
Interhead Hydra
Two Heads are Better than One

Maxim Jourenko1,2, Mario Larangeira1,2, and Keisuke Tanaka1

1 Department of Mathematical and Computing Sciences,
School of Computing,

Tokyo Institute of Technology.
Tokyo-to Meguro-ku Oookayama 2-12-1 W8-55, Japan.

{jourenko.m.ab@m, mario@c, keisuke@is}.titech.ac.jp
2 Input Output Hong Kong.

{maxim.jourenko, mario.larangeira} @iohk.io

http://iohk.io

Abstract. Distributed ledger are maintained through consensus proto-
cols executed by mutually distrustful parties. However, these consensus
protocols have inherent limitations thus resulting in scalability issues
of the ledger. Layer-2 protocols operate on channels and allow parties
to interact with another without going through the consensus protocol
albeit relying on its security as fall-back. Prominent Layer-2 protocols
are payment channels for Bitcoin that allow two parties to exchange
coins, State Channels for Ethereum that allow two parties to execute a
state machine, and Hydra heads [FC’21] for Cardano which allows mul-
tiple parties execution of Constraint Emitting Machines (CEM). Chan-
nels can be concatenated into networks using techniques such as Hashed
Timelocked Contracts to execute payments or virtual state channels as
introduced by Dziembowski et al. [CCS’18] to execute state machines.
These constructions allow interaction between two parties across a chan-
nel network, i.e. the two endpoints of a path of channels. This is real-
ized by utilizing intermediaries, which are the parties on the channel
path which are in-between both endpoints, who have to pay collateral
to ensure security of the constructions. While these approaches can be
used with Hydra, they cannot be trivially extended to allow execution
of CEMs between an arbitrary amount of parties across different Hydra
heads. This work addresses this gap by introducing the Interhead con-
struction that allows for the iterative creation of virtual Hydra heads.
Of independent interest, our construction is the first that (1) supports
channels with an arbitrary amount of parties and (2) allows for collateral
to be paid by multiple intermediaries which allows to share this burden
and thus improves practicality.

Keywords: Blockchain, State Channel, Channel Network

http://iohk.io

2 Jourenko et al.

1 Introduction

Decentralized ledger were first introduced by Nakamoto [20] with the blockchain
technology. Cryptocurrencies that are based on this design enjoy a steadily in-
creasing popularity since then. However, while a wider adaption of decentralized
ledger shows the relevance of this technology, the existing implementations strug-
gle to be scalable to the increased demand. Transactions, e.g. payments, on a
decentralized ledger require it to be processed through a consensus mechanism,
which are classified as Layer-1 protocols. The potential transaction throughput
of a ledger is limited by its consensus protocol and increasing it is highly non-
trivial [5]. Transaction issuer can pay fees to increase the priority under which
their transaction is processed, skipping the line. This results in the creation of a
market place where processing a transaction requires payment of an amount of
fees that correlates with the demand for processing transactions. For instance,
on 20th April 2021 the average cost of processing a transaction in Bitcoin peaked
at more than 60$ 3.

Layer-2 protocols are a classification of techniques that aim to reduce the
number of transactions that have to be issued on a ledger by means of a layer
of indirection. Layer-2 solutions include sidechains [10,24], Ethereum’s Plasma
[23], payment channels [22,21,6] and more generally state channels [7,8] notably
Hydra heads [4]. This work focuses on state channels. Payment channels are
setup by two parties using a transaction that locks their coins into a shared
wallet. The channel stores a state which is how the funds that are locked inside
it distributed between both parties. The parties can then perform an offchain
protocol change this state. Lastly the parties issue one transaction to unlock the
coins from the channel corresponding to its latest state. Note that the latter
transaction is created first to avoid that coins are locked in the channel indefi-
nitely if one of the parties is unresponsive. This way parties can perform O(n),
n ∈ N, payments with each other while only issuing O(1) transactions on the
ledger thus improving the system’s scalability. State channel extend this notion
by allowing for the storage of arbitrary state which, with the conjunction of a
sufficiently expressive scripting mechanism, can allow the two parties to exe-
cute state machines offchain. Hydra generalizes the notion of channels further
by allowing an arbitrary amount of parties to participate in one channel. These
parties can execute state machines, modelled in form of Constraint Emitting
Machines (CEMs) [2], offchain. Further offchain protocols like Hash Timelocked
Contracts (HTLCs) [22] and virtual channels [8,12,13] allow adjacent channels,
i.e. multiple channels with one common party, to be concatenated into chan-
nel networks which allows parties to interact with another without the need of
opening a new channel, reusing the existing channel infrastructure.

Whereas protocols for performing payments across a payment channel net-
work, or execution of state machines across a state channel network exist, there
is no analogous protocol for Hydra. Although HTLCs can be reused to per-
form offchain payments across Hydra heads, there is no way to execute arbitrary

3 https://ycharts.com/indicators/bitcoin average transaction fee

Interhead HydraTwo Heads are Better than One 3

CEMs offchain across multiple, partially overlapping, Hydra heads. Moreover,
the existing approach to connect state channels by using a virtual channel con-
struction by Dziembowski et al. [8] does not seem to be easily extendable to
channel constructions for more than two parties, as in Hydra, since it requires
to uniquely identify malicious parties to subsequently punish them. For one, it
is unclear whether we can uniquely identify misbehaviour in the case of channels
with more than two parties. For another, the punish mechanisms in virtual chan-
nel constructions [7,8,12] use the ability to uniquely attribute fault to have the
deviating parties all of their coins or collateral within the virtual channel to the
honest parties. However, how a punish mechanism would look like for channels
with multiple parties is unclear. Imagine a situation where all parties within a
virtual channel play a game where all parties pay an amount of coins into the
game and the winner will receive all of it, however, the winner is not decided
upon until the end of the game. Then a party misbehaves to trigger the punish
mechanism before the game resolves. A punish mechanism similar to those in the
related work would result in termination of the game and payout of coins to all
honest parties to ensure none of them lose any coins due to this. However, since
the game has not yet been resolved, it is unclear how coins should be distributed
among the honest parties in a fair manner.

Our Contributions. This work proposes a protocol to create virtual state chan-
nels and provides a security analysis. Our approach consists of two components,
an Interhead state machine as well as a protocol that defines all parties’ be-
haviour. The construction (1) can be executed iteratively to form a virtual chan-
nel across a channel network, (2) operates optimistically offchain, meaning, if all
parties collaborate no transactions are added to the ledger, (3) is secure in the
presence of a malicious adversary who can statically corrupt all but one party
at the beginning of the protocol, (4) does not put honest party at risk of loss
of their coins, (5) supports channels with an arbitrary amount of parties (6)
allows for the presence of multiple intermediaries who can share the burden of
committing required collateral, significantly improving practicality.

While this work focuses on the creation of a virtual channel for Hydra heads,
we argue that the state machine proposed in this work can be implemented
for other channel constructions on blockchains with sufficiently expressive smart
contracts such as Ethereum. As of such we present the, to our knowledge, first
virtual channel construction with properties (5) and (6) from above which we
think is of independent interest.

Structure. In the remainder of this work, first we provide an overview of related
work in Section 2 and provide background information relevant to this work in
Section 3. Next, we introduce our approach. We present the state machine in
Section 4 followed by how it can be implemented as a CEM in Section 5 and
a protocol describing all parties’ behaviour in Section 6. This is followed up by
security analysis in Section 7. Lastly, we conclude in Section 8.

4 Jourenko et al.

2 Related Work

Channels. Conceptually channels work as follows. Two parties open a payment
channel between them by committing a funding transaction to the ledger that
locks their funds into a shared wallet. A second refund transaction is setup that
spends the coins within that wallet and refunds it to both parties, corresponding
to how many coins were initially paid into the channel by each party. Note that
the refund transaction is to be completed before the funding transaction to avoid
that coins are locked within the channel indefinitely. The parties withhold com-
mitting the refund transaction to the ledger, but keep it in memory instead. The
refund transaction represents the channel’s state which is the result of commit-
ting the refund transaction to the ledger. A state transition occurs by creating
a new refund transaction and implicitly or explicitly invalidating all previous
refund transactions. Existing approaches differ in how invalidation is realized.
Channels in the Lightning network [22] have both parties exchange invalidation
keys that allow them to claim all coins within a channel if their counterparty
publishes an old refund transaction. Duplex Payment channels [6] utilize time-
locks, whereas Eltoo [21] utilizes hanging transactions, i.e. transactions where
inputs can be changed after creation before committing them to the ledger. The
notion of channels can be extended to state channels [19,7,8] by utilizing smart
contracts. Such channels can store arbitrary state and, moreover, allow parties
to execute state machines.

