
SPEEDY on Cortex–M3:
Efficient Software Implementation of

SPEEDY on ARM Cortex–M3

Hyunjun Kim1, Kyungbae Jang1, Gyeongju Song1,
Minjoo Sim1, Siwoo Eum1, Hyunji Kim1, Hyeokdong Kwon1

Wai-Kong Lee2, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{khj930704, starj1023, thdrudwn98,

minjoos9797, shuraatum, khj1594012,korlethean,

hwajeong84}@gmail.com
2Department of Computer Engineering,

Gachon University, Seongnam, Incheon (13120), Korea,
waikonglee@gachon.ac.kr

Abstract. The SPEEDY block cipher suite announced at CHES 2021
shows excellent hardware performance. However, SPEEDY was not de-
signed to be efficient in software implementations. SPEEDY’s 6-bit sbox
and bit permutation operations generally do not work efficiently in soft-
ware. We implemented SPEEDY block cipher by applying the implemen-
tation technique of bit slicing. As an implementation technique of bit
slicing, SPEEDY can be operated in software very efficiently and can be
applied in microcontroller. By calculating the round key in advance, the
performance on ARM Cortex-M3 for SPEEDY-5-192, SPEEDY-6-192,
and SPEEDY-7-192 are 65.7, 75.25, and 85.16 clock cycles per byte (i.e.
cpb), respectively. It showed better performance than AES-128 constant-
time implementation and GIFT constant-time implementation in the
same platform. Through this, we conclude that SPEEDY can show good
performance on embedded environments.

Keywords: Software Implementation · SPEEDY · ARM Cortex–M3.

1 Introduction

SPEEDY is a very low-latency block cipher designed for hardware implementa-
tion in high-performance CPUs. With gate and transistor level considerations,
it has been shown that they can run faster in hardware than other block ciphers.
The author of SPEEDY [1] provides reference code implemented in C. However,
this software implementation does not show the superior performance like the
hardware implementation. The performance of SPEEDY’s software implementa-
tion has not been confirmed, but hardware-oriented block cipher is generally less
efficient in software implementation than other software-oriented block ciphers.
For this reason, efficient implementation should be considered for SPEEDY block

2 Song et al.

cipher. In [2], Reis et al. shows that PRESENT can be implemented efficiently in
software. PRESENT consists of a 4-bit S-box and a 64-bit permutation, which is
far from being implemented in efficient software. However, they used a bit-slicing
implementation of the S-box using new permutations and optimized boolean for-
mulas instead of lookup tables, improving the best assembly implementation in
Cortex-M3 by 8× than previous works. The implementation is close to competing
with the software implementation of AES. In [3], Adomnicai et al. show a very
efficient software implementation of GIFT using only a few rotations with a new
technique called fix-slicing. It showed faster performance than the best AES [4]
constant time at the time when it was reported that PRESENT [2] implemen-
tation 1,617 cycles were required in Cortex-M3 microcontrollers. Based on these
studies, it is possible for a hardware-friendly cipher to implement in software
efficiently. We expected that SPEEDY would be able to achieve sufficient per-
formance in software through the previous technique. NIST’s nominations for
cryptographic standards include hardware and software evaluations, and ciphers
with high performance in hardware and software are considered competitive over
other ciphers. If the efficient implementation of SPEEDY’s software is possible,
it is thought that it will enhance the competitiveness of SPEEDY.

1.1 Contributions

We have achieved excellent performance by implementing SPEEDY in software
on a 32-bit ARM processors. SPEEDY’s 6-bit SBOX and bit permutations seem
to make the software implementation inefficient, but we use the bit-slicing imple-
mentation technique to resolve this issue. By implementing bit-slicing, all blocks
of SPEEDY can be operated in a parallel way. It can also achieve constant time
implementation, leading to the prevention of timing attacks. Bit-slicing tech-
nique is applied efficiently due to the bit permutation of the simple structure.
The barrel shift of the Cortex-M3 maximizes these advantages. In ARM Cortex-
M3, SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192 achieved 65.7, 75.25,
and 85.16 clock cycles per byte, respectively. This is faster than the constant time
implementation of GIFT-128 and AES-128 block ciphers in same architecture.

