
DualRing : Generic Construction of
Ring Signatures with Efficient Instantiations?

Tsz Hon Yuen1, Muhammed F. Esgin2,3, Joseph K. Liu2, Man Ho Au1, and Zhimin Ding4

1 The University of Hong Kong, Hong Kong
{thyuen, allenau}@cs.hku.hk

2 Department of Software Systems and Cybersecurity,
Faculty of Information Technology, Monash University, Australia

{muhammed.esgin, joseph.liu}@monash.edu
3 CSIRO’s Data61, Australia

4 Rice University, USA
zd21@rice.edu

Abstract. We introduce a novel generic ring signature construction, called DualRing, which
can be built from several canonical identification schemes (such as Schnorr identification).
DualRing differs from the classical ring signatures by its formation of two rings: a ring of
commitments and a ring of challenges. It has a structural difference from the common ring
signature approaches based on accumulators or zero-knowledge proofs of the signer index.
Comparatively, DualRing has a number of unique advantages.

Considering the DL-based setting by using Schnorr identification scheme, our DualRing
structure allows the signature size to be compressed into logarithmic size via an argument of
knowledge system such as Bulletproofs. We further improve on the Bulletproofs argument
system to eliminate about half of the computation while maintaining the same proof size. We
call this Sum Argument and it can be of independent interest. This DL-based construction,
named DualRing-EC, using Schnorr identification with Sum Argument has the shortest ring
signature size in the literature without using trusted setup.

Considering the lattice-based setting, we instantiate DualRing by a canonical identifica-
tion based on M-LWE and M-SIS. In practice, we achieve the shortest lattice-based ring
signature, named DualRing-LB, when the ring size is between 4 and 2000. DualRing-LB is
also 5× faster in signing and verification than the fastest lattice-based scheme by Esgin et
al. (CRYPTO’19).

Keywords: Ring Signature · Generic Construction · Sum Argument · M-LWE/SIS

1 Introduction

Ring signatures [37] allow a signer to dynamically choose a set of public keys (including his/her
own) and to sign messages on behalf of the set, without revealing who the real signer is. In
addition, it is impossible to check if two signatures are issued by the same signer. Ring signatures
provide anonymity and they are widely used in privacy-preserving protocols such as e-voting,
whistleblowing and privacy-preserving cryptocurrencies.

Classical Ring Structure. The classical ring signatures [37] for a set of n public keys pk are
constructed by computing n− 1 “pseudo-signatures” (the outputs computed from the verification
function) sequentially in a ring structure first and then using one signer secret key to create a real
signature. These n signatures together form a ring signature on behalf of pk.

Abe et al. [2] generalized this idea in a generic construction (AOS ring signature), which can be
built from two types of standard signatures: Type-H (Hash-and-one-way type, e.g., RSA signature)
and Type-T (Three-move type, e.g., Schnorr signature). Borromean ring signatures [35] used the
ring structure in [2] to compress multiple ring signatures. Its variant is used in privacy-preserving
cryptocurrency Monero.

? This is the full version of the paper in [38].

2 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

From Accumulator to Zero-Knowledge Proof. The major drawback of the above ring struc-
ture approach is the signature size of O(n). Therefore, researchers used other cryptographic prim-
itives to build ring signatures.

An accumulator allows the signer to “compress” n public keys into a constant size value and
there is a witness showing that the signer’s public key is in the set of public keys. The advantage
of the accumulator-based ring signature [17] is the constant signature size. However, most of the
existing accumulators require a trusted setup, which is often not desirable.

Another main approach to constructing an efficient ring signature is to use a zero-knowledge
proof to prove knowledge of the secret key with respect to one of the public keys in the ring. The
state-of-the-art proof size is O(log n) by the use of one-out-of-many proof [23].

1.1 DualRing: New Generic Construction of Ring Signature

In this paper, we revisit the classical ring structure approach and design a novel dual ring structure
to build a new generic construction of ring signatures. Let us first recall how a Type-T signature
works and how the AOS ring signature [2] is built on top of it.