Channel Networks. Several protocols exist that allow to perform payments across
a path of payment channels of length n ∈ N. A payment within a network is
emulated by performing it on each hop on the payment path. The challenge is
to perform these payments atomically, i.e. it is performed on all channels within
the payment path or on none. Here we distinguish between sender and recipient
of a payment and the intermediary parties within a path of channels between
both parties. Hash Timelocked Contracts (HTLCs) [22] make the recipient of a
payment sample a secret x ∈ N s.t. H(x) = y where H is a cryptographic hash
function. Each channel on the payment path sets up a conditional payment that
performs the payment if the payee can tell the preimage of y to the payer. Upon
setup, the recipient discloses x to its predecessor on the payment path allowing
both parties to resolve the payment on their channel. In turn the predecessor
learns x and can forward it to reclaim its coins. A drawback of HTLCs is that
the total required collateral, i.e. the amount of coins locked within conditional
payments multiplied by the duration, sums up to O(n2). Following approaches
are Atomic Multi-Channel Updates [9] that reduces the total collateral to O(n)
albeit it has been found that honest parties are vulnerable to loss of coins [13].
Furthermore, Jourenko et al. [13] introduce Payment Trees, a protocol that re-
duces the total collateral toO(n) but requires any party to commit up toO(log n)
transactions to the ledger in case of dispute, in contrast to O(1) transactions as
with previous approaches. Sprites [19] allows for payments with total collateral
in O(n) and without increasing the number of transactions above O(1) per party,
but requires the use of a PreimageManager smart contract.

Interhead HydraTwo Heads are Better than One 5

Virtual Channels. Alternative approaches to allow parties to interact with an-
other across a network of channels are in form of virtual channels. Assume Alice
and Ingrid, as well as Ingrid and Bob share a channel. These protocols allow two
adjacent channels with one common party called the intermediary to create a
third channel. In the above example Ingrid can act as intermediary to create a
channel between Alice and Bob. These channels are created optimistic offchain,
i.e. without committing any transaction on the ledger except in the case of dis-
pute. Dziembowski et al. [7,8] created virtual state channels based on smart
contracts, whereas lightweight virtual payment channels [12] allow for creation
of virtual payment channel without the requirement of smart contracts.

Hydra Heads. The Cardano/Ouroboros Blockchain allows the execution of Con-
straint Emitting Machines (CEMs) [2] which are a form of state machines derived
from Mealy Automata. Hydra [4] proposes a CEM and protocol that allows for
the creation of multi-party state channels. Hydra is isomorphic, s.t. it allows
parties to not only lock coins inside the channel, but a proper subset of the
ledgers state. Doing so, the parties can interact with each other within a Hydra
head the same way they could on a ledger. Due to this, simple payments can be
performed across multiple Hydra heads by means of the HTLC protocol. How-
ever, whereas virtual state channels [7,8] allow parties to execute state machines
across a state channel network, there are no methods to execute CEMs across a
network of Hydra heads. This work fills this gap.

3 Background

Notation. In this work we make frequent use of tuples to structure data. Let α
be an instance of a tuple of type A of form (α0, . . . , αn), n ∈ N where α0, . . . , αn
are the entries’ labels. Then we address entry i ∈ N, 0 ≤ i ≤ n of α using its
name and the entry’s label, i.e. α.αi. Moreover we denote N as the set of natural
numbers and B as the set of Boolean.

Signature Schemes. We assume the existence of two secure digital signature
schemes as follows. We assume that both fulfill notions of completeness and
unforgeability, however, we remain rather informal in the remainder. First,
we assume a signature scheme [1] consisting of algorithms (key gen, verify, sign)
s.t. key gen(1λ) = (vk, sk) creates a pair of secret key sk and verification key vk
under security parameter λ, sign(sk, m) = σ creates a signature s.t. verify(vk, m,
σ′) evaluates to True if and only if σ′ = σ. Second, we assume the existende of a
multi-signature scheme [11,18] of form (mssetup, ms key gen, ms agg vk, ms sign,
ms agg sign, ms verify) where ms setup(1λ

′
) = Π creates public parameter Π

with security parameter λ′, ms key gen(Π) = (vk′, sk′) creates a key pair consist-
ing of secret key sk and verification key vk’, ms agg vk(Π,V) = avk aggregates
a set of verification keys V into an aggregate verification key avk, ms sign(Π, sk′,
m′) = σ′′ creates a signature σ′′ of message m corresponding to secret key sk′

whereas ms agg sign(Π, V , S, m′) = σagg aggregate a set of signatures S into

6 Jourenko et al.

aggregate signature σagg s.t. ms verify(Π, m′, avk, σ′′) evaluates to True if and
only if σ′′ = σagg and evaluates to False otherwise.

The EUTxO Model. Extended Unspent Transaction Outputs (EUTxO) were
introduced by Chakravarty et al. [2]. EUTxO improve on the UTxO paradigm
as used with ledgers such as Bitcoin introduced by Nakamoto [20] by allowing
for the execution of smart contracts defined as Constraint Emitting Machines
(CEMs) on the ledger, thus improving the system’s expressiveness. An EUTxO
based Ledger consists of a set of (outref , u) where u is a EUTxO representing
coins that are in circulation, and outref is a unique identifier that can be used
to reference u and is commonly derived from the context it was created in.
A transaction tx is a tuple of form (I,O, r, S) where I is a set of inputs, i.e.
entries of form (outref , u), O is a list of outputs, i.e. newly defined EUTxO, r
is a validity interval, i.e. [r0, r1] where r0, r1 ∈ N are points in time, and S is
a set of signatures. If a transaction is sent to the ledger within the interval r,
the amount of coins in O is at least as large as the amount of coins referenced
in I and all validity scripts evaluate to True, the transaction induces a state
transition on the ledger by removing all entries in I from its state and adding
the newly defined EUTxO in O to the ledger’s state. A transaction is processed
by the ledger within time ∆ ∈ N. A EUTxO u itself is a tuple of form (ν, value,
δ) where ν ∈ {0, 1}∗ is a validator script written in a Turing complete language,
value ∈ N is an amount of coins, and δ ∈ {0, 1}∗ is arbitrary data. An EUTxO
can be spent making its coins accessible, if a party can show a redeemer value
ρ ∈ {0, 1}∗ s.t. ν(ρ, δ, σ) = True, where σ is the validation context that includes
information on the transaction that spends u as well as all EUTxO referenced
in its inputs.

Optimistic Offchain Protocols. A class of protocols that improves the scalabil-
ity of a ledger by minimizing the amount of transactions that are added to the
ledger are offchain protocols. These protocols operate on structures called chan-
nels [22,21,6,8] and allow two parties to interact with each other, e.g. perform
payments, without adding any transactions on the ledger in the optimistic case,
i.e. when all parties collaborate and there is no dispute.

Hydra Heads. The Hydra CEM [4] allows for an arbitrary number of participants
to move their EUTxO into a Hydra head and use them to interact with each other
offchain. Hydra represents a channel structure between an arbitrary amount
of parties. While operational, the Hydra head is in the state (open, Kagg, η,
hMT , n, T) where open is the state’s label, Kagg is an aggregate verification key
between n participants, η is the set of EUTxO that is hold off-chain, hMT is
the root of a Merkel-Tree representing all participants and T is the minimum
duration of a contestation period that can occur when closing the Hydra head.
The set of EUTxO that were moved to a head are stored within a snapshot which
represents the set of EUTxO that are moved to the ledger upon closure of the
head. Participants can modify this set of EUTxO by creating a new snapshot that
supersedes previously created snapshots. Thus, the latest snapshot represents the

Interhead HydraTwo Heads are Better than One 7

Signed k
(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

S
val ∪ 𝖳𝗈𝗄𝖾𝗇

u𝗂𝗇0
𝗂𝗇1

Forge {t0} :: cid0
Burn {t1} :: cid1

Signed k′

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

S′ val ∪
(𝖳𝗈𝗄𝖾𝗇∖{t1}) ∪ {t0}

i
𝖺𝗎𝗑

Fig. 1: Illustration of State Transition S → S′ on input (i, aux). The box below
a state displays information on the transaction constraints for the transaction
that performed the state transition. The box to the right of the state displays an
overview of the value field of the EUTxO that represents the state. Transaction
fields that are empty or implicit from context are grayed out or omitted for
simplification.

state of EUTxO within the head that can be enforced on the ledger. Participants
can create new snapshots while the head is in the open state. The head is closed
by moving its state first to the closed and subsequently to the newestSN and
final states. Lastly, a split transaction makes the EUTxO available on the ledger.
Moreover, EUTxO can be incrementally decommitted which makes it available
on the ledger without closing the head. This operation requires consent of all
head members.

