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Abstract. The main idea behind lattice sieving algorithms is to reduce
a sufficiently large number of lattice vectors with each other so that a
set of short enough vectors is obtained. It is therefore natural to study
vectors which cannot be reduced. In this work we give a concrete defi-
nition of an irreducible vector and study the properties of the set of all
such vectors. We show that the set of irreducible vectors is a subset of
the set of relevant vectors and study its properties. For extremal lattices
this set may contain as many as 2" vectors, which leads us to define
the notion of a complete system of irreducible vectors, whose size can
be upper-bounded by the kissing number. We study properties of this
set and observe a close relation to heuristic sieving algorithms. Finally
we briefly examine the use of this set in the study of lattice problems
such as SVP, SIVP and CVPP. The introduced notions, as well as various
results derived along the way, may provide further insights into lattice al-
gorithms and motivate new research into understanding these algorithms
better.
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1 Introduction

The need for quantum-resistant cryptography has led to rapid developments in
the area of lattice-based cryptography, mainly spurred by the NIST PQ-Crypto
competition. Large scale deployment of lattice-based cryptosystems in the near
future becomes realistic. This continues to make the deeper understanding of
lattice problems an urgent research topic.

In 2010 Micciancio and Voulgaris, based also on previous work [@], described
deterministic O(22")-time and O(2")-space algorithms to solve some of the most
important lattice problems (such as SVP, SIVP and CVP) [22] in dimension n.
This result mainly relies on an algorithm to compute the set of relevant vectors
of (the Voronoi cell of) a lattice. Even though this is a very interesting result,
the constants in the exponents of time and space complexities of the Micciancio—
Voulgaris algorithm make it impractical, even for moderate dimensions.

The set of relevant vectors was first introduced in 1908 by Voronoi [B5]. It
provides a useful representation of the Voronoi cell of a lattice. Even though the
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set, of relevant vectors seems to hold the key for solving many lattice problems, its
expected size makes it impractical. This becomes even more clear when that size
is compared to the (time and) space complexity of algorithms used in practice
for solving lattice problems such as [2,8,I3].

In this work, we introduce a different set of lattice vectors, which appears
to serve as a bridge between the provable results relying on the set of relevant
vectors and heuristic sieving algorithms [, 23,27].

Notions of irreducibility are considered to be fundamental in many areas.
Often irreducibility is defined with respect to multiplication. Since a lattice is an
additive object, we will however use an additive notion of irreducibility. Clearly
the notion of lattice basis could be seen as such a construct, but it has been
observed to be a too weak notion to provide, on its own, interesting results for
lattice problems. Our new notion of irreducible vectors provides us with a set of
lattice vectors, larger than a basis but smaller than the set of relevant vectors,
and possessing interesting properties. To the best of our knowledge this definition
is new in the area of lattices.

Contributions. In this paper we define a notion of irreducibility for a lattice
vector. As a first result we show that every irreducible vector of a lattice belongs
to the lattice’s set of relevant vectors. Hence, the set of irreducible vectors which
we denote by Irr(L£) is finite. Additionally, it is shown that the set of irreducible
vectors generates the lattice and also contains vectors achieving all the successive
minima of the lattice. Finally, the set of irreducible vectors of the root lattices
An, D, and their duals A}, D} is examined as they prove to be interesting
extreme cases.

As it turns out, the set Irr(£) can be as big as the set of relevant vec-
tors. In order to get a set of cardinality provably smaller than 2™, a complete
system of irreducible vectors is defined, which is denoted by P(L£). This set in-
herits the aforementioned properties of the set Irr(£) and also it is proved that
|P(L)| < 20402 where n is the rank of the lattice. Heuristically it is expected
that P(£) will have a cardinality of 292!, From a computational point of view,
it is shown that slightly modified versions of already existing sieving algorithms
asymptotically converge to such a set (modulo sign). This statement is further
supported by experimental results. Finally, we discuss the applicability of P(L£) in
showing that sieving algorithms like the ones described in [3,23] can be used for
tackling SVP, SIVP and computing the kissing number of a lattice. Additionally
we discuss the applicability of P(L) as preprocessing data in a CVPP algorithm
which we call “the tuple slicer”. The tuple slicer can provide a time-memory
trade-off without the use of rerandomisations.

Outline. The rest of the paper is organised as follows. In Section B we introduce
notation and give some background about lattices. Section B includes some prior
work on the set of relevant vectors. The definition of irreducible vectors is given
in Section @ along with the first results regarding this new notion. In Section B
we mention theoretical as well as experimental results on computing a complete
system of irreducible vectors. Section B provides some initial arguments about
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the link between the new notions defined and the study of lattice algorithms and
problems. Finally, Section [ concludes with a discussion of potentially interesting
future research topics.

2 Preliminaries

To fix notation, let B = {by,...,b,} C R™ be a set of linearly independent
vectors, which we may also interpret as a matrix with columns b;. The lattice
generated by B is defined as £ = £L(B) := {Bx : € Z"}. In this paper we deal
with full rank lattices unless indicated otherwise. We assume that the reader
is familiar with notions such as the volume Vol(L£) = | det(B)|, the successive
minima A\;(£) = min{max; ||z;|| | 1,...,x; € L are linearly independent}, in
particular the first successive minimum A\ (L) = min,e 2\ 1o} ||v]|. We refer to [21]
for further details on these basic notions.

Definition 1 (First shell). Let £ be a lattice. We define

S1(£) = {v e L[] = (L)} (1)
We call S1(L) the first shell of L.

The following two well known concepts will be of major importance for our work,
so we define them explicitly.

Definition 2 (Voronoi cell). The Voronoi cell V(L) of a full rank lattice L is
the set of points in R™ which are closer to the origin than to any other lattice
point, i.e.

V(L) ={x eR"||z| < |x—v||VveL} (2)

If it’s clear what £ is, we may use V instead of V(L). Closely related to the
Voronoi cell of the lattice is the set of relevant vectors.

Definition 3 (Relevant vectors). The set of relevant vectors R(L) is
R(L) ={r € L\ {0} | (r +V) andV share a non-empty boundary}.  (3)

Let B(z,r) = {y € R" | |ly — || < r} denote the closed n-dimensional ball
with center & and radius r. Finally we have the kissing number 7,, defined as
the maximum number of equal n-dimensional spheres that can be made to touch
another central sphere of the same size without intersecting.

See [21] for an overview of the main hard lattice problems that we will con-
sider in this paper, namely the Shortest Vector Problem (SVP), determining
the kissing number, the Shortest Independent Vector Problem (SIVP), and the
Closest Vector Problem (CVP) and its Preprocessing variant (CVPP).
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3 Previous Work

In this section we give an overview of known results on the set of relevant vectors.
This is done for a matter of completeness but also in order to indicate what kind
of results we would like to obtain for the set of irreducible vectors which we will
define later.

For v € L we define H(v) := {x € R" | ||z| < ||z —v]}, to relate the Voronoi
cell of a lattice to its relevant vectors.

Proposition 1 (Relevant vectors). Let £ be a full rank lattice in R™. The
set of relevant vectors R(L) is the minimal set L C L such that

V(L) = (1) H). (4)

In order to get a more practical description of the relevant vectors the following
theorem is used.

Theorem 1 (Identifying relevant vectors [38]). Let £ be a full rank lattice
inR™ and v € L\{0}. Then v € R(L) if and only if 0 and v are the only closest
vectors of L to %'1).

This implies that

R(L) = {v € L\{0}| |50 — || > |5vll Yz € £\ {0,v}} (5)
= {ve £\ {0} | (v,z) < |z ¥z € £\ {0,v}} (6)
Remark 1. Tt holds that 0 ¢ R(L). Also note that if v € R(£) then —v € R(L).

Remark 2. The condition (v, z) < ||z||® needs to be checked only for & € £\ {0}
such that ||z| < ||v]|, because otherwise it is trivially true.

For checking if a vector is relevant, the following lemma is useful.

Lemma 1 (Identifying non-relevant vectors [22]). Let £ be a full rank

lattice in R™, and v € L. If v & R(L) then there exists r € R(L) such that
2

(v,r) > [I7|".

Also a lower bound for the set R(L) can be obtained by the following trivial
lemma.

Lemma 2 (All shortest vectors are relevant). Let £ be a full rank lattice
in R™. It holds that S1(L) C R(L).

Equality in the above lemma holds for a very special type of lattices.
Theorem 2 (Root lattices [2R]). S1(£) = R(L) iff L is a root lattice.

The following theorem by Minkowski gives an upper bound on the size of R(L).
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Theorem 3 (Upper bound on |R(L)| [24]). Let L be a full rank lattice in
R™. It holds that |R(L)| < 2(2™ — 1).

Apart from an upper bound we can also obtain a lower bound on |R(L)].

Remark 8. For the lattice Z" is true that |[R(Z™)| = 2n (see [R]). As the set R(L)
needs to have n linearly independent vectors in order the volume of V(L) to be
finite then 2n < |R(L)] is a tight lower bound.

Proposition 2 (Volume of the Voronoi cell). Let £ be a full rank lattice in
R™. It holds that Vol(L) = Vol(V(L)).

Proposition 3 (Relevant vectors generate). Let L be a full rank lattice in
R™. There exists a generating set G of L such that G C R(L).

Proof. Every vector v € L can be “reduced” to the 0-vector through reductions
by elements of R(L). Thus, R(£) spans the entire lattice. O

So far we have mentioned a number of properties and definitions on the relevant
vectors of a lattice. Computing them is however a different matter. The following
result is the current state of the art on this.

Theorem 4 (Finding all relevant vectors [22]). There exists a determin-
istic O(2%")~time and O(2")-space algorithm which, given an n-rank lattice L
with basis B, outputs the set of relevant vectors.

4 TIrreducibility of lattice vectors

4.1 The set of irreducible vectors

Inspired by number theoretic notions of (multiplicative) irreducibility, we intro-
duce a similar concept for lattice (additively structured).

Definition 4 (Irreducibility). Let £ be a full rank lattice in R™ and v € L\
{0}. The vector v is called k-irreducible iff B, ..., vy € L such that |v;]| < ||v]|
and vy +---+vE = v. For the special case k = 2, v will be just called irreducible.

Remark 4. The definition of k-irreducible vectors implies that if a vector is k-
irreducible then it is also (k — 1)-irreducible. This observation allows the con-
struction of a chain of subsets based on the notion of irreducibility.

In this work we are going to focus on the properties of 2-irreducibility. Further
research on the notion of k-irreducibility for k > 2 is left for future research.

Definition 5 (Set of irreducible vectors). Let L be a full rank lattice in R™.
We define
Irr(L) == {v € L | v is irreducible}. (7)

Remark 5. Tt holds that 0 ¢ Trr(L£). Also, if v € Irr(£) then —v € Irr(L).



6 E. Doulgerakis, T. Laarhoven, B. de Weger

The above properties hold for the set of relevant vectors as well and this is not a
coincidence as we will see. First we show that this set is not empty, and indeed
that it also contains vectors achieving the first successive minimum.

Lemma 3 (Shortest vectors are irreducible). Let £ be a full rank lattice
in R™. It holds that:

S1(£) € Irr(L). (8)

Proof. Let v € S1(L£). Then clearly v # 0. Assume that v ¢ Irr(£), so there
exist v1,v2 € L such that ||v;| < ||v]| and vy + vy = v. As v € S1(L) this
implies that ||v;|| < A1(£) and thus ||v;|| = 0. Hence, we get v1 = vo2 = 0, which
contradicts v # 0. O

Remark 6. Tt can be easily checked that Lemma B would still hold under the no-
tion of k-irreducibility for & > 2. Therefore we can conclude that k-irreducibility
is not leading to a trivially empty set of vectors for k£ > 2. One may expect that
it will also include a lattice basis.

