Efficient Perfectly Secure Computation
with Optimal Resilience*

Ittai Abrahamf Gilad Asharov? Avishay Yanai®

October 18, 2021

Abstract

Secure computation enables n mutually distrustful parties to compute a function over their
private inputs jointly. In 1988 Ben-Or, Goldwasser, and Wigderson (BGW) demonstrated that
any function can be computed with perfect security in the presence of a malicious adversary
corrupting at most t < n/3 parties. After more than 30 years, protocols with perfect malicious
security, with round complexity proportional to the circuit’s depth, still require sharing a total
of O(n?) values per multiplication. In contrast, only O(n) values need to be shared per multi-
plication to achieve semi-honest security. Indeed sharing £2(n) values for a single multiplication
seems to be the natural barrier for polynomial secret sharing-based multiplication.

In this paper, we close this gap by constructing a new secure computation protocol with
perfect, optimal resilience and malicious security that incurs sharing of only O(n) values per
multiplication, thus, matching the semi-honest setting for protocols with round complexity that
is proportional to the circuit depth. Our protocol requires a constant number of rounds per
multiplication. Like BGW, it has an overall round complexity that is proportional only to
the multiplicative depth of the circuit. Our improvement is obtained by a novel construction
for weak VSS for polynomials of degree-2t, which incurs the same communication and round
complexities as the state-of-the-art constructions for VSS for polynomials of degree-t.

Our second contribution is a method for reducing the communication complexity for any
depth-1 sub-circuit to be proportional only to the size of the input and output (rather than
the size of the circuit). This implies protocols with sublinear communication complexity (in
the size of the circuit) for perfectly secure computation for important functions like matrix
multiplication.

1 Introduction

Secure multiparty computation is a major pillar of modern cryptography. Breakthrough results
on secure multiparty computation in the late 80’ prove feasibility with optimal resilience: perfect,
statistical and computational security can be achieved as long as t < n/3 [7], t < n/2 (assuming
broadcast) [37] and ¢ < n [28,41], respectively, where n is the number of computing parties such
that at most ¢ of them are controlled by a malicious adversary.

*A preliminary version of this paper appeared in IACR-TCC 2021.

fVMware Research, iabraham@vmware . com

fDept. of Computer Science, Bar-Ilan University, Israel. Gilad.Asharvo@biu.ac.il. Sponsored by the Israel
Science Foundation (grant No. 2439/20), by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 891234.

$VMware Research, yanaia@vmware.com

In this paper we focus on secure computation with perfect security, which is the strongest pos-
sible guarantee: it provides unconditional, everlasting security. Such protocols come with desirable
properties. They often guarantee adaptive security [12,33] and remain secure under universal com-
position [11]. A central foundational result in this context is the Completeness Theorem of Ben-or,
Goldwasser, and Wigderson [7] from 1988:

Theorem 1.1 (BGW with improvements [3,7,18,26]- informal). Let f be an n-ary functionality
and C' its arithmetic circuit representation. Given a synchronous network with pairwise private
channels and a broadcast channel, there exists a protocol for computing f with perfect security in
the presence of a static malicious adversary controlling up to t < n/3 parties, with round complezity
O(depth(C)) and communication complezity of O(n* - |C|) words in point-to-point channels and no
broadcast in the optimistic case, and additional Q(n* - |C|) words of broadcast in the pessimistic
case.!

The communication complexity in the above statement (and throughout the paper) is measured
in words (i.e., field elements), and we assume a word of size O(logn) bits.

In the past three decades there has been great efforts to improve the communication complex-
ity of the BGW protocol [3,26]. Theorem 1.1 states the round and communication complexity
of the protocols after these improvements. Most recently, Goyal, Liu and Song. [29], building
upon Beaver [5], and Beerliovd and Hirt [6], achieved O(n|C| + n3) communication words (includ-
ing all broadcast costs) at the expense of increasing the round complexity to O(n + depth(C)).

In some natural setting, e.g., secure computation of shallow circuits in high latency networks,
this additive O(n) term in the round complexity might render the protocol inapplicable. This state
of affairs leads to the fundamental question of whether the communication complexity of perfectly
secure computation can be improved without sacrificing the round complexity. Moreover, from
theoretical perspective, the tradeoff between round complexity and communication complexity is
an interesting one.

1.1 Our Results

We show an improvement of the communication complexity of perfectly secure protocols, without
incurring any cost in round complexity. Notably, our improvement applies both to the optimistic
case and to the pessimistic case:

Theorem 1.2 (Main technical result - informal). Let f be an n-ary functionality and C' its arith-
metic circuit representation. Given a synchronous network with pairwise private channels and a
broadcast channel, there exists a protocol for computing f with perfect security in the presence of
a static malicious adversary controlling up to t < n/3 parties, with round complexity O(depth(C'))
and communication complezity of O(n3 - |C|) words on point-to-point channels and no broadcast in
the optimistic case, and additional O(n® - |C|) words of broadcast in the pessimistic case.

Our result strictly improves the state of the art and is formally incomparable to the result of
Goyal et al. [29]. Our protocol will perform better in high-latency networks (e.g., the internet) on
shallow circuits when depth(C') < n. Whereas the protocol of [29] performs better in low-latency
networks (e.g., LAN), or when depth(C) ~ Q(n).

'In the optimistic case the adversary does not deviate from the prescribed protocol. Thus, in the pessimistic case
(when it does deviate from the protocol) the adversary might only make the execution more expensive.

Sub-linear perfect MPC for sub-circuits of depth-1. As our second main result, we show
for the first time that for a non-trivial class of functions, there is in fact a sub-linear communi-
cation perfectly secure MPC (in the circuit size). Specifically, we design a perfectly secure MPC
that supports all functionalities that can be computed by depth 1 circuits. The communication
complexity of our protocol depends only on the input and output sizes of the function, but not on
the circuit size, i.e., the number of multiplications. We prove the following:

Theorem 1.3. Let n > 3t, and let F be a finite field with |F| > n. For every arithmetic circuit
G : FL = FM of multiplication depth 1 (i.e., degree-2 polynomial), there exists a perfect t-secure
protocol that computes (y1,...,ym) = G(z1,...,21) in O(1) rounds and O((M + L) - n®) words
over the point-to-point channels in the optimistic case, and additional O((M + L) - n®) broadcast
messages in the pessimistic case. Specifically, the communication complexity is independent of |G|.

The above theorem can also be applied to compute circuits with higher depth, while paying
only communication complexity that is proportional to the number of wires between the layers,
and independent of the number of multiplications in each layer. Similar techniques were shown in
the statistical case [14], but no protocol is known for perfect security.

Application: secure matrix multiplication. As a leading example of the usefulness of our
depth 1 circuit protocol, consider matrix multiplication of two T" x T' matrices. This operation has
inputs and outputs of size O(7?), but implementing it requires O(73) multiplications (at least when
implemented naively). The starting point (Theorem 1.1) is Q(73-n*) point-to-point in the optimistic
case (and additional (7 - n*) words of broadcast in the pessimistic case. Theorem 1.3 improves
the communication complexity to O(T? - n3) in the point-to-point channels with no additional
broadcast in the optimistic case (and additional O(T? - n®) words on broadcast in the pessimistic
case). Our protocol also achieves O(1) rounds in both the optimistic and pessimistic cases.

Secure matrix multiplication is a key building block for a variety of appealing applications.
For example, anonymous communication [1] and secure collaborative learning. The latter involves
multiplication of many large matrices (see [4,13,34-36,40], to name a few). For instance, the
deep convolutional neural network (CNN) ResNet50 [39] requires roughly 2000 matrix multiplica-
tions, which, when computed securely, results in more than 4 billion multiplication gates. Using
our protofocol of matrix multiplication, computing this task reduces by order of magnitudes, the
communication to be proportional to computing only millions multiplications.

Secure Multiplication: a natural barrier of Q(n) Secret Sharings

We give a very high level overview of our technical controbution, pointing to the core of our im-
provements. When viewed from afar, all secret-sharing based MPC protocols have a very similar
flow. The starting point property is that polynomial secret sharing is additively homomorphic.
This allows computing any linear combination (additional and multiplication by public constants)
of secrets locally and with no interaction. The challenge is with multiplication gates: while multi-
plication can also be applied homomorphically (and non-interactively), it increases the degree of the
underlying polynomial that hides the secret. Secure multiplication uses the fact that polynomial
interpolation is just a linear combination of points on the polynomial, and hence a central part of
the computation can be applied locally.

Given shares of the two inputs, every party shares a new secret which is its locally computed
multiplication of its two shares. Then, all these new shares are locally combined using the linear
combination of the publicly known Lagrange coefficients. This results in the desired new sharing
of the multiplication of the two inputs.

This elegant framework for secure multiplication embeds a natural communication complexity
barrier: each multiplication requires 2(n) secret sharing (each party needs to secret share its local
multiplication). In the malicious case, the secret sharing protocol is Verifiable Secret Sharing (VSS),
hence, the total communication complexity in this framework is at least Q(n - comm(V'SS)).

State of the art MPC for almost all settings matches this natural barrier, obtaining constant
round protocols with optimal resilience using O(n-comm(V'SSS)) communication per multiplication
complexity, where V' .SS is the best secret sharing for that setting.

The only exception we are aware of is the family pf BGW protocols for a malicious adversary,
where all known improvements until now [3,7,26] require Q(n?-comm(V'SS)) communication. This
is because each party needs to share n invocations of VSSs of degree-t polynomials in order to prove
that the secret it shared for the product is indeed equal to multiplication of the already shared
multiplicands.

Weak VSS and the complexity of perfect MPC. The main technical contribution of this
work is a multiplication protocol that meets the natural barrier and achieves communication com-
plexity of O(n - comm(V'SS)). Since comm(V SS) is O(n?) words in the optimistic case (and no
broadcast) and O(n?) over the point-to-point channels and additional O(n?) words of broadcast in
the pessimistic case, Theorem 1.2 is obtained. The improvement can thus be described as follows:

e Semi-honest BGW requires O(n - comm(SS)) communication per multiplication.
e Malicious BGW requires O(n? - comm(V $S)) communication per multiplication.
e Our malicious protocol requires O(n - comm(V'SS)) communication per multiplication.

Our improved efficiency is obtained by replacing n invocations of degree-t VSSs with just one
invocation of a weak VSS for degree-2t, which we denote by WSS. By weak VSS, we refer to the
setting in which the parties’ shares define a single secret at the end of the sharing phase, and during
the reconstruction phase, the parties can either recover that secret or 1. We show that a single
weak VSS for a degree-2t polynomial (along with a constant number of strong VSS) is sufficient to
prove that the secret shared for the product is equal the multiplication of its two already shared
multiplicands.

Lemma 1.4 (informal). Given n > 3t, there is a protocol for implementing Weak Verifiable Se-
cret Sharing with optimal resilience, for a polynomial of degree-2t with communication complezity
of O(n?) words on point-to-point channels in the optimistic case, and additional O(n?) words of
broadcast in the pessimistic case, and O(1) rounds.

Our new weak verifiable secret sharing of degree-2¢t has the same asymptotic complexity as
verifiable secret sharing of degree-t. In addition to improving the efficiency of the core building
block in secure computation (i.e. the multiplication), we believe it also makes it simpler, which is
a pedagogical benefit.

Adaptive security and UC. We prove security in the classic setting of a static adversary and
stand-alone computation. Protocols that achieve perfect security have substantial advantage over
protocols that are only computationally secure: It was shown [33] that perfectly secure protocols
in the stand-alone setting with a black-box straight-line simulator are also secure under universal
composition [11]. Moreover, it was shown [12,20] that perfectly secure protocols in presence of a
static malicious adversary for secure function evaluation that follows some standard MPC technique
(as secret sharing based protocols, like BGW) enjoy also perfect security in the presence of an
adaptive malicious adversary.

The broadcast channel model. We analyze our protocol in the broadcast model and count
messages sent over private channels and over the broadcast channel separately. In our setting
(t < n/3) the broadcast channel can also be simulated over the point-to-point channels. However,
this comes with some additional cost. There are two alternatives: replace each broadcast use in
the protocol requires O(n?) communication and O(n) rounds [8,16], or O(n*logn) communication
and expected constant round (even with bounded parallel composition [17,25,32]).

1.2 Related Work

Constant-round per multiplication. In this paper we focus on perfect security in the presence
of a malicious adversary, optimal resilience and constant round per multiplication. Our protocol
improves the state of the art in this line of work. As mentioned in Asharov, Lindell and Rabin [3],
an additional verification protocol is needed for completing the specification of the multiplication
step of BGW. In Theorem 1.1, we ignore the cost associated with those verification steps and
just count the number of verifiable secret sharing needed, which is Q(n?) VSSs per multiplication
gate. The protocol presented by Asharov, Lindell and Rabin [3] also requires O(n?) VSSs per
multiplication gate. Cramer, Damgard and Maurer [18] presented a protocol that works in a
different way to the BGW protocol, which also achieves constant round per multiplication. It
has worst-case communication complexity of O(n’) field elements over point-to-point channels and
O(nd) field elements over a broadcast channel. The optimistic cost is O(n?*) field elements over
point-to-point channels and O(n?3) field elements over the broadcast channel.

Protocols that are based on the player elimination technique. There is a large body of
work [6,19,29-31] that improves the communication complexity of information-theoretic protocols
using the player elimination technique. All of these protocols have a round complexity that is
linear in the number of parties. This is inherent in the player elimination technique since every
time cheating is detected, two players are eliminated and some computations are repeated. In many
cases player elimination would give a more efficient protocol than our approach. However, there are
some cases, specifically for a low-depth circuit where n is large and over high-latency networks, in
which our protocol is more efficient. Moreover, our protocol can achieve communication complexity
which is sub-linear in the number of multiplication gates, depends on the circuits to be evaluated.
We do not know how to achieve similar results on protocols that are based on Beaver multiplication
triplets [5], such as the protocol of Goyal et al. [29]. These lines of work are therefore incomparable.