Enforceable State. Channels enable maintaining and modifying an enforceable
state. For instance, in the case of payment channels the enforceable state is how
a fixed amount of coins are distributed between two parties. In the case of Hydra
it is a set of EUTxO defined by the most recent snapshot.

In the following we give an overview of relevant concepts.

EUTxOMA. The EUTxO model is extended by EUTxOMA [3] to add multi-assets
support. A EUTxOMA is defined as a EUTxO but allows the value field to carry
non-fungible tokens in addition to fungible coins. Moreover a transaction in the
EUTxOMA model has two more entries, i.e. it is of form (I, O, forge, fpss, S)
where forge is a token bundle that can define a positive amount of token in
case they are minted, or a negative amount of token in case they are burned.
Moreover, fpss is a forging policy script taking the validation context σ as input
and evaluates whether the transaction including its forge field is admissible.
In the remainder we assume EUTxOMA, however we continue using the term
EUTxO for brevity.

8 Jourenko et al.

Constraint Emitting Machines. Chakravarty et al. [2] showed a weak bi-simulation
between programs running on the EUTxO ledger and Constraint Emitting Ma-
chines (CEMs) derived from Mealy machines [17]. Thus, CEMs can be used to
define applications for an EUTxO ledger. A CEM is a tuple (S, I, step, initial,
final) where S is a possibly infinite set of states, I is a set of input symbols,
initial, final are functions S→ B indicating initial and final states respectively
and function step : S→ I→Maybe(S, TxConstraints) is a partial function
that maps to a new state with constraints TxConstraints.

A CEM is implemented on the ledger as follows. A state S is represented by
a EUTxO u where validator u.nu = νS is unique to the state and enforces cor-
rectness of state transitions and transaction constraints TxConstraints. More
abstractly, an Onchain Verification Algorithm (OVC) corresponding to the state
is implemented and enforced on the ledger through ηS . Figure 1 displays how we
illustrate states and transitions in this work. The boxes under each state S and
S′ display information on TxConstraints of the transaction used to perform
the transition. For instance, in Figure 1 S′ requires that a token with currency
identifier cid1 is burned and a token with identifier cid0 is forged. Moreover,
it requires that the transaction has a validity interval of [r′min, r

′
max], and that it

contains a signature corresponding to verification key k′. Moreover it holds that
the redeemer that spends the EUTxO representing state S equals ρ = i||aux.
The EUTxO representing the two states S and S′ within inputs and outputs of
the states are implicit and omitted for simplicity.

Thread Token. A design pattern that allows to enforce that a given CEM (1)
started in a valid initial state and (2) is unique compared to other instances of
similar CEMs is using thread token. The validator of an initial state requires
creation of a thread token with respective forging policy script. The token will
be kept in all EUTxO value fields through a run of the CEM until it reaches a
final state in which it is forced to be burned.

4 Overview

This section first introduces the setting and the concepts relevant to this work.
Then, we present the Interhead state machine, which we implement as a smart
contract in form of a CEM in Appendix 5. The protocol which describes how
parties interact with another and the state machine is described in Section 6.

Approach and Terminology. Our terminology is chosen to be in-line with Hydra
[4]. The aim of this work is to create the Interhead construction which consists
of two parts. For one, the Interhead state machine is operated between two
separate Hydra heads. For another, the Interhead protocol defines the behaviour
of the involved parties depending on their role within the construction. The
Interhead state machine operates across two heads and thus is split into two
initially disjunct parts. These partial state machines are operated in parallel
by the members of the respective heads resembling multi-threaded execution.

Interhead HydraTwo Heads are Better than One 9

However, they are setup such that the threads can merge to open a regular Hydra
head on the ledger in case of dispute. Similar to how a Hydra head maintains a
set of EUTxO as enforceable state between its participants, the Interhead is used
to create a virtual head that maintains a set of EUTxO as enforceable between a
subset of participants of two Hydra heads. However, the head is created without
opening a Hydra head on the ledger, thus it is virtual. While the correctness of
the Interhead state machine is verified and ensured by the ledger, the behaviour
of the parties themselves is defined by the Interhead protocol.

4.1 The Setting

We assume the existence of two Hydra heads, Hb, b ∈ {0, 1}. Out of each head,
nb ≤ Hb.n participants, which are a subset of parties, want to move part of
their EUTxO within the respective head into a new virtual Hydra head Hv thus
enabling interaction between these participants. Moreover, there are 1 ≤ ni ≤
min(H0.n,H1.n) parties who are present in both heads and act as intermediaries.
For simplicity, in the remainder of this work each party has exactly one role, i.e.
intermediary or participant, however, note that parties can have both or neither
role. We consider four sets of parties. For one, there are participants Gb from
either head. The union of these two sets is the set of the virtual Hydra head
participants Gv = G0 ∪G1. Lastly, there is the set of intermediaries Gi.

The Communication Model and Time. We assume that communication between
the parties happens through authenticated channels and is done within rounds
s.t. a message sent at any round will be available to the recipients at the be-
ginning of the following round. We assume there is a relation between a given
communication round and the clock time [14,15,16] at which it is happening s.t.
we use time and communication rounds interchangeably in the remainder.

The Adversarial Model. Our adversarial model is in line with related work. That
is, we assume a malicious adversary who at the beginning of the protocol can
statically corrupt all but one, i.e. up to n0 + n1 + ni − 1 parties. Upon corruption
the internal state of a party is leaked to the adversary and all communication
to and from the party goes through the adversary. The adversary can make any
corrupted party deviate from the protocol arbitrarily. Moreover, the adversary
can reorder messages and delay them until the following communication round.

4.2 Desired Properties

The construction is designed to fulfill following properties. Note that as soon as
the Interhead state machine transitions into the Hydra state space, the security
properties of Hydra [4] hold. First, we define security properties and then give
an overview of the challenges.

Definition 1 (Collateral Liveness). If at least one intermediary is honest,
all collateral is eventually available to them in an enforceable state.

10 Jourenko et al.

Definition 2 (EUTxO Liveness). Eventually any honest party’s EUTxO within
the virtual head’s enforceable state is available to them in an enforceable state (or
the ledger) outside the virtual head or the Interhead state machine transitions
into the Hydra state space.

Definition 3 (Balance Security). The sum of a honest party’s coins is re-
duced only with their consent or the Interhead state machine transitions into the
Hydra state space.

Security. The construction must be secure for all honest participants. Even if
all other participants of the Interhead construction are behaving maliciously, the
honest party cannot lose any coins. This requires that the Interhead construction
fulfils Balance Security, Collateral Liveness and EUTxO Liveness.

Optimistic Offchain. Our construction must be optimistic offchain, i.e. if all
parties collaborate, a virtual Hydra head can be constructed, used, and closed
without commitment of any transactions on the ledger.

Multiple Intermediaries. Our construction should allow for multiple intermedi-
aries. While this does not provide any additional features to the construction
itself, it is highly relevant for making the construction practical. The amount of
collateral to be committed has to match the number of coins and tokens within
the virtual head. Having multiple intermediaries allows us to split up the bur-
den of committing sufficient collateral. However, doing this securely is in itself a
highly non-trivial challenge. Existing approaches for virtual channels [12,7,8] all
have only one intermediary that is in a position to provide security to the con-
struction, but in turn can be uniquely blamed if they deviate from the protocol.
The challenge of multiple intermediaries is to ensure that the group of interme-
diaries is able to provide security to the construction the same way as with one
intermediary, however, honest intermediaries should not lose their collateral in
case all remaining intermediaries behave maliciously.

Constraints on Hydra Heads. We require a few minor additional constraints to
Hydra Heads to support virtual Hydra heads. The minimum amount of time it
takes for a EUTxO to be available on the ledger – assuming head participants do
not participate in an incremental decommit – depends on the contestation period
T of a head and sums up to 2T , i.e. a minimum snapshot posting period TSN ≥
T +RC and a minimum hanging transaction posting period THT ≥ T +RSN [4]
where RC and RSN are the duration of the validity intervals of transactions
moving into the closed and newestSN states respectively. However, there is no
upper bound for the time it takes to add a EUTxO on the ledger as parties might
attempt to delay head closure by selecting large durations for TSN , THT , RC and
RSN respectively. We require upper bounds for these parameter, i.e. we require
TmaxSN , TmaxHT , RmaxC and RmaxSN s.t. TmaxSN ≥ TSN ≥ T , TmaxHT ≥ THT ≥ T , RmaxC

≥ RC ≥ ∆, RmaxSN ≥ RSN ≥ ∆ holds. Doing so does not prevent heads from
closing which would impact Hydra’s liveness property as participants remain free

Interhead HydraTwo Heads are Better than One 11

to delay state transitions arbitrarily, i.e. it will never be too late to close a head.
However, a party that attempts to close the head to make a EUTxO available on
the ledger can assume that it will be available to do so after at most time Tmax

≤ TmaxSN + TmaxHT + RmaxC + RmaxSN + 2∆. This holds if it actively engages to do
so, i.e. as long as it commits the required transactions to the ledger whenever
possible. Note the additional 2∆ represent the upper amount of time to perform
the state transition to the closed state and committing the split transaction to
the ledger.

