suppose Pi broadcasts s′i 6= si in the first step. Then, with probability at least
1− 1

|F| , Pj broadcasts (accuse, Pi) in the accusation round.

Proof. Begin by writing s′i = si + δi, and suppose that Pi broadcasted m′ij =
mij + γij for some errors δi, γij ∈ F with δi 6= 0. The honest Pj checks the

equation m′ij
?
= αji ·s′i+βji, and we claim that this equation is satisfied only with

probability 1/|F|. To see this observe that by construction mij = αji · si +βji, so,
if the equation above is satisfied, we have that αji · δi = γij , but since δi 6= 0, this
implies that αji = γij/δi. Since γij/δi are chosen by the adversary independently
of αji, which follows from the fact that Pi knows nothing about αji because the
random value βji masks αji in mij , we conclude that the adversary can only
satisfy the above equation with probability at most 1/|F|. ut

Theorem 9 (Theorem 5 restated). Protocol πstat
god evaluates the function f in

O(n) rounds with statistical security against Astat.

Proof. We model the protocol πStatBase as a functionality FStatBase that, on top of
receiving the inputs for f from all the parties, receives as input from the adversary

a set F ⊆ P of fail-stop parties, and computes the functionality f
dn′/2e−1,1
sLevSh ◦f on

the inputs of parties in P \F , with default inputs for the parties in F . This is the
functionality instantiated by the protocol πStatBase. We define a simulator S that
interacts with the adversary A, and with an ideal functionality for evaluating f ,
in such a way that the adversary cannot distinguish, up to a negligible statistical
error, whether it is interacting with the actual honest parties in a real execution,
or with the simulator in the ideal execution. The simulator is defined as follows:

1. S initializes Q := P.

2. S emulates the functionality FStatBase, and it also emulates virtual honest
parties. The adversary begins by sending the inputs from the corrupt parties
to the functionality FStatBase, as well as the set F .

3. S sets Q ← Q \ F , and then it calls ([ŷd]d)
dn′/2e−1
d=1 = f

dn′/2e−1,1
sLevSh (y′), where

y′ ∈ F is a random dummy value, and sends the actively and passively
corrupted parties in Q their respective shares and a random element r′ ∈ F.

7 when n > 6, π must be able to tolerate at least two active corruptions which is the
maximal size of S3.
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4. The parties then engage in the protocol π
dn′/2e−1,1
sLevRec (〈y′〉dn

′/2e−1,1
). S emulates

this execution as follows: Let δ = t′a + t′p ≤ dn′/2e − 1, which in particular
means that adversary knows the values ŷ1, . . . , ŷδ−1. S emulates the honest
parties in the steps corresponding to d = dn′/2e − 1, . . . , 1 in protocol

π
dn′/2e−1,1
sLevRec (〈y′〉dn

′/2e−1,1
) as follows:

(a) If δ < d ≤ dn′/2e − 1, emulate the steps of π
dn′/2e−1,1
sLevRec (〈y′〉dn

′/2e−1,1
) on

behalf of honest parties. Let F denote the set of fail-stop parties and A
denote the set of corrupt parties who broadcast shares inconsistent with
what was returned to them in Step 3. In the ‘accusation’ round, complain
against Pi ∈ A on behalf of honest parties in Q. If n′ − |F| − |A| ≤ d,
then S updates Q ← Q \ (A ∪ F), n′ = |Q| and repeats the simulation
from step 2 above. Else S continues.

(b) If d = δ, then S queries the functionality that computes f setting the
input of the corrupted parties in Q to be what S received from the
adversary in step 2, and setting the inputs of parties in P \ Q to default
values. S gets the output y, updates ŷδ ← y−

∑
d6=δ ŷd + r′, and emulates

the honest parties in the reconstruction of [ŷδ]δ, modifying the shares
from the virtual honest parties so that the reconstructed value matches
the updated ŷδ. Notice that this is possible since the adversary controls
only δ shares.

(c) If 1 ≤ d ≤ δ − 1, S emulates the honest parties in the reconstruction of
[ŷd]d. S instructs the functionality to provide output to the honest parties
that were not declared fail-stop up to this point.