Lower bounds. Recently, Damgard and Schwartzbach [22] showed that for any n and all large
enough g, there exists a circuit C' with g gates such that any perfectly secure protocol implementing
C must communicate €(ng) bits. Note that Theorem 1.3 is sub-linear (in the circuit size) only for
particular kind of circuits in which the circuit is much larger than the size of the inputs or its outputs.
It is easy to find a circuit C' with g gates in which our protocol must communication O(n*g) in the
pessimistic case. A lower bound by Damgard et al. [21] shows that any perfectly-secure protocol
that works in the “gate-by-gate” framework must communicate 2(n) bits for every multiplication
gate. Our protocol deviates from this framework when computing an entire multiplication layer as
an atomic unit.

1.3 Open Problems

Our protocol improves the communication complexity of constant round multiplication with opti-
mal malicious resilience from O(n? - comm(V $S5)) to O(n - comm(V'SS)), matching the number of

secret-shares in the semi-honest protocol. The immediate open problem is exploring the optimal
communication complexity of verifiable secret sharing protocol. To the best of our knowledge, we
are not aware of any non-trivial lower bound for perfect VSS (also see survey by C, Choudhury and
Patra [9]). The VSS protocol requires O(n?) words in the optimistic case over the point-to-point
channel, and additional O(n?) words over the broadcast channel in the pessimistic case.

Another possible direction to generalize our work is to mitigate between the two approaches
for perfect security: Design a “hybrid” protocol that computes some sub-circuits using the linear
communication complexity approach, and some sub-circuits using the constant-round per multipli-
cation approach and achieving the best of both worlds. Another interesting direction is to make
sub-linear communication complexity improvement compatible with the protocols that are based
on multiplication triplets.

2 Technical Overview

In this section we provide a technical overview of our results. We start with an overview of the
BGW protocol in Section 2.1 and then overview our protocol in Section 2.2.

2.1 Overview of the BGW Protocol

In the following, we give a high level overview of the BGW protocol while incorporating several
optimization that were given throughout the years [3,26].

Let f be the function that the parties wish to compute, mapping n inputs to n outputs. The
input of party P; is x; and its output is y;, where (y1,...,yn) = f(x1,...,25). On a high level, the
BGW protocol works by emulating the computation of an arithmetic circuit C' that computes f
and has three phases. In the first phase, the input sharing phase, each party secret shares its input
with all other parties. At the end of this stage, the value of each input wire of the circuit C is
secret shared among the parties, such that no subset of ¢ parties can reconstruct the actual values
on the wires. In the second phase, the circuit emulation phase, the parties emulate a computation
of the circuit gate-by-gate, computing shares on the output wire of each gate using the shares on
the input wires. At the end of this stage, the output wires’ values are secret shared among all
parties. Finally, in the output reconstruction phase, P; receives all the shares associated with its
output wire and reconstructs its output, y;.

The invariant maintained in the original BGW protocol is that each wire in the circuit, carrying
some value a, is secret-shared among the parties using some random polynomial A(z) of degree-
t with a as its constant term. We follow the invariant of [3], and in our protocol, the parties
hold bivariate sharing and not univariate sharing. That is, the secret is hidden using a bivariate
polynomial A(x,y) of degree-t in both variables in which the share of each party P; is defined
as A(x,q;), A(ag,y), where «; is the evaluation point associated with P;. Maintaining bivariate
sharing instead of univariate sharing removes one of the building blocks in the original BGW
protocol, where parties sub-share their shares to verify that all the shares lie on a polynomial of
degree-t. Obtaining bivariate sharing essentially comes for free. In particular, when parties share
a value, they use a verifiable secret sharing protocol (VSS, see Section 2.2) [15,24,25], which uses
bivariate sharing to verify that all the shares are consistent. However, in BGW, the parties then
disregard this bivariate sharing and project it to univariate sharing. We just keep the shares in the
bivariate form.

The multiplication protocol. In the input sharing phase, each party simply shares its input
using the BGW’s VSS protocol. Emulating the computation of addition gates is easy using linearity

of the secret sharing scheme. The goal in the multiplication protocol is to obtain bivariate sharing
of the value of the output wire of the multiplication gate using the shares on the input wires. Let
a,b be the two values on the input wires, hidden with polynomials A(zx,y), B(z,y), respectively.
The protocol proceeds as follows:

1. Each party P; holds shares f(z) = A(x,q;) and fP(z) = B(z,«;), each are univariate
polynomials of degree-t. Each party P; shares a bivariate polynomial C;(z,y) of degree-t such
that C;(0,0) = £&(0) - £2(0).

2. Using a verification protocol, each party P; proves in perfect zero knowledge that C;(0,0) =
f2(0) - £2(0). We elaborate on this step below.

3. Given the shares on all (degree-t) polynomials Ci(z,y),...,Cy(x,y), the parties compute

shares of the polynomial C(z,y) def Sy i - Ci(z,y), where Aq,..., A, are the Lagrange

coefficients, by simply locally computing a linear combination of the shares they obtained in
the previous step.

To see why this protocol is correct, observe that since each one of the polynomials C1(x,y), ..., Cp(z,y)
is a polynomial of degree-t, then the resulting polynomial C'(z,y) is also a polynomial of degree-

t. Moreover, define h(y) def A(0,y) - B(0,y) and observe that h(y) is a polynomial of degree-2t
satisfying h(0) = A(0,0) - B(0,0) = ab. It holds that ab= A; - k(1) + ...+ Ay - h(ay). Thus,

C(0,0) = SN Ci(0,0) = Y A+ £2(0) - £2(0) = S A - A(ey) = ab
=1 =1

i=1

as required. Crucially, each C;(x,y) must hide h(a;) = £2(0) - £°(0) as otherwise the above linear
combination would not result with the correct constant term. This explains the importance of the
verification protocol.

BGW’s verification protocol. In the verification protocol, the dealer holds the univariate
polynomials f(z), f’(z) and a polynomial C;(z,y), and each party P; holds a share on those
polynomials, that is, points f¢(a;), f*(a;) and degree-t univariate polynomials C;(z, o), Ci(a,y).
The parties wish to verify that C;(0,0) = £2(0) - f2(0).

Towards that end, the dealer defines random degree-t polynomials Dy, ..., Dy under the con-
straint that

t
Ci(x,0) = fi(z) - fl(x) =Y« Dy(,0) . (1)

/=1
As shown in [3,7], the dealer can choose the polynomials D1, ..., D, in a special way so as to cancel

all the coefficients of degree higher than ¢ of f¢(x) - f*(z) and to ensure that C;(x,y) is of degree t.
The dealer verifiably shares the polynomials D1,..., D, with all parties, and then each party P
verifies that the shares it received satisfy Eq. (1). If not, it complaints against the dealer. Note
that at this point, since all polynomials C;, D1, ..., D; are bivariate polynomial of degree-t, and
f&(z), f(x) are univariate polynomials of degree-t, it is possible to reconstruct the shares of any
party Pi without the help of the dealer. The parties can then unequivocally verify the complaint.
If a complaint was resolved to be a true complaint, the dealer is dishonest, we can reconstruct
its points and exclude it from the protocol. If the complaint is false, we can also eliminate the
complaining party.

An honest dealer always distributes polynomials that satisfy Eq. (1). For the case of a corrupted
dealer, the term f&(z)- f2(x) — > h_, '+ Dy(,0) defines a univariate polynomial of degree at most

7

2t for every choice of degree-t bivariate polynomials D1, ..., D;. If this polynomial agrees with the
polynomial C;(x,0) for all honest parties, i.e., on 2t + 1 points, then those two polynomials are
identical, and thus it must hold that C;(0,0) = f(0) - £°(0), as required.

2.2 Our Protocol

Simplifying the verification protocol. In the above verification protocol, the dealer distributes
t polynomials Dy, ..., D; using VSS. We show how to use a more efficient technique for accom-
plishing the verification task. Namely, we introduce a weak secret sharing protocol, for sharing a
polynomial D(z,y) of degree-2t in x and degree-t in y. The dealer then chooses a single random
polynomial D(x,y) under the constraint that:

Ci(x,0) = f{(x) - f{(«) = D(,0) (2)

The dealer distributes D(z,y) and the parties jointly verify that (a) Eq. (2) holds and (b) that
D(0,0) = 0.

Our weak secret sharing protocol for distributing such D(z,y) has the same complezity as
verifiable secret sharing of a degree-t polynomial, and therefore we improve by a factor of t = O(n).
The secret sharing is weak in the sense that the parties cannot necessarily reconstruct the secret
from the shares without the help of the dealer during the reconstruction. However, the verifiability
part guarantees that there is a well-defined polynomial that can be reconstructed (or, if the dealer
does not cooperate, then no polynomial would be reconstructed). Since the role of the polynomial
D(z,y) is just in the verification phase and requires the involvement of the dealer, to begin with,
this weak verifiability suffices. If the dealer does not cooperate during the verification phase, then
the parties can reconstruct its inputs and resume the computation on its behalf.

Our weak secret sharing. Our weak verifiable secret sharing protocol is similar to the BGW
verifiable secret sharing protocol. Introducing modifications to the protocol enables sharing of a
polynomial of a higher degree, but in that case — satisfies only weak verifiability. We start with
an overview of the verifiable secret sharing protocol and then describe our weak secret sharing
protocol.

The verifiable secret sharing protocol. In a nutshell, the verifiable secret sharing protocol of
BGW (with the simplifications of [24]) works as follows:

1. Sharing: The dealer wishes to distribute shares of a polynomial D(x,y) of degree t in both
variables. The dealer sends to each party P; the degree-t univariate polynomials f;(z) =
D(z, ;) and g¢;(y) = D(ay,y).

2. Exchange sub-shares: Each party P; sends to party P; the pair (fi(c;),gi(c;)). Note
that if indeed the dealer sent correct shares, then f;(a;) = D(«j,) = gj(cy) and gi(ej) =
D(aj, a5) = fj(ay). If a party does not receive from P; the shares it expects to receive, then
it broadcasts a complaint. The complaint has the form of complaint(i, j, fi(c;), gi(c;)), i.e.,
P; complaints that it receives from P; wrong points, and publishes the two points that it
expected to receive, corresponding to the information it had received from the dealer.

3. Complaint resolution — the dealer: The dealer publicly reveals all the shares of all parties
that broadcast false complaints — i.e., if party P; complaints with points different than those
given in the first round, then the dealer makes the share (f;(x), gi(y)) public.

4. Vote: The parties vote that whatever they saw is consistent. A party is happy with its share
and broadcasts good if: (a) Its share was not publicly revealed. (b) The dealer resolved all
conflicts the party saw in the exchange sub-shares phase, i.e., all its complaints were resolved
by the dealer by publicly opening the other parties’ shares. (c) All shares that the dealer
broadcasts are consistent with its shares. (d) There are no parties (j,k) that complain of
each other, and the dealer did not resolve at least one of those complaints.

If 2t + 1 parties broadcast good then the parties accept the shares. A party that its share was
publicly revealed updates its share to be the publicly revealed one.

Note that if more than 2¢+1 parties broadcast good then more than t+1 honest parties are happy
with their shares. Those shares determine a unique bivariate polynomial of degree-t. Moreover, any
polynomial that is publicly revealed must be consistent with this bivariate polynomial, as agreeing
with the points of ¢ + 1 honest parties uniquely determine a polynomial of degree-t.

Weak secret sharing. Consider this protocol when the dealer shares a polynomial D(z,y) that
is of degree-2t in = and degree-t in y, i.e., D(x,y) = Z?io ;:0 d; jz'y’ for some set of coefficients
{di;}ij. Here, if t + 1 honest parties are happy with their shares and broadcast good, their
polynomials also define a unique polynomial D(z,y) of degree-2t in x and degree-t in y. However,
if there is a complaint and the dealer opens some party’s share, since f;(z) is of degree-2¢ it is not
sufficient that these ¢ + 1 honest parties agree with that polynomial f;(z), and f;(x) might still be
“wrong”. This implies that the honest parties cannot identify whether their shares are compatible
with the shares of the other honest parties (that their shares were publicly revealed), and further
verification is needed, which seems to trigger more rounds of complaints. Guaranteeing all honest
parties obtain consistent shares is a more challenging task.

To keep the protocol constant round, we therefore take a different route and do not require the
dealer to publicly open any of the f;(x) polynomials! Still, it has to publicly open only the g;(y)
polynomials, as those are of degree-t. Each honest party broadcasts good only if the same conditions
as in VSS are met. At the end of this protocol, some honest parties might not hold f;(x) shares
on the polynomial D(x,y). Those parties will not participate in the reconstruction protocol. In
the reconstruction phase, since the corrupted parties might provide incorrect shares and since some
honest parties do not have shares, we cannot guarantee reconstruction of the polynomial D(z,y)
without the help of the dealer. However, we can guarantee that only the polynomial D(z,y) can
be reconstructed, or no polynomial at all.

Concluding the multiplication protocol. Recall that in our protocol, the parties also have
to jointly verify that (a) Eq. 2 holds, and that (b) that D(0,0) = 0. We now elaborate on those
two steps.

To verify that the polynomial D(z,y) satisfies D(z,0) = f&(z) - f*(x) — Ci(=,0), each party P;
simply checks that its own shares satisfy this condition, i.e., whether D(a;,0) = f&(a;) - f2 () —
Ci(a;,0). Note that if this holds for 2¢ 4+ 1 parties, then the two polynomials are identical. Each
party P; checks its own shares, and if the condition does not hold then it broadcasts complaint(j).
With each complaint the dealer has to publicly reveal the shares of P;. Since all those polynomials
were shared using (weak or strong) verifiable secret sharing, the parties can easily verify whether
the shares that the dealer opens are correct or not.

To check that D(0,0) = 0, the parties simply reconstruct the polynomial D(0,y). This is a
polynomial of degree-t and it can be reconstructed (with the help of the dealer, as D is shared using
a weak secret sharing scheme). Moreover, it does not reveal any information on the polynomials

f&(z), f2(x),Ci(z,0): In case of an honest dealer, the adversary already holds ¢ shares on the
polynomial D(0,y) and it always holds that D(0,0) = 0, since the dealer is honest.