A Type-T signature involves the following three functions in its signing (we use Schnorr signa-
ture as a running example, indicated inside [], with a secret key sk, a public key pk = gsk and a
message M): a commit function A, which outputs a commitment R [A : gr → R]; a hash function
H, which outputs a challenge c [H(M,R) → c]; and a response function Z, which outputs a re-
sponse z [Z : r − c · sk→ z]. A Type-T signature is then σ = (c, z). For the verification algorithm,
one runs a function V to reconstruct R from σ [V : gz · pkc → R′], and then runs H to check if c

is correct [H(M,R′)
?
= c].

Fig. 1: Structure of the AOS ring signature from a Type-T Signature in [2].

Now, in a Type-T AOS ring signature for public keys pk = {pk1, . . . , pkn}, the signer (with
index j) follows the structure in Fig. 1, where the signer is assumed to have skj corresponding to
pkj . In particular, (1) the signer picks a randomness rj to generate Rj via the commit function
A. (2) The signer uses the commitment Rj to compute the (j + 1)-th challenge cj+1 by the hash
function H. (3) For i = j + 1, . . . , n, 1, . . . , j − 1 by picking a random (i + 1)-th response zi and
the public key of the (i)-th user pki, the signer can reconstruct the (i)-th commitment Ri using
the function V as in verification and generate the (i + 1)-th challenge ci+1 by the hash function
H. A ring is then formed sequentially. (4) The last step is to compute zj from skj , cj , rj using the

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 3

Fig. 2: Structure of DualRing construction

response function Z. The final ring signature is composed of a single challenge c1 and n responses
(z1, . . . , zn).

Overview of DualRing. We now describe our novel generic construction of ring signatures called
DualRing. Let � and ⊗ be two commutative group operations (e.g., modular multiplication and
modular addition). We first modify the definition of a Type-T signature as follows:

– the verification function V (pk, z, c) within the verification algorithm can be divided into two
functions V1(z) and V2(pk, c) (pk is the public key, c is the challenge and z is the response)
such that

V (pk, z, c) = V1(z)� V2(pk, c) [Schnorr: V1 : gz, V2 : pkc].

Using this property, we construct a ring signature with a dual-ring structure as in Fig. 2.
Particularly, for a set of public keys pk = (pk1, . . . , pkn) and a secret key skj , (1) the signer
first picks some randomness rj . (2) He further picks random challenges c1, . . . , cj−1, cj+1, . . . , cn,
and (3) forms an R-ring using the group operation � with the functions A and V2. (4) Then he
computes R as:

R = A(skj ; rj)�
V2(pkj+1, cj+1)� · · · � V2(pkn, cn)� V2(pk1, c1)� · · · � V2(pkj−1, cj−1).

After that, the signer forms a C-ring using the group operation ⊗, where the “missing” challenge
(5) cj is computed as:

cj = H(M,pk, R)� cj+1 � · · · � cn � c1 � · · · cj−1 (where� is the inverse of ⊗).

As a result, the following equation is satisfied

c1 ⊗ · · · ⊗ cn = H(M,pk, R) (1)

to form the link connecting the two rings for the input message M and the list of public key
pk. (6) Lastly, the response z is computed by running Z(skj , cj , rj). The final ring signature is
composed of a single response z and n challenges (c1, . . . , cn), in contrast of the AOS signature
which is composed of a single challenge c1 and n responses (z1, . . . zn).

Advantages of DualRing over the AOS Ring Signature. The advantage of DualRing is
threefold. Firstly, the AOS ring signature is composed of a single challenge and n responses, while

4 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

DualRing is composed of n challenges and a single response. When instantiated with cryptosystems
having a small challenge size and a large response size (e.g., lattice-based cryptosystem), it leads
to a significant saving in terms of signature size.

Secondly, we observe that the AOS ring signature includes the hash function H in the ring
structure (Fig. 1), and this makes it difficult to further shorten the signature. On the other hand,
DualRing uses two separate rings with simple group operations, which allows the use of an argu-
ment of knowledge to efficiently prove the relation in Eq. (1). We instantiate this in the discrete
logarithm (DL) setting with communication complexity O(log n).

Thirdly, our DualRing, when instantiated with the Schnorr identification, has a simpler secu-
rity reduction when compared to the alternative construction of the AOS ring signature in the
Appendix A of [2]. They described that “the reduction is quite costly because we may have to have
at most n successful rewinding simulations” and hence they did not give a full proof. On the other
hand, our instantiation does not incur such security loss.