To see that the real and ideal executions are statistically indistinguishable,
we begin by observing that, if step 4.a is reached, then the adversary cannot
distinguish between the two executions up to that point. This follows from the
fact that S perfectly emulates the real world, except in the following aspects:
First, it uses a dummy random value y′ for the levelled sharing. However, this is
acceptable because, during step 4.a, the adversary does not learn ŷδ (implied by
Proposition 2), which perfectly hides the value of ŷ (subsequently, y) in the real
execution. Second, the difference between real and ideal execution is the manner
in which a corrupt Pi is included in A - In the former, a corrupt Pi is included
in A if atleast dn

′′+1
2 e parties accuse Pi of failing the mac verification, where

n′′ = |Q| − |F1| − |F2|. In the latter, Pi is included in A, if Pi broadcasts share
inconsistent with what was received as output of FStatBase. Indistiguishability
follows directly from Lemma 5 and the fact that there are atleast dn

′′+1
2 e honest

parties among Q \ (F1 ∪ F2).
Next, we consider the special case when δ = 0 (i.e. t′a = t′p = 0) and the

simulation terminates after step 4.a. In the ideal execution, the adversary learns
the dummy random element y′ which perfectly emulates the real execution where
the adversary learns the masked output ŷ (which perfectly hides the output y, as
the adversary with t′a = t′p = 0 has no information about the random mask).

Given the above, it only remains to look at the case when δ ≥ 1 and in which
step 4.b (and subsequently 4.c) is reached. From Proposition 1, with overwhelming
probability, if this step is reached then it is because all the reconstructed values
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ŷδ+1, . . . , ŷdn′/2e−1 are correct. In the ideal world, the output y is computed from
the inputs of the parties in the current set Q, and the output is provided to all
honest parties in Q that were not signalled as fail-stop. We argue that this also
happens in the real world. To this end, it is enough to show that the adversary
cannot disrupt the reconstruction of [ŷd]d for d = δ, . . . , 1, since in this case the
honest parties will be able to obtain the output in the real execution. To see this
simply note that, from the fault identification property in Proposition 2, if the
adversary disrupts the reconstruction of [ŷd]d for some d = δ, . . . , 1, then a pair
of sets A,F ⊆ Q of actively and fail-stop corrupted parties with |F ∪A| ≥ n′− d
is produced. However, this implies that

t′f + t′a ≥ n′ − d ≥ n′ − (t′a + t′p) > (t′f + 2t′a + 2t′p)− (t′a + t′p) = t′f + t′a + t′p,

which is a contradiction.
ut

C Some Special Cases

We saw in Sections 3 and 4 multiple impossibilities results for MPC against
a dynamic adversary that satisfies 3ta + 2tp + tf < n in the perfect setting
(Aperf), and 2ta + 2tp + tf < n in the statistical setting (Astat). More specifically,
Theorem 2 in Section 3 shows that statistically secure VSS with G.O.D. against
Astat is impossible. Perfectly secure SFE with abort is impossible against Aperf ,
even if tf = 0 (Section 4.1) and perfectly secure VSS with G.O.D. against Aperf

is also impossible, even if tf = 0 (Section 4.2).
However, if add some extra assumptions we can show that these impossibility

results do not hold anymore. Concretely, we show in Section C.1 below that
reactive dynamic MPC with G.O.D. and statistical security is possible, if we
introduce the additional assumption RS + FS < n (shown to be necessary in
Theorem 2). Also, in Sections C.2 and C.3 we show that perfectly secure SFE
and VSS with G.O.D. are both possible if we assume either that ta = 0 or tp = 0.

C.1 Reactive MPC with Statistical Security

Theorem 10. Suppose S is the set of corruption strategies the adversary can
choose from, RS is the maximal number of player state the adversary can read
and FS is the maximal number of players the adversary can have abort. In the
statistical setting, the condition RS +FS < n is necessary and sufficient to design
a VSS with G.O.D against a dynamic adversary.

Proof. It follows from Theorem 2 that it is possible to design a VSS with G.O.D
against Astat only if RS + FS < n, implying that this additional condition is
necessary. We prove its sufficiency by describing a VSS protocol below that
achieves G.O.D against Astat, when RS + FS < n holds.