2 SPEEDY Algorithm

SPEEDY is a very low-latency block cipher. SPEEDY prioritizes speed and
high security. It is primarily designed for hardware security solutions built into
high-end CPUs that require significantly higher performance in terms of latency
and throughput. A 6-bit S-box is used and 192 bits, which is the least common
multiple of 6 and 64, is used as the block and key size considering the 64-bit
CPU. 192 bits can be expressed in 32 rows of 6 bits each. SPEEDY Family
consists of SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192 according to
the number of rounds. It is noted that round 6 achieves 128-bit security, 7 round
achieves 192-bit security, and round 5 provides a sufficient level of security for
many practical applications.The SPEEDY-r-6` an instance of this family with a

SPEEDY on Cortex–M3 3

block and key size of 6` bits. It can be seen as a `×6 rectangular arrangement.
The round function function is as follows.

– SubBox (SB): SPEEDY’s 6-bit S-box is based on NAND gates and is de-
signed to be very fast in CMOS hardware while at the same time providing
excellent cryptographic properties. S-boxes are applied to each row of states.
The Disjunctive Normal Form (DNF) of S-box is as follows. In our imple-
mentation, the operation of DNF is followed, and S-box is performed by
AND operation and OR operation.

y0 = (x3 ∧ ¬x5) ∨ (x3 ∧ x4 ∧ x2) ∨ (¬x3 ∧ x1 ∧ x0) ∨ (x5 ∧ x4 ∧ x1)
y1 = (x5 ∧ x3 ∧ ¬x2) ∨ (¬x5 ∧ x3 ∧ ¬x4) ∨ (x5 ∧ x2 ∧ x0) ∨ (¬x3 ∧ ¬x0 ∧ x1)
y2 = (¬x3 ∧ x0 ∧ x4) ∨ (x3 ∧ x0 ∧ x1) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ ¬x5)
y3 = (¬x0 ∧ x2¬x3) ∨ (x0 ∧ x2 ∧ x4) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x4 ∧ ¬x2 ∧ x1)
y4 = (x0 ∧ ¬x3) ∨ (x0 ∧ ¬x4 ∧ ¬x2) ∨ (¬x0 ∧ x4 ∧ x5) ∨ (¬x4 ∧ ¬x2 ∧ x1)
y5 = (x2 ∧ x5) ∨ (¬x2 ∧ ¬x1 ∧ x4) ∨ (x2 ∧ x1 ∧ x0) ∨ (¬x1 ∧ x0 ∧ x3)

– ShiftColumns (SC) : The j-th column of the state is rotated upside by j bits.
In hardware implementation, ShiftColumnsdms is free with simple wiring,
but additional operation is required in software.

y[i,j] = x[i+j,j]

– MixColumns (MC) : A cyclic binary matrix is multiplied to each column
of the state. In hardware, it can be implemented only with XOR gate, but
similar to ShiftColumns, the additional operation is required in the software
implementation. α = (α1, ..., α6) is the parameterized value for each version

y[i,j] = xi,j ⊕ x[i+α1,j] ⊕ x[i+α2,j] ⊕ x[i+α3,j] ⊕ x[i+α4,j] ⊕ x[i+α5,j] ⊕ x[i+α6,j]

– AddRoundKey (AK) : The 6`-bit round key kr is XORed to the whole of
the state.

y[i,j] = x[i,j] ⊕ kr[i,j]

– AddRoundConstant (AC) : The 6`-bit constant cr is XORed to the whole
of the state. round constants are chosen as the binary digits of the number
π − 3 = 0.1415....

y[i,j] = x[i,j] ⊕ cr[i,j]

Encryption operates in the order of Ak → SB → SC → SB → SC → MC
→ Ac in one round, and operates in the order of Ak → SB → SC → SB →
Ak in the last round. In the decoding, an inverse operation is performed in the
reverse order. In the first round, it operates in the order of Ak → InverseSB →
InverseSC → InverseSB → Ak, and from the next round, it repeats in the order
Ac → InverseMC → InverseSC → InverseSB → InverseSC → InverseSB → Ak.

4 Song et al.

3 Proposed Method

This chapter describes the proposed SPEEDY implementation method. First,
looking at the round function of SPEEDY from a software implementation point
of view, in the case of ShiftColumns, it is computed for free in hardware, but the
bit permutation in a column unit is inefficient in software. A block of 6-bit does
not fit the 8-bit, 32-bit, and 64-bit blocks used in typical processor architectures.
Implementing SPEEDY in software is inefficient due to 6-bit S-boxes and bit
permutations. As a solution to this, we used the bit-slicing technique. Due to
the effect of this alignment, the round function can be implemented efficiently
in software.