Technical Challenges. One of technical challenges we solve in this paper is to give a security
proof for DualRing, as well as the Type-T AOS ring signature which has not been formally proven.
Note that it has been an open problem to prove the security of the generic construction of the Type-
T AOS ring signature [2] (only a security proof for the instantiation using the Schnorr signature
was previously given). We solve this open problem by using canonical identification [1] (which is
a three-move identification scheme that can be transformed to a Type-T signature by the Fiat-
Shamir heuristic) in the construction and the security proofs. While the Type-T signature restricts
the input to the hash function to include the signer’s public key, the hash function H of the AOS
ring signature takes the set of public keys pk as an input. This difference hinders the use of a
forgery of the AOS ring signature to break the unforegability of the Type-T signature. On the
other hand, the canonical identification does not have such a restriction on the generation of the
challenge. The security proof of the Type-T AOS ring signature is given in the Appendix A.

In order to prove the security of DualRing, we further define a variant called Type-T* canonical
identification, with the following properties:

1. the verification V (pk, z, c) can be divided into two algorithms V1(z) and V2(pk, c) such that
V (pk, z, c) = V1(z)� V2(pk, c);

2. V1 is additively/multiplicatively homomorphic;

3. given the secret key sk corresponding to pk and a challenge c, there exists a function T which
outputs ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c);

4. the challenge space ∆c is a group.

Property 1 of Type-T* canonical identification allows us to build the R-ring as in Fig. 2. Looking
ahead, Property 3 is needed in the proof of DualRing’s unforgeability to calculate ẑi such that
V1(ẑi) = V2(pki, ci) for i 6= j, and then we use Property 2 to combine z with all ẑi’s to break the
Type-T* canonical identification. Property 4 is needed in the proof of DualRing’s anonymity to
make sure that the challenge cj constructed in a specific way is indistinguishable from the others.
We further define a new security model for canonical identification called special impersonation,
which is a combination of the security models of impersonation and special soundness. Some stan-
dard identification schemes such as Schnorr identification and GQ identification [24] are examples
of Type-T* canonical identification secure against special impersonation.

1.2 Efficient Instantiations of DualRing

DualRing-EC: Logarithmic DL-based Ring Signature by Sum Argument. Having es-
tablished a secure generic construction, DualRing, we try to compress the n challenges (c1, . . . cn)
via an argument of knowledge by exploiting the following simple algebraic structure:

c1 ⊗ · · · ⊗ cn = H(M,pk, R).

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 5

Ring # elements in signature Signature Size (Bytes)
Signatures G Zp n = 2 n = 8 n = 64 n = 2048 n = 4096

[30] 4 logn +2 5 logn + 4 480 1070 1946 3114 3406

[23] 4 logn 3 logn + 1 260 716 1400 2540 2768

[11] logn + 12 3
2

logn + 6 669 831 1074 1479 1560

[39] 2 logn+ 7 7 521 653 851 1181 1247

[28] 2 log(n+ 2) + 4 5 424 523 721 1051 1117

DualRing-EC 2 logn+ 1 3 195 327 525 855 921

Table 1: O(log n)-size DL-based ring signature schemes for n public keys, where p is a 256-bit
prime.

This is theoretically a new approach to construct efficient ring signatures by combining the classical
ring structure approach with the argument of knowledge5.

In the DL setting, the group operation ⊗ is the modular addition. We improve the Bulletproof’s
inner product argument [14] into a new proof system called Sum Argument, which allows a prover
to convince a verifier that he/she has the knowledge of a vector of scalars (c1, . . . , cn) such that
their summation is a public value (i.e., H(M,pk, R)). Our Sum Argument only requires about
half of the computation of Bulletproof while keeping the same proof size. We show how to obtain
it by removing one of the two vectors of the inner product argument required in Bulletproof and
to achieve a proof of size O(log n).