We show that something similar occurs for the rest of the successive minima as
well.

Definition 6 (Sublattice spanned by short vectors). Let £ be a full rank
lattice in R™ and 1 < i < n. We define Ly to be the sublattice spanned by all the
vectors in L with norm strictly less than \.

Proposition 4 (Identifying irreducible vectors). Let £ be a full rank lattice
in R™, and v € L satisfying ||v]| = Xi = A\(L) for some 1 <i < n. Ifv & Ly,
then v is irreductble.

Proof. 1t has been already proven in Lemma B that this is true for ¢ = 1 so we can
consider ¢ > 2. Assume v € L such that |[v]| = A\;(£) for some 2 <i <n,v &€ Ly,
and v is not irreducible. Then there exist v1,vs € £ such that v = v1 + vo and
|lvj]l < |lv| for j = 1,2. Clearly v; # 0. As ||v;|| < ||v|| = Ai(£) this implies that
v; € Ly, for j = 1,2. This further implies that v = v + v, € L),, contradiction.

O

Remark 7. Proposition @ points out that a lattice vector achieving a successive
minimum is not necessarily irreducible. An enlightening example of such an
occasion is the following. Consider the lattice £ = £(B) generated by the matrix

300
B=[040 |. (9)
0010

Then A (L) = 3, A2(L£) =4 and A3(L) = 10. The vector v = (6, 8, 0) is such that
lv|l = A3(£) but v is not irreducible as it can be written as a sum of shorter
vectors i.e. v = (6,0,0) 4+ (0,8,0). The reason why v fails to be irreducible is
that it belongs to the sublattice L.
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Corollary 1 (Irreducible vectors and successive minima). Let £ be a full
rank lattice in R™. For every i = 1,...,n there exists a vector v € Irr(L) such

that ||v]| = \i(L).

Proof. By Proposition B it suffices to show that for every ¢ = 1,...,n there
exists a vector v € L such that ||v|| = A\(L£) and v € L,,. Assume that for
every vector v € L such that ||v]] = X\;(£) for some fixed 2 < i < n it holds
v € Ly,. For convenience we define A\g(£) = 0. Let k be min;<;<; j such that
A (L) = Ai(£) and therefore Adg—1 (L) < Ag(L) = Ai(£). Then Ly, has rank k—1
as A\p—1(L) < Ag(L). If £ — 1 = 0 then we are done as this would imply v = 0.
If k —1 > 1 then v belongs to the sublattice containing all the shorter vectors
than it, £y, and this sublattice is of rank k — 1. Thus any choice of £ — 1 vectors
such that max{||lv1]|,..., [[vk—1|l, [|v||} = ||v|| will result in a linearly dependent
set. Hence it cannot be that A(L) = ||v]|, contradiction. O

Apart from vectors reaching the successive minima, it can be shown that the set
Irr(£) contains a generating set of the lattice as well.

Proposition 5 (Irreducible vectors generate). Let L be a full rank lattice
in R™. There exists a generating set G of L such that G C Irr(L).

Proof. We will prove that the set Irr(£) spans the lattice and therefore it includes
a generating set. Let v € £. If vy, vo € £ with [|v;]| < ||v|| such that v1+vs = v
then v € Irr(L£). If there exist such v; then write v = v + vo. If the v; € Irr(£)
then we are done. If not then further reduce the vectors v; such that they are
written as a sum of two strictly shorter vectors. As in each step the length
of the vectors strictly reduces and there is a finite number of lattice points in
B(0, ||v||), after a finite number of steps we will reach a state where v = 3 p,
and p; € Irr(£). This concludes the proof. O

Given the result of Proposition B the following conjecture can be formulated.

Congecture 1. Let £ be a full rank lattice in R™. The set Irr(£) contains a basis
of L.

Our next goal is to derive some more explicit descriptions of the set Irr(L).

Lemma 4 (Characterizing the set of irreducible vectors). Let £ be a full
rank lattice in R™. It holds that

Irr(£) = {v € L\ {0} | V& € £ with ||z|| < ||v|| it holds ||lv — || > ||v||}  (10)
= {v e L\ {0} |V € L with ||z| < ||v| it holds 2(v,z) < |l=|*}. (11)

Proof. Let A={v e L\ {0} | Ve € L with ||| < ||v| it holds ||[v — x| > ||v]}.
Let p € Irr(£) and v € £ with ||v|| < ||p||. Then as p € Irr(L) we get ||p—v|| >
|lp|l because otherwise p would have a decomposition into two shorter vectors,
thus p € A. This gives Irr(£) C A. Next, let v € A, and write v = vy + v2 for
some v1,v2 € L. If ||v1]] < ||v]| then as v € A we get ||v — v1| > ||v|| and hence
we do not get a decomposition of v in two shorter vectors. If ||v1]| > ||v|| this
is trivially true. Thus v € Irr(£). This implies equality (I0) and equality (I) is
an immediate consequence. This concludes the proof. a
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Even though this lemma is rather straightforward it implies an interesting result
for the set Irr(L).

Proposition 6 (Irreducible vectors are relevant). Let £ be a full rank
lattice in R™. Every irreducible vector of L is also a relevant vector of L, hence:

Irr(£) C R(L). (12)

Proof. As we already saw by Theorem [, we can write the set R(£) as R(L) =

{fve\{0}| (v,z) < |z|* Yz e £\{0,v}} and we can further improve that
description to

R(L) ={v e L\ {0} |Vx € £\ {0} with |x| < ||v] it holds (v, x) < ||ac||2}
For the set of irreducible vectors we got from Lemma B that
Irr(£) = {v € £\ {0} | V& € £ with ||lz|| < [|v] it holds 2(v, ) < ||=|?}.

Thus by carefully checking these two descriptions for the sets R(L) and Irr(£)
it suffices to prove that if v € £\ {0} and « € £\ {0} with ||z| < |lv|| then
2,2) < |’ = (v, ) < ||’

If (v, ) < 0 this is trivially true as « # 0. Also if (v, ) > 0 then (v, z) < 2(v, x)
and the result follows. O

Remark 8. Combining the result of Lemma B and Proposition B we get that
S1(L) C Irr(L) € R(L). Therefore Irr(L) is finite.

We already saw that for the case of root lattices it holds S;(£) = R(L). This
implies that for the root lattices it also holds that S1(£) = Irr(£) = R(£L). Thus,
the sets S1(L£) and R(L) are tight inclusions of Irr(L).

We expect that in general though it will hold Si(£) & Irr(£) & R
question that might be of interest is when and if Sl(ﬁ = Irr ) & R

(L) & Irr(L£) = R(L) are possible.

We believe that lattices satisfying either of these properties will be very spe-
cial and highly symmetric. The reason why we believe this, is that some already
well known very special families of lattices satisfy these properties. Namely, in
Appendix B we will prove the following two theorems.

Theorem 5 (The root lattices D). Let n € N with n > 5. Then for the
lattice D}, it holds that Sy(D;) & Irr(D}) = R(D;,). Furthermore |Irr(D})| =
2" + 2n.

Theorem 6 (The root lattices AY). Let n € N with n > 3. Then for the
lattice Ay it holds that S1(A}) = Irr(Ay) & R(A}). Furthermore |Irr(Ay)| =
2(n+1).

Additionally the famous Leech lattice As4 [R, p. 131] satisfies the property
S1(Agq) = Trr(Azs) & R(Az4). We will actually be able to prove in the next
subsection that for every lattice that reaches the kissing number 7,, it holds that

S1(L) =Trr(L).
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4.2 A complete system of irreducible vectors

The special family of lattices D} indicates that the set Irr(£) can become as big
as R(£) and actually grow as much in size as 2". However, our goal is to obtain
a subset of Irr(£) which is closely related to it but also provably smaller than
2m,

Definition 7 (Equivalence relation on Irr(L£)). Let £ be a full rank lattice
in R™. We define an equivalence relation in Irr(L) in the following way.

Let vq1,v2 € Irr(L)  then vy ~wvy iff |v1] = |jvze]- (13)

From each equivalence class we will consider at least two representatives. We
choose them in the following way and we will explain afterwards why.

Definition 8 (Representatives of equivalence classes). For each equiva-
lence class S = {v1,...,vm} of Irr(L) according to (I3) we choose a subset
S C S such that the following two conditions hold:

(i) vaegthen also —v € S. ~
(i) S is a mazimal subset of S such that for every pair of vectors vi,vy € S
with vy # —v1 it holds that |[v1 + va|| > ||v1]|-

The main motivation is that the new set of vectors which will be built under
these rules will include irreducible vectors whose pairwise angle is “big” as we
will prove later. However, there are several details of this definition which should
be clarified. First of all, from the definition it follows that for an equivalence class
we consider at least two representatives, which is not usually done. The reasons
for this are the following.

Initially, for the subset of Irr(£) which we are trying to define, we would like
it to inherit the property of Irr(£) that if v belongs to it then also —wv belongs
to it. A second, more important reason is that choosing only one representative
per equivalence class could lead to a set that does not even span the lattice (for
example in the case of root lattices, or whenever S;(L£) = Irr(L)).

The second condition of the definition implies that for every element v of
a class S which is not included in S there exists a vector @ € £ such that
lv — || < ||v||. From this point of view the remaining elements of a class S
which are not included in S can be generated by the elements of S plus some
strictly shorter vector. In order to ensure that this holds we take S to be maximal.
Also by taking S to be maximal we make sure that the set S contains as much
information about the class as possible.

Remark 9. Choosing a representative set S of a class S can be translated into
a graph problem. We define a graph where the set of vertices is the equivalence
class, and there exists an edge between two vertices iff the difference of the
corresponding vectors is strictly shorter than both of them. Then choosing a set
of representatives translates to finding a maximal subset of vertices that are not
adjacent, while keeping the symmetry about 0. In terms of graph theory this
can be phrased as finding a special independent set of the graph. This idea is
further analysed in Appendix B.
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Definition 9 (Complete system of irreducible vectors). Let L be a full
rank lattice in R™. We define a complete system of irreducible vectors of L to be:

py= |J S (14)

Selrr(L)/~

Remark 10. By the definition of P(L) it follows that it is not uniquely deter-
mined. Its contents depend on the choice of representatives S for each S €
Irr(L)/~. Furthermore, this also implies that the size of P(L£) can vary.

Remark 11. By the fact that for each class S of Irr(L) /~ we have S C S we get
that P(£) C Irr(£). Also the class of Irr(L£)/~ containing all the shortest vectors
i.e. S1(£) will be entirely included in P(L£) as any pairwise sum of vectors (for
non-trivial pairs) in this class will be longer or equally long by definition. Thus
we can conclude that

S1(£) S P(L) CIrr(£) € R(L).
We will also give an example in order to illustrate this definition.

Ezample 1. Let £ = £(B) be the lattice generated by the columns of the matrix

00 0 -13
-1-10 10
B=| 0 0-210
1 -10 01
01 0 21

We find the sets S1(£),P(L), Irr(L£), R(L).