For the sharing protocol we use our SFE protocol πstat
god from Fig. 6 in Sec-

tion 5.1.3 to evaluate the function fRS ,stat
sh (·), where the dealer inputs its secret
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value s, producing sharings [s]RS
. Notice that this preserves privacy as RS is

the maximal number of player states that Astat can read. To reconstruct, the
parties use protocol πRS

StatRec from Fig. 3. As we saw in Proposition 1, either the
parties succeed in the reconstruction, or they fail while outputting a set of size
at least n−RS containing only active and fail-stop parties. However, the latter
cannot happen since n − RS > FS , so the only possibility remaining is that
reconstruction always succeeds. ut

Since VSS and SFE together imply general reactive MPC by verifiably secret-
sharing the intermediate states [HMZ08], we obtain the following result for
reactive MPC.

Theorem 11. Suppose S is the set of corruption strategies the adversary can
choose from, RS is the maximal number of player state the adversary can read
and FS is the maximal number of players the adversary can have abort. In
the statistical setting, reactive MPC with G.O.D. is possible against a dynamic
adversary who is allowed to choose a corruption strategy such that RS + FS < n.

Lastly, we note that it is easy to view the above construction in terms of
(ta, tp, tf ) as well. Specifically, the above construction can be used to show that
2ta + 2tf ≤ n is sufficient for VSS and reactive MPC with G.O.D. In more
detail, the sharing protocol, πstat

god can be used to generate sharings [s]dn/2e−1 with

threshold dn/2e − 1 (maintains privacy as dynamic adversary needs to respect

2ta + 2tp + tf < n); while π
dn/2e−1
StatRec ([s]dn/2e−1) constitutes the reconstruction

protocol. It is easy to see that the reconstruction always succeeds (if it fails, a
set of n − (dn/2e − 1) = bn/2c + 1 parties must be output comprising of only
active and fail-stop parties which is not possible as ta + tf ≤ n/2 as per the
assumption).

C.2 Perfectly Secure SFE

Notation. The definitions and the protocols in this section are defined with
respect to a set of parties Q ⊆ P. Looking ahead, this set of parties denote
the subset of parties in P that remain after some of the corrupt parties (fail-
stop or actively corrupt) are identified and eliminated. Importantly, the bound
3t′a + 2t′p + t′f < n′ also holds for the set Q, where |Q| = n′ ≤ n.

C.2.1 Upper Bound (ta = 0). In this section, we consider an adversary
A(tp,tf ) with ta = 0. In particular, A(tp,tf ) can choose (tp, tf ) subject to 2tp+tf <
n (as opposed to 3ta + 2tp + tf < n). Unlike the case of tf = 0 of Section 4.1, it
turns out that it is feasible to design perfect dynamic SFE with G.O.D against
A(tp,tf ).

The perfectly-secure protocol πta=0
god presented in Fig 14 achieves G.O.D. against

A(tp,tf ). Similar to our protocol πstat
god (Fig. 6), the protocol proceeds in two phases

– In Phase 1, a perfectly-secure MPC protocol φ that achieves G.O.D against
t < n/2 passive corruptions is executed. φ can be instantiated using existing
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protocols like the one from [DN07]. Accounting for the fact that these protocols
achieve G.O.D. only against a passive adversary and attain security with abort
when there are fail-stop corruptions, we do not invoke φ to compute the desired
function f directly. Instead, φ is used to compute an (dn/2e−1, 1)-levelled sharing
of the output of f . Privacy of the levelled-sharing (Lemma 8) ensures that when φ
results in honest parties obtaining ⊥, the adversary who learns the internal state
of tp ≤ dn/2e−1 parties does not learn the output either. The fail-corrupt parties
who crashed during φ are subsequently eliminated and Phase 1 is re-run until it
is successful. After (n− 1) runs in the worst case (when one fail-corrupt party is
eliminated in each run), the parties proceed to Phase 2, where they attempt to
reconstruct the (dn/2e − 1, 1)-levelled shared output. If the reconstruction fails,
then the parties restart from Phase 1 upon eliminating the fail-corrupt parties
who crashed during Phase 2. This completes the high-level description of the
protocol πta=0

god . The formal description of πta=0
god , analysis of its correctness and

security appears below.