We show that SPEEDY can work well in an embedded environment by imple-
menting it on ARM Cortex-M3 microcontrollers. In our implementation, the 32
blocks of 6 bits are converted to a bit-slicing representation and stored in 6 32-bit
registers. As a result, the round function is able to execute 32 blocks in parallel.
Specifically, ShiftColumns and MixColumns work efficiently with the Cortex-M3
barrel shifter. Since we modified the logical operation process of S-box, S-BOX
operation operates using few instructions and implemented it efficiently. Con-
sidering the case where the key is used repeatedly, the RoundConstant value is
calculated in advance with the round key, and AddRoundConstant is omitted.

3.1 SPEEDY on ARM Cortex–M3

The Cortex-M3 is ARM’s family of 32-bit processors for use in embedded micro-
controllers. It is designed to be inexpensive and energy-efficient, so it has very
effective characteristics for implementing IoT services. Arithmetic and logic op-
erations take one clock cycle. However, branches, loads, and stores can take
more cycles. A distinctive feature is that it supports a barrel shifter. By using
the barrel shifter, rotation or shift can be performed at no additional cost in
arithmetic or logical operations. This microprocessor haves 16 32-bit registers, 3
of which are for program counters, stack pointers and link registers, for a total
of 14 registers available to developers (R0-R12, R14). The first thing to consider
to increase computational performance is to minimize access to memory.

Therefore, in our implementation, the address value of the periodically used
round key is stored in one register and used repeatedly, and the intermediate
value of the operation is stored by fixing 6 registers. In order to operate without
access to memory except for the AddRoundKey function, 7 temporary storage
spaces were required for SubBox operation, and 6 temporary storage spaces
were needed for ShiftColumns and MixColumns respectively. For the efficient
operation, all 14 registers are used and the value stored in the ciphertext address
is called once at the end. It is stored on the stack at the start of the operation
and loaded at the end.

3.2 Using Bitslicing in SPEEDY

Bit-slicing was the first technique used by Biham [5] instead of lookup tables to
speed up the software implementation of DES. The basic method of bit slicing

SPEEDY on Cortex–M3 5

Table 1. Bit-slicing representation from using 6 32-bit registers R0, ... , R5 to process
8 blocks b0, , b7 in parallel where bij refers to the j-th bit of the i-th block.

Block0 Block1 Block2 Block3 · · · · · · Block28 Block29 Block30 Block31

R0 b00 b10 b20 b30 · · · · · · b280 b290 b300 b310
R1 b01 b11 b21 b31 · · · · · · b281 b291 b301 b311
R2 b02 b12 b22 b32 · · · · · · b282 b292 b302 b312
R3 b03 b13 b23 b33 · · · · · · b283 b293 b303 b313
R4 b04 b14 b24 b34 · · · · · · b284 b294 b304 b314
R6 b05 b15 b25 b35 · · · · · · b285 b295 b305 b315

is to express n-bit data by 1 bit in n registers. In this way, multiple blocks can
be processed in parallel with bitwise operation instructions. In the case of AES,
128-bit plaintext is expressed in 8 registers and operates. Larger registers allow
more blocks to be operated. They work more efficiently on processors using large
registers. In the case of SPEEDY, since 192 bits are divided into 32 blocks of
6 bits each, it can be expressed with 6 32-bit registers. The 192-bit plaintext
is relocated to bitslcicing representation as shown in Table a and stored in 6
32-bit registers. With this expression method, the blocks of SPEEDY can be
operated in parallel in all functions and operate efficiently. In S-Box operation
is performed by combining bitwise operators, and all operations are processed
in parallel with 32 blocks. In particular, SC and MC operations can be operated
very simply and quickly with the barrel shift operation of Cortex-M3.

In general, when rearranging the input into a bit-slicing representation, this
can be done using the SWAPMOVE technique [6].

SWAPMOVE(A, B, M, n) :
T = (B ⊕(A� n)) ∧M

B = B ⊕T
A = A ⊕(T � n)

However, SPEEDY block cipher could not make a bit-slicing representation us-
ing only SWAPMOVE. In a 32-bit processor, 192 bits of plaintext are stored
in six segments. At this time, it is inefficient to rearrange the 6-bit blocks in a
bit slicing representation because they are stored in different spaces. Consider-
ing this, we implemented it in three steps to make the most of SWAPMOVE
technology. There are 5 blocks of 6 bits that can be completely stored in one
register. Therefore, SWAPMOVE technology is applied to the blocks of 0-th to
29-th indexes, and the rest are implemented by moving 1 bit at a time. First, as
shown in Figure a, step 1 is arranged in 6-bit blocks, and in step 2, indexes 30
and 31 are rearranged by bit-slicing expression and rearranged by moving one
bit at a time. Finally, in step 3, SWAPMOVE rearranges the blocks from the
0-th to the 29-th index.