In fact B is an LLL-reduced basis [[¥] of the lattice. By means of enumeration
one could verify that S;(£) = {+(0,—1,0,1,0)}. By running an algorithm that
computes the set of relevant vectors like [34] in SAGE [B3] we get

R(L) = {+ (0, 1010)
+ (0, ~1,1),
+ (0, 0,2,0 0),
+(=1,0,—-1,1,2),4(~1,0,1,1,2), £(—1,1,-1,0,2), +(—1,1,1,0,2),
+(=1,1,-1,2,1),%£(=1,1,1,2,1), £(—-1,2, =1,1,1), +(-1,2,1, 1, 1),
1(3,1,0 0,1),+(3,0,0,1,1),
+ (2 ,1,-1,1,3),:&(2,1,1,1,3),
+(2,2,-1,2,2), +(2,2,1,2,2)}.

(each line has vectors of equal norm). The next step is to find the set of irreducible
vectors Irr(L£). We consider the subset of R(£) containing relevant vectors which
cannot be written as a sum of two strictly shorter vectors (by cross-checking
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with the set of relevant vectors). It turns out that this set just contains all the
vectors achieving the successive minima thus it must be that this is Irr(L).

Irr(£) ={+£(0,-1 O, 1,0),

+(0,-1,0,-1,1),

+ (0,0, 2.0, 0),

4 (-1,0,-1,1,2),+(~1,0,1,1,2), £(~1,1,-1,0,2), +(~1,1,1,0,2),
+ (3, 10,0, 1),4(3,0,0,1,1)}

The set Irr(£) contains 5 equivalence classes according to the equivalence rela-
tion (I3). We denote them by C; for i = 1,...,5. As we can see for the first
three of them, computing a set of representatlves Cy, Cy, Cs is trivial as in these
cases it will be C; = Cq, Cy = Cy and C3 = Cs. The cases of Cy and Cs
are more interesting. We start by examining C5 as it contains less vectors. We
set v1 = (3,1,0,0,1) and vo = (3,0,0,1,1). Next we draw the corresponding
graph with vertices the v, £wvs and edges if the pairwise differences are strictly
shorter.

V2 -V2

Fig. 1: The graph of the class Cx

The graph in Figure 0 shows that we can take either C5 = {+wv,} or C5 =
{£wv2}. We are now going to do the same for the class Cy. We set v; = (—1,0,—1,1,2),
vy =(-1,0,1,1,2),v3 = (-1,1,-1,0,2),v4 = (—1,1,1,0,2).

—vy

V) —— U3 —V1

—v3

Fig.2: The graph of the class Cy
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The graph in Figure B shows that we can take Cy = {£w;} for any i =
1,2, 3, 4. Therefore one choice for the set P(L) is the following.

P(L)={=£(0,— 10,1,0)
+ (0, — -1,1),
+ (0, 0,2,0 0),
+(-1,0,—-1,1,2),
:l:(3,1,070,1)}

Remark 12. The above example should not mislead the reader to the assump-
tion that the corresponding graph of each equivalence class will always have at
least two connected components. It can happen that the graph of a class is con-
nected. One such example can be derived from the family of lattices examined
in Theorem M.

One property of the set Irr(£) was that it includes a generating set of £. We can
show that P(L£) inherits that property.

Proposition 7 (Complete system generates). Let £ be a full rank lattice
in R™. Then for every P(L) C Irr(L) there exists a generating set G of L such
that G C P(L).

Proof. As in the proof of Proposition B for the set Irr(£) we will prove that the
set P(L) spans the lattice and therefore it includes a generating set. However, in
this case the proof is more technical. Let P(L£) be a complete system of irreducible
vectors of £ as defined in (). We have already shown that Irr(£) is finite as
Irr(£) € R(L) and thus we can define ¢t = |Irr(L)/~|. We further set C; for
i =1,...,t to be the equivalence classes in Irr(£)/~. Hence, the set P(£) can
be written as P(£) = U!_,C;. Each equivalence class C; contains all irreducible
vectors of a specific length u;, and we can assume that we have ordered the C;
according to increasing p;. We define the following sequence of subsets of Irr(L):

t

1—1
Ua|u{UCi| for i=1,...t+1L
j=1

As for every i it holds C; C C; then it follows that A;(L) C A;41(L) and thus
P(,C) = A1 Q A2 g ce g At Q At+1 = II‘I'(E)

We will prove by induction that each term of this sequence of sets spans the
lattice L.

Base case i =t 4 1: The set Irr(£) = A¢11 spans the lattice as it was already
shown in Proposition B.

Induction hypothesis: Assume that it holds for some ¢ = k, i.e. Ay spans the
lattice for some k € {2,...,t+ 1}.

Induction step: Prove that Ay_; spans the lattice. By the definition of the sets
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A; we can conclude that Ay = A\ (Cr-1 \é’k_l). By the induction hypothesis
it suffices to show that the vectors in C_1 \C'k—1 can be generated by the vectors
in Ag_q. Let v € Cp—1 \ Cl_1. As v € Cj_q but v & C._1 this implies that
there exists a © € Cj_; such that ||v + @] < ||v||. This holds because Cy_; is
maximal by definition. We set w = v + ©. Furthermore as ||w|| < ||v|| then w is
either irreducible or can be written as a sum of irreducible vectors shorter than
lv||. We use the ordering of the C;. Thus by its definition the set Ay_; contains
all the vectors in Irr(£) which are shorter than ||v||. Hence as, |[w|| < ||v|| this
implies that w can be generated by the vectors in Ay_1. So, concluding we wrote
v as v = w — v where both w and v belong to A;_1. This concludes the proof.

O

For vy, vy € L we denote by ¥(v1,vs) the angle formed by vy, vs.

Proposition 8 (Properties of complete system). Let £ be a full rank lattice
in R"™, and p,,py € P(L) such that p; # +p,. Then it holds that

(1) min{[|p, £ py [} > max{[ip, | p.|l}  and
(i) |cosd(py,po)| < 3-

Proof. (Part i) By Lemma B we have that
Irr(£) = {v € £\ {0} | V& € £ with ||z| < ||v| it holds ||[v — x| > ||v||}.

Let p;,p, € P(L) such that p; # £p,. Without loss of generality we assume
that [[py]| < ||py |- Tnitially we will prove that ||y + py > max{||p; | |p, |}
Case 1: If ||ps|| < ||p1|l- Then py, py € Irr(£) and they are not in the same class.
Using the description of the lemma with v = p; € Irr(£) and & = —p, we
get [py + poll > [Pyl But as [[py| < [|p1]l we can conclude that [|p; + p,| >
max{|p, I, [p |}

Case 2: If ||py|| = ||py||- Then p,, p, € Irr(£) and they are in the same class. Let
S € Irr(L£)/~ such that p;,py € S. Then as p;,p, € P(L) we get that py,p,
belong to the same S. Thus, by the definition of S we can again conclude that
|1 + poll = max{||p, |, P2 }-

The result follows from the fact that for every v € P(L£) also —v € P(£).

(Part ii) Let p;, p, € P(L) such that p; # +p,. Without loss of generality we
assume that [|ps|| < ||p1]|. By part (i) we get that ||p; £ ps|| > ||py]|.- This in
turn implies that 2|(p;,py)| < |po|*. Hence,

DD P.,P
|cos ¥(py, py)| = [Py, )] < P, §>| =
121 [[]22] [y

1
5"

We will use the following theorem in order to bound |P(L)].

Theorem 7 (Upper bound on kissing constant [I7]). Let A(n, ¢o) be the
mazximal size of any set C of points in R™ such that the angle between any two
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distinct vectors vi,v; € C (denoted ¢, »,) is at least ¢o. If 0 < ¢po < 63°, then
for all sufficiently large n, A(n, ¢g) = 2™ for some

c< —%logQ(l — cos(dy)) — 0.099. (15)

Proposition 9 (Upper bound on | P(L)|). Let L be a full rank lattice in R™.
It holds that | P(L)| < 20-402n,

Proof. By using Theorem @ with ¢y = % (which can be deduced from Proposi-
tion B) we get that | P(£)] = 2" with ¢ < —1log,(1—cos(%))—0.099. Evaluating
the right hand side of this inequality implies the result. ad

Proposition B states the same condition that is also satisfied by the output
of the GaussSieve algorithm described in [23]. As in the paper describing the
GaussSieve algorithm [Z3] the size of P(L) can actually be bounded by the
kissing number 7,,. Following the same arguments as in [23] we can argue that
in practice we expect P(L£) ~ 292" which is a factor 2 smaller in the exponent
than the provable bound | P(£)| < 20-492n,

A result that might be of interest in the search for lattices reaching the kissing
number is the following.

Theorem 8 (Lattices achieving the kissing number). Let £ be a full rank
lattice in R™. If the lattice L is such that it reaches the kissing number T, then

S1(L) =Trr(L).

Proof. As the lattice £ reaches the kissing number 7, that implies |S1(L)| = 7.
By Proposition B we can conclude that the angle between any two vectors in P(L)
is at least /3. This is also the minimal possible angle between the centers of two
equal n-dimensional spheres which touch another central sphere of the same size
without intersecting. Hence |P(L)| < 7,. Combining this with S1(£) C P(L)
and |S1(L£)| = 7, implies that P(L) = S1(L). As the set P(L) was build from
classes of Irr(£) and we showed that it actually contains only vectors of norm
A1(£) that means that there is only one class in Irr(L£)/~, namely the class of
S1(L). But in this class there is no pair of vectors that adds to a shorter one, thus
the whole class is included in P(£). That implies that Irr(£) = P(£) = S1(L).

O

Remark 13. A similar result for the set R(L) is not possible. For example for
the root lattice Eg reaching the kissing number in dimension 8 it holds S1(Es) =
R(Esg) but for the Leech lattice Ay it holds that S1(A24) & R(Az4) (see [K]).

5 Computation of the set P (L)

In the previous sections we investigated some properties of the set P(£) and its
relation to the set R(L). Ultimately we aim in using this set instead of R(L£) due
to its provably smaller cardinality. However, in order to actually benefit from
this replacement an algorithm that computes P(£) without using the set R(L)
is needed. The goal of this section is to examine ways of computing the set P(L).
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5.1 The “brute force” approach

If the set Irr(£) is given then the set P(L£) can be computed by means of a
graph-based technique already described in Remark 8 and further analysed in
Appendix B. Thus, it suffices to describe an algorithm which computes the set
Irr(L£). The naive approach is to use the fact that Irr(£) C R(L). Hence, as a
first step one can run the algorithm described in [27] in order to get the set
R(L). Then having a superset of Irr(£) it suffices to remove all the reducible
vectors from it. This can be done by iterating through R(£) and checking for
each r € R(L) if there exists a v € R(L) such that ||v|| < ||| and ||r —v]|| < ||7||.
If » € Irr(£) then by definition there will not exist a vector v € £ such that
[lvll < |Ir]l and || — v|| < ||r| and thus the algorithm will not discard any of
the irreducible vectors. If the vector r is reducible then we need the following
heuristic assumption.

Heuristic Assumption 1 (Witness of reducibility) Let £ be a full rank lat-
tice in R™ with Irr(L£) # R(L). If r € R(L) \ Irr(L) then Fv € R(L) such that
[oll <llrll and ||lr — o <{[r]].

Heuristic assumption 0 can be considered as the analogue of Lemma [0 for the
set Irr(£). Lemma 0 guaranteed that for every non-relevant vector there would
exist a relevant vector acting as a “witness” of “non-relevancy”. Heuristic as-
sumption 0 speculates that for every reducible relevant vector there exists a
relevant vector acting as a “witness” of reducibility.