General Purpose Token. Hydra heads are limited in that it is not possible to
forge and burn arbitrary token. Special purpose token, such as thread token,
can only be forged within a specific context specified within its forging policy
script. A transaction forging such a token cannot be included in an enforceable
state as this would result in the token being forged within a Hydra CEM state
transition which would likely violate its forging policy script. One workaround of
this is to adjust the token as well as the CEM it is used in to be aware of Hydra
such that moving the CEM into and out of a Hydra head is permissible as well
as the forging and burning of the specific token within a Hydra state. Another
workaround is by means of the generalized token pattern. A generalized token
is forged in an arbitrary context and as of such can be forged during any state
transition of a Hydra head. Generalized token can be created either as fungible
or non-fungible token. A CEM that makes use of token to perform functionality
does not forge or burn the token, but instead takes the required amount of token
as input when required, and releases the token in the CEM’s final state at latest.

Multi-Threaded CEM. We extend the notion of thread token by allowing CEMs
to hold multiple thread token. A CEM can spawn threads to be executed in
parallel by having a transaction contain multiple EUTxO in its outputs, each
representing a separate CEM state and holding at least one thread token. In turn,
multiple threads can be merged into a single thread by having a transaction
spending multiple EUTxO representing CEM states, consuming their thread
token and defining one EUTxO in its output that contains all thread token in its
value field. We use multithreading in two cases. For one, we use multiple threads
– one thread per identity – to efficiently collect EUTxO that are to be moved
to the virtual head. Note that this is similar to how the Hydra CEM collects
EUTxO [4] to be moved into a head. Second, we initially spawn one thread in
each head, i.e. each instance of a Interhead CEM has exactly two initial states
containing one thread token each. If the Interhead resolves optimistically, the
CEM remains separate and the threads are never merged. However, in case of a
dispute or a lack of collaboration, when the Interhead is converted into a regular
Hydra head, the threads will be merged.

Compatibility to Hydra. We strive to make our construction compatible to the
existing work, i.e. Hydra heads, and we require at most minimal adjustments.
Doing so we can rely on the groundwork done for Hydra heads and their security
properties which allows us to focus on the Interhead construction.

12 Jourenko et al.

4.3 The State Machine

Our approach is taking a Hydra state machine [4] and adapting concepts of
UTxO based virtual channels [12,13] to create an Interhead state machine that
maintains a virtual Hydra head. Our approach is inspired by Eltoo [21], i.e. we
avoid punishing any participants by ensuring that the virtual Hydra head can
always be opened on the ledger as a regular Hydra head in case of dispute.

The Interhead state machine is executed offchain in both Hydra heads H0

and H1. It maintains a set of EUTxO between identities Gv as enforceable state.
The Interhead can be resolved within both heads optimistically, but in case
of a dispute it allows to enforce the enforceable state of the virtual head by
opening a regular Hydra head with the same enforceable state on the ledger.
Intermediaries are parties that must be participating in both heads, allowing
them to ensure correctness of the system. Intermediaries allocate collateral into
the system which is returned to them when the Interhead state machine resolves
optimistically or when the virtual Hydra head is opened on the ledger. However,
in the case in which all intermediaries are corrupted and fail their task, they
will lose their collateral which in turn will be used to ensure enough coins are
available to open the virtual head on the ledger.

Time Phases and Assumptions. We structure execution of the state machine into
three phases, each operating under different assumptions and within disjunct
time frames. (1) The orderly phase TO = [0, tC,start) assumes that at least one
intermediary is honest and all parties collaborate. (2) The conversion phase TC
= [tC,start, tC,end) assumes that at least one intermediary is honest. We require
that this phase’s duration is at least max(Hb.T

max, H1−b.T
max + 2∆ < tC,end −

tC,start. (3) The punish phase starting at tC,end and going on indefinitely assumes
that at least one party is honest which is ensured due to the adversarial model.
If any of the assumptions during a phase is violated, the CEM escalates to the
next phase by passage of time.

Iterative Construction. An Interhead maintains the same enforceable state as a
Hydra head, but it is setup across two enforceable states instead of one. Note that
as an Interhead itself maintains an isomorphic enforceable state, an Interhead can
be setup iteratively across two Interheads or one Hydra head and one Interhead.
This allows for Interhead constructions across multiple hops of an infrastructure
of Hydra heads. In the following, for simplicity we assume that the Interhead is
created across two Hydra heads that were opened on the ledger.

Setup. Each group G0, G1, Gv, Gi jointly setups a multi-signature scheme as in
Section 3 resulting in creation of aggregate signature keys Kagg,0, Kagg,1, Kagg,
Kagg,i respectively.

The Interhead State Machine. In the following we describe the states of the
Interhead state machine as well as how state transitions are performed.

Interhead HydraTwo Heads are Better than One 13

initial

sync
open

sync-
collect

sync-close

pending

final

sync-confirm

sync-abort

Fig. 2: State transitions in the orderly phase.

The Interhead state machine is structured using six states, namely initial,
sync open, pending, final, merged and punished. Here intial and final are the ini-
tial and the final states respectively. In addition, the Interhead state machine
contains the states, input symbols, state transitions, and final states of the Hydra
state machine as it performs a state transition into the open state of the Hydra
state space in case of dispute or non-cooperation. For simplicity we abstract
away from this and focus on the unique part of the Interhead state machine.

When starting the protocol the parties in each head setup their half of the
Interhead state machine, starting in the Initial states respectively. The partial
state machine that is operated within each head is displayed in Figure 2. Both
partial state machines are operated in parallel, i.e. each Initial state spawns one
thread of the overarching Interhead state machine. Intermediaries have to ensure
that the initial states in both heads match s.t. in case of dispute the threads can
be merged and the Interhead state machine can be transitioned into the Hydra
statespace. For this reason the Initial states contain data that (1) ensures the
threads can be merged and (2) the threads cannot be merged with a different
Interhead state machine (3) the Hydra head maintains the same enforceable
state as the Interhead.

State transitions within the state machine are limited to time phases, i.e.
their validity interval must fall entirely within one of the phases. The transitions
that can be performed within a phase are structured according to the purpose of
that phase. In the following we present the Interhead state machine structured
in these three phases, however, a complete overview of the whole state machine
is illustrated in Appendix A.

Orderly Phase. Figure 2 illustrates states and transitions within the orderly
phase. During this phase, the intermediaries have sole authority to perform state
transitions. In fact, all transitions require a multi-signature corresponding to
verification key Kagg,i signed by all intermediaries. One instance of this partial
state machine is executed within each head starting from the initial state. All
transitions which require an input symbol with prefix sync are executed either
on both heads, or on none. This is ensured through the synchronization protocol
in Section 6 with one caveat: A corrupted intermediary can attempt to de-sync
both partial state machines by acting in the last moment of the orderly phase
and only providing their signature for one partial state machine. However, this
can be detected by means of the pending state where intermediaries have to verify

14 Jourenko et al.

and confirm that no de-sync attempt occured. Detection of a de-sync results in
the state machine transitioning to the conversion phase.

There are multiple ways to prevent state transitions if one or all interme-
diaries are corrupted. For one, the validators within the state machine prevent
incorrect state transitions within each partial state machine, however, this is not
fully sufficient as we execute the state machine in parallel within two heads. Any
honest intermediary can prevent a state transition that otherwise would result
in a de-sync of both partial state machines by withholding their cooperation
to create the required aggregate signature. Note the caveat mentioned earlier.
Moreover, incorrect initialization and optimistic closure of the head can be pre-
vented by any honest party again by withholding their cooperation for required
aggregate signatures.

The state machine can reach two states from the initial state: (1) The sync-
open state is reached through the sync-collect input. This step collects a set
of EUTxOs Eb from all participants, as well as a set of EUTxOs Cb from in-
termediaries that acts as collateral. We require that all EUTxO contain only
coins or fungible token. Although intermediaries are allowed to commit arbi-
trary amounts of collateral we require the constraint that the total amount of
coins contained in Cb has to be at least as much as the total amount of coins
contained in E1−b and that that the amount and type of fungible token in Eb
and Cb matches. As soon as the Interhead state machine reaches the sync-open
state on both Hydra heads, the virtual Hydra head is opened and parties can
modify its enforceable state. We omit displaying the collection of EUTxO in
Figure 2 for simplicity, but details are shown in Section 5. (2) The final state
can be reached using the sync-abort command aborting execution and releasing
all previously committed EUTxO.