6 Song et al.

Fig. 1. Step 3 of reordering 192 bits of plain text stored on a 32-bit processor into a
bit-slicing representation.

3.3 SubBox

SubBox layer operation is performed by combining logical operators instead of
lookup table method. In the implementation of the expression by bit-slicing, 32
blocks of 6 bits can be operated in parallel by a combination of logical operators.
It can be operated efficiently. Additionally, we use the rule of logical operators
to reduce the number of logical operations. In this way, 8 instruction are reduced
in the SubBox layer. The S-Box operation can be transformed into the following
formula.

y0 = x3 ∧ (¬x5 ∨ (x4 ∧ x2) ∨ (x1 ∧ ((¬x3 ∧ x0) ∨ (x5 ∧ x4)))
y1 = x5 ∧ ((x3 ∧ ¬x2) ∨ (x2 ∧ x0) ∨ (¬x5 ∧ x3 ∧ ¬x4) ∨ (¬x3 ∧ ¬x0 ∧ x1)
y2 = x0 ∧ ((¬x3 ∧ x4) ∨ (x3 ∧ x1) ∨ (¬x3 ∧ ¬x4 ∧ x2) ∨ (¬x0 ∧ ¬x2 ∧ x5)
y3 = x2 ∧ ((¬x0 ∧ ¬x3) ∨ (x0 ∧ x4) ∨ (x0 ∧ ¬x2 ∧ x5) ∨ (¬x0 ∧ x3 ∧ x1)
y4 = (x0 ∧ ¬x3) ∨ (¬x0 ∧ x4 ∧ x5) ∨ ((¬x4 ∧ ¬x2) ∧ (x0 ∨ x1)
y5 = x2 ∧ (x5 ∨ (x1 ∧ x0)) ∨ (¬x1 ∧ ((¬x2 ∧ x4) ∨ (x0 ∧ x3)

There is no Cortex-M3 assembly instruction corresponding to the ¬ operation or
the operation a∧¬b used here. However, the operation of a∨¬b can be performed
with the ORN instruction as used in Algorithm a. For efficient implementation,

SPEEDY on Cortex–M3 7

the not operation is performed using the ORN instruction. For example, in the
case of (x3∧x4∧x2)∨(¬x3∧x1∧x0), use the rule of logical operators to convert
it to (x3 ∧ x4 ∧ x2) ∨ ¬((x3 ∨ ¬x1)∨0).

Algorithm 1 bit-slicing implementations of S-box in ARMv6 assembly.

Input: input registers
x0-x5 (r4-r9),
temporal register t (r14)

Output: output registers
y0-y5 (r1-r3, r10-r12)