Lemma 19. Protocol πta=0
god computes the correct output

Proof. The correctness of πta=0
god follows directly from correctness of φ and cor-

rectness of π
dn′/2e−1,1
pLevRec (·) (Lemma 9). ut

We state the formal theorem below.

Theorem 12. There exists a perfectly-secure protocol that achieves G.O.D. against
an adversary who can choose (tp, tf ) such that 2tp + tf < n.

We only present an informal argument for this theorem. First, it is easy to
check from the protocol steps that the honest parties will receive the output after
at most (n− 1) re-runs (in the worst case, Phase 1 will eliminate one fail-corrupt
party in each run). Next, we argue that A(tp,tf ) will receive a unique output
(identical to the honest parties). He learns no information about the output
corresponding to the unsuccessful runs (in which n′ ≤ n parties participate)
due to the following reasons: (a) Suppose Phase 1 is unsuccessful. Note that
A(tp,tf ) can receive only upto t′p ≤ dn′/2e − 1 shares of the output. It follows
from Lemma 8 that this information perfectly hides the output y which is
(dn′/2e − 1, 1)-levelled shared. (b) Suppose that Phase 2 is unsuccessful due to
failure in reconstruction of summand yj (j ≥ 2). Then it follows from the property

of fairness of π
dn′/2e−1,1
pLevRec (Lemma 9) that the adversary cannot learn yj−1 and

subsequently y. Lastly, suppose that there is failure in reconstructing summand
y1. This would occur when 1 ≥ n′ − t′f > 2t′p (as 2t′p + t′f < n′ holds), which
implies t′p = 0 and t′f = n′ − 1. In this case, it follows trivially that the adversary
has no information about the output. This is because an adversary with t′p = 0

will not have access to any message sent during πta=0
god , as all communication

throughout πta=0
god occurs over pairwise-private channels (recall that broadcast in

the perfect setting is realized by adapting standard broadcast protocols that use
pairwise-private channels). This completes the intuition.
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Protocol πta=0
god

Inputs: Each party Pi participates with input xi (i ∈ [n])
Output: f(x1, . . . , xn)
Building Blocks: - A perfectly secure MPC protocol φ achieving G.O.D

against t < n/2 passive corruptions (instantiated by [DN07]). φ achieves
security with abort in the presence of A(tp,tf ) respecting 2tp + tf < n;
Function fα,βpLevSh (Fig 9) and Protocol πα,βpLevRec (Fig 10)

Initialization: Q = P, C = ∅, n′ = n, t′f = tf , t
′
p = tp, t

′
a = ta = 0.

Phase 1: Each Pi ∈ Q does the following:

- Participate in an execution of φ with input xi to compute f
dn′/2e−1,1
pLevSh (y),

where y = f(x1, . . . , xn) (default inputs used for parties in C). a

- If a set of parties S with |S| ≥ 1 crash during φ, update C = C ∪ S,
Q = Q \ S, t′f = t′f − |S| and n′ = n′ − |S|. Re-run Phase 1.

- Else, proceed to Phase 2.

Phase 2: Let 〈y〉dn
′/2e−1,1 denote the output of Phase 1. The parties in Q do

the following:

- Run π
dn′/2e−1,1
pLevRec (〈y〉dn

′/2e−1,1) to reconstruct the (dn′/2e−1, 1)-levelled

shared output. b

- Suppose it outputs y′ 6= ⊥, output y′.
- Else, suppose it outputs (⊥, S). Then, update C = C∪S, Q = Q\S, t′f =
t′f − |S| and n′ = n′ − |S|. Restart from Phase 1.

a If n′ ≤ 2, φ is used to compute f directly as there are no passive corruptions
b Since active corruptions are not present, the following simplified variant of

π
dn′/2e−1,1
pLevRec (〈y〉dn

′/2e−1,1) can be used alternately - During reconstruction
of summand yδ (δ ∈ [1, dn′/2e − 1]), if at least δ + 1 parties broadcast
their shares, interpolate a polynomial A(x) of degree δ using the shares and
compute yδ = A(0). Else output (⊥, C) where C comprises of the parties who
crashed.