Based on DualRing, Schnorr identification and the sum argument above, we design DualRing-
EC, the shortest ring signature scheme in the literature without using trusted setup, as shown in
Table 1. The signature size is O(log(n)). When implemented on an elliptic curve with a 256-bit
modulus, DualRing-EC is at least 54% (resp., 27%, 18%) shorter than [28] for a ring size of 2
(resp. 64, 4096). Our scheme is at least 46% (resp., 64%, 67%) shorter than [30] for a ring size of
2 (resp. 64, 4096) at the same security level of 128-bit. Therefore, DualRing-EC is highly efficient
and is useful for real world applications.

DualRing-LB: Shortest Lattice-based Ring Signature for Ring Size between 4 and
2000. We instantiate DualRing in the M-LWE/SIS setting and obtain DualRing-LB, the shortest
lattice-based ring signature for a ring size between 4 and 2000. As mentioned above, DualRing-
LB consists of a single response and n challenges. The size of a challenge (around 256 bits) in
lattice-based identification is often much smaller than the size of a response (around a few KB).
As a result, we obtain a compact lattice-based ring signature even without requiring a lattice-
based sum argument. We compare with the shortest linear-size ring signature in [31] and shortest
logarithmic-size ring signatures in [10,22] in Table 2. DualRing-LB is shorter than [10,22] for ring
size less than about 2000 (note that our ring size can be arbitrary number). [31] is longer for all
the ring sizes larger than 4, and it is based on a stronger NTRU assumption. The isogeny-based
construction in [10] is at a much lower security level (60 bits of quantum security), is extremely
slow (in the order of minutes), and has longer signatures than ours in the range around 5-300.

It is estimated in [19] that the running time of [19] is faster than Raptor for medium/large-sized
rings (n ≥ 1024) and also the estimated runtimes of [19] are significantly faster than those in [10].
The construction in [22] is an optimized version of that in [19] to reduce the signature length at the
cost of computational efficiency. Therefore, the scheme by Esgin et al. [19] is the fastest scalable
ring signature from lattices. We implement DualRing-LB together with the scheme in [19] and
find that our scheme is at least 5 times faster in terms of sign and verify. We, therefore, expect an
optimized implementation of our scheme to run faster than Raptor [31] and Falafl [10] as well for
most ring sizes.

5 Here, we do not require the zero-knowledge property since the anonymity of DualRing is provided by
the ring structure.

6 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Ring Signatures
Signature Size (Bytes)

Assumption
n = 2 n = 8 n = 64 n = 1024 n = 2048 n = 4096

Raptor [31] 2532 10128 81024 1296384 2592768 6564888576 NTRU

Falafl (for 2) [10] 49000 50000 52000 54000 54500 55000 M-LWE+M-SIS

MatRiCT [22] 18000 19000 31000 48000 53000 59000 M-LWE+M-SIS

DualRing-LB
4480 4630 6020 31160 55500 106570 M-LWE+M-SIS

(Algo. 3 + 6)

Table 2: Lattice-based ring signatures for n public keys. DualRing-LB can be slightly optimized
as described in Appendix D.

1.3 Our Contributions

Our contributions can be summarized as follows.

– The main contribution of our paper is the introduction of the novel dual ring structure Du-
alRing to design generic construction of ring signatures, which differs significantly from the
mainstream zero-knowledge-based or accumulator-based approaches.

– DualRing consists of n challenges and a single response, while the AOS ring signature consists
of a single challenge and n responses. This significant difference allows us to produce much
shorter signatures in both DL-based and lattice-based setting.

– In the DL-based setting, the DualRing structure allows the signature size to be compressed into
O(log n) size, where n is the number of users in the ring, by using argument of knowledge system
such as Bulletproofs [14]. We further enhance the Bulletproofs by eliminating almost half of
the computation while maintaining the same proof size and thus achieve much better efficiency.
We call this new argument of knowledge Sum Argument which can be of independent interest.
Our resulting DualRing-EC deploying Schnorr identification scheme with Sum Argument is
the shortest ring signature in the literature without using trusted setup.

– In the lattice-based setting, we instantiate DualRing by constructing a canonical identification
based on M-LWE and M-SIS assumptions. DualRing-LB is the shortest lattice-based ring
signature for the most practical ring sizes of 4 up to 2000.6 We also implement DualRing-LB
and show that it is at least 5 times faster in signing and verification than the state-of-the-art
fastest construction (in terms of running times of signing and verification) in [19].