1: AND y3, x2, x4

2: ORN y3, y3, x5

3: AND y3, y3, x3

4: AND y4, x5, x4

5: ORN y5, x3, x0

6: ORN y4, y4, y5

7: AND y4, x1, y4

8: ORR y0, y4, y3

9: AND y3, x0, x2

10: ORN y4, x2, x3

11: ORN y3, y3, y4

12: AND y3, y3, x5

13: ORR y4, x5, x4

14: ORN y4, y4, x3

15: ORN y3, y3, y4

16: ORR y4, x0, x3

17: ORN y4, y4, x1

18: ORN y1, y3, y4

19: AND y3, x1, x3

20: ORN y4, x3, x4

21: ORN y3, y3, y4

22: AND y3, x0, y3

23: ORR y4, x3, x4

24: ORN y4, y4, x2

25: ORN y3, y3, y4

26: ORR y4, x0, x2

27: ORR y4, y4, x5

28: ORN y2, y3, y4

29: AND y3, x0, x4

30: ORR y4, x0, x3

31: ORN y3, y3, y4

32: AND y3, y3, x2

33: AND y4, x0, x5

34: ORN y4, x2, y4

35: ORN y3, y3, y4

36: AND y4, x1, x3

37: ORN y4, x0, y4

38: ORN y3, y3, y4

39: MOV t, #s0
40: ORR y4, x4, x2

41: ORR y5, x0, x1

42: ORN y4, y4, y5

43: ORN y4, t, y4

44: ORN y5, x3, x0

45: ORN y4, y4, y5

46: AND y5, x4, x5

47: ORN y5, x0, y5

48: ORN y4, y4, y5

49: AND t, x0, x3

50: ORN y5, x2, x4

51: ORN t, t, y5

52: ORN t, x1, t

53: AND y5, x1, x0

54: ORR y5, y5, x5

55: AND y5, y5, x2

56: ORN y5, y5, t

3.4 ShiftColumns

In the bit-slicing implementation, ShiftColumns can be implemented efficiently.
In ShiftColumns, bits of the block are shifted in the column direction. In the bit-
slicing representation, bits are converted into transposition in the row direction

8 Song et al.

Algorithm 2 bit-slicing implementations of ShiftColumns in ARMv6 assembly.

Input: input registers
x0-x5 (r1-r3, r10-r12)

Output: output register
y0-y5 (r4-r9)

1: MOV y0, x0

2: MOV y1, x1, ROR #31
3: MOV y2, x2, ROR #30
4: MOV y3, x3, ROR #29
5: MOV y4, x4, ROR #28
6: MOV y5, x5, ROR #27

because rows and columns are switched. Therefore, it can be implemented with
rotation operation. 32 blocks are operated in parallel and can be implemented
with 6 mov instructions. At this time, the value moved after rotation is stored
in another register. And the value stored in the existing register is used again in
the MC operation for operation.

3.5 MixColumns

In a bit-slicing implementation similar to ShiftColumns, the operation of Mix-
Columns can be implemented efficiently. Since rows and columns are switched,
rotate each row as much as ai and perform XOR as shown below.

y[i] = x[i]⊕ (x[i] <<< a0)⊕ (x[i] <<< a1)⊕ (x[i] <<< a2)
⊕ (x[i] <<< a3)⊕ (x[i] <<< a4)⊕ (x[i] <<< a5)

For this operation, the value of y[i] must be stored. As in Algorithm 3,
this value reuses the value stored in the existing register in the previous SC
process. Since the value stored in the existing register is the value before the SC
operation, the additional rotation is required as much as the SC operation. This
operation can be implemented with only the XOR instruction, since the rotation
operation can be operated with a barrel-shifter. At this time, as a result of the
SC operation, 32 blocks are operated in parallel with 36 EOR instruction.

3.6 AddRoundKey and AddRoundConstant

In the case of AC operation, the process of XORing each bit with a constant value
is performed in the same way as in AR operation. Therefore, it is implemented
to XOR the constant value and the round key value in advance. In consideration
of the bit slicing expression, the round key must also be packed in the same form,
and as in Algorithm a, load and xor are each executed 6 times. When encryption
starts after the key schedule operates first, the encryption process is calculated
by omitting the AC process .

4 Results

In this chapter, we compare the results for our implementation. The software
was developed with Arduino IDE on the ArduinoDUE (AT91SAM3X8E) devel-
opment board equipped with an ARM Cortex-M3 processor. The operating clock

SPEEDY on Cortex–M3 9

Algorithm 3 bit-slicing implementations MixColumns in ARMv6 assembly.

Input: input registers
x0-x5 (r1-r3, r10-r12)
y0-y5 (r4-r9)

Output: output registers
y0-y5 (r4-r9)

1: EOR y0, y0, x0, ROR #31
2: EOR y0, y0, x0, ROR #27
3: EOR y0, y0, x0, ROR #23
4: EOR y0, y0, x0, ROR #17
5: EOR y0, y0, x0, ROR #11
6: EOR y0, y0, x0, ROR #6

7: EOR y1, y1, x1, ROR #30
8: EOR y1, y1, x1, ROR #26
9: EOR y1, y1, x1, ROR #22

10: EOR y1, y1, x1, ROR #16
11: EOR y1, y1, x1, ROR #10
12: EOR y1, y1, x1, ROR #5

13: EOR y2, y2, x2, ROR #29
14: EOR y2, y2, x2, ROR #25
15: EOR y2, y2, x2, ROR #21
16: EOR y2, y2, x2, ROR #15

17: EOR y2, y2, x2, ROR #9
18: EOR y2, y2, x2, ROR #4

19: EOR y3, y3, x3, ROR #28
20: EOR y3, y3, x3, ROR #24
21: EOR y3, y3, x3, ROR #20
22: EOR y3, y3, x3, ROR #14
23: EOR y3, y3, x3, ROR #8
24: EOR y3, y3, x3, ROR #3