Fig. 14. Perfect SFE with G.O.D against dynamic adversary with ta = 0
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C.2.2 Upper Bound (tp = 0). In this section, we consider an adversary
A(ta,tf ) with tp = 0, which in particular means that A(ta,tf ) can choose (ta, tf )
subject to 3ta + tf < n (as opposed to 3ta + 2tp + tf < n). In this case it is also
feasible to design perfect dynamic SFE with G.O.D. against A(ta,tf ), as we now
show.

The perfectly-secure protocol π
tp=0
god presented in Figure 15 achieves G.O.D

against A(ta,tf ). At a high-level, π
tp=0
god proceeds similar to πta=0

god (Section C.2.1)
i.e. it comprises of two phases such that a sharing of the output is generated in
Phase 1 which is subsequently reconstructed in Phase 2. However, it differs in two
main aspects – First, Phase 1 involves a protocol ψ that achieves G.O.D against
t < n/3 active corruptions. ψ can be instantiated using existing protocols like
[BTH08]. By aborting when a fail-stop party is detected, this protocol achieves
security with abort in the presence of fail-stop corruptions and G.O.D. under
active-only corruptions. The second distinction is with respect to the thresholds
of the levelled sharing of the output. ψ is used to compute (dn/3e − 1, 1)-levelled
sharing of the output. Phase 2 involves reconstruction of the levelled-shared
output. The fairness of levelled-sharing (Lemma 9) ensures that the adversary
does not obtain multiple evaluations of f . This complete the high-level description
of π

tp=0
god . The formal description of π

tp=0
god appears in Fig. 15, and the analysis of

its correctness and security appears below.

Lemma 20. Protocol π
tp=0
god computes the correct output.

Proof. Correctness of π
tp=0
god follows directly from correctness of ψ and correctness

of π
dn′/3e−1,1
pLevRec (·) (Lemma 9). ut

We state the formal theorem below.

Theorem 13. There exists a perfectly-secure protocol that achieves G.O.D
against an adversary who can choose (ta, tf ) such that 3ta + tf < n.

We provide some intuition for the validity of this theorem below. First, it
is easy to check from the protocol steps that the honest parties will receive the
output after atmost (n − 1) re-runs (in the worst case, Phase 1 will eliminate
one fail-corrupt party in each run). Next, we argue that A(ta,tf ) will receive a
unique output (identical to the honest parties). He learns no information about
the output corresponding to the unsuccessful runs (in which n′ ≤ n parties
participate) due to the following reasons: (a) Suppose Phase 1 is unsuccessful.
Note that A(ta,tf ) can receive only upto t′a ≤ dn′/3e − 1 shares of the output
(corresponding to the actively corrupt parties). It follows from Lemma 8 that this
information perfectly hides the output which is (dn′/3e−1, 1)-levelled shared. (b)
Suppose that Phase 2 is unsuccessful due to failure in reconstruction of summand

yj (j ≥ 2). Then it follows from the property of fairness of π
dn′/3e−1,1
pLevRec (Lemma 9)

that the adversary cannot learn the summand yj−1 and subsequently the output
y. Lastly, suppose that there is failure in reconstructing y1. This will occur only
if t′a = 0 and t′f = n′− 1 (as 1 ≥ n′− t′a− t′f > 2t′a holds when adversary disrupts

45



Protocol π
tp=0

god

Inputs: Each party Pi participates with input xi (i ∈ [n])
Output: f(x1, . . . , xn)
Building Blocks: - A perfectly secure MPC protocol ψ achieving G.O.D

against t < n/3 active corruptions (instantiated by [BTH08]). ψ achieves
security with abort in the presence of A(ta,tf ) respecting 3ta + tf < n ;
Function fα,βpLevSh (Fig 9) and Protocol πα,βpLevRec (Fig 10)

Initialization: Q = P, C = ∅, n′ = n, t′f = tf , t
′
a = ta, t′p = tp = 0.