2.3 Extensions

Our zero knowledge verification protocol allows the dealer to prove that its shares of a, b, c satisfy
the relation ¢ = ab. The cost of the protocol is proportional to a constant number of VSSs. We show
an extension of the protocol allowing a dealer that its shares of (z1,...,z1), (y1,...,yn) satisfy
(y1,---,ym) = G(z1,...,21), where G is any circuit of multiplication depth 1 (i.e., a degree-2
polynomial). The communication complexity of the protocol is O(L + M) VSSs and not O(|G|)
VSSs (where |G| is the number of multiplication gates in the circuit G). This allows computing
the circuit in a layer-by-layer fashion and not gate-by-gate and leads to sub-linear communication
complexity for circuits where |G| € w(L + M).

2.4 Organization

The rest of the paper is organized as follows. In Section 3 we provide preliminaries and definitions.
In Section 4 we cover our weak verifiable secret sharing, strong verifiable secret sharing and some
extensions. Our multiplication protocol (with a dealer) is provided in Section 5 and its generaliza-
tion to arbitrary gates with multiplicative gate 1 is given in Section 6. In Appendix A well as an
overview of how the dealer is removed and how to compute a general function, following the BGW
approach.

3 Preliminaries

Notations. We denote {1,...,n} by [n]. We denote the number of parties by n and a bound on
the number of corrupted parties by ¢. Two random variables X and Y are identically distributed,
denoted as X = Y, if for every z it holds that Pr[X = 2] = Pr[Y = z]. Two parametrized
distributions D; = {Di(a)}, and Dy = {Dy(a)}, are said to be identically distributed, if for every
a the two random variables (a, D1(a)), (a, D2(a)) are identically distributed.

3.1 Definitions of Perfect Security in the Presence of Malicious Adversaries

We follow the standard, standalone simulation-based security of multiparty computation in the
perfect settings [2,10,27]. Let f : ({0,1}*)" — ({0,1}")™ be an n-party functionality and let 7
be an n-party protocol over ideal (i.e., authenticated and private) point-to-point channels and an
authenticated broadcast channel. Let the adversary, A, be an arbitrary machine with auxiliary
input z, and let I C [n] be the set of corrupted parties controlled by A. We define the real and
ideal executions:

e The real execution: In the real model, the parties run the protocol m where the adversary
A controls the parties in I. The adversary is assumed to be rushing, meaning that in every
round it can see the messages sent by the honest parties to the corrupted parties before it
determines the message sent by the corrupted parties. The adversary cannot see the messages
sent between honest parties on the point-to-point channels. We denote by REAL, 4z 7(¥) the
random variable consisting of the view of the adversary A in the execution (consisting of all
the initial inputs of the corrupted parties, their randomness and all messages they received),
together with the output of all honest parties.

10

e The ideal execution: The ideal model consists of all honest parties, a trusted party and
an ideal adversary SZM, controlling the same set of corrupted parties I. The honest parties
send their inputs to the trusted party. The ideal adversary SZM receives the auxiliary
input z and sees the inputs of the corrupted parties. SZM can substitute any z; with any
z}; of its choice (for the corrupted parties) under the condition that || = |z;|. Once the
trusted party receives (possibly modified) inputs (z,...,z]) from all parties, it computes
(Y1,---yyn) = f(a],...,2)) and sends y; to P;. The output of the ideal execution, denoted

as IDEAL 57 4(2),7(Z) is the output of all honest parties and the output of the ideal adversary
SIM.

Definition 3.1. Let f and w be as above. We say that 7 is t-secure for f if for every adversary
A in the real world there exists an adversary STM with comparable complexity to A in the ideal
model, such that for every I C [n] of cardinality at most t it holds that

{IDEAL; sTM(2),1()], 7 = {REALL 402, 1(D)}, ;

2,&

where T is chosen from ({0,1}")" such that |x1| = ... = |z,].

Corruption-aware functionalities. The functionalities that we consider are corruption-aware,
namely, the functionality receives the set I of corrupted parties. We refer the reader to [2, Section
6.2] for further discussion and the necessity of this modeling when proving security.

Reactive functionalities, composition and hybrid-world. = We also consider more general
functionalities where the computation takes place in stages, where the trusted party can commu-
nicate with the ideal adversary (and sometimes also with the honest parties) in several stages, to
obtain new inputs and send outputs in phases. See [27, Section 7.7.1.3].

The sequential modular composition theorem is an important tool for analyzing the security
of a protocol in a modular way. Assume that 7, is a protocol that securely computes a function
f that uses a subprotocol 7y, which in return securely computes some functionality g. Instead of
showing directly that 7 securely computes f, one can consider a protocol 7rch that does not use the
subprotocol 7, but instead uses a trusted party that ideally computes ¢ (this is called a protocol
for f in the g-hybrid model). Then, by showing that (1) m, securely implements g, and; (2) W?
securely implements f, we obtain that the protocol 7y securely implements f in the plain model.
See [10] for further discussion.

Remark 3.2 (Input assumption). We sometimes present functionalities in which we assume that
the inputs satisfy some guarantee, for instance, that all points of the honest parties lie on the
same degree-t polynomial. We remark that if the input assumption does not hold, then no security
guarantees are obtained. This can be formalized as follows: In case that the condition does not
hold (and the functionality can easily verify that), then it gives all the honest parties’ inputs to the
adversary and let the adversary singlehandedly determine all of the outputs of the honest parties.
Clearly, any protocol can then be simulated. Note, however, that we always invoke the sub-protocols
when the input assumptions are satisfied.

3.2 Robust Secret Sharing

Let F be a finite field of order greater than n, let a1,...,a, be any distinct non-zero elements
from F and denote & = (a1,...,a,). For a polynomial ¢, denote Evalz(q) = (q(a1),...,q(ay)).
The Shamir’s ¢t + 1 out of n sharing scheme [38] consists of two procedure Share and Reconstruct as
follows:

11

e Share(s). The algorithm is given s € F, then it chooses ¢ independent uniformly random
elements from F, denoted ¢y, .. ., ¢, and defines the polynomial ¢(x) = s+ Ele gixt. Finally,
it outputs Evalgz(q) = (¢(a1),...,q(an)). Define s; = q(a;) as the share of party P;.

e Reconstruct(s). For a set J C [n] of cardinality at least ¢ 4+ 1, let § = {s;}ies. Then, the
algorithm reconstructs the secret s.

Correctness requires that every secret can be reconstructed from the shares for every subset of
shares of cardinality ¢t + 1, and secrecy requires that every set of less than ¢ shares is distributed
uniformly in F. We refer to [2] for a formal definition.

Reed Solomon code. Recall that a linear [n,k,d]-code over a field F is a code of length n,
dimension k£ and distance d. That is, each codeword is a sequence of n field elements, there are
in total |F|* different codewords, and the Hamming distance of any two codewords is at least
d. Any possible corrupted codeword ¢ can be corrected to the closest codeword ¢ as long as
d(c,¢) < (d—1)/2, where d(z,y) denote the Hamming distance between the words z,y € F".

In Reed Solomon code, let m = (my, ..., m;) be the message to be encoded, where each m; € F.
The encoding of the message is essentially the evaluation of the degree-t polynomial p,,(z) =
mo + miz + ...+ mux! on some distinct non-zero field elements as, . .., oy,. That is, Encode(m) =
(p(a1),...,p(an)). The distance of this code is n —t. This is because any two distinct polynomials
of degree-t can agree at most ¢ points. We have the following fact:

Fact 3.3. The Reed-Solomon code is a linear [n,t + 1,n — t] code over F. In addition, there exists
an efficient decoding algorithm that corrects up to (n —t—1)/2 errors. That is, for every m € Fi+!
and every v € F" such that d(z,C(m)) < (n —t —1)/2, the decoding algorithm returns m.

For the case of t < n/3 we get that is is possible to efficiently correct up to (3t+1—t—1)/2 =+t
errors. Putting it differently, when sharing of a polynomial of degree-t, if during the reconstruction
t errors were introduced by corrupted parties, it is still possible to (efficiently) recover the correct
value.

3.3 Bivariate Polynomial

We call a bivariate polynomial of degree ¢ in 2 and degree ¢ in y as (g, t)-bivariate polynomial. If
=t then we simply call the polynomial as degree-t bivariate polynomial. Such a polynomial can

be written as follows: .
q
S(z,y) = Z Zai,szy] .
i=0 j=0

Looking ahead, in our protocol we will consider degree-t bivariate polynomials and degree
(2t, t)-bivariate polynomials.

Claim 3.4 (Interpolation). Let t be a nonnegative integer, and let v, ..., cu 1 distinct elements
in F, and let fi(z),..., fix1(x) be t + 1 univariate polynomials of degree at most q. Then, there
exists a unique (q,t) bivariate polynomial S(x,y) such that for every k =1,...,t+ 1:

S(x, ar) = fr(z) .

Proof. We start with the case where k = ¢. Fix some hi(z), ha(z) as above, and fix degree-q
polynomials {f;(z)};cpy and degree-t polynomials {g;(y) }icf for which:

1. filey) = gj(ay) for every 4,5 € [K],

12

2. gi(0) = hi(ci) = ha(as).

We have to show that:

Pr [Dist(h1) = {(i, fi(*), 9i(y)) }ier+1)] = Pr [Dist(ha) = {(i. fi(x), :(¥)) biefe+)]

Note that if the set of polynomials f;(x), g;(y) does not satisfy the above two conditions, then the
probability to get this set of polynomial is 0 in both distributions. Observe also that the support
of the two distributions is the same. Now, by fixing the set {f;(z), g;(y)}%_,, we show that there
exists exactly one bivariate polynomial in the support of Dist(hy). This follows from Claim 3.4
while taking {f;(z)}%_; U hi(z). Let S(x,y) be the unique polynomial that is guaranteed to exist
by the claim. For every j =1,...,¢ it holds that g;(a;) = fj(e;) = S(, o). Moreover, we know
that S(z,0) = hy(z) and since g;(0) = hi(q;) it holds that g;(0) = S(c;,0). We therefore conclude
that g;(y) agrees with the degree-t polynomial S(«a;,y). Since Dist(hi) chooses each bivariate
polynomial in the support with exactly the same probability, we get that the probability that those
{fi(x), gi(y)} were chosen is exactly 1 over the support of Dist(h;). Exactly the same analysis can
be implies for Dist(hs2), and using the fact that the support of the two distribution is the same, we
conclude that the two distributions are identical.

For the case of k < t, one can just add arbitrary polynomials to f;(z),g;(y) (that satisfy the
pairwise checks), and use the law of total probability (see [2, Claim 3.2] for a similar claim). [

Symmetrically, one can interpolate the polynomial S(x,y) from a set of ¢+ 1 polynomials g;(y).
The proof is similar to Claim 3.4.

Claim 3.5 (Interpolation). Let t be a nonnegative integer, and let o, ..., aq41 distinct elements
in F, and let ¢1(y),...,9q+1(y) be ¢ + 1 univariate polynomials of degree at most t each. Then,
there exists a unique (q,t) bivariate polynomial S(x,y) such that for every k=1,...,t+ 1:

S(ak,y) = gr(y) -

Hiding. The following is the “hiding” claim, showing that if a dealer wishes to share some polyno-
mial h(x) of degree-g, it can choose a random (g, t)-polynomial S(z,y) that satisfies S(x,0) = h(z)
and give each party P; the shares S(z,q;),S(a;,y). The adversary cannot learn any information
about h besides {h(a;)}ier, when it corrupts the set I C [n]. We prove the following two claims in
Section B.

Claim 3.6 (Hiding). Let h(x) be an arbitrary univariate polynomial of degree q, and let o, . . ., oy
with k <t be arbitrary distinct non-zero points in F. Consider the following distribution Dist(h):

e Choose a random (g, t)-bivariate polynomial S(x,y) under the constraint that S(z,0) = h(x).
i OUtPUt {(Zv S(l’, ai)? S(aiv y))}ze[k] .

Then, for every two arbitrary degree-q polynomials hy(x), ha(x) for which hy(c;) = ha(ay;) for every
i € [k] it holds that Dist(hy) = Dist(hs).

Claim 3.7 (Hiding II). Same as Claim 3.6, except that it holds that hy(0) = h1(0) = B for some
publicly known 3 € F. The output of the distribution is {(i, S(z, a;), S(i, y)) biepr) U {5(0,v)}-

13

4 Weak Verifiable Secret Sharing and Extensions

In this section we show how to adapt the verifiable secret sharing protocol of [7] to allow weak
secret sharing of a polynomial degree-t. We start with a description of the verifiable secret sharing
protocol and highlight the main differences for getting a weak verifiable secret sharing protocol
(sometimes we may omit the “verifiable” and write only “weak secret sharing”). We formally
define the functionality of weak verifiable secret sharing in Section 4.2 and then strong verifiable
secret sharing in Section 4.4.

As part of the protocol parties vote and publicly announce (over the broadcast channel) whether
they are happy with their shares. Thus, the set of parties that are happy with their shares is known
to all parties. In our formalization of weak secret sharing, this is part of the output of all parties.
Moreover, the shares of the parties that are happy with their shares uniquely define the polynomial.
Thus, only parties that are happy with their shares will take part in the reconstruction. The output
of WSS is a set K of all parties that are happy with their shares, where parties in &k € K also output
their shares (i.e., a pair fi(z), gx(y)), where parties ¢ ¢ K just hold g¢;(y).