5.2 Using the GaussSieve/MinkowskiSieve algorithms

As it was already mentioned in Section B2, it is expected that the output of the
GaussSieve algorithm [Z3] will be closely related to a set P(L£). This conjecture
was motivated by the fact that both sets, P(£) and the output of the GaussSieve,
possess the property min{||v; £ vo||} > max{||vi|],|vz2||} for any pair of v; #
4wy in the set. At this point it should be clarified that for our purposes we will
consider a slightly modified version of the GaussSieve algorithm which will be
described here.

For our purposes we will use the GaussSieve algorithm 0 but with the modi-
fied version of the GaussReduce function B. In this way the following conditions
are met.

(i) Any irreducible vector which has been added to the GaussSieve list L will
never be removed from it.

(ii) Any irreducible vector encountered by the algorithm will be added to L
provided that it can extend its class representative set already in L.

Lemma 5 (Modified GaussSieve algorithm). The GaussSieve algorithm O
equipped with the function PrimeGaussReduce (Algorithm B) satisfies both prop-
erties (i) and (ii).

! This version is the one used in [32] as well.
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Algorithm 1 The GaussSieve algorithm as described in [23]

Require: A basis B of a lattice £(B) and a ¢ > 0.
Ensure: A list L C £ s.t. min{|Jv1 £ v2||} > max{||v1]|,||vz]} for all v1,v2 € L.

function GAUSSSIEVE(B, ¢) function GAUSSREDUCE(p, L, S)
L+ {0}, S+ {}, K+0 while Jv; € L : ||lvs]| < ||p||
while K < ¢ do Allp —vi| < |lpll do

if S is not empty then P+ p—v;
Unew < S.pop() end while
else while Jv; € L : ||v;]| > ||p||
Vnew < SampleGaussian(B) A llvi — pl| < [Jvil| do
end if L+ L\{v}
Vnew < GaussReduce(vnew, L, S) S.push(v; — p)
if Vpew = 0 then end while
K+ K+1 return p
else end function
L+ LU{Vnew}
end if

end while
end function

Proof. (Property i) The only way for a vector v; € L to be removed from the
list L is by entering the while loop in line B of the PrimeGaussReduce function.
Let v; € L and also v; € Irr(L£). In order for the algorithm to remove v; from L
it should encounter another vector p such that ||v;|| > ||p|| and ||v; — p|| < [Jvi]|
or |lv;]| > || = pll and ||v; + p|| < ||vi|| which contradicts the irreducibility of v.
(Property i) Assume that the function PrimeGaussReduce is called and in some
iteration of the while loop in line B, p becomes such that p € Irr(£). In order
for p to not be added in L this would mean that p could be further modified by
the while loop in line B. Thus the algorithm should encounter another vector
v; € L such that ||v;|| < ||p|| and ||p £ v;]| < ||p||- The case where ||v;|| < ||p||
and ||p £ v;|| < ||p|| violates the irreducibility of p and thus can be disregarded.
This leaves only one possible case, namely ||v;|| = ||p|| and ||p £ v;|| < ||p||- This
condition implies that v; and p belong to the same equivalence class and they
are adjacent. Therefore this pair of vectors cannot belong to any set P(L) of L.
Hence p should not be included in L anyway and the algorithm correctly further
reduces it. O

Remark 14. If the PrimeGaussReduce function in line B was the same as in the
original GaussReduce, then the algorithm could encounter an instance where it
would enter the loop with [|v;[| > ||p|| , [[vi — p|| = [|vil| and v;,v; —p € Trr(L).
This could be possible if an equivalence class in Irr(£) was not trivial. In this case
the algorithm would remove the vector v; from the list and add its equivalent
v; —p to S. As a result for these non-trivial classes the algorithm could behave
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Algorithm 2 The modified GaussReduce function

1: function PRIMEGAUSSREDUCE(p, L, S)"

2: while Jv; € L : |lvi|| < [|pl| A llp £ vil| < lpll do
3: p+—pxtu;

4 end while

5 while Jv; € L : ||vs]| > ||p|| A ||lvs £ p|| < ||vs]| do
6: L+ L\ {v}

T S.push(v; £ p)

8 end while

9 return p

10: end function

in a bad way by repetitively removing and adding representatives of the same
class.

Remark 15. If the PrimeGaussReduce function in line B was the same as in the
original GaussReduce, then the algorithm could encounter an instance where it
would enter the loop with |lv;|| < [|p|| , [[p — vil = ||p[| and p,p — v; € Irr(L).
Thus, p and p — v; are equivalent. In case ||v;|| < ||p|| then p and p — v; are
also adjacent in the class graph and therefore in this case the algorithm would
cycle through the adjacent vectors of p. Therefore there is no need to perform
a reduction in this case. In case ||v;|| = ||p| then all three p,v;,p — v; are
equivalent but not adjacent. Hence in this case the algorithm does not make any
progress by replacing p by p — v;. Thus, there is no need to perform a reduction
in this case as well. 2

We consider the GaussSieve algorithm 0 equipped with the PrimeGaussReduce
function (Algorithm B). We denote by GaussSieve(L) a list of vectors L created
by this algorithm and possessing the property that L cannot be further modified
by the algorithm. In order to relate the sets GaussSieve(L) and P(L) we give
the following definition.

Definition 10 (Partitioning P(L) by sign). Let £ be a full rank lattice in
R™. Given a P(L) C Trr(L) we define PT(L) and P~ (L) to be a partition of P(L)
according to sign.

In other words, we take for P (L) some subset of P(£) such that of each
pair v € PT(L) exactly one is in P (L£). Of course, there are many choices for
P*(L) and P~ (L), any one will do.

Even though the GaussSieve algorithm converges to a set which is maximal in
L under the property min{||v; & va|} > max{||v1]],||vz|}, the same is not true
in general for the set P™ (L) as shown by experiments (Table 0). In particular, we
can conclude by Lemma B that if we allow this modified version of the GaussSieve

2 However, as p — v; is not adjacent to both p and v; an option could be to move
p — v, to the stack S for further consideration later.
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to run long enough i.e. it samples “enough” vectors, then the output will converge
to a set GaussSieve(£L), which will contain a P (£).

Hence we cannot claim that the GaussSieve algorithm converges to a set
PT(£) but only to a superset of it. The fact that a P (£) is not maximal in £
under the property min{||v; &+ vs||} > max{||vy|],||vz2||} implies the existence of
vectors which are not irreducible but they also cannot be reduced by any of the
vectors in P(L).

The definition of the set P2(L£) will help us in bounding the output of the
GaussSieve algorithm. Also, the definition of the sets Py (L) for & > 2 will help
us in bounding the output of modified versions of “higher” sieving algorithms
like the Triple and Quadruple MinkowskiSieve, described in [3].

Definition 11 (Pairwise irreducible system). Let £ be a full rank lattice in
R™. Given a P(L) C Irr(L) we define

Py(L) = {v € L|#p € P(L) with||p| < [|v|| and [[v —p|| < ||v]|}-

A first remark on this definition is that as P(£) C £ then P(L) C Py(L). The
(modified) GaussSieve algorithm converges to a set GaussSieve(L£) including a
set P (L) hence, GaussSieve(L) can be bounded as follows.

PT(L) C GaussSieve(L) C Py(L) (16)

Under this set inequality GaussSieve(£) can be viewed in the following way. A
set GaussSieve(L) can be considered as the closure of a P*(£) in P2(£) under the
property of Gauss-reduction. In more detail GaussSieve(L) can be viewed as the
minimal (according to included vector norms) subset of a Po(£) including P (£)
and being a maximal subset of Po(£) with the property of Gauss-reduction (i.e.
min o1 +vs |} > max{ o], o2 ] }).

Definition 12 (k-wise irreducible system). Let £ be a full rank lattice in
R™ and k € N with k > 2. Given a P(L) C Irr(L) we define

Piri(£) = {v € Py(L) | Bp € PV (L) with||p]| < [[v]| and |[v - pl| < o]}
where PM) (L) is defined as
Lk/2]
U {v1 + w201 € PO(L), w2 € PEI(L) and [lv; | < [[vr +val,
i=1
i < [Jv1 + va| wherej, 1 € {1,2}}
and PV (L) == P(L).

Lemma 6 (Relating k-wise irreducible systems). Let L be a full rank lat-
tice in R™ and P(L) be a subset of Irr(L). Then for the sequence Py (L) given in
definition 12 it holds that
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(i) Pry1(L) CPr(L) for every k > 2.
(#) limg_yo0 P (L) = Irr(L).

So, in one line: there exists an [ > 2 such that
PQ(E) 2 N :_> Pk(ﬂ) 2 Pk+1(£) 2 2 Pl(ﬂ) = Pl+1(£) =...= II‘I‘(E)

Proof. Part (i) of the lemma is an immediate consequence of the P (L) defini-
tion. Initially we show that Irr(£) C Py (L) for every k > 2. This follows directly
by the definition of Pj(£) and the fact that P*)(£) C L. By the (recursive)
definition of Py (L) it follows that it includes all vectors v € £ such that they
can not be reduced by any shorter vector in US~} P (L). Thus for part (iii) of
the lemma it suffices to show that limy_.o UF_, PP (L) = £. As PD(L) C £
for every i > 1 it follows that limy_,, UX_; PO (L) C L. Tt is only left proving
the converse inequality. Let v € L, it suffices to show that 3k > 1 such that
veP®(L).

A vector v € L can be repeatedly reduced as in the proof of Proposition B
until it is written as a sum v = Zézlpi of shorter vectors p;, € Irr(L) for
some [ > 1. This decomposition satisfies the recursive condition implied by the
definition of the P*)(£). If all the vectors p; € Irr(£) actually belong to P(£)
then v € PO(L) and we are done. If there exists some p; € Irr(£) \ P(£) then
p; = p; + p; where p; € P(L) and |pi|| < [lp;ll p;l| = ||P;|| by the definition
of P(L). Thus, p} can be further get decomposed in shorter vectors (like v) and
as ||pill < ||lp;|l progress was made which implies that this decomposition will
finish after finitely many steps. Therefore v can be repeatedly reduced until it
is written as a sum of vectors in P(£), concluding the proof. O

We are now going to describe the “higher” sieving algorithms which we will con-
sider. We have already mentioned the Triple and the Quadruple MinkowskiSieve
described in [B]. The difference between the GaussSieve algorithm and these
higher ones lies in the reduction function. Hence, if we equip Algorithm 0 with
function PrimeMinkowskiReduce (Algorithm B), we get the modified MinkowskiSieve
which we are interested in.

The modification compared to the description in [B] appears in lines 10 and
21 of Algorithm B, where the extra conditions ||w| < ||p|| and ||lw| < ||[vg-1]|
respectively are added. By adding these conditions it is guaranteed to get an
output list which will satisfy properties (i) and (ii) like in Lemma B for the
GaussSieve. Hence, based on these properties it can be concluded that the output
list of vectors will again contain a set P*(£). In order to ease our exposition we
set the following notation.

Let k € N with k£ > 2. We consider the k-MinkowskiSieve algorithm equipped
with the function PrimeMinkowskiReduce (Algorithm B). We denote by
MinkowskiSievey (L) a list of vectors L created by this algorithm and possessing
the property that L cannot be further modified by the algorithm. Note that for
k = 2 one has MinkowskiSieves(£) = GaussSieve(L).