Phase 1: Each Pi ∈ Q does the following:

- Participate in an execution of ψ with input xi to compute f
dn′/3e−1,1
pLevSh (y)

where y = f(x1, . . . , xn) (default inputs used for parties in C). a

- If a set of parties S with |S| ≥ 1 crash during φ, update C = C ∪ S,
Q = Q \ S, t′f = t′f − |S| and n′ = n′ − |S|. Re-run Phase 1.

- Else, proceed to Phase 2.

Phase 2: Let 〈y〉dn
′/3e−1,1 denote the output of Phase 1. The parties in Q do

the following:

- Run the reconstruction protocol π
dn′/3e−1,1
pLevRec (〈y〉dn

′/3e−1,1) to recon-
struct the (dn′/3e − 1, 1)-levelled shared output y.

- Suppose it outputs y′ 6= ⊥, output y′.
- Else, suppose it outputs (⊥, S). Then, update C = C∪S, Q = Q\S, t′f =
t′f − |S| and n′ = n′ − |S|. Restart from Phase 1.

a If n′ ≤ 3, ψ is used to compute f directly as there are no active corruptions

Fig. 15. Perfect SFE with G.O.D against dynamic adversary with tp = 0
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reconstruction of y1). In such a case, it follows trivially that the adversary has no

information about y as he cannot access any message sent during π
tp=0
god . This is

because all communication throughout π
tp=0
god occurs over pairwise-private channel

(recall that broadcast in the perfect setting is also realized by adapting standard
broadcast protocols which use pairwise-private channels) which an adversary
with t′a = 0 will not be able to access. This completes the intuition.

C.3 Reactive MPC with Perfect Security

C.3.1 VSS with G.O.D when ta = 0. Recall the impossibility of perfect
VSS where reconstruction is G.O.D. against a dynamic adversary even when
tf = 0 (Section 4.2). In this section, we explore the feasibility question for case
of ta = 0. In this case the additional condition 2tp + 2tf ≤ n is necessary and
sufficient for G.O.D. VSS, as we now show.

Necessity of 2tp + 2tf ≤ n. This condition 2tp + 2tf ≤ n can be derived by
translating the characterization of general mixed adversaries in [BFH+08], which
we elaborate in Lemma 16 of Section 6.2. A simple argument showing the necessity
of 2tp + 2tf ≤ n for perfect VSS with G.O.D., even against a weaker dynamic
adversary with ta = 0 is as follows - This argument is similar to the proof of
Theorem 2 in Section 3.2. Suppose, for contradiction, that there exists a perfect
VSS with G.O.D. when 2tp + 2tf > n. Firstly, it must hold that the joint state
of any set of parties S (that excludes the dealer), where |S| < n/2 must be such
that it is identically distributed for all different values of s (where s denotes the
secret committed by the dealer). This is dictated by the property of privacy at
the end of sharing against an adversary who corrupts the parties in S passively
(adversary respecting 2tp + tf < n chooses tp < n/2). Consider an execution of
the VSS protocol where everyone behaves honestly during the sharing phase and
the dealer commits to a secret s′. Suppose during reconstruction, the adversary
fail corrupts tf parties including the dealer where tf > n/2 (allowed based on
the assumption 2tp + 2tf > n). Then the remaining set of parties S′ is such that
|S′| = n − tf < n/2. Since the joint state of parties in S′ does not have any
information about the secret s′ committed by the dealer, reconstruction with
G.O.D is impossible. This completes the argument of necessity of 2tp + 2tf ≤ n
for perfect VSS with G.O.D.

Sufficiency of 2tp + 2tf ≤ n. We present a VSS protocol that achieves G.O.D
when 2tp + 2tf ≤ n. For the sharing protocol, we use our SFE protocol πta=0

god

from Fig. 14 in Section C.2.1 that achieves G.O.D. against a dynamic adversary

with ta = 0. This protocol is used to compute f
dn/2e−1,perf
sh (s) where the dealer

inputs his secret s. The reconstruction protocol involves all parties broadcasting
their shares [s]dn/2e−1 (that was output by the sharing protocol). The parties

reconstruct the secret s by simply interpolating a (dn/2e − 1)-degree polynomial
using the shares that are broadcast.