We remind that in BGW, after the parties verify the shares and obtain f;(z), gi(y), they just
project the bivariate shares to univariate shares by outputting f;(0). As mentioned, we will maintain
bivariate sharing and the output (f;(z), gi(y))-

4.1 Verifying Shares of a (g, t)-Bivariate Polynomial

Protocol 4.1 (Weak/Strong Verifiable Secret Sharing of a Polynomial).

e Input: The dealer holds a bivariate polynomial S(z,y).
e Common input: The description of a field F and n non-zero distinct elements ay,...,a, €
F.
e The protocol:
1. Sharing — the dealer:
(a) Send to each party P; the shares (fi(z), gi(y)) defined as fi(z) Lt S(x,), gi(y) et
S(ai,).
2. Initial checks — each party P;:
(a) If (1) fi(x) has degree greater than ¢; or (2) g;(y) has degree greater than ¢; or (3)
fi(ai) # gi(a;) then broadcast complaint(i) and proceed to step 5.
(b) Let R = {k | P broadcast complaint(k)}.
3. Exchange subshares — each party P; for ¢« € R:
(a) Send (fi(a;),gi(j)) to P; for each j & R.
(b) Let (u;,v;) be the values received from Pj, for j ¢ R. If no value was received, then
use (L, L). Ifuj # gi(a;) orvj # fi(cy;) then broadcast complaint(i, j, fi(a;), gi(a;)).
(¢) If no party broadcasts complaint(i, j,-,-) and R = (), then:
VSS: Output (fi(x),gi(y)) and halt.
WSS: Output (fi(z),9i(y), [n]) and halt.
4. Resolve complaints — the dealer:
(a) If P; that broadcasted complaint(i) in Step 2a, or broadcasted complaint(i, j, u,v)
with u # S(o, ;) or v # S(a, oj) then
VSS: Broadcast reveal(i, S(x, «;), S(ai,y)).

14

WSS: Broadcast reveal(i, S(ay,y)).
5. Evaluate complaint resolutions — each party F;:
(a) Add to R all indices k for which the dealer broadcasted reveal(k,...). If i € R, then
replace g;(y) with the one provided in the broadcasted in reveal(i, -, -).

VSS: Ifi € R, then rewrite also f;(x).
If i € R then proceed to Step 6.

(b) Verify that the dealer replied to each complaint(k) message from Step 2a with
reveal(k, . ..). If not, proceed to Step 6.

(c) Upon viewing complaint(k, j, u1,v1) and complaint(j, k, ug, v2) broadcast by Py and
P;, respectively, with u; # vy or v; # ug, mark (j,k) as a joint complaint. If the
dealer did not broadcast reveal(k, -) or reveal(j,-), then go to Step 6.

(d) For every j € R verify that f;(a;) = g;(a),

VSS: and that gi(a;) = fj(ou).
If the verification does not hold for some j € R, then go to Step 6.

(e) Broadcast the message good.

6. Output: Let K be the set of of all parties that broadcast good and are not in R. If
|K| < 2t+ 1, then output L. Otherwise,
VSS: Output (fi(x),gi(y)).
WSS: Each party Py for k € K outputs (fi(z),gi(y), K). All other parties
output (gi(y), K).

It is easy to see that in the optimistic case, when there are no cheats, the protocol ends at Step
3¢ and incurs a communication overhead of O(n?) point-to-point messages and no broadcast. In
the pessimistic (worst) case, however, there may be O(n) and O(n?) complaints (broadcasts) in
Steps 2a and 3b, respectively. Then, in step 4, there are O(n) messages of total size O(n?) that
are broadcasted by the dealer (i.e. in order to reveal the polynomials of at most ¢ parties who
placed their complaint). Finally, there are O(n) broadcast of the message good if the secret sharing
is successfully verified. Overall, the pessimistic case incurs a communication overhead of O(n?)
point-to-point messages and O(n?) broadcast messages.

4.2 Weak Verifiable Secret Sharing

In weak verifiable secret sharing, the dealer wishes to distribute shares to all parties, and then allow
reconstruction only if it takes part in the reconstruction. The result of the reconstruction can be
either a unique, well-defined polynomial which was determined in the sharing phase, or L.

Functionality 4.2 (Fyss — Weak Verifiable Secret Sharing Functionality).

The functionality receives a set of indices I C [n] and works as follows:

e If the dealer is honest (1 & I):
1. Receive a polynomial S(z,y) of degree (q,t) from the dealer P;.
2. Send to the ideal adversary the shares {S(z, a;), S(, y) bier-
3. Receive back from the adversary a set I’ C I and define K = ([n]\ I)UI".

e If the dealer is corrupted (1 € I):
1. Receive a polynomial S(z,y) of degree (q,t) from the dealer P;.

15

2. Receive a set K C [n] of cardinality at least 2¢ 4 1.
3. Verify that S(z,y) is of degree (q,t). If verification fails, overwrite K = L.

e Output: Send K to all parties. Moreover, for every k € K, send S(z, ay), S(ak,y) to Pg.
For every j ¢ K, send P; the polynomial S(oy,y).

Theorem 4.3. Let t < n/3. Then, Protocol 4.1 when using the WSS branch is t-secure for the
fwss functionality (Functionality 4.2) in the presence of a static malicious adversary. The protocol
incurs O(n?) point-to-point messages in the optimistic case and additional O(n?) broadcast messages
in the pessimistic case.

Proof. Let A be an adversary in the real world. We have two cases, depending on whether the
dealer is corrupted or not. We note that the protocol is deterministic, as well as the functionality.

Case 1: The Dealer is Honest. In this case in the ideal execution, the honest dealer always
holds a polynomial S(z,y) that is of degree (q,t). We describe the simulator SZM.

The simulator SZM.

1. SIM invokes the adversary A on the auziliary input z.
2. SIM receives from the trusted party the polynomials of the corrupted parties, that is, fi(x), gi(y),
and the simulates the protocol execution for A:
(a) Sharing: Simulate sending the shares fi(x), gi(y) to each P;, i € I, as coming from the
dealer P;.
(b) Initial checks: Initialize R = 0. An honest party never broadcasts complaint(z). If the
adversary broadcast complaint(i), then add i to R.
(¢) Exchange subshares: send to the adversary A the shares (gi(a;), fi(cy)) from each

honest party Pj, for each corrupted party i € I\ R.
Receive from the adversary A the points (u; j,v; ;) that are supposed to be sent from P;

to Pj, fori e I\R and j & I.

(d) Broadcast complaints: The simulator checks the points (u; j,v; ;) that the adversary
sent in the previous step. If wi; # fi(a;) or vi; # gi(oy) then SIM simulates a
broadcast of complaint(j,1, gi(c), fi(ej)) as coming from party P;.

Moreover, receive complaint(-, -, -,) broadcast messages from the adversary.
If no complaint message was broadcasted by any party, then send I to the trusted party

(which results in sending K = [n] to all parties by the functionality), and halt.

(e) Resolve complaints — the dealer: The dealer never reveals the shares of honest
parties. For every complaint(i, j,u,v) message received from the adversary, check that
u = fi(aj) and v = gi(ey). If not, then broadcast reveal(i, g;(y)) as coming from the
dealer, and add i € R. Moreover, if there was a complaint(i) in the initial checks step
(Step 2a), then broadcast reveal(i, g;(y)).

(f) Evaluate complaint resolutions: Simulate all honest parties broadcast good. Let I’
be the set of corrupted parties that broadcast good.

3. The simulator sends I' \ R to the trusted party.

It is easy to see by inspection of the protocol, and by inspection of the simulation, and since
the two are deterministic, that the view of the adversary in the real and ideal execution is equal.

16

Our next goal is to show that the output of the honest parties is the same in the real and ideal
executions.

In the optimistic case, where no reveal(i) messages are broadcasted by the dealer, and there are
no complaint messages by any party, then in the real execution the output of all honest parties is
[n] and likewise, in the simulation the simulator sends I to the trusted party, which then sends [n]
to all parties.

We now consider the case where there are complaints and there is a vote. An honest party P;
broadcasts good if all the following conditions are met:

1. The polynomial f;(z) has degree at most ¢, gj(y) has degree at most t and f;(«;) = g;(a;).
An honest party P; therefore never broadcasts complaint(j).

While resolving complaints, the dealer never broadcasts reveal(y).

Each complaint(k) message is replied by the dealer with reveal(k,-) message.

All reveal(i, gi(y)) messages broadcasted by the dealer satisfy f;(o;) = gi(a;).

BRI

The dealer resolves all joint complaints (see Step 5¢).

It is easy to see that all those conditions are met in the case of an honest dealer. In par-
ticular: (1) is true by the assumption on the inputs; (2) When an honest party P; broadcasts
complaint(j, 4, fj(a;), gj(a;)) in Step 3b according to the polynomials f;(-), g;(-) it received from
the dealer; As a result, according to the specification of the protocol, the dealer never broadcasts
reveal(j); (3) True by inspection of the code of the dealer; (4) When the dealer broadcasts a poly-
nomial it always agrees with f;(z) initially given to Pj; (5) By the dealer’s code specifications, it
resolves all joint complaints.

Therefore, in the real execution all honest parties broadcast good, and some additional parties
I’ C I that the adversary controls might also broadcast good. Then, all honest parties exclude
from this set the parties in R, and output it. Since the view of the adversary is equal in the ideal
execution, the same parties in the simulated ideal execution broadcast good. Let I’ C I be the
set of corrupted parties that broadcast good. The simulator sends I’ \ R to the trusted party,
which then defines K to be ([n]\ I)U (I'\ R), i.e., all honest parties and all corrupted parties that
broadcast good, excluding those that are in R. Thus, the outputs of the honest parties in the real
and ideal are identical.

Case 2: The dealer is corrupted. In this case, the honest parties have no input to the protocol,
and the protocol is deterministic. The simulator can therefore perfectly simulate the protocol
execution, and the view of the adversary in the real and ideal execution is equal. Nevertheless, we
have to show what input the dealer provides to the trusted party, and show that output of the
honest parties in the real and ideal executions is equal. We have:

The simulator SZM.

1. SIM invokes the adversary A on the auziliary input z.
2. SIM simulates the execution of the Protocol 4.1 while simulating the honest parties (which
have no inputs).
3. Let j & I be the index of an arbitrary honest party. From its output in the simulated execution,
let K C [nJU{L} be the set of parties that broadcast good in the simulated execution. Then,
(a) Accept: If K # {1} and |K| > 2t+1 then let G C K \ I be the set of all honest parties
that broadcast good, and let Gy C G be the set of the lexicographically first t+1 elements
in G. Let S(z,y) be the unique® bivariate polynomial in degree-q in x and degree-t in y

2The analysis will shortly show that this polynomial is unique.

17

that satisfies fij(x) = S(x, o) and g;(y) = S(ay,y) for all j € Go. The simulator sends
(S, K) to the trusted party.

(b) Reject: If K = {1}, then send S(z,y) = x?*1 to the trusted party (causing to all parties
to output L in the ideal execution).

As the simulator just runs the honest parties as in the real execution, the view of the adversary
is in the real and ideal execution is the same. We now show that the output of the honest parties
in the ideal execution, as received by the trusted party, is the same as in the real execution. We
consider two cases:

Case I — there exists an honest party that outputs | in the real execution. In that
case, we claim that all honest parties output L in the real execution. An honest party outputs L
only if less than 2t + 1 parties broadcast good. Since the vote messages are broadcast, then all
honest parties output L. Since the real execution and the simulated executions are identical, also
in the ideal execution all simulated honest parties will output L. In that case, the simulator sends
S(z,y) = 22T to the trusted party, and the functionality Fyss in return rejects S and gives L to
all honest parties.

Case II — no honest party outputs | in the real execution. As a result, we have that
at least 2t + 1 parties broadcast good, and therefore there are at least ¢ + 1 honest parties that
broadcast good. Similarly to the case of an honest dealer, an honest party P; broadcasts good if
and only if all of the following conditions are met:

Its share fj(x) has degree at most ¢, gj(y) has degree at most ¢t and f;(a;) = gj(¢;).

All complaint(i) messages were resolved by the dealer, which broadcasts reveal(i, g;(y)),

The dealer resolved all joint complaints (see Step 5¢),

All messages reveal(i, g;(y)) that the dealer broadcasts, it holds that j # i, and that g;(c;) =
filevi).

Now, consider the set G of the first ¢ + 1 honest parties that broadcast good, and let G be the
set of all honest parties broadcast good. For the set of polynomials fx(x), gi(y) with k& € G, we can
reconstruct the polynomial S(z,y) of degree-¢ in x and degree-t in y that satisfies fi(x) = S(z, ag)
and gr(y) = S(ag,y) for every k € G, see Claim 3.4.

We claim that for all other honest parties H e [n] \ (I UGy), the polynomial g;(y), either the
one that was used by P; as an input to the interaction (Steps 2 and 3), or was revealed by the
dealer (Step 4), satisfies g;(y) = S(a;,y). We separate the cases where g;(y) was publicly revealed
or not:

o=

1. If g;(y) was publicly revealed, then it must be of degree at most ¢, and for all £ € Gy it holds
that fr(o;) = g;(ax), as follows from Step 5d. In particular, if this does not hold, then the
honest party P, would have not broadcast good.

2. If g;(y) was not publicly revealed, then it must be that g;(ay) = fi(a;) for all k € Gy as
well. Otherwise, since both P; and P} are honest, during the exchange subshares phase both
parties would have broadcast complaint(j, &, . . .), complaint(k, 7, .. .), and the dealer then must
broadcast either reveal(j) or reveal(k). In the former case, the polynomial g;(y) is publicly
revealed. In the latter case, P, would have not broadcast good. In both cases we get a
contradiction, and conclude that g;(oy) = fr(a;) for all k € Gy.

18

As a result, since g;(y) is of degree-t, and since |Go| = t + 1, it holds that the two polynomials
gj(y) and S(aj,y) agree on t + 1 points. Since the two polynomials are of degree-t, it holds
that g;(y) = S(aj,y). Moreover, we now claim that for all other honest parties j € G\ Gy
that broadcast good, it holds that f;(z) = S(z, ;). Since P; broadcast good it must hold that
fj(ow) = gr(a;) for all honest parties k € [n] \ I, where g (y) might be the original input of Py or
was revealed by the dealer later in the protocol. This follows from a similar reasoning as above,
and from the fact that all those parties broadcast good. As those define 2t + 1 points, it holds that
filar) = gr(a;) = S(ag, o) for every k € [n] \ I, and thus f;(z) = S(z, a;).