The pending state can be reached from sync-open through the sync-close in-
put. This transition requires submission of a final-annotated partial snapshot
of the virtual head. This final snapshot depends on the Hydra head, which it
is submitted to, and contains the EUTxOs of its members as well as collateral
from the intermediaries. The final snapshot has to be negotiated and confirmed
between all parties, i.e. by Gv and Gi through multi-signatures corresponding to
verification keys Kagg and Kagg,i respectively. Note that this step is similar to
the concept of the optimistic head closure in Hydra. The purpose of the pending
state is to detect attempts of corrupted intermediaries to de-sync the partial
state machines’ executed on each head. We discuss details in Section 6.

Lastly the final state can be reached through the sync-confirm input from
the pending state, releasing EUTxO according to the negotiated snapshot. If the
final state is reached within the orderly phase, the Interhead remains offchain and
terminates. In the process, all EUTxOs previously committed by participants or
committed as collateral by intermediaries are released.

Otherwise, if any party stalls execution, does not collaborate or a de-sync
attempt is detected, no further transitions occur within the orderly phase and
the state machine proceeds into the convert phase by passage of time.

Interhead HydraTwo Heads are Better than One 15

merged

Hydra Head 0

Hydra Head 1
open

Ledger

…

Hydra CEM

merge
convert

initial pending

sync
open

abort

re-sync

final
abort

merge

initial pending

sync
open

abort

re-sync

final
abort

Fig. 3: State transitions in the conversion phase.

Conversion Phase. This phase is illustrated in Figure 3. Similar to the previous
phase, all the intermediaries have sole authority to perform state transitions,
however, now state transitions can be performed by any intermediary alone in-
stead of requiring an aggregate signature. At this point the state machine has
three outcomes. (1) If the head has not yet been opened and at least one party
did not submit any EUTxO, then the Interhead can move directly from initial
to final. (2) If no (honest) Intermediary performs any state transition, the state
machine transitions into the punish phase by passage of time. (3) In all other
cases, both partial state machines will be committed on the ledger and a Hydra
head will be opened preserving the enforceable state.

A Hydra head is opened as follows. First, all Intermediaries enforce the state
machine on the ledger which can be done through an incremental decommit of
the state machine, or by closing the Hydra head. This requires time of up to Tmax.
Then, if all parties committed EUTxO onto the ledger the state machine will
proceed from the initial to the pending state as potentially a de-sync attempt
was made. If both partial state machines reached either the pending or sync-
open state, both threads are merged into one thread through the merged state
using the merge input. The transaction that performs this transition returns the
collateral to all intermediaries. Lastly, we transition from the merged state to
the open state of a Hydra state machines through the convert input. Note that
we remove any time restriction for the transition from the merged state to the
open state.

Punish Phase. The last phase is illustrated in Figure 4. It is open-ended and
any state transition can be performed by any party. It has two outcomes. If the
state machine is still in the initial or pending state, the state machine can be
safely aborted and transition into the final state. Otherwise, the state machine
transitions into the open state of a Hydra state space. From the sync-open state
the state machine transitions into the punished state with the punish input. The
punished state is similar to the merged state with one exception. The intermedi-

16 Jourenko et al.

punished

Hydra Head b

openconvert …

Hydra CEM
initial

sync
open

punish

pending final

confirm

abort

merged
merge

Fig. 4: State transitions in the punish phase.

aries collateral is not released. Instead, the collateral is used to provide enough
coins to allow for the transition into Hydra’s open state. Lastly, the state ma-
chine can transition from the merged state to Hydra’s open state in this phase
as well, in case this has not yet been done within the conversion phase.

5 CEM Construction

In the following we provide details of the CEM by describing each state as well
as the constraints provided by each verifier. We illustrate the CEM using figures
6 - 14. Note that we do not illustrate all possible transitions as some are similar
to another. Moreover, due to space constraints we do not formally define each
verifier’s behaviour but describe it on a high level only.

5.1 Parameter

The parameters under which the Interhead CEM is executed are negotiated
among all participants and intermediaries in the beginning. We structure the
data stored within the CEMs state in data δv that is required for opening the
virtual head on the ledger, data δc that is common to the two partial CEMs in
both H0 and H1 as well as data δb that is only relevant in each individual head
Hb.

First, δv is a tuple of form (Kagg, η, hMT, n, T , cid0, cid1) where the first
four parameter are the virtual head’s state and cidb is the currency ID for thread
token ts,b in head Hb. These parameter are not derived during execution of the
CEM, but represent a commitment from the Interhead participants to create a
virtual head with the respective parameters and thread token. For one, δv is used
to ensure that always the same virtual head is created, even if only data from
one partial CEM is available which is the case when the CEM enters the punish
phase. The currency IDs are stored to ensure that the Interhead CEM instance

Interhead HydraTwo Heads are Better than One 17

is unique and that both partial CEMs are tied to another, i.e. no partial CEM
can be merged with another similar Interhead instance. Note that the EUTxO
contained in η are not allowed to contain unique non-fungible token.

Second, δc consists of tuple (Kagg,i, hMT,i, ni, To, Tc) which contains data on
the intermediaries, i.e. their aggregate verification key Kagg,i, the head of the
Merkel tree containing all individual verification keys hMT,i and the number
of intermediaries ni. Moreover it contains points in time To, Tc ∈ N specifying
the end of the orderly and conversion time phases respectively. Verifier ensure
that a transition happens within the orderly timezone by ensuring that for the
transition’s time frame [rmin, rmax] holds that rmax ≤ To. Similarly verifier ensure
that a transaction is within the conversion time frame by checking that T0 <
rmin < rmax ≤ Tc. Lastly a transition happens in the punish phase if rmin > Tc.

Lastly, δb consists of tuple (b,Kagg,b, ηb, hMT,b, nb, colb) where b ∈ {0, 1} is a
bit identifying the order of both partial CEMs, Kagg,b is an aggregate verification
key, ηb is a commitment of the EUTxO that the parties will move to the virtual
head and it must hold that η = η0 ∪ η1, hMT,b is the root of the Merkel tree
consisting of the individual verification keys of Gb, nb = |Gb| is the number of
participants joining from Hb, and colb is the collateral required to be paid by
the intermediaries. Note that colb has to be at least as large as the amount of
coins contained in the EUTxO in η1−b. The quantity and type of fungible token
submitted in the collateral has to match the number of token submitted by the
participants.

5.2 The Orderly Phase

The Initial State. The initial state is created in both heads Hb with parame-
ter δv, δc, δb. Each participant and intermediary verify that the parameter are
as negotiated and, moreover, the intermediaries ensure that both initial states
match and can be converted during the conversion phase in case of dispute. The
transaction that sets up the initial state is signed using the aggregate verifica-
tion keys of the participants in the respective head as well as the intermediaries.
A party does only sign the transaction after positively verifying its correctness.
The initial state requires that a state thread token, as well as participation to-
kens are provided in form of generalized token as input. The currency ID cidb
has to match the currency ID of the thread token that is provided as input. We
require one participation token for each participant and each intermediary. The
transition creates nb + ni separate outputs, each containing one participation
token and can be spent by exactly one participant and intermediary respectively.

Commiting EUTxO. Similar to Hydra heads, all participants and intermediaries
commit a set of EUTxO each to the Interhead which is done in parallel. A
commitment is displayed in Figure 5. Each participant and intermediary create
one commit transaction that spends a participation token and several of their
EUTxO within its inputs and stores information about them within its state
Ui,b.

18 Jourenko et al.

𝗏𝖺𝗅1, ν1, δ1

Signed k1,b

{p1,b} ∪ 𝗏𝖺𝗅′ , ν𝖼𝗈𝗆, U1,b

Commit / Collateral Transaction

ts,b

…

Signed Kagg,b, Kagg,i

{p1,b}, νinitial, k1,b

{pn,b}, νinitial, kn,b
…

{p1,i}, νinitial, k1,i

{pn,i}, νinitial, km,i

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

initial, δv, δc, δb

EUTxOs

𝗏𝖺𝗅2, ν2, δ2
…

ts,b :: 𝖼𝗂𝖽b

{p1,b, …, pnb,b}

{p1,i, …, pni,i}

Token Pb =

Token Pb,c =

Fig. 5: Commitment of EUTxO and collateral into the Interhead.

The Sync Open State. If all parties created a commit transaction, they can
be spent by the sync-open transaction as shown in Figure 6. The sync-open
state verifies that the set of EUTxO η = (U1,b, . . . , Unb,b) committed by the
participants, matches their original commitment, i.e. η = δb.ηb. Moreover, it
verifies that the collateral EUTxO ηcb = (U c1,b, . . . , U

c
ni,b

) that are committed by
the intermediaries contain a sufficient number of coins and fungible token. We
store δopenb in the CEMs state which equals δb but we replace δb.colb with ηcb .