The property of privacy (when the dealer is honest) at the end of sharing
follows directly from the property of dn/2e − 1-sharing of the secret s, since the
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adversary has access only to tp ≤ dn/2e − 1 shares. Correctness follows directly
from the correctness of πta=0

god and the fact that all the shares exchanged during
reconstruction are untampered (as no active corruptions are allowed). Lastly, the
argument for reconstruction with G.O.D. is as follows: Since there are no active
corruptions and tf ≤ n/2 (implied by 2tp + 2tf ≤ n), the shares broadcast by
the honest and passively-corrupt parties (which constitute a set of n− tf ≥ n/2
parties) is sufficient to reconstruct the secret robustly.

We state the above result in the following Theorem.

Theorem 14. The condition 2tp + 2tf ≤ n is necessary and sufficient to design
a perfectly-secure VSS protocol that achieves G.O.D against an adversary who
can choose (tp, tf ) such that 2tp + tf < n.

Since the above VSS and SFE of Section C.2.1 imply reactive MPC (by
verifiably secret-sharing the intermediate states [HMZ08]), we obtain the following
result.

Theorem 15. The condition 2tp + 2tf ≤ n is necessary and sufficient to design
a perfectly-secure reactive MPC that achieves G.O.D against an adversary who
can choose (tp, tf ) such that 2tp + tf < n.

C.3.2 VSS with G.O.D when tp = 0. In this section, we analyze the
feasibility of perfect VSS with G.O.D against a dynamic adversary with tp = 0
i.e. the adversary must respect 3ta + tf < n. We will show that in this case the
additional condition 3ta + 3/2tf ≤ n is necessary and sufficient for G.O.D. VSS.

Necessity of 3ta + 3/2tf ≤ n. The proof appears in Lemma 15 of Section 6.2.

Sufficiency of 3ta + 3/2tf ≤ n. We present a VSS protocol that achieves
G.O.D. when 3ta + 3/2tf ≤ n. For the sharing protocol, we use our SFE protocol

π
tp=0
god from Fig. 15 in Section C.2.2 that achieves G.O.D. against a dynamic adver-

sary with tp = 0. This protocol is used to compute fδ,perfsh (s), where δ = dn/3e−1,
and the dealer inputs his secret s. The reconstruction protocol involves running
πδPerfRec([s]δ) where [s]δ denotes the output of the sharing protocol.

Privacy of the above described VSS protocol (when the dealer is honest) follows
from the property of (δ = dn/3e − 1)-sharing of s (adversary has access only to

ta ≤ dn/3e−1 shares of s). Next, correctness follows from the correctness of π
tp=0
god

and πδPerfRec([s]δ). Lastly, the reconstruction is G.O.D due to the following: The
number of shares broadcast during πδPerfRec([s]δ) is at least |W | = n− ta − tf + r,
where r ≤ ta is the number of tampered shares. Recall that ta + tf ≤ 2n/3− ta
(as per our assumption 3ta + 3/2tf ≤ n), implying that |W | = n− ta − tf + r ≥
n/3 + ta + r > δ + 2r (as n/3 > δ and ta ≥ r). Since πδPerfRec([s]δ) returns the
correct secret when |W | > δ + 2r (due to property of πRSDec), we can conclude
that the reconstruction is G.O.D.

We state the above result in the following Theorem:
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Theorem 16. There exists a perfectly-secure VSS protocol that achieves G.O.D
against a dynamic adversary with tp = 0 (who can choose (ta, tf ) such that
3ta + tf < n) if 3ta + 3

2 tf ≤ n holds.

Since the above VSS and SFE of Section C.2.2 imply reactive MPC (by
verifiably secret-sharing the intermediate states [HMZ08]), we obtain the following
result.

Theorem 17. There exists a perfectly-secure reactive MPC that achieves G.O.D
against a dynamic adversary with tp = 0 (who can choose (ta, tf ) such that
3ta + tf < n) if 3ta + 3

2 tf ≤ n holds.
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