3 We assume |Jvi]| < ||vit1].
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Algorithm 3 The modified MinkowskiReduce function

1: function PRIMEMINKOWSKIREDUCE(p, L, S, k)
2: loop = true

3: while loop do

4: loop = false

5: if £ > 2 then

6: PRIMEMINKOWSKIREDUCE(p, L, S,k — 1)
7 end if

8: for all {v1,...,vk_1} C L s.t. ||vi]| < ||p|| do
9: for all w € {31~} (~1)%v;} do

10: if [[w]| < [p] and [[p —w] < [|p|| then
11: p+—p—w

12: loop = true

13: goto next

14: end if

15: end for

16: end for

17: next:

18: end while
19: for all {v1,...,vk_1} C L ®s.t. |Jvg—1| > ||p| do

20: for all w € {(~1)*p+ 317 (—1)“v;} do

21: if ||lw|| < ||vg—1] and ||[vg—1 — w|| < ||vk—1| then
22: L+ L\ {vk-1}

23: S.push(vig—1 — w)

24: end if

25: end for

26: end for

27: return p
28: end function

Remark 16. The output of the modified k-MinkowskiSieve algorithm will not be
a list of vectors which will be k-Minkowski-reduced if & > 2 (for the Minkowski-
reduced definition see [26]). If this was desired, then the lines 10 and 21 of
Algorithm B should be modified in order to allow reductions by longer vectors
as well. For a k-Minkowski-reduced list with k& > 4 lines 9,10 and 20,21 of
Algorithm B should also allow for the coefficients of the vectors v;, p and vi_1
to take more values than +1 (see for example [26, Theorem 2.2.2]).

i

The “higher” sieving algorithms which we considered by making the generalisa-
tion from the GaussSieve towards the MinkowskiSieve will contribute towards an
asymptotic computational argument. But first we state a heuristic assumption
which we will use.

Heuristic Assumption 2 (Convergence of the MinkowskiSieve) Consider
the k-MinkowskiSieve algorithm equipped with the function PrimeMinkowskiRe-
duce (AlgorithmB). Then this algorithm will converge to a set MinkowskiSievey (L).
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Remark 17. We leave the investigation for a proof of this heuristic assumption
as an open problem for future research.

Theorem 9 (Shape of MinkowskiSieve,(L)). Let L be a full rank lattice
i R™. We consider the k-MinkowskiSieve algorithm equipped with the function
PrimeMinkowskiReduce. Under Heuristic Assumption B, as k increases the set
MinkowskiSievey, (£) converges to a set PT(L).

Proof. In order to simplify the proof and avoid ambiguities we make the following
convention. Both sets P*(£) and MinkowskiSievey (L) are defined/constructed
in such a way that for a vector v only one of +v belongs to the set. This allows
many possible choices for these sets. In order to avoid this kind of ambiguities
we make the convention that a vector v is included in the aforementioned sets
only if its first non-zero coordinate is positive.

Initially we will prove that for every k > 2 there exists a set P*(£) and a set
Pr (L) such that

P (£) C MinkowskiSievey (L) C Py (L). (17)

Let k& > 2 and MinkowskiSievey (L) be the converging set of an execution of the
k-MinkowskiSieve. As mentioned before, we can transfer Lemma B from the case
of GaussSieve to the k-MinkowskiSieve algorithm described in this section. This
implies that for every MinkowskiSievey, (£) there will exist a set P* (L) such that
P*(£) C MinkowskiSievey (L). We fix this set P*(L£).

Let v € MinkowskiSieve,(£) and py,...,p,_; € PT(L) with ||p;]| < ||v].
As the set MinkowskiSievey (L) is k-reduced according to the notion implied by
Al%‘orithm B we can conclude that v cannot be reduced by any vector of the form
iy (=1)%p; for 1 <1 <k — 1. As the vectors py,...,p;,_; belong to the set
MinkowskiSievey (L) as well, they are k — 1-reduced. This in turn implies that
the vectors of the form 22:1 (—=1)“p, belong to the set P (L) for 1 <1< k—1.
This holds for any tuple of [ vectors in P*(L£). Hence, the set of vectors emerging
from the union of all {22:1 (=1)%p,} will be exactly P (£). This implies that
v cannot be reduced by any vector in UFZ} P (L). This is equivalent to the
condition a vector v has to satisfy according to definition @ in order to belong
to Pr(L). Thus we can conclude that MinkowskiSieve, (L) is included in the
Px(£) implied by the set P(£) = PT(L) U (= P"(L£)). This concludes the first
part of the proof.

For the second part of the proof we distinguish between the cases of Irr(£) =

P(L) and Irr(L) # P(L).
If it holds that Irr(L£) = P(L) then apart from P(L£) being uniquely determined
the same holds for the sets Py(L). Hence, for every k > 2 the boundary sets
in (1) are uniquely determined. This enables a direct use of Lemma B. As
k increases the set MinkowskiSieve(£) will be contained to even smaller and
smaller sets Py, (£) which converge to Irr(L) according to (i) and (iii) of Lemma B.
Therefore for the limit case it could be stated that

PT (L) C lim MinkowskiSieve (L) C Trr(L). (18)

k—oc0
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But we assumed Irr(£) = P(£) and thus we can conclude that

[Jim MinkowskiSieve (£) = PT(L).

In order to finish the proof we have to deal with the case Irr(L) # P(L).
In this case, the sets P (L) and Py (£) used in inequality () are not uniquely
determined and therefore Lemma B cannot be used directly. In Lemma B it was
shown that given the sequence of Py, (£) implied by any P(£) then limy_, o Pr(£) =
Irr(£). Hence any Py (L) belongs to a sequence converging to the same limit,
Irr(£). Interchanging terms (P (L)) among these sequences does not affect their
limit. Therefore, we can again use inequality ([d) and “take limits” leading to
a result like (IR). We have to be careful though. The right hand-side limit (i.e.
Irr(L£)) is well-defined but the left one can cycle over all choices of P*(£). This
is expected as the limit of the sequence MinkowskiSieve, (L) as k — oo is not
unique but depends on the choice of representatives made for each non-trivial
class of vectors. For convenience we assume that Vk > kg for some kg this choice
stabilises to some random but fixed choice. Thus, we have again reached inequal-
ity (IR).

We examine the sets in inequality (I8) according to the Gauss-reduced prop-
erty. Let k > 2, the set MinkowskiSievey (L) is a set in which the algorithm con-
verges to and also possesses the Gauss-reduced property by construction. This
holds for every k > 2 and thus transfers to the limit as well, as k — oo. The set
PT(L) is not a maximal subset of £ satisfying the Gauss-reduced property but
due to its construction it is maximal in the set Irr(L£). Hence, inequality (IR)
and maximality of PT(£) in Irr(£) imply the result. O

The conclusion in Theorem H is supported by the experimental results given in
Table 0.

Remark 18. Theorem H describes asymptotic behaviour of the modified MinkowskiSieve
algorithm with the goal of providing a faster way of computing sets P (£). Even
though, asymptotically, the algorithm possesses the desired behaviour, this does

not make it immediately a computational tool for P*(£). There are two obsta-

cles towards that goal. The first one is, given a lattice £ in dimension n, to find

for which k > 2 to run k-MinkowskiSieve. This k should not be too high in or-

der to be computationally efficient to run the algorithm. The second problem is
finding for how long this k-MinkowskiSieve should run in order to approximate

well enough a set MinkowskiSieve (L).

5.3 Experimental results

In this section we provide some experimental results which support our claims
in the previous subsections. In particular, as a first step we computed the sets
R(L),Irr(L), P(L) for 10 lattices in dimension 20 and afterwards we computed
the output of the GaussSieve, the Triple and the Quadruple MinkowskiSieve.
In order to generate 10 lattices in dimension 20 we used the Sage computer
algebra system [B3]. In particular we used Sage’s “Hard lattice generator” with
the following choice of parameters,
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sage.crypto.gen_lattice(type="random’, n=1, m=20, q=10"42, seed=seed)

and 10 different values of seed. Initially, using the OpenMP parallel implemen-
tation build for the projects [5,02] we computed the set of relevant vectors R(L)
for each lattice. On top of this code (which the authors were so kind to provide
us) we implemented the method described in Section B and computed the set
Irr(L£). As for our experiments the lattices used were generated randomly, they
did not possess any specific structure and hence P(L£) = Irr(£) for all of them.
This part of the experiments was performed on a node of the Lisa cluster [31]
with a 16-core CPU (2.10GHz) and 96 GB of RAM. The computation of the sets
R(£) and Irr(£) using the aforementioned implementation and hardware took
about 5.5 seconds per lattice.

Finally, by modifying the already existing sieve implementations in FPLLL
[82] we computed the output of the GaussSieve, Triple and Quadruple Minkow-
skiSieve as described in Section B2 for the same 10 lattices. The modifications
which we made to the already existing FPLLL implementations were:

— A vector is allowed to be reduced only by a shorter vector.

— The termination condition is changed to a fixed number of collisions: 5-10° for
the GaussSieve and 10° for the Triple and Quadruple MinkowskiSieve. These
numbers were chosen to ensure the created list by the algorithm remains
unchanged for “many” iterations before the algorithm terminates. These
choices seem to not be optimal according to our experimental data and
could possibly be further reduced.

This part of the experiments was performed on a Lenovo X250 laptop with
4 Intel Core i3-5010U CPU (2.10GHz) and 8 GB of RAM. The output of these
experiments is summarised in Table 0.

Table M motivates a number of remarks about the involved sets. Initially, the
number of relevant vectors observed was indeed close to the expected number
2 (220 —1). Also, the sets Irr(£) and P(L£) were equal in all 10 cases, as we had
assumed for random lattices without any underlying structure. The size of P(£)
(and Irr(£) in this case) was observed to be some orders of magnitude smaller
than the size of R(£) making it more appealing to use in practice.

The right part of Table [ justifies our idea to try and correlate the output
of sieving algorithms with the set of irreducible vectors. Even though we cannot
display here the lists of vectors which we computed but rather only their sizes, we
observed the following behaviour. The list of vectors outputted by the GaussSieve
contained the set P(£) in 8 out of the 10 cases and in the other two of them there
was only 1 vector missing. This supports our claim that the GaussSieve converges
to a superset of P(L). Also, as we moved to “higher” sieving algorithms like our
modified version of the Triple and Quadruple MinkowskiSieve the output of the
sieving algorithms approximated even closer the set P(£). Actually, it is not a
coincidence that the numbers in the columns “4-red” and “|Irr(L)|,|P(£)|” in
Table [ differ only by a factor of 2. The output of the Quadruple MinkowskiSieve
in all 10 cases gave exactly a set P+(£) as for every vector v it stores only one
of +v.
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Table 1: The following tables describe the sizes of the lists involved in our experiments
with 10 random lattices in dimension 20. The first columns indicate the seed used for
the generation of the lattice. The table on the left gives the sizes of the corresponding
sets R(L),Irr(£) and P(L) for each lattice. The factor 2 is due to the sign symmetry.
The table on the right shows the sizes of the lists generated by the modified GaussSieve,
Triple and Quadruple MinkowskiSieve.