In the ideal execution, the simulator first reconstructs S(x,y) using the parties in G, and then
send S to the trusted party together with K. The trusted party then checks that S is of the degree
at most (q,t). Note that when the simulator sends a polynomial S(z,y) and a set K to the trusted
party, then:

1. S(z,y) is of degree at most (g,t) from the way the simulator reconstructed S;
2. We already saw that for every j € K \ I it holds that S(z, ;) = fi(x) and S(a,y) = gi(y).

The trusted party then gives K to all honest parties, and each honest parties k& € K receives
S(z, o), S(ag,y), and all honest parties j ¢ K outputs S(ag,y). This is exactly the same outputs
as the simulated honest parties in the simulated execution, which are identical to the output of the
honest parties in the real execution.]

4.3 Evaluation with the Help of the Dealer

We show how the parties can recover the secret polynomial using the help of the dealer. Towards
that end, we show how the parties can evaluate polynomial gg(y) for every § € E, where E is a
set of elements in F. By taking F to be of cardinality ¢ + 1, it is possible to completely recover S
(see Claim 3.5). When we are only interested in the constant term of S, we take E = {0} to obtain
g(y) = S(0,y) and then output ¢g(0). Looking ahead, in Protocol 5.2 in the optimistic case we will
use just £ = {0}. In the pessimistic case, F will contain another indices of parties that raised a
complaint against the dealer.

The polynomials can be reconstructed only with the help of the dealer. This is what makes
this sharing “weak”. When ¢ < ¢, then we can achieve (strong) verifiable secret sharing, in which
reconstruction is guaranteed even if the dealer does not participate in the reconstruction phase, as
we show in Section 4.4.

Functionality 4.4 (Fygya: Evaluation of a polynomial in Weak VSS).

The functionality receives a set of indices I C [n] and works as follows:

1. The functionality receives the sets (K,) from all honest parties, where E is a set of elements
in F. Moreover, for every k € ([n]\)NK it receives the polynomial fi(x) from P;. The dealer
holds a polynomial S’ of degree (¢,t). When the dealer is honest (1 ¢ I), it is guaranteed
that the indices of all honest parties are included in K (otherwise, see Remark 3.2).

2. The functionality reconstructs the unique (g,t) bivariate polynomial S that agrees with the
shares of the honest parties. When the dealer is honest (1 € I) it always holds that S' = S.
Note that if the shares do not define a unique polynomial, then no security is guaranteed.?

3In that case, we simply give the adversary all inputs of all honest parties which makes any protocol vacuously
secure as anything can be easily simulated, see Remark 3.2.

19

3. If the dealer is honest (1 ¢ I) then send S(x, o;), S(cv,y) for every i € I together with the set
E to the ideal adversary. Moreover, send the set of polynomials {S(8,y)}scr to all parties
(and the ideal adversary).

4. If the dealer is corrupted (1 € I) then:

(a) Send the polynomial S(x,y) to the ideal adversary together with (K, {S(5,v)}scE)-
(b) Receive either ok or L from the ideal adversary.
(c) If ok, then send {S(8,y)}seck to all parties, and otherwise, send L to all parties.

Protocol 4.5 (Evaluation of a polynomial in Weak VSS).

e Input: All parties hold a set K C [n] and a set E of elements in F. Each party P, with
k € K holds fi(z). The dealer holds also a polynomial S(x,y).
e Input guarantees: When the dealer is honest, the indices of all honest parties are included
in K.
e The protocol:
1. The dealer broadcasts {S(8,v)}scE-
2. Each party P, with k& € K checks that the broadcasted polynomials are of degree at
most ¢, and that S(5, ar) = fr(B) for every 8 € E. If so, it broadcast good.
3. Output: If 2¢ + 1 parties in K broadcast good, then output the message broadcasted
by the dealer. Otherwise, output L.

We will consider an alternative protocol in the optimistic case in which K = [n], which does
not use broadcast. See Remark 4.7 below.

Theorem 4.6. Lett < n/3. Protocol 4.5 is t-secure for the F\weyal functionality (Functionality 4.4)
in the presence of a static malicious adversary. The protocol incurs O(n - |E|) broadcast field
elements.

Proof. The dealer broadcasts |E| polynomials, each of degree t € O(n). Each party broadcasts (or
not) good, and therefore there are O(n|E|+ n) broadcasts.
We again discuss separately the case of an honest dealer and a corrupted dealer.

The case of an honest dealer. In the case of an honest dealer, by the input guarantees, we
have that K includes all indices of all honest parties. We describe the simulator STM:

1. SZM invokes A on the auxiliary input z.

2. SITM receives from the trusted party the polynomials S(z,), S(a;,y) for every i € I, the
set E and all polynomials S(3,y) for every g € E.

3. SIM simulates the dealer broadcasting the set {S(5,v)}ger and all honest parties broad-
casting good.

The view of the adversary is deterministic, and it is easy to see that the view of the adversary
is identical in the real and ideal executions. Moreover, as the adversary has no input to the
functionality in the ideal world, the output of the honest parties in the ideal execution is always
{S(B,y)}sek- In the real world, from the input assumption all the shares of the honest parties
lie on the polynomial S(z,y), and all honest parties are part of the set K. Therefore, all honest
parties always broadcast good, and the output of all honest parties is {S(8,v)}scE-

20

The case of a corrupted dealer.

1. SIM invokes A on the auziliary input z.

2. SIM receives from the trusted party the polynomial S(z,y), and the sets K, E, and simulates
an ezxecution of the protocol where the input of each honest party for j € K is S(x,a;), K, E
and for every j & K the input is K, E.

3. If the output of the simulated honest parties is 1, then send L to the trusted party. Otherwise,
send ok to the trusted party.

From our assumption over the inputs, all honest parties hold the same sets K, EF and all honest
parties in K hold shares of a (g, t)-bivariate polynomial S(x,y). The ideal functionality first recon-
structs this polynomial and then sends it to the ideal adversary. Thus, the inputs of the simulated
honest parties in the ideal execution are identical to the inputs of the honest parties in the real
execution, and thus the view of the adversary is identical in both executions. We now show that
the outputs of the honest parties in the real and ideal executions are identical as well.

Clearly, since all messages in the protocol are broadcasted, the view of all honest parties is the
same and therefore the output of all honest parties is the same. There are two cases to consider:

Case I: If the output of the honest parties in the real execution is 1, then the output of the
simulated honest parties in the ideal execution is L as well. The simulator sends | to the trusted
party, and the output of the honest parties in the ideal execution is L.

Case II: Otherwise, there must be at least 2t + 1 parties in K that broadcast good in Step 2. Let
K’ be the set of honest parties in K that broadcast good. It must hold that at least |K'| > ¢ + 1.
Moreover, from our assumption on the input, there is a unique (g, ¢)-bivariate polynomial S(z,y)
that is defined by the shares of the honest parties in K (and also by the parties in K’). Each
polynomial gg(y) for B € E broadcasted by the dealer is of degree-t and satisfies gg(c;) = f;(B)
for every j € K’. This completely determines the polynomial gg(y), and thus it must hold that
S(8,y) = g95(v). O

Remark 4.7 (On the optimistic case of Protocol 4.5.). In the optimistic case, we can implement
Protocol 4.5 without any broadcast messages and with O(n?) field elements over the point-to-point
channels. Specifically, in the optimistic case of the entire protocol (Protocol 5.2) we have that
K = [n] and E = {0}. Each party Py can send on the point-to-point channel to every other party
P; the message f;(0). Then, each party P; uses the Reed Solomon decoding procedure to obtain the
unique degree-t polynomial gz(y) satisfying go(a) = i, where i is the point received from party
Py;. Since there are 2t + 1 honest parties in K, and since S(0,y) is guaranteed to be a polynomial
of degree-t, reconstruction works.

4.4 Strong Verifiable Secret Sharing

We provide the functionality for strong verifiable secret sharing, and prove its security. The protocol
is Protocol 4.1 when using the VSS branch and with ¢ = ¢t. The main difference from [2] is that
the output is the two univariate polynomials and not the projection to univariate sharing, and we
therefore provide a proof for completeness.

Functionality 4.8 (Strong Verifiable Secret Sharing).

e Input: Receive S(x,y) from the dealer P;.

21

e Output: If S(x,y) is of degree-t in both variables, then send (S(z,), S(a4,y)) to each party
P;. Otherwise, send L.

Theorem 4.9. Let t < n/3. Then, Protocol 4.1 when using the VSS branch and with ¢ =t is t-
secure for the fyss functionality (Functionality 4.8) in the presence of a static malicious adversary.
The protocol incurs O(n?) field elements in the point-to-point channels in the optimistic case and
additional O(n?) field elements on the broadcast channel in the pessimistic case.

Proof. We again consider the case of a corrupted dealer and an honest dealer.

The dealer is honest. In this case, we follow the case of an honest dealer in Theorem 4.3, while
just making the necessary changes in the simulator as the difference between WSS and VSS in
the protocol. Moreover, the simulator does not send I’ C R to the trusted party at Step 3 in the
simulation, and instead sends nothing. Clearly, the views in the real and ideal executions are equal,
and the outputs of the honest parties in the real are the polynomials received by the honest dealer,
exactly as in the ideal.

The dealer is corrupted. We follow the same simulation strategy as in Theorem 4.3, but with
the following Step 3:

Step 3: Let (fj(x),gj(y)) be the output of some arbitrary honest party P;

1. Accept: If at least 2t + 1 parties broadcast good in the simulated execution, the let
Go be the set of the first t + 1 honest parties. Let S(x,y) be the unique bivariate
polynomial in degree-t that satisfies fj(x) = S(z,a;) for all j € Go. The simulator
sends S to the trusted party.

2. Reject: Same as in Theorem 4.3.

Showing the outputs of ideal and real are identical also follows from Theorem 4.3.

In the simulation, we defined a polynomial S(z,y) according to the f;(x) shares in the output
of the simulated honest parties for some set Gy. That is, for every j € Gy it holds that f;(z) =
S(x, o), by the definition of the polynomial S(z,y). We claim that also for every j € G it holds
that S(aj,y) = gj(y). Clearly, since all parties in Gy broadcast good, we have for every pair j, k € G
that gj(ax) = fe(a;) = S(ow, @j), as otherwise those parties would have complain on each other
and the dealer must have opened one of them. This implies that g;(y) equals to S(a;,y) on t +1
points, and since those are two polynomials of degree-t, it must hold that g;(y) = S(¢;,).

Now, we claim that for all other honest parties H def [n]\ (1 UGy), the polynomials f;(x), g;(y)
outputted by the simulated honest parties satisfy f;(x) = S(z, ;) and g;(y) = S(«;j,y). Clearly,
gj(y) holds from a similar reasoning as in Theorem 4.3, where for f;(x) we can apply the same
argument in a symmetric way: If fj(x) was publicly revealed then it must agree with the gj(y) for
k € Go, which determines the polynomial, that is, f;(z) = S(x, c;j) since the two polynomials agree
on ¢t + 1 points. If f;(x) was not publicly revealed, then it also agree with ¢ 4+ 1 points as part of
the pairwise checks, again guaranteeing that f;(z) = S(x, o).

In the real execution, the honest parties just output f;(x), ¢;(y) and we just saw that all lie on
the same polynomial S(z,y). In the ideal execution, the simulator reconstructs S(z,y), sends it
to the trusted party, and each party P; receives S(z,;), S(cy,y). We just showed that for every
J & I it holds that S(z,a;) = fj(z) and S(«j,y) = g;(y). O

22

4.4.1 Evaluation

Once a polynomial was shared using strong VSS, there is no need for the help of the dealer to
reconstruct the polynomial. Moreover, the parties can also evaluate the polynomial on any value
B € F to obtain S(x, 8), S(5,y) without the help of the dealer (each party can provide f;(5),g;(3)
and the parties can use Reed-Solomon decoding to obtain S(z,), S(5,y)).

Nevertheless, for our purposes, whenever we need to evaluate a polynomial that was shared
using VSS, we can use the weaker functionality in which the evaluation uses the help of the dealer.
Therefore, we use Functionality 4.4 to evaluate points on the polynomial with the help of the dealer.
Note that in this case we have that ¢ = t. Moreover, the parties use K = [n]. Note that K might
now not be the same group of parties that broadcast good when the polynomial was shared, yet,
since all honest parties hold shares (f;(z), gj(y)) it is safe to use K = [n]. Thus, to evaluate points
E on a polynomial that was shared with VSS can be implemented using O(n|E|) field messages
broadcasted, as in Theorem 4.6.

4.5 Extending Univariate Sharing to Bivariate Sharing with a Dealer

Sometimes each party P; holds a share h(«;) of some univariate degree-t polynomial h(z). The
following functionality allows a dealer, who holds h, to distribute shares of a bivariate polynomial
S(z,y) satisfying S(z,0) = h(z). The protocol is very simple, demonstrating the advantage for

working with bivariate sharing. This is the functionality Feyteng from [3]:

Functionality 4.10 (Fgytend: Extending Univariate Sharing to Bivariate Sharing).

The functionality receives the set of corrupted parties I C [n] and works as follows:

e Input: The functionality receives the shares of the honest parties {u;};¢r. Let h(z) be the
unique degree-t polynomial determined by the points (o, u;) for every j ¢ I. If no such
polynomial exists then no security is guaranteed (see Remark 3.2).

e If the dealer is corrupted then send h(z) to the ideal adversary.

e Receive S(x,y) from the dealer. Check that S(x,y) is of degree-t and that S(z,0) = h(x).

e If both conditions hold, then send to S(z,;), S(a;,y) to P; for every i. Otherwise, send L
to everyone.