Aborting. Creation of the Interhead can be aborted by a transition from the
initial state to the final state as shown in Figure 7. The final state makes the
EUTxO that were committed available via Split transactions similar to Hydra
[4].

The Pending State. The pending state can be reached from the sync-open and is
shown in Figure 9. The pending state is used to give an opportunity for honest
parties to either confirm head closure or to proceed to the conversion phase
instead – in case a de-sync attempt was detected. The transition requires an as
final annotated snapshot which transforms the EUTxO sets ηb and ηcb into η′b.
The final snapshot η′b contains two components. For one, it contains a partition
of the EUTxO within the whole Interhead namely the EUTxO that will be
made in head Hb upon closure. Moreover, it contains EUTxO that pay back
the intermediaries’ collateral. Note that the amount of coins that are paid back
to the intermediaries within head Hb might be less than what was paid by the
intermediaries upon opening the head, for instance, if participants from H1−b
performed payments to participants in head Hb. However, as the coins within
the partial CEM is constant, the participants’ coins will be taken from the coins

Interhead HydraTwo Heads are Better than One 19

… {p1,b} ∪ 𝗏𝖺𝗅′ , ν𝖼𝗈𝗆, U1,b

… {p1,i} ∪ 𝗏𝖺𝗅′ ′ , ν𝖼𝗈𝗆, Uc1,i

Signed ki, Kagg,i

Pb ∪ Pb,c ∪

∪ 𝗏𝖺𝗅b

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

𝗌𝗒𝗇𝖼 − 𝗈𝗉𝖾𝗇
πMT,i

…
…

…

sync-open, δv, δc, δ𝗈𝗉𝖾𝗇
b {ts,b} ∪ 𝖼𝗈𝗅bts,b

…

Signed Kagg,b, Kagg,i

{p1,b}, νinitial, k1,b

{pn,b}, νinitial, kn,b
…

{p1,i}, νinitial, k1,i

{pn,i}, νinitial, km,i

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

initial, δv, δc, δb

ts,b :: 𝖼𝗂𝖽b

{p1,b, …, pnb,b}

{p1,i, …, pni,i}

Token Pb =

Token Pb,c =

Fig. 6: Transition from initial to open state limited to the orderly phase.

submitted as collateral. However, in that case, this difference in coins will be
available as additional collateral in H1−b. Each intermediary has to ensure that
the sum of collateral paid back to them in both heads is equal to the collateral
they originally paid into creating the Interhead.

The Final State. In addition to aborting opening the Interhead, the final state
can be reached from the pending state by a confirmation of the intermediaries
as shown in Figure 10. Similarly to the abort case, the UTxO sets are made
available within the transaction’s outputs. However, this time the EUTxO that
are made available are taken from the final snapshot η′b.

Making EUTxO available. The final state partitions all EUTxO where each
partition is spent by a Split transaction as shown in Figure 11 and is derived
from the Hydra CEM. The Split transaction contains the EUTxO within the
respective partition in its outputs.

5.3 The Conversion Phase

The conversion phase can conclude in two ways. For one, any intermediary can
convert the Interhead CEM into a regular Hydra CEM. This requires that both
partial CEMs are decommitted into a common enforceable state or the ledger
respectively. This can happen by means of incremental decommits or closure of
Hydra heads within time Tmax. Note that no other state transitions are per-
mitted within the Interhead CEM but conversion to a regular Hydra head. All
transitions can be performed by an intermediary only, but now do not require a
signature corresponding to the intermediaries’ aggregate verification key Kagg,i.
For another, if the conversion has not been performed, in case no honest inter-
mediary exists, the CEM transitions into the punish phase.

20 Jourenko et al.

{a

1

Signed ki, Kagg,i

(r′￼𝗆𝗂𝗇, r′￼𝗆𝖺𝗑)

𝗌𝗒𝗇𝖼 − 𝖺𝖻𝗈𝗋𝗍
πMT,i

…
…

final
sync-open, Kagg,Ø

U,

… {p1,b} ∪ 𝗏𝖺𝗅′￼, ν𝖼𝗈𝗆, U1,b

… {p1,i} ∪ 𝗏𝖺𝗅′￼′￼, ν𝖼𝗈𝗆, Uc1,i

…

Uc

ts,b

…

Signed Kagg,b, Kagg,i

{p1,b}, νinitial, k1,b

{pn,b}, νinitial, kn,b
…

{p1,i}, νinitial, k1,i

{pn,i}, νinitial, km,i

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

initial, δv, δc, δb

ts,b :: 𝖼𝗂𝖽b

{p1,b, …, pnb,b}

{p1,i, …, pni,i}

Token Pb =

Token Pb,c =

ts,b :: 𝖼𝗂𝖽b

Pb
Pb,c

…

𝗏𝖺𝗅1, νfinal, β1

𝗏𝖺𝗅m, νfinal, βm

Fig. 7: Abortion of the construction during the orderly phase.

Abort. If there are any participants or intermediaries that have not yet commit-
ted EUTxO to the ledger, opening the Interhead can be aborted similarly to the
way it is done during the orderly phase. However, if all participants and inter-
mediaries committed EUTxO, aborting requires to transition into the pending
state instead, because a de-sync attempt might have happened. Note that if the
abort is permissible but the CEM transitioned into the pending state, it will be
performed after during the punish phase.

The Merged State. Conversion to a regular CEM is by means of the merged
state as shown in Figure 12. Both partial CEMs can be merged, either from the
open-sync state or the analogous pending state and any combination of both. The
merge state requires that two generalized thread token are present and match
δv.cid0 and δv.cid1. This ensures that only the intended partial CEMs can be
merged as both non-fungible thread token are unique. Moreover, it is verified
that the EUTxO sets match the initial commitment, i.e. δv.η = δ0.η0 ∪ δ1.η1.
This ensures that, in case all participants of one head as well as all intermediaries
are corrupted, it is not possible for them to commit less EUTxO than required
for the virtual Hydra head. The transaction releases all generalized token within
its outputs, but similarly to the initial state it takes one thread token as well as
δv.n participation token for all participants across both heads as input. Lastly,
the CEM has one output for each set of EUTxO committed by the intermediaries
to release their collateral in the same manner it is released in the final state. Note
that from this point on, only information in δv is required and the remainder
is removed from the state. As shown in Figure 13 any participant can perform
a transition into the open state of a regular Hydra CEM. We do not limit this
transition to the conversion phase s.t. it can be performed indefinitely after start

Interhead HydraTwo Heads are Better than One 21

Signed ki

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

𝖺𝖻𝗈𝗋𝗍
πMT

…
…

pending, δv, δc, δ𝗈𝗉𝖾𝗇
b , η′ b

… {p1,b} ∪ 𝗏𝖺𝗅′ , ν𝖼𝗈𝗆, U1,b

… {p1,i} ∪ 𝗏𝖺𝗅′ ′ , ν𝖼𝗈𝗆, Uc1,i

…

ts,b

…

Signed Kagg,b, Kagg,i

{p1,b}, νinitial, k1,b

{pn,b}, νinitial, kn,b
…

{p1,i}, νinitial, k1,i

{pn,i}, νinitial, km,i

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

initial, δv, δc, δb

ts,b :: 𝖼𝗂𝖽b

{p1,b, …, pnb,b}

{p1,i, …, pni,i}

Token Pb =

Token Pb,c =

Pb ∪ Pb,c ∪

∪ 𝗏𝖺𝗅b
{ts,b} ∪ 𝖼𝗈𝗅b

Fig. 8: Abortion during the conversion phase if all EUTxO and collaterals have
been committed.

1

sync-close
ζ𝖿𝗂𝗇𝖺𝗅

b , πMT,i pending, δv, δc, δ𝗈𝗉𝖾𝗇
b , η′ b

Signed ki, Kagg,b, Kagg,b

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

Pb ∪ Pb,c ∪ {ts,b}∪ (colb + valb)

sync-open, δv, δc, δ𝗈𝗉𝖾𝗇
b

Pb ∪ Pb,c ∪

∪ 𝗏𝖺𝗅b
{ts,b} ∪ 𝖼𝗈𝗅b

Fig. 9: First step of the optimistic closure during the orderly phase.

of the conversion phase. The state is directly derived from the data in δv, i.e.
Kagg = δv.Kagg, η = δv.η, hMT = δv.hMT, n = δv.n, T = δv.T .