25: EOR y4, y4, x4, ROR #27
26: EOR y4, y4, x4, ROR #23
27: EOR y4, y4, x4, ROR #19
28: EOR y4, y4, x4, ROR #13
29: EOR y4, y4, x4, ROR #7
30: EOR y4, y4, x4, ROR #2

31: EOR y5, y5, x5, ROR #26
32: EOR y5, y5, x5, ROR #22
33: EOR y5, y5, x5, ROR #18
34: EOR y5, y5, x5, ROR #12
35: EOR y5, y5, x5, ROR #6
36: EOR y5, y5, x5, ROR #1

is 84 MHz, and it has 512 KB of flash memory and 96 KB of RAM. Performance
comparison measured the average cycle when encrypting. Key scheduling is not
taken into account as it is assumed that round keys are pre-computed and stored
in RAM. We implemented SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-
192, and for comparison, AES-128 and GIFT-128 implemented in constant time
in the same environment were compared together. In general, 128-bit blocks are
encrypted, but since SPEEDY encrypts 192-bit blocks, the performance differ-
ence was compared based on cycle per byte (cpb) to compare other encryptions.
And the key schedule was calculated in advance, and the average was measured
when it was operated in ECB mode. As shown in Table 2, compared to the ref-
erence C implementation of SPEEDY-7-192, the speed difference was about 180
times. Although the optimization level of the reference C implementation is not
performed in assembly level, it showed a noticeable high performance improve-
ment. In addition, when comparing our implemented SPEEDY-6-192 with the
same security level AES-128 and GIFT-128, the result of 75.2 cpb is 1.6× faster
than 120.4 cpb of AES-128 and 1.3× faster than 104.1 cpb of GIFT-128. Con-
sidering that SPEEDY is designed to be hardware-friendly, this is a remarkable
result.

10 Song et al.

Table 2. Comparison of SPEEDY implementation results and various constant-time
implementation results on ARM Cortex-M3. The performance is evaluated in clock
cycles per byte (cpb).

Implementation Speed (cpb) Block size

AES-128 encryption 120.4 128

GIFT-128 encryption 104.1 128

SPEEDY-7-192 encryption (reference) 15,407 192

SPEEDY-5-192 encryption (ours) 65.7 192

SPEEDY-6-192 encryption (ours) 75.2 192

SPEEDY-7-192 encryption (ours) 85.1 192

5 Conclusion

We implemented SPEEDY by applying the implementation technique of bit-
slicing. For the case where the round key is calculated in advance, in ARM
Cortex-M3, SPEEDY-5-192 achieves 65.7 cpb, SPEEDY-6-192 achieves 75.25
cpb, and SPEEDY-7-192 achieves 85.16 cpb, respectively. In the same environ-
ment, it showed better performance than 120.4 cpb of constant time imple-
mentation GIFT-128 and 104.1 cpb of constant time implementation AES-128.
Through this, we showed that SPEEDY can be run very efficiently in software
and can be applied in microcontrollers. The proposed technique is likely to be
applicable to other processors, and in the future, we plan to implement other
platforms (e.g. Cortex-M4). The proposed implementation is working in constant
timing, which has an advantage against timing attacks. In the future work, we
intend to apply an efficient masking technique for additional side-channel secu-
rity.

References

1. G. Leander, T. Moos, A. Moradi, and S. Rasoolzadeh, “The SPEEDY family of
block ciphers: Engineering an ultra low-latency cipher from gate level for secure
processor architectures,” IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, vol. 2021, p. 510–545, Aug. 2021.

2. T. Reis, D. Aranha, and J. López, “PRESENT runs fast,” pp. 644–664, 08 2017.
3. A. Adomnicai, Z. Najm, and T. Peyrin, “Fixslicing: A new GIFT representation:

Fast constant-time implementations of GIFT and GIFT-COFB on ARM Cortex-M,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2020,
p. 402–427, Jun. 2020.

4. P. Schwabe and K. Stoffelen, “All the AES you need on Cortex-M3 and M4,”
pp. 180–194, 10 2017.

5. E. Biham, “A fast new DES implementation in software,” in Fast Software En-
cryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,
Proceedings, vol. 1267 of Lecture Notes in Computer Science, pp. 260–272, Springer,
1997.

6. L. May, L. Penna, and A. Clark, “An implementation of bitsliced DES on the
pentium MMX,” pp. 112–122, 01 2000.