[Seed] [R(L)| [[Irr(L)[,[P(L)]] [Seed][2-red[3-red[4-red]

314 |2 - 1048361 2-66 314 | 8 | 77 | 66
417 |2 - 1048388 2-70 417 95 | 80 | 70
849 |2 - 1048389 2-68 849 | 98 | 85 | 68
422 12 - 1048349 267 4221 93 | 74 | 67
168 |2 - 1048371 2-60 168 | 88 | 69 | 60
84 |2-1048363 2-64 84 | 92 | 75 | 64
105 |2 - 1048375 2-62 105 88 | 74 | 62
273 |2 - 1048360 2-60 273 | 83 | 68 | 60
390 |2 - 1048376 2 - 66 390 89 | 76 | 66
656 |2 - 1048372 2-71 656 | 95 | 79 | 71

Another question which could be investigated experimentally is how the ex-
pected size of P(L) behaves as the dimension of £ increases. In order to develop
an intuition about this behaviour we performed a number of experiments in di-
mensions 20-65, the results of which are shown in Figures Ba and BH. Likewise in
our experiments in dimension 20 we used the modified OpenMP parallel imple-
mentation from [5,02] and the modified sieve implementations in FPLLL [32].
For each dimension we depict the average value amongst 10 lattices. However, as
in this case we dealt with higher dimensions we reduced the number of collisions
in the termination condition of the sieve algorithms to

— GaussSieve: 10,000 collisions
— Triple MinkowskiSieve: 2,500 collisions
— Quadruple MinkowskiSieve: 2,000 collisions.

Therefore the results in Figures Bd and BH related to sieving algorithms should
only be interpreted as approximations of the algorithm’s converging set size. As
we will discuss later, estimating the accuracy of this approximation is left for
future research. Figure Bd illustrates the result of our experiments in dimensions
20-26. We believe that for these “smaller” dimensions the approximations are
“more” accurate and that is why we show them separately. Another reason is
that running the OpenMP Voronoi implementation beyond these dimensions has
a substantial memory requirement (tens of GB).

Computing a least squares fit for the points in the blue curve (which in-
dicates the correct expected values for |P(£)| under assumption ) gives the
formula 20-2377+1:286 which closely matches the heuristic expectation for the size
of P(L£), namely 221", Furthermore Figure Ba reveals that the GaussSieve gives
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Fig. 3: Experimental results on the scaling of size of P(L) according to the di-
mension of £. Each point in the graphs corresponds to the average value taken
amongst 10 lattices. The labels k-red are used to indicate the output of the
modified sieve algorithms described in this work and not the ones in the litera-
ture [3,23].

only a superset of P(L£) even for small dimensions. The Triple and Quadru-

ple MinkowskiSieve are much closer to the blue curve. The difference between

the Triple and Quadruple MinkowskiSieve is that the one lies above the blue
curve and the other below it. As we already observed in Table @ the Triple
MinkowskiSieve will probably remain above it. However the Quadruple MinkowskiSieve
possess the potential to reach the “correct” curve asymptotically. Of course this
could also be far from the truth for higher dimensions.

In order to put these curves more into perspective we created Figure Bl which
shows the average output sizes of the GaussSieve and Triple MinkowskiSieve for
dimensions 20-65. We did not draw the curve of the Quadruple MinkowskiSieve
as it also turns out to be quite time costly for dimensions higher than 30. At this
point we must emphasise that the used modified sieving algorithms take more
time in order to terminate due to the modifications which aim not in solving SVP
but computing close approximations of P(£). For instance the modified Triple
MinkowskiSieve in dimension 65 took on average 3 days in order to terminate
for each lattice. However this is only the average observed time. Actually one of
the ten lattices used proved to be an “easier case”, terminating in under 2 hours.

Even though these results provide some intuition on what kind of relation it
could be expected between the set of irreducible vectors and sieving algorithms,
they also imply some questions.

A first question which would be interesting is examining the termination
condition for the sieving algorithm. In our experiments we made a specific choice
on the number of collisions but this was done by trial and error and could be
possibly improved. In other words, we ask for a termination condition, which if
it is satisfied by a sieving algorithm (as used in this section) it guarantees that
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the algorithm has reached a list of vectors which cannot be further modified by
the algorithm.

A second question that arises is up to what level of sieving we should get in
order to either get exactly a set P(L) or a “very good” approximation of it. In
this case the Quadruple MinkowskiSieve was enough, but this might not be the
case for higher dimensional lattices. Thus it would be interesting to know how
does this index increase according to the dimension. So, given some termination
condition, how close can a sieving algorithm approximate a set P(L£)?

If these questions receive an answer it will help in making sieving algorithms
a way to either compute exactly or approximately a set P(L) of a lattice L.
This would be very interesting as it will provide a way to compute a set P(£)
(exactly or approximately) without having to compute the set R(£) which is a
very costly computation.

6 Applications of P(L)

Even though the sets Irr(£) and P(£) might be of interest in their own, examin-
ing their relation to already existing lattice problems and algorithms is a natural
question that arises. We choose to focus on the set P(L) as it seems to be the
easier to compute/approximate with existing lattice algorithms.

6.1 P(L) in the study of shortest vector(s) problems

The results in Section B provide some interesting conclusions about the relation
of the set P(L) to well known lattice problems. A first observation in Section B2
was that S7(L£) is included in P(L£). This leads to the following result.

Proposition 10 (Finding P(£) implies solving SVP). Let L be a full rank
lattice in R™. Computing a set P(L) provides a solution to the SVP and the
kissing number problem.

The relation S;(£) C P(L), implies that two classic lattice problems can be
solved given a P(L). Of course this holds for any superset of P(L) as well. We
combine this observation with the inclusion P*(£) C MinkowskiSievey (L) for
k > 2 shown in the proof of Theorem B. This provides some extra (heuristic)
evidence that some sieving algorithms will indeed output a solution to SVP or
the kissing number problem if they run long enough. This is no surprise as sieving
algorithms were devised for solving SVP.

Examining the relation of SIVP to the set P(L) is probably a more interesting
question. By Corollary 0 we know that for every ¢« = 1,...,n there exists a
vector v € Irr(L) such that ||v]| = A;(£). The following proposition completes
this result.

Proposition 11 (Finding P(£) implies solving SIVP). Let £ be a full rank
lattice in R™. Computing a set P(L) provides a solution to the SIVP.
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Proof. Let vq,...,v, be a set of linearly independent vectors in £ such that
lvi]] = Ai(L) for i = 1,...,n. We distinguish two cases.

Case 1: fi > 2 such that A\;(£) < X\;_1(L£) < \i(£) = X\ir1(£). This implies that
there exists a k£ > 1 such that

A (L) =+ = ML) < Aega(L) < -+ < An(L).

Then by S1(£) C P(L) it follows that vy, ..., v, belong to P(L£). In addition, by
Corollary M and the definition of P(L£) it follows that all the vj1,...,v, will be
included in P(L).

Case 2: 3i > 2 such that A\ (£) < XAi—1(£) < Mi(£L) = Ni+1(L). Let ¢ > 2 such
that the condition holds. We set k = max{j > i |\;(£) = A\;(L)}. Hence,

We will show that v;,...,vx € P(L). Let j € {i,...,k} we set Ly, to be the
sublattice of £ spanned by all the vectors in L strictly shorter than A;. As
Ai(L) = Nj(L£) it follows that £y, = Ly, which has rank i — 1. Assume that
v; € Ly;. Then we would get that the set {v1,...,v;_1,v;} is a set of linearly
dependent vectors. Contradiction. Thus v; ¢ £y, and by Proposition @ we get
that v; € Irr(£). This holds for any ¢ < j < k and therefore we get that all v;
with ¢ < j < k belong to Irr(£). In order to show that they also do belong to
a P(L£) it suffices to show that for every u,r such that i < pu < v < k it holds
that ||[v, —v,] > Ai(L£). Assume that there exist p,v such that i < p <v <k
and |lv, —v,|| < Ai(£). Then it follows that v, — v, € L,. The set of vectors
{v1,...,v;_1, Vy, v, } is a linearly independent set and thus the same holds for
{v1,...,vi—1,v, —v,}. This implies a set of ¢ linearly independent vectors in
the lattice £y, which is of rank ¢ — 1, contradiction.

Concluding, let v; belong to the considered linearly independent set of vectors

achieving the successive minima. If ||v;|| = ||vi41|| or ||vi|| = ||vi=1|| then v; €
P(L) by the proof in “case 2”. If |v;_1]|| < ||vi|| < ||vi+1]| then v; € P(L) by the
same argument used in “case 17. a

Remark 19. Obtaining a set of the shortest vector(s), given a set P(L£), amounts
to scanning the entire set P(£) a number of times. Thus, sorting P(£) can be
avoided.

6.2 Using P(£) in CVPP algorithms

One main problem in lattice theory is the closest vector problem. A straightfor-
ward way of using the set R(£) in order to solve CVPP was described in [B0].
In that work, an algorithm called the iterative slicer is given which takes as in-
put the set R(£) and a target vector ¢t and outputs a closest lattice vector to ¢
(Algorithm @). The main idea behind this algorithm is to iteratively reduce the
target vector ¢ by the relevant vectors until the resulting vector ¢’ is contained
in the Voronoi cell V(L) of the lattice. Once this condition is satisfied it is known
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Algorithm 4 The iterative slicer [30]

Require: The set R(L£) and a target vector t.
Ensure: A vector s € L closest to t.
ct et
: for every r € R(£) do
if ||t' £ 7| < ||| then
t«—t +r
restart the for loop
end if
end for
s=t—t
return s

that ¢ — ¢’ is a closest lattice point to t. This algorithm is shown to terminate
after a finite number of iterations.

Inspired by the iterative slicer, in [22] an algorithm is described to provably
solve the CVPP in O(22")-time by using the set R(L) as the preprocessing data.
The difference between Algorithm B and the algorithm in [22] is that the latter
selects the relevant vectors in a specific order for reduction. This results in a
O(22")~time and O(2")-space algorithm. This work was further improved in [4]
by optimising the use of the preprocessing data.

However, using the set R(L) in practice is not convenient due to its expected
size of about 2"t! — 2 vectors. One way to reduce the memory requirements
could be the use of a compact representation of R(L) like the one described
in [06]. In such a scenario a superset of R(£) would be generated on the fly by
a CVPP algorithm which would only use a smaller set of vectors in order to
generate R(L).

Another way would be to use a subset of R(L) instead of the entire set. Such
an approach was introduced in [I]. In that work an approximate Voronoi cell is
defined as the cell implied by a list of short lattice vectors which is potentially
a subset of the set R(£). That lead to a heuristic algorithm for CVPP using
the approach of Micciancio—Voulgaris but with more practical time and space
complexities.

We describe a CVPP algorithm (the tuple slicer, Algorithm B) using the set
P(L), and we discuss its advantages and disadvantages against already existing
approaches. We distinguish two cases.

If C =1 in Algorithm B then it just uses a subset of R(L£). In this case the
analysis of the algorithm just follows under the “approximate Voronoi cell” ap-
proach where a specific choice has been made on the used subset. The advantage
in this case is that it is guaranteed that the used list of vectors is a subset of
R(L).

If C > 1 Algorithm B behaves similar to the tuple sieving approach in [8]. A
vector is reduced not only by a single vector but also by the sums of small tuples
of vectors in the used list. Hence, a target vector t is reduced by a superset of
P(L). If this superset includes the set R(L) then [B0, Lemma 5] guarantees the
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Algorithm 5 The tuple slicer

Require: A set P(£), a C € N and a target vector t.
Ensure: A vector s € L closest to t.