Protocol 4.11 (Implementing Fgytend in the Fy gg-hybrid model).

e Input: Each party holds u;. The dealer holds S(z,y) and h(x).
e The protocol:

1. The dealer uses Fygg to distribute S(z,y).

2. Each party P; receives (fi(z),gi(y)) & (S(x,), S(ay,y)). If instead L was received,

then output L and halt.
3. Each party P; verifies that g;(0) = ;. If not, it broadcast complaint(z).
4. Output: If there are more than t complaints, then output L. Otherwise, output

(fi(z),9:(v))-

23

The communication cost of the protocol is the same as Protocol 4.1 for VSS. Note that in the
optimistic case there are no complaints, and thus there are no additional broadcast messages.

Theorem 4.12. Let t < n/3. Then, Protocol 4.11 is t-secure for the Fexend functionality (Func-
tionality 4.10) for in the presence of a static malicious adversary, in the Fygs-hybrid model. The
protocol incurs O(n?) point-to-point messages in the optimistic case and additional O(n?) broadcast
messages in the pessimistic case.

Proof. We separate the cases of an honest dealer and a corrupted dealer.

The case of an honest dealer. In this case, it always holds that S(z,0) = h(z). Therefore,
in the ideal execution each honest party outputs S(z, «;), S(aj,y) for every j ¢ I. The simulator
receives all points (S(z,a;), S(a;,y)) from the trusted party and sends them to the adversary as
being received from the Fygs functionality. Moreover, no honest party broadcast complaint(-).
Clearly, the view of the adversary is identical in the real and ideal executions. Moreover, in the
ideal executions, each honest party P; for j ¢ I always outputs (f;(z),g;(y)), as received from
the the trusted party. In the real execution, no honest party complains, and the adversary can
broadcast at most ¢t complaints. In that case, the honest parties accept the shares of the dealer,
and the outputs are identical to the ideal.

The case of a corrupted dealer. The simulator receives h(x) from the trusted party. It then
receives the polynomial S(z,y) that the adversary sends to the Fy gg functionality. If S(x,y) is not
of degree-t, then it just replies with L and sends L to the trusted party. If S(x,y) is of degree-t,
then for every j ¢ I it checks that S(c;,0) = h(«a;) (which is defined to be also g;(0)), and if not, it
simulates P; broadcasting complaint(j). It also listens to the complaints coming from the corrupted
parties. If there were more than ¢ broadcasts, then it sends | to the trusted party, and otherwise,
it sends S(x,y).

Clearly, the view of the adversary is identical between the real and ideal. To show that the
outputs of the honest parties is the same between the two executions, we only have to show why if
there are less than ¢ complaints in the simulated execution (i.e., when the simulated honest parties
output f;(x),g;(y)) then it holds that S(x,0) = h(x) and thus the trusted party will deliver to each
honest party the polynomials S(x,a;), S(ej,y). Clearly, if less than ¢ parties broadcast complaint,
then for ¢ + 1 honest parties it holds that u; = g;(0). Since g;(y) was obtained from Fy gg, and
from our input assumption that all u;’s lie on a polynomial of degree-t, the two degree-t univariate
polynomials S(z,0) and h(z) agree on t + 1 points and therefore must be identical. O

5 Multiplication with a Constant Number of VSSs and WSSs

We now turn to the multiplication protocol. The multiplication protocol is reduced to multiplication
with a dealer, i.e., when one dealer holds two univariate polynomials f%(z), f®(z), each party holds
a share on those polynomials, and the dealer wishes to distribute a polynomial C(z,y) of degree-t
in both variables in which C(0,0) = f%(0) - f°(0). We refer the reader to Appendix A to see how
this functionality suffices to compute any multiplication gate (i.e., when there is no dealer). In
Section 5.1 we show the functionality of this building block, in Section 5.2 we show the protocol
that realizes it.

24

5.1 Functionality — Multiplication with a Dealer

Functionality 5.1 (Functionality F{,ngét for sharing a product of shares).

Full veceives a set of indices I C [n] and works as follows:

1. Receive a pair of points (uj,v;) € F? from P;.

2. Compute the unique degree-t univariate polynomials f%(x) and f°(x) satisfying f®(a;) = u;
and f(a;) = v; for every j ¢ I. (if no such polynomials f@ or f° exist, then no security is
guaranteed, see Remark 3.2).

3. If the dealer P; is honest (1 ¢ I), then:

(a) choose a random degree-t bivariate polynomial C(z,y) under the constraint that C'(0,0) =
F4(0) - f*(0).

(b) Output for honest: send C(z,y) to Pi, and C(z,), C(aj,y) to Pj for every j ¢ I.

(c) Output for adversary: send f(cy), f*(a;), C(x,;),C(ay,y) to the (ideal) adversary, for
every i € I.

4. If the dealer P is corrupted (1 € I), then:

(a) Send f(z), f°(x) to the (ideal) adversary.

(b) Receive a bivariate polynomial C' as input from the (ideal) adversary.

(c) If either deg(C) >t or C(0,0) # f2(0)- f°(0), then reset C(z,y) = £(0) - °(0); that is,
C(z,y) is a constant polynomial that equals f®(0) - f°(0) everywhere.

(d) Output for honest: send C(z,c;),C(ay,y) to Pj, for every j ¢ I. (There is no more
output for the adversary in this case.)

5.2 The Protocol

As mentioned in the technical overview, in our protocol the dealer distributes C'(x, y) using verifiable
secret sharing, and then also distributes a random (2t, t)-polynomial D(z,y) under the constraint
that D(z,0) = f%=x) - f’(z) — C(x,0) and that D(0,0) = 0 by reconstructing the univariate
polynomial D(0,y).

To verify that D(x,y) indeed satisfies this constraint, each party P; verifies that D(«;,0) =
() - f(e;) — C(a, 0) using the shares it received from Pj. If the verification fails, it broadcasts
a complaint and all parties reconstruct the share of P;. Since all polynomials are shared, it is possible
to see whether the complaint is justified. If the complaint is justified, then the dealer is rejected and
the parties reconstruct its polynomials. Moreover, if for all honest parties the verification holds,
then it must be that the two degree-2¢ polynomials, D(x,0) and f%(z) - f(x) — C(z,0) are equal,
as they agree on 2t + 1 points.

Protocol 5.2 (Computing F"}lgét in the (Fyvss, Fwss, Fextends FWeval)-hybrid model).

e Input:
1. The dealer P; holds two degree-t polynomials f(z), f°(z).
2. Each party P; holds two points (u;, v;) = (f*(w), f2()).

e Common input: A field F and distinct non-zero elements ay,...,a, € F.

25

e The protocol:

1.

Sharing phase:

(a) Py chooses a degree-t bivariate polynomial C'(z, y) under the constraint that C'(0,0) =
£2(0) - £°(0).

(b) P; chooses a random degree (2t,t)-bivariate polynomial D(x,y) under the constraint
that D(x,0) = f(z) - f*(x) — C(z,0).

(c) Invoke Fygs to share C(z,y), and let (ff(x), g5 (y)) be the output of P;.

(d) Invoke Fyygs to share D(z,y). Let K C [n] be the output of Fyysg, such that each
Py, for k € K also receives (fd(z), g(y)), and each party P; for j ¢ K receives g?(y).

(e) If L was received in any of the above, then proceed to Step 5b.

2. Verifying that D(zx,0) = f%(zx) - f°(x) — C(z,0):

3.

4.

D.

(a) Each party P; verifies that g¢(0) = u; - v; — g¢(0). If no, broadcast complaint(i).

(b) If no party broadcasts a complaint, then proceed to Step 4.

Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E = {«; }ier.

(b) Py chooses two random degree-t bivariate polynomials, A, B under the constraint
that A(x,0) = f%(z) and B(z,0) = f°(x). The parties run the Fguend functional-
ity twice, where each party P; inputs u; and the dealer inputs A(x,y) in the first
execution, and each party P; inputs v; and the dealer inputs B(z,y) in the second
execution.

(c) The parties call to Fiygyal Where each party P; inputs (f*(z),¢¢(y), E,[n]). Let
(fi(x),95(y)) be the result for every j € R. Likewise, reconstruct (ff(x),g?(y)),
(f5(%),95(y)). If Fweval returned L in any one of the invocations, then proceed to
Step 5b.

(d) The parties call to Fyygyal where all parties input K, E' and each party Py for k € K
inputs also (fd(z),g%(y)). The output of Fygyal is g&(y) for every i € R. If Fwgyal
returned L, then proceed to Step 5b.

(e) For every j ¢ K, all parties verify that g}j(O) = ¢7(0) ~g§?(0) — g7(0). If not, then
proceed to Step 5b.

Verifying that D(0,0) = O:

(a) The parties call to F\ygyal where all parties input K, {0} and each party Py for k € K
inputs also (fd(z), g¢(y)). The output of Fyeval is gd(y) = D(0,y) to all parties. If
Fweval returned L, then proceed to Step 5b.

(b) Verify that gg(0) = 0. If not, proceed to Step 5b.

Finalization:

(a) Accept: If the dealer was not rejected, then each party P; outputs (ff(z), g5(y)).

(b) Reject: If the dealer is rejected, then each party P; sends to Pj its points u;, v;. The
parties reconstruct the polynomials f%(z), f°(x) using Reed-Solomon decoding, and
define their output shares f¢(z) = g¢(y) = f(0) - f°(0).

The communication cost of the entire sharing phase (Step 1) is a constant number of invocations

of VSS/WSS, since it calls to Fygg for C and Fyygg for D. Thus, it completes with communication
overhead of O(n?) over the point-to-point channels in the optimistic case and additional overhead
of O(n?) over the broadcast channel in the pessimistic case.

In Step 2, the optimistic case we have no complaints, no complaint resolution is required,

therefore, there is no communication cost. On the other hand, the size of E may be O(n) in the

26

worst case, which leads to O(n - |E|) = O(n?) broadcasted field elements.

Finally, in Step 4 there is a reconstruction of D(0,y). In the optimistic case, this can be done
using O(n?) words over the point-to-point channels and no broadcast (see Remark 4.5). In the
pessimistic case, this requires a broadcast of O(n) field elements.

Overall, the optimistic case incurs a communication overhead of O(n?) over the point-to-point
channels, and the pessimistic case incurs an additional communication overhead of O(n?) over the
broadcast channel.

Theorem 5.3. Let t < n/3. Then, Protocol 5.2 is t-secure for the F m“” functionality in the
presence of a static malicious adversary, in the (FVSS,FWSS,ngtend,FWEva|) hybrid model. The
optimistic case incurs O(n?) point-to-point field elements, and the pessimistic case incurs additional
O(n?) broadcast messages of field elements.

Proof. We again consider separately the case when the dealer is honest and when the dealer is
corrupted.

Case 1 — the dealer is honest. We now describe the simulator STM:

1. SZM invokes A on an auxiliary input z.
2. ST M receives from the trusted party all points f*(c), f2(;) and the polynomials C(z, o;), C(as, y),
for every i € I.
3. SIM simulates the view of the adversary A in the protocol:
(a) It simulates the parties invoking Fygs with P; as a dealer where the output of each
corrupted P; is C(x, o), C(ou, y).
(b) The simulator fixes a univariate polynomial d(x) of degree-2t arbitrarily, such that for
every i € I it holds that d(o;) = f*() - f(cs) — C(e,0) and d(0) =0
(¢) The simulator chooses a random (2t, t)-bivariate polynomial D(z,y) under the constraint
that D(z,0) = d(z). Then, it gives to each party P; the shares D(z,«;), D(cy,y) as
coming from the Fyygs functionality. It receives back aset I' C I, defines K = ([n]\I)UI’
and sends K to the adversary.
(d) An honest party never complains. If the adversary complains in the name of some cor-
rupted party P;, then let R be the set of all complaining parties and define F accordingly.
i. SZM chooses a random polynomial A(z,y) satisfying A(a;,0) = f%(ay) for every
i € I, and a random polynomial B(z,y) satisfying B(a;,0) = f°(oy) for every i € I.
ii. It simulates the parties invoking the Fgxend functionality twice, where the out-
put of each corrupted party P; is A(z,«q;), A(ey,y) in the first execution, and
B(x,«;), B(ay,y) in the second execution.
iii. It simulates the reconstruction of A(z, o), A(ay,y), B(z,«;), B(wi,y) and C(x, o),
C(ay,y) for every i € R as coming from Fygya.
iv. Simulate the reconstruction of D(«;,y) for every i € R as coming from Fiygyal.
(e) Simulate the reconstruction of D(0,y) as an output of Fiyygya and send it to the adversary.

We now show that the joint distribution of the view of the adversary in the ideal execution and
the output of the honest parties is identically distributed to the view of the adversary in the real
execution and the output of the honest parties in the real execution. First, we show that the outputs
are distributed identically. Then, we show that views are identically distributed conditioned on the
outputs.

The output of the honest parties in the ideal execution is shares on a degree-t bivariate poly-
nomial C. The polynomial is random under the constraint that C'(0,0) = £2(0) - f°(0). In the real

27

execution, in Step la of the protocol, the dealer chooses a polynomial C' exactly as the trusted
party in the ideal execution. All parties receive shares on this polynomial as guaranteed by Fy gs.
As follows from the description of Fiygyal, the honest parties always successfully reconstruct in the
case of an honest dealer. Moreover, since the dealer chooses the polynomial C(z,y) and D(x,y) as
described (and the polynomials A(x,y), B(x,y) if needed), all the verifications are guaranteed to
hold and the corrupted parties cannot cause the honest parties to reject the dealer. In particular,
an honest party never broadcast complaint. Moreover, every complaint of a corrupted party results
in opening shares that are already known to the adversary, and all satisfy the condition and do not
result in reject. Thus, the outputs are identically distributed in the real and ideal.

We now fix the output of the honest parties, and show that the view of the adversary is
identically distributed conditioned on the output. Fixing f%(z), f®(z), C(x, %), in the real execution
the dealer chooses a polynomial D(z,y) of degree (2t,t) satisfying D(z,0) = f%(z)- f*(z) — C(x,0).
The view of the adversary is then shares on the polynomial D(z,y). If the adversary falsely
complains, then the dealer chooses also A(z,y) and B(x,y) at random such that A(x,0) = f*(x)
and B(z,0) = fb(x).