5.4 The Punish Phase

The purpose of the last phase is to allow any honest party to open the virtual
Hydra head between all participants, even in the case that all other parties are
corrupted. The Interhead CEM transitions into a Hydra CEM without the need
of merging both partial CEMs. To ensure that this is possible, the coins and
fungible token that are necessary for opening the Hydra head are taken from the
collateral of the intermediaries who will lose it in the process. All transitions in
this phase can be performed by any participant or intermediary.

The Punished State. If the CEM is in the sync-open state when entering the
punish phase the CEM will transition into a regular Hydra CEM via the punish
state as shown in Figure 14. This conversion can be performed within the same

22 Jourenko et al.

𝖼𝗈𝗇𝖿𝗂𝗋𝗆
πMT,ipending, δv, δc, δ𝗈𝗉𝖾𝗇

b , η′￼b

Pb ∪ Pb,c ∪ {ts,b}∪ (colb + valb) {a

Signed ki, Kagg,i

(r′￼𝗆𝗂𝗇, r′￼𝗆𝖺𝗑)

final

Ø

U,
Uc

ts,b :: 𝖼𝗂𝖽b

Pb
Pb,c

…

𝗏𝖺𝗅1, νfinal, β1

𝗏𝖺𝗅m, νfinal, βm

Fig. 10: Confirmation of head closure or abort. Requires aggregate signature only
during orderly phase.

enforceable state in which the partial CEM is executed and thus requires no
incremental decommit and neither closure of the Hydra head. The transitions
from and to the punished state are similar to those to and from the merged state
with the exception that we only verify correctness of the data from the local
Hydra head, i.e. δb.η and δv.cid. We re-use the existing thread token ts,b for the
Hydra CEM. The collateral of the intermediaries is not made available through
the transaction’s outputs but used to finance conversion to the open state.

Open Ends. If the Partial CEM is in the initial state it can be aborted with
a transition to the final state. Moreover, if the CEM was in the pending state
it can now safely transition to the final state as no de-sync occured. Lastly, the
transition from the merged state to the open state of a Hydra CEM is open ended
and thus can be performed in the punish phase as well.

Interhead HydraTwo Heads are Better than One 23

{a

Signed k

(r′￼𝗆𝗂𝗇, r′￼𝗆𝖺𝗑)

final

Ø
ts,b :: 𝖼𝗂𝖽b

Pb
Pb,c

…

𝗏𝖺𝗅1, νfinal, β1

𝗏𝖺𝗅m, νfinal, βm

Signed k′￼

Split Transaction

… U1

Fig. 11: Split transactions make all EUTxO and collateral available within their
outputs.

6 The Protocols

We define the behaviour of honest parties in form of a protocol, split into three
sub-protocols protocols. The initialization protocol is executed at the beginning,
the synchronization protocol is executed by the intermediaries, and the opti-
mistic closure protocol is executed for resolving the state machine within the
orderly phase.

Initialization Protocol. At the beginning, the parameter of the initial state are
negotiated between all participants and intermediaries, and the intermediaries
need to verify that both initial states match and can be merged within the con-
version phase. For this reason we require that the initial state contains aggregate
signatures corresponding to both verification keys, Kagg and Kagg,i. Any party
provides their signature for this only in case of a positive verification of the
relevant initial state.

Synchronization Protocol. While the state machine already enforces that all
transitions within the orderly phase require consent from all intermediaries by
requiring an aggregate signature corresponding to verification key Kagg,i, the
synchronization protocol describes in which situation an intermediary provides
their signature to approve a certain state transition. A state transition is ap-
proved by a party under two conditions. (1) All remaining inputs except the
aggregate signature to perform the transition on both heads are known to the
party. (2) If state transition sync-collect has been approved, then state transition

24 Jourenko et al.

{

1

Signed ki

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

∪ (colb + valb)

∪ (col1−b + val1−b) Uc
b,

{p1, …, pn, ts}∪ 𝗏𝖺𝗅
merged, δv

𝗆𝖾𝗋𝗀𝖾
πMT,i

sync-open, δv, δc, δ𝗈𝗉𝖾𝗇
b

sync-open, δv, δc, δ𝗈𝗉𝖾𝗇
1−b

𝗆𝖾𝗋𝗀𝖾
πMT,i

{Pb, Pb,c, ts,b}

{P1−b, P1−b,c, ts,1−b}

Uc1−b

ts :: 𝖼𝗂𝖽v

{p1, …, pn}
Token Pv =

ts,b :: 𝖼𝗂𝖽b

Pb
Pb,c

ts,b :: 𝖼𝗂𝖽1−b

…

Fig. 12: Merging of both partial CEMs within the same enforceable state or the
ledger. Transition can be performed from any combination of sync-open and
pending states. Intermediaries’ collateral is unlocked.

1

open, Kagg, ηv, hMT, n, T
𝖼𝗈𝗇𝗏𝖾𝗋𝗍

πMT

Signed ki

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)
{p1, …, pn, ts}∪ 𝗏𝖺𝗅

merged, δv {p1, …, pn, ts}∪ 𝗏𝖺𝗅

Fig. 13: Conversion into a regular Hydra head. The head’s state can be inferred
from δv directly. Transition originating from punished state is analogous.

sync-abort cannot be approved, and vice versa. Note that this implies that all
parties have submitted EUTxO corresponding to the commitment δv.η and all
intermediaries committed sufficient collateral. This is required to allow the Inter-
head to transition into the merged state if necessary. Note that the intermediaries
create two aggregate signatures, one for each partial state machine.

This protocol allows that a state transition is performed either on both partial
Interhead state machines or on none. However, there is one caveat. One corrupted
intermediary can wait until its signatures were all that is remaining for the two
aggregate signatures. Then they only complete one of the aggregate signatures.
If this is done for sync-abort or sync-confirm transitions, this results in one head
to close earlier than the other which is non-criticial as it does not impact security
of the system. However, if it is done for sync-collect or sync-close transitions this
could result in honest intermediaries to lose their collateral. Due to this, if this

Interhead HydraTwo Heads are Better than One 25

1

Signed k

𝗉𝗎𝗇𝗂𝗌𝗁
πMT,b

sync-open, δv, δc, δ𝗈𝗉𝖾𝗇
b

∪ (colb + valb)
{Pb, Pb,c, ts,b} {p1, …, pn}∪ {ts,b} ∪ val

punished, δv

(r′￼𝗆𝗂𝗇, r′￼𝗆𝖺𝗑)
{p1, …, pn}

Token Pv = Pb

Fig. 14: Transition into punished state. Thread token is reused thus not provided
as input. Transition into open state of Hydra CEM is analogous compared to
originating from the merged state.

circumstance can occur, the state machine requires to proceed to the pending
state. The pending state can be left through consent of all intermediaries through
sync-confirm transition, however, if any intermediary detects this attempted de-
sync, they will refrain from cooperating such that the CEM transitions into
the conversion phase. Lastly, if the Interhead state machine proceeds into the
conversion phase, each honest intermediary proceeds to actively commit the
Interhead state machine on the ledger, potentially by closure of the Hydra heads,
and perform state transitions until the merged state is reached.

Optimistic Closure Protocol. To close the Interhead state machine during the
orderly phase we proceed similar to the optimistic head closure of Hydra. All
parties negotiate two partial snapshots η0, η1 for both heads H0 and H1. These
snapshots represent two partitions of all EUTxO within the Interhead’s enforce-
able state. (1) ηb contains those EUTxO that are to be released within head Hb

as well as (2) the collateral that will be paid out to the intermediaries within
Hb. Upon negotiation, all parties provide aggregate signatures of (final, ηb) cor-
responding to verification keys Kagg,b and Kagg,i.

How the EUTxO are to be partitioned is free to the individual parties, how-
ever, there are a few things that have to be considered by each individual party.
A participant who is member of head Hb but not head H1−b should negotiate
that all EUTxO that represent payments to itself must be in ηb. Similarly, EU-
TxO state represent state machines the party participates in should be in ηb
as well. This is due to if all of the parties in H1−b are corrupted, all EUTxO
in η1−b are potentially lost. Moreover, each intermediary has to ensure that the
sum of collateral it receives within both partitions is equal to the sum of col-
lateral it paid into the CEM. Note that the amount of collateral paid out to
the intermediaries will change within each head depending on how the EUTxOs
are partitioned since the total amount of coins within the snapshot in ηb cannot
change from the amount of coins committed by participants and intermediaries

26 Jourenko et al.

in Hb. However, the total amount of coins paid back to the intermediaries as
released collateral will remain constant across both heads H0 and H1.

Any honest party must adhere to this behaviour during negotiation since
otherwise the security properties in Section 4.2 cannot be guaranteed.

7 Security Proofs

In the following we provide security statements for the Interhead construction,
composed of the Interhead state machine and the Interhead protocols. This cor-
responds to the desired properties in Section 4.2.