1: ¢+t

2: forl=1to C do

3: for all {vy,...,v;} CP(L) do
4: we S v

5: if ||’ — w|| < ||t’]| then

6: 't —w

T restart the outer for loop
8: end if

9: end for

10: end for

11: s=t -t

12: return s

correctness of the algorithm. This depends on the value of C. We can prove that
there always exists a value of C' which guarantees the inclusion of R(£) in the
generated superset.

Remark 20. In line 3 of Algorithm B it considers sets of vectors {vy,...,v;} such
that v; # —v; but it could be that v; = v;.

Definition 13 (k-wise sum of P(L)). Let L be a full rank lattice in R"™ and
k a positive integer. We define

J
EP(L) = {Zpi | p; € P(L) and j = 1k}
i=1

Proposition 12 (Finding R(L) via kP(L)). Let L be a full rank lattice in
R™ and P(L) a complete system of irreducible vectors of it. Then there exists a
positive integer ng € N such that R(L) C no P(L).

Proof. By Proposition @ there exists a generating set G C P(£) with |G| =
I > n. Let » € R(L), then there exists an = € Z! such that Gz = . With

x = (x1,...,21) set myp = x|, = Zﬁzl |z;|. Then r € m, P(L). Set m =
max,egr(c){Mr}. As R(L) is finite then m is finite and Vr € R(L£) it holds
remP(L). O

The used superset is computed on the fly. This allows for a time—memory
trade-off. The algorithm loses on time complexity as it examines a larger list
of vectors but it gains on the memory requirement as it stores a provably
smaller subset of R(L£). In more detail the space complexity of the algorithm
is proportional to | P(£)| which can be bounded by O(r,,). The time complexity
will depend on the size of P(£) but also on the parameter C. Following the
analysis of [ZZ] we can argue that the time complexity of Algorithm B will be
O(|P(£)[C - 2° poly(n)).
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Fig.4: Preliminary experimental results on the success probability of Algo-
rithm B. The algorithm was tested on lattices of dimensions 20, 21, 22, 23, 24. For
each dimension the algorithm was tested with input C' = 1, 2,3 against 10000
CVP instances. Each of the 10000 CVP blocks was formed by 10 smaller blocks
of 1000 CVPs corresponding to 10 lattices. Each point in the graph corresponds
to the ratio of correct answers out of the 10000 CVP instances.

Remark 21. From Theorem [ it follows that if Algorithm B was to be applied
to the lattice family A?, it should consider a value of C' as high as (n + 1)/2 in
order for R(A}) to be included in the used superset. Therefore, a provable upper
bound on C' alone will not lead to any good bound for the time complexity of

Algorithm B in a provable setting.

Considering Algorithm B in a heuristic setting seems to be a more appealing
choice. In such a scenario the requirements of the algorithm can be relaxed
in mainly two directions. The first one is using an approximation (a superset)
of P(L) instead of the set itself. Hence, the output of the MinkowskiSieve as
described in Section B2 could serve as such a choice. Furthermore, choosing a
specific approximation of P(L£) can allow fixing the value of the parameter C in
the following way.

By a heuristic result of [I8] we know that if a list L containing 2™/2+°(") lattice
vectors of norm less than \@Al(ﬂ) is used as input to the iterative slicer then
the success probability of the algorithm is close to 1. Following this guideline,
a value for the parameter C' can be chosen in a way that guarantees that the
set of all vectors used for reduction in Algorithm B contains a list of 27/2+(%)
shortest lattice vectors.

Further options can be examined if it is allowed for the used slicing algorithm
to succeed with probability much smaller than 1. In such a case the results
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in [9,00] provide a way of relating the success probability to size of the used
preprocessed list and hence in our case C.

We briefly experimented on the relation of the success probability of Algo-
rithm B and the parameter C. The results can be found in Figure A. From these
results we get a first indication that the success probability of Algorithm B in-
creases as the value of C' increases. However, obtaining a specific guideline on
how to choose a value for C remains an open question.

7 Future work

We believe that the notion of irreducibility will motivate further research on the
field of lattices. Due to its close relation to lattice sieving algorithms, it could
be that the set P(L) can provide further insight on this area. An interesting
question would be if the usage of the set P(£) (under some heuristic assumptions
on its size) enables the proof of an upper bound on the time complexity of the
GaussSieve [23].

The implications of P(£) in cryptanalytic attacks could be an interesting
topic to investigate. The set P(L) is expected to be affected by an underlying
structure in the lattice £. It can thus be expected that structured lattices end
up with a smaller set P(£) than “average-case” lattices. Many of the modern
lattice-based cryptosystems possess such underlying structures and hence they
could serve as interesting cases to examine from this point of view.

The set P(L) can be used as a tool in proving a behaviour of a lattice al-
gorithm but could also be used itself (e.g. as preprocessing data of a CVPP
algorithm). In Section 52 modified sieving algorithms were utilised in order to
show how to compute it asymptotically. But the question of how to compute
P(L) exactly or approximately in practice remains open. Such a result would
also imply the ability to compute a subset of R(L) (of heuristically exponential
size) without requiring the set R(L).

Appendix B provides some experimental evidence showing that the size of
a set P(L) could vary a lot in some cases. An “average-case” result implying
that if the underlying lattice is not “special” then the size of P(L£) cannot vary
a lot would be of interest. A potential tool to reaching such a result could be
lattice theta functions [IT]. This is due to the fact that the coefficients in a
lattice’s theta function actually represent the number of lattice vectors of a
specific length. Therefore this property reveals the connection to the definition

of P(L).
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A Corner cases among S1(L), Irr(L), and R(L)

In Section B0 we posed two questions regarding the set Irr(£): if and when the
corner cases S1(£) & Irr(£) = R(£) and S1(£) = Irr(£) & R(L) are possible. In
this section we will give a partial answer to these questions by examining some
already known families of special lattices, the duals of the root lattices D,, and
Ay, (see [R, Chapter 4]).

For n € N with n > 5 we write®:

L, =2D%. (19)
Then a basis of £,, is the following (see [R, p. 120]):
B, ={2;|1<i<n-1}U{l"}, (20)
where 1™ represents the all-1 vector.
Theorem 10 (Properties of L£,). For every n € N withn > 5

S1(Ly) ={£2¢; |1 <i<n} and
Irr(L,) =R(L,) = {£2¢; | 1 <i<n}U{xl}".

Proof. By the definition of the lattice L£,, it is clear that {+2e¢; | 1 < i <
n} U {£1}" C L,. We will prove this theorem in three steps.

The first step is to show that S7(L£,) = {+2e; | 1 <i < n}.

The second step will be to show that R(L,) C {£2¢; | 1 <i <n}U{£1}".
Finally in the third step we will prove that {£2e; | 1 < i < n}U{£1}™ C Irr(L,).
These three steps imply the result as Irr(£,) C R(L,).

The “defining property” of the lattice L, that if v = (vq,...,v,) € L, then
v; =v; (mod 2) for all 1 <i,j <n, will be used throughout the proof.

Step 1: Obtaining that S1(L£,) = {£2e; | 1 <i < n} is trivial and is left as an
exercise to the reader.

Step 2: Let v ¢ R(L,,) and v # 0. Then by Theorem 0 we know that there
exists a vector & € £, \ {0,v} such that (v,x) > ||z||*>. We will prove that for
every vector v € L, \ ({£2¢; | 1 < i < n}U{£1}" U{0}) there exists a vector
x € L, \ {0,v} such that (v,z) > |z|>. This implies the desired property
R(L,) C {42e; |1 <i < n}U{x1}"

Let v e £, \ ({£2¢; |1 <i<n}U{xl}"U{0}), we distinguish two cases.
Case 1: Let v be such that v = (vy,...,v,) with v; = 1 (mod 2) for all v;.
We already showed in step 1 of the proof that the shortest vectors with odd
coordinates are the {£1}". As v does not belong to this set, |v;| > 1 for all
v;, and there exists at least one v; such that |v;| > 3. Consider the vector
x = (sign(vy),...,sign(vy,)). This is a valid lattice vector as & € {+1}" C L,

4 We choose to work with a scaling of D}, as in this way we get a lattice in Z", which
is easier to work with.
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andx Zvasv e L, \({£2¢; |1 <i<n}U{xl}"™). We check the inner product
of v and x.

Z&gn v;)U; = Z\m >n+2>n=|z|?

i=1

This proves that v € R(L,,).

Case 2: Let v be such that v = (vq,...,v,) with v; = 0 (mod 2) for all v;. As
v is a non-zero vector then it has at least one non-zero coordinate, let it be
vj. Also as v; is even we can conclude that |v;| > 2. We consider the vector
x = 2sign(v;)e;. This is a valid lattice vector as © € {£2e¢; |1 < i < n} C L,
andx Zvasv e L, \({£2e; |1 <i<n}U{xl}"). We check the inner product
of v and x.

(v,@) =Y wiv; = 2sign(v;)v; = 2Jv;| > 4= ||z
=1

This proves that again v ¢ R(L,,) concluding the proof of the second step.

Step 3: In this step we want to prove that {£2e; | 1 <i < n}U{x1}" CIrr(L,).
In step 1 we already showed that S1(L,,) = {£2e; | 1 <i < n} and we know that
S1(Ly) C Irr(L,,) hence, we only have to show that {£1}" C Irr(L£,,). Assume
that v € {£1}"™ and v & Irr(L,). Thus there are two strictly shorter vectors vy
and w9 such that v = v; + vs. In step 1 of the proof we showed that the vectors
in {£1}" are the shortest ones among those with odd coordinates. Therefore
as v1 and wo are strictly shorter than v then it must be that they have even
coordinates. This implies that v can be written as a sum of vectors with even
coordinates. This is a contradiction, as a sum of even numbers is never odd. 0O

As a scaling of a lattice £ has the same properties as £ we get Theorem B already
mentioned in Section B

Theorem 11 (Properties of D*) Letn € N with n > 5. Then for the lattice
Dy, it holds that S1(D;;) & Irr(D;,) = R(Dy,). Furthermore |Irr(D},)| = 2" + 2n.

This proves that S1(£) & Irr(£) = R(L) is possible for every dimension n > 5.
In order to complete this result from this point of view we give another three
lattices, one for each of the dimensions n = 2, 3, 4 that possess the same property.

Forn = 2, 3, 4 we write £2 = ,C(Bg), ﬁg = E(Bg), £4 = ,C(B4) with BQ, Bg7 B4
being

1001
31 301 0301

B, = B;=(031] By= (21)
01 001 0031
0001

We leave it to the reader to verify our claim for these three lattices.
Our next goal is to derive a similar result for the case S1(£) = Irr(£) & R(L
In order to do so we will use a scaling of the lattices A .
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For n € N with n > 3, we write
M, =(n+1)A}. (22)
Then a basis of M,, is formed by the columns of B,, (see [, p. 115]), where

n1l 1 -1
1 —n 1 -1
1 1 —n- 1

B, = . (23)
1 1 1 --n
11 1-1

is an (n + 1) X n matrix.

Remark 22. By the given basis B,, for M,, we can immediately observe that if
v = (v1,V2,...,Up41) € M, then v; = v; (mod n + 1). Additionally E?jll v; =
0.

Theorem 12 (Properties of M,,). For every n € N with n > 3,
S1(M,) = Trr(M,,) = {£(-n*,1")}  and
ROM,) = {208, (8 [ f=n+1-a 120 < 1L

Proof. We set A = {£(a”?,(-B8)*) |B=n+1-a, 1< a< (n+1)/2}. We
will prove this theorem in four steps. The first step is to show that S;(M,,) =
{£(—nt,1™)}. The second step will be to show that R(M,,) C A. The third step
will be to show that Irr(M,,) C {£(—n',1")} and finally in the fourth step we
will show that A C R(M,,).