In the ideal, we first choose an arbitrary polynomial d(z) that satisfies d(;) = f*() - f2(c;) —
C(@;,0) for every i € I, and then choose a random bivariate (2t,t)-polynomial D(x,0) = d(z).
Following Claim 3.6, the distribution of the shares on such polynomial is identical. Moreover, if
needed, we choose A(z,y) at random such that A(«a;,0) = f*(a;) and B(z,y) such that B(a;,0) =
f%(ay) for every i € I, which again has the same distribution from Claim 3.6.

We then claim that the Fgya call does not give any new information to the adversary. An
honest party never complains, and thus the polynomials revealed as part of Fygya reveal only
shares that the adversary already knows and appear in its view. The revealing of the polynomial
S(0,y) also does not give any new information in the case of |I| = ¢, and has the same distribution
as shown in Claim 3.7. We therefore conclude that the views of both executions are distributed
identically, conditioned on the outputs.

Case 2 — corrupted dealer. We describe the simulator SZM:

1. The simulator invokes the adversary A on the auxiliary input z.

2. The simulator receives the polynomials f¢(z), f®(z) from the trusted party, and it simulates
an execution of the protocol where the input of each honest party P; is f®(ay), f*(c;) for
every j € I, and simulate the ideal functionalities of Fygval, FExtend, FVSs, Fivss-

3. If the output of the simulated honest parties in the execution is just f%(0) - f*(0) then send
C(z,y) = 2! (causing the trusted party to reject the polynomial and send f2(0) - f°(0) to
all parties).

4. Otherwise, let f{(z),g5(y) be the output of Pj, for every j ¢ I. Let Go be the set of first
t+1 honest parties. Reconstruct the polynomial C(z,y) satisfying C(z, o) = f7(x) for every
j € Go, and send C(z,y) to the trusted party.

Clearly, the view of the adversary in the real and ideal executions is the identical. Note that
each party that is not the dealer is deterministic by the protocol specifications, that the simulator
receives the inputs of the honest parties and therefore can perfectly simulate an execution of the
protocol with the honest parties. We have to show that the output of the honest parties in both
executions is the same, conditioned on the view of the adversary.

We have two cases to consider:

Reject: Given a view of the adversary that results in reject, the simulator sends 22+ to the trusted
party which, in return, sends f%(0) - °(0) to all parties. In the real execution, from the guarantee

28

of Fyss, Fiwss, FExtend, FweEval, if any honest party ever receive | in one of those executions then
all honest parties receive L, and all parties will proceed to Step 5b and reconstruct f(0) - f°(0).
Moreover, if an honest party broadcast complaint(i), then from the correctness of Fiygya it is
guaranteed that its share will become public, and so all parties see that its complaint is justified,
and all proceed to Step 5b and reconstruct £¢(0) - £°(0).

Accept: Given a view of the adversary that results in accept, the simulator reconstruct a polynomial
C(z,y) from the outputs of the first G honest parties and sends it to the trusted party. From the
security of Fy gg, the shares that the honest parties output all lie on a degree-t bivariate polynomial.
Therefore, clearly all honest parties output shares on the same polynomial. The trusted party then
checks that C(x,y) is of degree-t (which is already guaranteed), and that C(0,0) = f2(0) - £°(0)
and if so send the shares on the polynomial C'(x,y) to all honest parties in the ideal world. We
now show that if the simulated honest parties accepted the shares then this must be the case.

Since the view is not resulted in reject, we claim that no honest party broadcast complaint.
As we have seen, each complaint of an honest party must result in a rejection of the dealer.
Since no honest party broadcasts a complaint, it must be that the dealer used D(zx,y) satisfying
D(z,0) = f%z)- f*(z) — C(x,0). This is because for 2t + 1 points of honest parties a; it holds that
D(aj,0) = f%a;)- f*(a;) —C(e;,0). D(x,0) is a polynomial of degree-2t, and f(z)- f(x)—C(x,0)
is a polynomial of degree 2t as well, and they agree on 2t + 1 points which means that those
polynomials are identical.

From a similar reasoning, it holds that D(0,0) = 0. Specifically, parties reconstruct D(0, y) using
Fweval- If D(0,0) # 0, then the result is a view where all parties reject the dealer. We conclude
that if all parties accepted the dealer then D(z,0) = f%(x) - f%(xz) — C(x,0) and D(0,0) = 0,
which implies that f%(0) - f*(0) = C(0,0). The simulator sends C(x,y) to the trusted party which
performs this exact check, and then sends to each honest party its output C(x, «;), C(ay,y). We
conclude that the outputs in the ideal and real execution are identical.]

By combining Theorems 4.9, 4.3, 4.12 ,4.6 with Theorem 5.3 we obtain the following Corollary:

Corollary 5.4. Lett < n/3. Then, there exists a protocol that is t-secure for the F, m“lt ¢ functionality
in the presence of a static malicious adversary in the plain model.

6 Extension: Arbitrary Gates with Multiplicative Depth-1

We show how to extend the protocol in Section 5 to allow the dealer distributing any shares
bi,...,br given input shares ai,...,aps such that (by,...,br) = G(ay,...,ap;) where G is some
circuit of multiplicative depth 1. Section 5 is a special case where a1 - as = G(aq, a2).

Functionality 6.1 (Functionality F} V g for sharing a result of an evaluation of G).

ngs receives a set of indices I C [n] and works as follows, where P is the dealer:

1. Receive a sequence of points uj1,...,ujnm € FM from P;.

2. Compute the unique degree-t univariate polynomials f* (x),..., f*M (z) satisfying f*(a;) =
wjm for every j & I and m € [M] (if no such polynomials f*(z) exist, then no security is
guaranteed, see Remark 3.2).

3. Let (a1,...,am) 2 (f91(0), ..., fo(0)). Evaluate (by,...,bs) = G(ai,...,am).

4. If the dealer P1 is honest (1 & I) then:

29

(a) For every £ € [L], choose a random degree-t bivariate polynomial Cy under the constraint
that Cy(0,0) = by.

(b) Output for honest: send Cy to Pi and (Cy(x,a;),Ce(ej,y)) to P; for every j ¢ I and
e L]

(¢) Output for adversary: send to the (ideal) adversary: (1) f*(a),..., f*(c;) for every
iel; (2) (Colx,q;),Cola,y)) for every i € I.

5. If the dealer Pj is corrupted (1 € I), then:
(a) Send f%(z), f°(x) to the (ideal) adversary.

(b) Receive bivariate polynomials C1,...,Cr, as input from the (ideal) adversary.
(c) If either deg(Cy) >t or Cy(0,0) # by for some ¢ € [L], then reset Cy(x,y) = by for every
e L]

(d) Output for honest: send Cy(x, oj), Co(ej,y) to Pj, for every j ¢ I and £ € [L]. (There is
no more output for the adversary in this case.)

The protocol is similar to Protocol 5.2. Given such a circuit G with L outputs, we let
G1,...,Gr be the circuits that define each outputs. That is, for (b1,...,br) = G(a1,...,an)
we let by = Gy(ai,...,an) for every £ € [L]. In the protocol, the dealer distributes polyno-
mials Ci(z,y),...,Cr(z,y) using VSS that are supposed to hide by,...,br. Then, it defines
L bivariate polynomials of degree(2t,t), Di,..., Dy such that for every ¢ € [L] it holds that
Dy(x,0) = G(f*(x),..., fo(x)) — C¢(x,0). The dealer distributes them using Fyyss. The parties
then check from the shares they received that each one of the polynomials C1,...,C is correct,
and that Dy(0,0) for every ¢ € [L]. When a party P; complains the parties open the shares of P,
and publicly verify the complaint.

Protocol 6.2 (Computing FXQSS in the (Fyvss, Fwss, Fextend, FWeval)- hybrid model).

e Input:
1. The dealer P holds M degree-t polynomials {f*"(z)},e[nm]-
2. Each party P; holds a point u; ,, for every m € [M] (where u; ,m = f* ().
e Common input: A field F and distinct non-zero elements aq,...,qa, € F.
e The protocol:
1. Sharing phase:
(a) Py computes (by,...,br) = G(f*(0),..., f*(0)).
(b) For every ¢ € [L], P; chooses a random degree-t bivariate polynomials, Cy(z,y) such
that Cg(0,0) = by.
(c) For every ¢ € [L], Py chooses a random degree (2t,t)-bivariate polynomial* Dy(x,)
under the constraint that Dy(z,0) = Ge(f* (x),..., f*(x)) — Cy(z,0).
(d) For every ¢ € [L], invoke Fygg to share Cy(z,y) and let (ff‘(a:),gf‘(y)) be the
resulting share of P;.
(e) For every ¢ € [L], invoke Fyygs to share Dy(z,y). Let K; C [n] be the output of
Fywss, such that each P, for k& € K, also receives (f,f‘*(:v),g,‘j‘Z (y)), and each party
P; for j & Ky receives g?é(y).

“We abuse notation and write Go((f®!(z),..., f*™(x))) to denote a univariate polynomial in the variable w.
Specifically, we take all polynomials f¢'(z),..., f*(z) and perform the same arithmetic operations as in Gy on
those input polynomials to receive a univariate polynomial in x.

30

(f) If L was received in any of the above Fy gg or Fyygg invocations, then proceed to
Step 5b.

2. Verifying that Dy(z,0) = G¢((f*(x),..., f*M(x))) — Cy¢(x,0) for all £ € [L]:

(a) For every ¢ € [L], each party P; verifies that gf‘{(O) = Go(uit,...,uim) — g;°(0). If
not, broadcast complaint()

(b) If no party broadcast a complaint, proceed to Step 4.

3. Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E = {«; }ier.

(b) For every m € [M], the dealer chooses a random bivariate polynomial of degree-t
polynomial A,, such that A,,(x,0) = f*(z). The parties run Fgytend Where each
party P; inputs u;,, and P; inputs A,,. Let (f/™(x),g;™(y)) be the output share
of P;.

(c) For every m € [M], the parties call to Fiygyal where each party P; inputs (f{™(z),
9:™(y), E, [n]) and the dealer inputs A,,. Let (f;m (z), g?m (y)) be the result for every
J € R. Likewise, reconstruct (ffe (x),gge (y)) for every ¢ € [L]. If F\ygyal returned L
in any of those invocations, then proceed to Step 5b.

(d) For every ¢ € [L], the parties call to Fiygya where all parties input Ky, E' and each
party Py for k € K, inputs also (flzl‘Z (ac),g,cgl‘Z (y)). The output of Fygya is g;le (y) for
every j € R. If Fiygyal returned L, then proceed to Step 5b.

(e) For every j € R, ¢ € [L], all parties verify that g;l"' (0) = G(g§'(0),...,95(0)) —
g]C.Z(O). If not, then proceed to Step 5b.

4. Verifying that D;(0,0) = 0 for all £ € [L]:

(a) For every ¢ € [L], the parties call to Fyygya where all parties input Ky, {0} and
each party P; for j € K, inputs also (f;i‘(az),g?‘z(y)). The output of Fiygyal is
gge (y) = Dy(0,y) to all parties. If Fyygyal returned L, then proceed to Step 5b.

(b) Verify that ggz (0) = 0. If not, proceed to Step 5b.
5. Finalization:
(a) Accept: If the dealer was not rejected, then each party P; outputs (fi*(x),g;*(y))
for every ¢ € [L].
(b) Reject: If the dealer is rejected, then each party P; sends to P; its points u;, for

every m € [M]. The parties reconstruct the polynomials f™(z) using Reed-Solomon
decoding, and output G(f*(0),..., f*(0)).

Theorem 6.3. Let t < n/3. Then, Protocol 6.2 is t-secure for the F\(/;SS functionality in the
presence of a static malicious adversary, in the (Fyss, Fwss, Fextends Fweval)-hybrid model. The
communication complexity of the protocol is just O(L) VSSs in the optimistic case. In the pes-
simistic case, it corresponds to O(L + M) VSSs.

Proof. The proof is similar to that of Theorem 5.3.

Honest dealer: In case where the dealer is honest, observe that an honest dealer always chooses
correct polynomial. The adversary receives from the trusted party the inputs and outputs of the
corrupted parties and simulates the view of the adversary in a similar manner as the simulator
in the proof of Theorem 5.3. In the real execution, the honest parties always accept the shares
of the dealer. Clearly, the outputs of all honest parties have the same distribution in ideal and
real, as the honest dealer chooses C1,...,C, in a similar manner as the trusted party. The view

31

of the adversary in the real and ideal executions is also identical, based on Claim 3.6. Moreover,
if the adversary complains it does not learn any new information as we just reveal its shares, i.e.,
information it already knows.

Corrupted dealer: In the case where the dealer is corrupted, the simulator just receives from the
trusted party all the inputs of the honest parties and can perfectly simulate the protocol execution.
It then see what the output of the honest parties is, and decide whether to send the execution
results in an accepting the shares of the dealer or not. It is easy to see that the parties accept only
if all honest parties did not complain, and any complaint of an honest party results in a rejection
of the dealer. O

Acknowledgments

Gilad Asharov would like to thank Ilan Komargodski and Ariel Nof for helpful discussions.

References

1]

[2]

Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder: MPC based scalable and robust
anonymous committed broadcast. 2020.

Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol., 30(1):58-151, 2017.

Gilad Asharov, Yehuda Lindell, and Tal Rabin. Perfectly-secure multiplication for any t <
n/3. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science, pages 240-258. Springer, 2011.

Assi Barak, Daniel Escudero, Anders P. K. Dalskov, and Marcel Keller. Secure evaluation of
quantized neural networks. TACR Cryptol. ePrint Arch., 2019:131, 2019.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages
420432, 1991.

Zuzana Beerliova-Trubiniovd and Martin Hirt. Perfectly-secure MPC with linear communica-
tion complexity. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture Notes in
Computer Science, pages 213-230. Springer, 2008.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, STOC, pages 1-10. ACM, 1988.

Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consensus,. In
Springer US, Boston, MA, 1992, Lecture Notes in Computer Science, pages 313—-321.

Anirudh C, Ashish Choudhury, and Arpita Patra. A survey on perfectly-secure verifiable
secret-sharing. TACR Cryptol. ePrint Arch., 2021:445, 2021.

Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143-202, 2000.

32

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136-145. IEEE Computer Society, 2001.

Ran Canetti, Ivan Damgard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adaptive
versus non-adaptive security of multi-party protocols. J. Cryptol., 17(3):153-207, 2004.

Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song, and Sameer
Wagh. Maliciously secure matrix multiplication with applications to private deep learning.
TACR Cryptol. ePrint Arch., 2020:451, 2020.

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and
Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO, pages
34-64, 2018.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In FOCS, pages
383-395. IEEE Computer Society, 1985.

Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement protocol
with optimal message bit complexity. Inf. Comput., 97(1):61-85, 1992.

Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and
composability of cryptographic protocols. J. Cryptol., 32(3):690-741, 2019.

Ronald Cramer, Ivan Damgard, and Ueli M. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In FUROCRYPT, pages 316-334, 2000.

Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer
Science, pages 572-590. Springer, 2007.

Ivan Damgard and Jesper Buus Nielsen. Adaptive versus static security in the UC model.
In Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui, and Siu-Ming Yiu, editors,
Provable Security - 8th International Conference, ProvSec 2014, Hong Kong, China, October
9-10, 2014. Proceedings, volume 8782 of Lecture Notes in Computer Science, pages 10-28.
Springer, 2014.

Ivan Damgard, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael A. Raskin. On the
communication required for unconditionally secure multiplication. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 459-488. Springer, 2016.

Ivan Damgard and Nikolaj I. Schwartzbach. Communication lower bounds for perfect mali-
ciously secure MPC. TACR Cryptol. ePrint Arch., 2020:251, 2020.

Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically secure
computation. In Mihir Bellare, editor, CRYPTO, volume 1880 of Lecture Notes in Computer
Science, pages 74-92. Springer, 2000.

Paul Feldman. Optimal algorithms for byzantine agreement, 1988.

33

[25]

[26]

[27]

[28]

33]

[34]

[35]

[38]

Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. SIAM J. Comput., 26(4):873-933, 1997.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Brian A. Coan and Yehuda
Afek, editors, PODC, pages 101-111. ACM, 1998.

Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge
University Press, 2004.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred V. Aho, editor, STOC,
pages 218-229. ACM, 1987.

Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC
with guaranteed output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO, volume 11693 of Lecture Notes in Computer Science, pages 85—114. Springer, 2019.

Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party computation.
In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th International
Conference on the Theory and Application of Cryptology and Information Security, Kyoto,
Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer Science,
pages 143-161. Springer, 2000.

Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear commu-
nication complexity. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006,
26th Annual International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 463—482.
Springer, 2006.

Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91-112, 20009.

Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols
and security under composition. SIAM J. Comput., 39(5):2090-2112, 2010.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions via
minionn transformations. In ACM CCS, pages 619-631, 2017.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.
In CCS, pages 35-52, 2018.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In SP, pages 19-38, 2017.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages
73-85. ACM, 1989.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

34

[39] Abhishek Verma, Hussam Qassim, and David Feinzimer. Residual squeeze CNDS deep learning
CNN model for very large scale places image recognition. In UEMCON, pages 463-469, 2017.

[40] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure computation
for neural network training. Proc. Priv. Enhancing Technol., 2019(3):26-49, 2019.

[41] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162-167. IEEE Computer Society, 1986.

35

A General Secure Computation from Multiplication

A.1 Emulate a Multiplication Gate from O(n) Multiplications with a Dealer

We first show how the parties compute a multiplication gate in the (Fygg, F{}g‘ét) hybrid model.

Let a and b be the values on the two input wires, hidden using polynomials A(z,y) and B(z,y),
respectively. The goal is that the parties would compute shares on a random degree-t polynomial
C(z,y) for which C(0,0) = ab. The sub-protocol for computing a multiplication gate is as follows:

e Input: Each party P; holds f(z) = A(z,), ¢'(y) = Alas,y), fH(x) = B(z,q;) and
9i (y) = Blai, y).
e The protocol:
1. Each party P; invokes F(,”gét as a dealer Whlle using f(x), ff’ (x) as its input. Each party

P; uses in that invocation the shares g¢(gb(al) as its input.
As an output of this invocation, P; h ids a degree t bivariate polynomial C;(z,y) such

that C;(0,0) = £&(0) - f2(0), and each party P; holds fi(z) = Ci(z, ;) and g (y) =
Ci<aja y)
2. Let (f'(z),.... fj"(x)) and (¢} (y), - - ., g;" (y)) be the obtained shared from the previous
step after each party served as a dealer. Each party P; locally computes its final share
fi(@) =320 A fi(x) and g5(y) = 3200 A - g5 (1)
e Output: Each party outputs f7(z), g5(y).

The output shares correspond to the polynomial C(z,y) = Y1 ; A - Ci(z, y). Its constant term
is Y0 X - Ci(0,0) =30 N - £2(0) - £(0) = ab, as required.

A.2 Emulate Arbitrary Gates with Multiplicative Depth-1

Let G be a multiplicative-depth-1 sub-circuit of C, with M inputs and L outputs. Let aq,...,ay be
the values on the M input wires, hidden using degree-t bivariate polynomials A;(z,y), ..., Ay (z,y),
respectively. The goal is for the parties to compute shares on random degree-t bivariate polynomials
Ci(z,y),...,CrL(z,y) such that (C1(0,0),...,Cr(0,0)) = G(A1(0,0),...,A4(0,0)). The sub-

protocol for achieving those shares is as follows:

e Input: Each party P; holds f/ () = Am(x, ;) and g™ (y) = Am(au,y) for every m € [M].
e The protocol:
1. Each party P; invokes Figq (Functionality 6.1) as a dealer while using f{"* (), ..., f{"(x)

as input. Each party P; uses the shares ¢7' (), ..., g;" (y) as input.
As an output of this 1nvocat10n P holds degree-t blvarlate polynomials C;1(z,y),.

C;,1(z,y) such that (C;1(0,0),...,C;(0,0)) = G(f(0),..., f(0)). In addltlon

each party P; holds fjci’/Z (x) = CM(JJ, a;) and ng” (y) = Cie(ay,y) for all £ € [L].

C (o) Cie Ch,
2. Let (f; "' (x),...,f; ™" () and (g;""(y),...,9;""(y)) be the shares of Cy,(z,y),...,
Cn,g(l‘ y) for £ € [L], obtained from the previous step, after each party served as a

dealer.
Each party P; locally computes its final share fjcf (@) =>" 0 N fjc “(z) and gjcé(y) =

n Ci
doic1 Ai g, “(y), for £ € [L].
e Output: Each party outputs fjc" () and gjcé (y) for £ € [L].

36

For every ¢ € [L], the output shares correspond to the polynomial Cy(x,y) = > i1 Ni-Cie(z,v),
which is a polynomial of degree-t. Let (by,...,br) = G(aq,...,ap). The constant term of Cy is:

0) =Y Ai-Ci(0,0) = ZA Go(f* (), ..., [(x thmz = he(0) = by
i=1

where hy(x) def Go(f"(x),..., f*™(x)) is a polynomial of degree-2, and from Functionality 6.1 it
holds that C@g(o, 0) = Gg(fa‘l (Ozi), ool foM (al))

Computing any function F. Let F' : F* — F” be any function that maps n inputs into n
inputs, i.e., we assume for simplicity that the input and output of each element is a single field
element. Let C' be an arithmetic circuit over F that computes F. To compute the circuit C:

e Input sharing phase: Each party chooses P; with input x; chooses a random bivariate
polynomial S; of degree-t such that S;(x,y) = x;. It invokes Fygg on S;.

e The circuit emulation stage: The parties maintain the invariant in which each wire in
the circuit is hidden by a bivariate sharing. Let GG1, ..., Gy be the predetermined topological
ordering of the gates of the circuit. For k£ = 1,..., /¢ the parties work as follows.

1. Case 1 — G, is an addition gate: Each P; locally computes the shares on the output
wires by adding the two input shares of the inputs wires of the gate.

2. Case 2 — (G is a general gate: The circuit has M input wires and L outputs wires.
We invoke the subprotocol defined above to obtain shares on the output wires.

e Output reconstruction phase: The parties hold bivariate sharing of the output wires.
Each party P; is supposed to learn some output y;. The parties send to F; all the shares on
that wire and P; can reconstruct it.

In [2] it is shown that this protocol securely computes the functionality F' (when using univariate
sharing and not bivariate sharing, but the difference in the proof is straightforward). By combining
Corollary 5.4 and Theorem 4.9, this leads to a protocol in the plain model.

B Proof of Claims 3.6 and 3.7

Claim B.1 (Hiding, Claim 3.6, restated). Let h(x) be an arbitrary univariate polynomial of degree
q, and let aq, ..., with k <t be arbitrary distinct non-zero points in F. Consider the following
distribution Dist(h):

e Choose a random (q,t)-bivariate polynomial S(x,y) under the constraint that S(z,0) = h(x).
o Output {(7, 5(x, as), S(i, y)) biek]

Then, for every two arbitrary degree-q polynomials hy(x), ho(x) for which hi(c;) = ha(a;) for every
€ [k] it holds that Dist(hy) = Dist(hs).

Proof. We start with the case where k = t. Fix some hi(z), ho(z) as above, and fix degree-q
polynomials {fi(z)}c[x) and degree-t polynomials {g;(y) }ic[for which:

L. filay) = gjles) for every i,j € [k],
2. gi(O) = hl(ai) = hg(ai).

37

We have to show that:

Pr [Dist(h1) = {(i, fi(x), 9:(¥)) biew | = Pr [Dist(h2) = {(i, fi(=), 9:(¥)) biepy]

Note that if the set of polynomials f;(x), g;(y) does not satisfy the above two conditions, then the
probability to get this set of polynomials is 0 in both distributions. Observe also that the support
of the two distributions is the same. Now, by fixing the set {f;(2), g;(y)}%_,, we show that there
exists exactly one bivariate polynomial in the support of Dist(h;). This follows from Claim 3.4
while taking {f;(z)}¥_; U hi(z). Let S(x,y) be the unique polynomial that is guaranteed to exist
by the claim. For every j = [t],i € [k], it holds that g;(oj) = fj(a;) = S(ay, ;). Moreover, we
know that S(z,0) = hi(x) and since g;(0) = hi(e;) it holds that g;(0) = S(a;,0). We therefore
conclude that g;(y) agrees with the degree-t polynomial S(a;,y). Since Dist(hi) chooses each
bivariate polynomial in the support with exactly the same probability, we get that the probability
that those {fi(z),g:(y)} were chosen is exactly 1 over the support of Dist(h;). Exactly the same
analysis can be implies for Dist(h2), and using the fact that the support of the two distribution is
the same, we conclude that the two distributions are identical.

For the case of k < t, one can just add arbitrary polynomials to f;(x),g;(y) (that satisfy the
pairwise checks), and use the law of total probability (see [2, Claim 3.2] for a similar claim). [

Claim B.2 (Hiding II, Claim 3.7, restated). Same as Claim 3.6, except that it holds that hi(0) =
h1(0) = B for some publicly known 8 € F. The output of the distribution is {(i, S(x, o), S(ci, y)) biem U
5(0,y).

Proof. Let hi(z), ho(x) be arbitrary polynomials of degree g such that hi(0) = ha(0) = S, and fix
degree-q polynomials { f;(z)};c[x) and degree-t polynomials {g;(y)}ic(x) for which g;(0) = hi(a;) =
ha(ci), and fi(oj) = g;(a;) for every i,j € [k]. Moreover, fix a degree-t polynomial go(y) for which
for every i € [k] it holds that go(a;) = fi(0). Note that in case of k = ¢, the polynomial go(y)
is already determined: conditioning that go(a;) = f;(0) for every i € [k] define ¢ points on the
polynomial, we know that go(0) = 5. So we have ¢ + 1 points which uniquely define a polynomial
of degree-t.

We show that the probability to obtain {fi(x),gi(y)}icr) U {90(y)} is the same under both
distributions. First, observe that the support of the two distributions is the same. Moreover, just
like in the previous claim, for the case of k = ¢ we can apply Claim 3.4, i.e., there exists a unique
bivariate polynomial S(x,y) that is determined by the view {fi(z), g:(v)}ier) U {g0(y)} in each
one of the distributions. The probability to obtain those polynomial is exactly 1 of the size of
the support, which is the same in both cases. For the case of k < ¢ one can just add arbitrary
polynomials to the set of fixed polynomials (that satisfy the conditions), and use the law of total
probability as in [2, Claim 3.2]. O

38

	Introduction
	Our Results
	Related Work
	Open Problems

	Technical Overview
	Overview of the BGW Protocol
	Our Protocol
	Extensions
	Organization

	Preliminaries
	Definitions of Perfect Security in the Presence of Malicious Adversaries
	Robust Secret Sharing
	Bivariate Polynomial

	Weak Verifiable Secret Sharing and Extensions
	Verifying Shares of a (q,t)-Bivariate Polynomial
	Weak Verifiable Secret Sharing
	Evaluation with the Help of the Dealer
	Strong Verifiable Secret Sharing
	Evaluation

	Extending Univariate Sharing to Bivariate Sharing with a Dealer

	Multiplication with a Constant Number of VSSs and WSSs
	Functionality – Multiplication with a Dealer
	The Protocol

	Extension: Arbitrary Gates with Multiplicative Depth-1
	General Secure Computation from Multiplication
	Emulate a Multiplication Gate from O(n) Multiplications with a Dealer
	Emulate Arbitrary Gates with Multiplicative Depth-1

	Proof of Claims 3.6 and 3.7