Lemma 1 (Termination). If at least one party is honest, the Interhead CEM
eventually reaches a final state or transitions into the Hydra CEM statespace.

Proof. There are two cases. First, if all parties collaborate and do not behave
maliciously, the Interhead CEM can reach a final state across two paths during
the orderly phase, i.e. either through an abort, or through optimistic head clo-
sure. If this is not performed, the honest party waits until enough time passed
for the CEM to enter the punish phase which will eventually happens. The state
transitions within the punish phase have the only requirement a proof that the
party is either intermediary or participant of the virtual head which can be per-
formed by the honest party. There is a path of all states within the CEM’s state
space that either lead to a final state, or into the Hydra CEM state space.

Theorem 1 (Collateral Liveness). If at least one intermediary is honest, the
Interhead construction has the collateral liveness property.

Proof. We note that there are two states that enforce that any collateral, that
was committed prior, is made available within any enforceable state. These two
states are the final state and the merge state. As shown in Lemma 1, eventually
the Interhead CEM either reaches a final state or the Hydra CEM statespace.
There is only one path a run through the Interhead CEM can take that does not
end in a final state or contains the merge state. This is when the Hydra CEM
has a run that contains the punished state.

Thus, what is left to show is that any honest intermediary P can enforce that
a run does not contain the punished state. We observe that the punished state
can only be reached from the sync-open state and only within the punish phase.
In the following we assume that there are two partial CEMs, Ib, b ∈ N and CEM
Ib is in the sync-open state. In the following we reason about the potential states
of partial CEM I1−b.

First, I1−b can be in the initial state, or the pending state. Reaching the sync-
open state from the initial state requires an aggregate signature of the group of
intermediaries for which collaboration of P is required. As P is honest, they
only collaborate with creation of the aggregate signature if all parties commit-
ted EUTxO consistent with commitment δv.η and all intermediaries committed
sufficient collateral. Moreover, at the beginning of the protocol P confirmed that

Interhead HydraTwo Heads are Better than One 27

both initial states of the partial Interheads are consistent, especially contain the
same values for δv. Since all parties committed transactions and collateral, the
Interhead prevents a transition from the initial state to the final state before the
punish phase. However, P can enforce a transition from the initial state to the
pending state by providing proof they are an intermediary during the conversion
phase.

Second, I1−b can be in the sync-open state and remain there, or transition
into the pending state during the orderly phase. However, I1−b cannot reach the
final state from the pending state during the orderly phase, as this requires an
aggregate signature from the intermediaries which requires collaboration from
P who only collaborates if both partial CEMs are in the pending state. Addi-
tionally, there is no transition from the pending state to the final state within
the conversion phase. Thus, Ib cannot transition into the final state from the
pending state before the punish phase.

In summary, partial CEM I1−b is either in the pending or the sync-open state,
or can be brought into the pending state by P during the conversion phase.

Thus, as soon as the Interhead CEM reaches the conversion phase, P closes
both Hydra heads and performs the state transition of I1−b into the pending
state if necessary. As both partial Interheads are within the same enforceable
state P can perform the state transition into the merged state preventing any
partial CEM to transition into the punished state. This requires at most time
t = max(Hb.T

max, H1−b.T
max + 2∆. As it holds that for the duration of the

orderly phase tC,end − tC,start > max(Hb.T
max, H1−b.T

max + 2∆ = t, the honest
intermediary P can perform transition into the merged state before the punish
phase starts.

Theorem 2 (EUTxO Liveness). If at least one party is honest, the Interhead
construction has the EUTxO liveness property.

Proof. Due to Lemma 1 we have two cases to consider for any honest party P.
Either the CEM reaches a final state, or it reaches the Hydra CEM state space. In
the latter case, we are finished. In the former case we have two cases. For one, the
CEM can abort which unlocks all previously committed EUTxO in which case
we are finished. Otherwise, the final state is reached through the sync-open and
pending states through an optimistic closure. In that case, the EUTxO that are
unlocked depend on the negotiation during the optimistic closure protocol. P’s
collaboration of an aggregate multisignature is required to perform optimistic
closure. If P is member in Head Hb it verifies that all of the EUTxO it is related
with are present in the snapshot partition ηb. If P is member in both Hydra heads
it ensures all of the EUTxO it is related with are in either snapshot partition.
In either case, all EUTxO within the partitions are made available within the
Hydra heads P is member of.

Theorem 3 (Balance Security). If at least one party is honest, the Interhead
construction has the balance security property.

Proof. This follows directly from Theorem 1 and Theorem 2.

28 Jourenko et al.

8 Conclusion

In this work we present the Interhead construction, an approach to create vir-
tual Hydra heads enabling communication that goes beyond simple payments
but instead allows for the execution of arbitrary state machines between partic-
ipants across a network of Hydra heads. We define security properties Collateral
Liveness, EUTxO Liveness and Balance Security and prove them in the presence
of a malicious adversary. We present the first virtual channel construction that
supports channels with an arbitrary number of parties and that collateral is
contributed by multiple intermediaries. Our construction thus closes the gap be-
tween Layer-2 protocols based on Hydra heads and Payment or State channels.

References

1. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. pp.
219–233. IEEE (2004)

2. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended utxo model. In: 4th Workshop on Trusted Smart Con-
tracts (2020)

3. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J., Jones,
M.P., Vinogradova, P., Wadler, P.: Native custom tokens in the extended utxo
model. In: International Symposium on Leveraging Applications of Formal Meth-
ods. pp. 89–111. Springer (2020)

4. Chakravarty, M.M., Coretti, S., Fitzi, M., Gazi, P., Kant, P., Kiayias, A., Rus-
sell, A.: Hydra: Fast isomorphic state channels. In: International Conference on
Financial Cryptography and Data Security. Springer (2021)

5. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,
Saxena, P., Shi, E., Sirer, E.G., et al.: On scaling decentralized blockchains. In:
International Conference on Financial Cryptography and Data Security. pp. 106–
125. Springer (2016)

6. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems. pp.
3–18. Springer (2015)

7. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs
over cryptocurrencies. In: Perun: Virtual Payment Hubs over Cryptocurrencies.
IEEE (2017)

8. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 949–966. ACM (2018)

9. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 801–815. ACM Press
(Nov 2019). https://doi.org/10.1145/3319535.3345666

10. EthHub: Sidechains (2021), https://docs.ethhub.io/ethereum-roadmap/

layer-2-scaling/sidechains/

11. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development (71), 1–8 (1983)

https://doi.org/10.1145/3319535.3345666
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/

Interhead HydraTwo Heads are Better than One 29

12. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
Cryptology ePrint Archive, Report 2020/998 (2020), https://eprint.iacr.org/
2020/998

13. Jourenko, M., Larangeira, M., Tanaka, K.: Payment trees: Low collateral payments
for payment channel networks. In: International Conference on Financial Cryptog-
raphy and Data Security. Springer (2021)

14. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Theory of Cryptography Conference. pp. 477–498. Springer
(2013)

15. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. IACR Cryptology ePrint Archive 2019, 778 (2019)

16. Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryp-
tology – EUROCRYPT 2016. pp. 705–734. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

17. Mealy, G.H.: A method for synthesizing sequential circuits. The Bell System Tech-
nical Journal 34(5), 1045–1079 (1955)

18. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security.
pp. 245–254 (2001)

19. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Heidelberg (Feb 2019).
https://doi.org/10.1007/978-3-030-32101-7 30

20. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
21. PDecker, C., Russel, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.

See https://blockstream.com/eltoo.pdf (2017)
22. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments. See https://lightning. network/lightning-network-paper. pdf (2016)
23. Richards, S., Wackerow, P.: Plasma (2021), https://ethereum.org/en/

developers/docs/scaling/plasma/

24. Richards, S., Wackerow, P.: Sidechains (2021), https://ethereum.org/en/

developers/docs/scaling/sidechains/

https://eprint.iacr.org/2020/998
https://eprint.iacr.org/2020/998
https://doi.org/10.1007/978-3-030-32101-7_30
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/

30 Jourenko et al.

A Appendix

merged

punished

punished

Hydra Head 0

Hydra Head 1

open

convert

Dispute Phase:
Convert to

Ledger Hydra Head

…

Hydra CEM

merge

punish

convert

convert

initial

sync
open

sync-collect
sync-close

abort

merge

punish

initial pending

sync
open

sync-collect sync-close

abort

re-sync

re-sync

pending

final

final

sync-confirm

sync-confirm

abort / sync-abort

abort / sync-abort

Fig. 15: Overview of all state transitions of the Interhead CEM. Note that most
transitions are limited to one of the three phases of the construction.

	Interhead HydraTwo Heads are Better than One