Step 1: The vectors {#(—n',1")} have squared length n? + n and hence we
get A2(L) < n? + n. This implies that a vector achieving A\;(£) cannot have a
coordinate v; such that |vj| > n+ 1. Therefore a vector achieving A; (L) belongs
to A. The squared length of a vector in A is fa? + % = (n + 1)aB which
minimizes for a = 1.

Step 2: Let v € M,, \ (AU {0}) and write it as v = (v1,...,vp41). Then there
will exist at least one coordinate of v, let it be v;, such that |v;| > n+1. This can
be proved by a contradiction argument. Assume that there was no coordinate in
v such that |v;| > n 4 1 then it would hold that |v;| < n for all 1 <4 < n and
by the fact that v; = v; (mod n + 1) we can conclude that there would be at
most two possible values for |v;|. But the set A contains all such vectors of the
lattice, hence that would imply v € A, contradiction. We set « to be the vector
having sign(v;)n in the j-th position and —sign(v;) in all other places. This is
a valid lattice vector and & # v as v € M,, \ A. We check the inner product of
v and x:

n+1 n+1
(v, ) =Y viw; = [v;|n — sign(v;) Y vi = sl + |vj| = (n +1)* > ||z,
i=1 i=1

i#]
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This proves that v € R(M,,) concluding the proof of the second step.

Step 3: Let v € M,, \ ({£(—n',1")} U {0}) and write it as v = (v1,...,Vpt1)-
Then we will show that v is reducible. By step 2 of the proof we know that
R(M,,) € A and as we know that Irr(M,,) C R(M,,) we can restrict our choice
towv € A\ {£(-n',1")}. As v € A we can write v = +(a?, (—3)%) with
B =n+1—aforsomel < a < (n+1)/2. By Lemma H it suffices to find a lattice
vector @ with ||z|| < ||v|| and such that 2(v,z) > |lz|*. Let v = max{|al,|8]}
and the j-th coordinate of v be such that |v;| = 7. Consider  to be the vector
with sign(v;)n in the j-th position and —sign(v;) in all other places. This is a
valid lattice vector and ||| < ||[v| as ¢ € S1(My) but v € S1(M,,). Then

n+1 n+1

2(v, x) =2 Z vy = 2 <|vj|n — sign(v;) Z 117;> =2(yn+7)
i=1 i=1
1#]

=2(n+1)y>(n+1)?>|z|?

as v > (n + 1)/2. This proves that v ¢ Irr(M,,) and therefore Irr(M,,) C
{£(—nt, 1)}

Step 4: By [i2, Theorem 3] and the fact that the vectors (—n!, 1) form a strictly
obtuse superbasis of M,, (see []) it follows that A C R(M,,) and finally
R(M,,) = A. O

This implies Theorem B already mentioned in Section Bl

Theorem 13 (Properties of A%). Let n € N with n > 3. Then for the lattice
A% it holds that S1(A}) =Irr(A}) & R(A}). Furthermore [Irr(A})| = 2(n + 1).

This proves that S1(£) = Irr(£) & R(L) is possible for every dimension n > 3.
In order to complete the result from this point of view we give another lattice
in dimension n = 2 that possess the same property: My = £(B3), where

B, — (‘fi) (24)

We leave it to the reader to verify this.

B Some graph-theoretical aspects

In Section B4 we introduced the notion of a complete system of irreducible
vectors and we gave an example of how the set P(£) can be computed. In that
example the use of graph theoretical tools was demonstrated in order to compute
the set P(L) given the set Irr(£). A natural question that arises is how costly
this step can be.

In order to answer this question a few graph theory definitions are necessary.
Graphs will de denoted by I' = (V, E), where V is the set of vertices and E is
the set of edges. If e = {u,v} € E then we say that u and v are adjacent.
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Definition 14 (Independent set). Given a simple graph I' = (V, E) an in-
dependent set is a subset of vertices U C V | such that no two vertices in U
are adjacent. An independent set is mazimal if no vertex can be added with-
out violating independence. An independent set of maximum cardinality is called
mazimum and its cardinality is denoted by ().

Definition 15 (Class graph). Let £ be a full rank lattice in R™ and S €
Irr(L)/~. We define I'z(S) to be the graph where the set of vertices V. =5 and
there exists an edge between v1,v2 € V iff ||v1 — vaf| < |lv1].

Computing P(L£) out of Irr(£) amounts to solving a maximal independence set
instance in I'z(S) for every class S € Irr(£)/~. Therefore the complexity of
this task highly depends on the size of the equivalence classes S € Irr(£)/~ and
| Irr(L)/~|. For average-case lattices the computational step from Irr(£) to P(£)
should almost always be trivial, i.e. P(£) = Irr(£), as for all S € Irr(L£)/~ it is
expected that |S| = 2. In these cases the set P(£) is uniquely determined.

However, in case the underlying lattice £ possesses any kind of structure or
symmetries it is expected that there will be equivalence classes S € Irr(L£)/~ with
|S| > 2. In these cases the computational task of finding a maximal independent
set in the corresponding class graph is not trivial anymore. In such cases the
first step is to construct the corresponding graph I'z(S), which will take time
O(|S|?). Then, naively computing a maximal independent set (which should
always include both +v) will take time O(|S|m) where m is the number of edges
in I'z(S) but, there are better performing algorithms for this task [20]. If we
denote by h the maximum size of a class in Irr(£)/~ then the time complexity
of computing P(£L) out of Irr(£) will scale as O(h?|Irr(L)]).

Thus if there does not exist a class S with |S| exponential to the dimension
n then computing P(£) out of Irr(£) will take time O(|Irr(£)]). In practice,
stumbling upon a lattice £ possessing a class S € Irr(L£)/~ where |S| is expo-
nential to the dimension n is highly unlikely as such a lattice would be extremely
structured. For the sake of mathematical curiosity (and nice graph pictures) we
briefly investigate such a case of lattices, namely the £,, for n > 5 defined in
Appendix Al For our exposition we will need the following definition.

Definition 16 (Cayley graph). Let G be a group and T C G a generating set
of G. The Cayley graph of G generated by T, denoted Cay(G,T) is the directed
graph I' = (V. E) where V. =G and E = {(g,9s)|g € G, s € T'}.

If T =T-! (T is closed under inverse) then Cay(G,T) is an undirected graph.

In Appendix B we saw that Irr(£,) = {£2e; | 1 < i < n} U {£1}". Hence
Irr(L£,,) contains two equivalence classes of sizes 2n and 2™ respectively. The
class Sy = {£1}" which we will study can be viewed as the group G = Z3.
Two elements of Sy are connected if their difference is shorter than /n, thus it
is a sum of less than n/4 elements from the set {+2e; | 1 < i < n}. In turn
this implies that two elements of Sy are connected in Iz, (S2) if they differ by
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Fig.5: The uncoloured Cayley graph Cay(Z3,¢(T1(Z3))) with generating set
o(T1(Z3)) = {(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0), (1,1,1,1)}. For convenience,
instead of labelling the vertices of the graph by the elements of Z3, we consider the
elements of Z3 as binary representations and assign the corresponding integer (e.g.
(1,0,0,0) maps to 8). This graph can be used in order to compute a representative
set S for the class So = {il}5 in the L5 = 2Dj3 lattice. One such set is implied by
the black vertices of the graph. The graph possesses 40 maximal independent sets of
cardinality 4 and 16 maximal independent sets of cardinality 5 (maximum).

a sign in less than n/4 of their coordinates. Thus we can now use the following
observation.

Iz, (S2) = Cay (G, Trna)(G)) (25)

Where G = Z3 and Tp,/4(G) = {x € G|1 < |supp(x)| < [n/4]} and
supp(x) denotes the support of «. In our case 17, /41(G) = Tﬁzl/zﬂ (G) and thus

Cay (G, Tj,/41(G)) is an undirected graph.® We are interested in the maximal
independent sets of the graph I'z (S2), but not in all of them. It is additionally
required that for every vector v € S, also —v € Sy. This could be phrased as we
work “modulo sign”. This property can be translated algebraically by working

in the quotient group H = Z%/((1,...,1)) instead of G = Z%. Using the group

® Such type of Cayley graphs are of an interest in coding theory as independent sets
of Cay(Zy,Ta(Zy)) with Ta(Zg) = {x € Zg |1 < |supp()| < d} correspond to g-ary
(n,d) codes.
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isomorphism

@ ZR/{(1,..., 1)) = Zh !
(@a)imy + (1., 1) = (2 +20)]2)

we can transfer the problem to the graph Iz, = Cay(Zy ', ¢(T[,/41(G))).
Each independent set in I;4, implies an independent set in Iz, (S2) which
possesses the extra property of the “sign symmetry”. A first remark regarding
the set of maximal independent sets of I%;gy, is that it is invariant under the
group action of ngl. For example, if we consider the graph in Figure B, all 16
maximal independent sets of cardinality 5 can be generated by acting with Z3
to the given independent set formed by the black vertices.

We briefly experimented with ;g for the first few values n = 5,6, 7 in order
to get a first indication of how many maximal independent sets such a graph
may have and how much their size can vary.

Table 2: Using SAGE [83] we computed all possible sizes of a maximal independent set
of Cay(Z3 ™", o(T1n 4 (Z3))) for n = 5,6,7 and the corresponding frequency of these
sizes.

n=>5 n==~6
Cardinality| 4 | 5 Cardinality| 6 | 8 (11|16
Frequency |40(16 Frequency |320(300(32| 2
n="7
Cardinality| 8 | 14 16 17 18 19 | 20 |22
Frequency |240{1920(625548|203840(67200|13440{2800|64

As the number of maximal independent sets seems to grow super-exponentially
in the dimension n we stopped at n = 7. Even though experimental results are
useful in order to get intuition, theoretical results are those which give the final
answer to a question. In our case there are some theoretical results, originating
both from graph theory and coding theory which bound the sizes we experi-
mented with.

— Let I' = (V,E) be a graph with |V| = N. In [25] it is proven that I" can
have up to 3V/% maximal cliques in the worst case, a bound which is tight.
Complementary this also proves that a graph I" with IV vertices can possess
up to 3V/3 maximal independent sets in the worst case.

The results in the same work also imply that the number of different sizes of
maximal independent sets is upper bounded by N —logy N which is shown
to be tight in the worst case.
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— Let I" be an m-regular graph with N vertices. In [29] it is shown that «(I")
can be upper bounded by min{|N/2|, N — m}. This bound is obtainable.
In the same work, a lower bound for «(I") is given, depending on m and
N. However this bound is not uniform but depends on number theoretic
properties of N, m. In our case the appropriate lower bound for «(I") would

be [N/(m + 1)].

— As the graph family in question, Iz, (S2) (and [s;4,) is specific, better up-
per bounds can be obtained than the general ones given in [29]. This is
achieved with the use of coding theory [I5]. In more detail, a(Iz, (S2)) =
As(n, [n/4]). This equality enables the use of already known upper bounds
on As(n, [n/4]) from coding theory such as the Hamming bound [i4]. The
lower bound implied by [29] for a(lz, (S2)) is equivalent to the Gilbert-
Varshamov bound for As(n, [n/4]).
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