2 Related Work

Accumulator-Based Approach. Ring signatures can be constructed by accumulators [17]. The
advantage of the accumulator approach is the constant signature size. However, the existing RSA-
based and pairing-based accumulators both require a trusted setup for generating system pa-
rameters, which is not desirable for systems without a mutually trusted party. There exists a
lattice-based accumulator [29] with no trusted setup, but it is not practical (the signature size is
in the order of several MBs). Merkle-tree based accumulator does not require trusted setup. How-
ever, the membership proof of Merkle-tree based accumulator involves expensive zero-knowledge
proof on hash function input.

Zero-Knowledge Proof Based Approach. The mainstream approach to construct a ring sig-
nature is to use a zero-knowledge proof on a signer index with the corresponding secret key.

6 A ring signature of n users has some inherent limitations such that it requires at least n operations in
signing and verification and storage of n public keys. These two limitations restrict the ring size to go
up a lot for many practical applications. On the other hand, for very small ring sizes of, say, 2-5, the
anonymity guarantee is very weak. For example, there has been attacks against Monero (cf. [27, 36])
that exploit the earlier use of very small rings of size < 6. Hence, one may argue that the most relevant
range in practice falls inside 10-2000.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 7

Most efficient schemes in the literature is to design a specific zero-knowledge proof for the desig-
nated cryptosystem (e.g., DL-based, RSA-based or lattice-based). In particular, a one-out-of-many
proof [23] shows that the prover knows an opening of one out of n commitments. The index of such
commitment can be expressed as a binary string (b1, . . . blogn). The zero-knowledge proof demon-
strates the correctness of such an index, and hence the proof size is O(log n). Since a public key
can be viewed as a commitment to zero7, there are multiple ring signature schemes proposed using
one-out-of-many proofs, including the DL-based setting [11,23] and lattice-based setting [19,20,22].
These ring signatures have size of O(log n).

Logarithmic-Size Generic Construction. The logarithmic-size generic construction of ring
signature in [3] is secure in the standard model by using a public key encryption, a standard
signature, a somewhere perfectly binding hash function with private local opening, and a non-
interactive witness-indistinguishable (NIWI) proof systems. Their DL-based construction has a
signature size of 2(log n)2 + 4 elements in G and 2 log n elements in Zp with an additional NIWI
proof (not instantiated in [3]), and hence it is not as efficient as the schemes in table 1. The
lattice-based construction in [3] is also not efficient.

Recent and Parallel Work. A recent and parallel work by Lyubashevsky et al. [34] proposed a
lattice-based ring signature scheme, which is logarithmic-size. Another concurrent work by Esgin
et al. [21] introduced new techniques to instantiate the logarithmic-size ring signature in [22] more
efficiently. Despite being linear-sized, our DualRing-LB remains smaller than these two recent
proposals for about n ≤ 400.

3 Preliminaries

Notations. In this paper, we use λ as the security parameter. For the notion a ←s S, it means
that we randomly pick an element a from a set S. We use bold letters such as a to represent a
vector (or matrix for lattice-based construction).

Argument of Knowledge. An argument consists of three PPT algorithms (S,P,V), which are
CRS (Common Reference String) generator S, the prover P and the verifier V. A CRS σ̂ is produced
by S on input λ and a transcript tr is produced by P and V on inputs s and t, which is denoted by
tr ← 〈P(s),V(t)〉. We write 〈P(s),V(t)〉 = b to denote that the verifier V accepts b = 1 or rejects
b = 0. We define the language:

L = {x | ∃w : (σ̂, x, w) ∈ R} ,

where w is a witness and x is a set of statements u in the relation R.
An argument of knowledge (S,P,V) should satisfy perfect completeness and statistical witness-

extended emulation [12]. Informally, completeness means that a prover with a witness w for x ∈ L
can convince the verifier of this fact. Statistical witness-extended emulation means that given an
adversary that produces an acceptable argument with probability ε, there exists an emulator that
produces a similar argument with probability ε together with a witness w.

Definition 1 (Perfect completeness). For any non-uniform polynomial time adversary A,
(S,P,V) has perfect completeness if

Pr
[

(σ̂, u, w) /∈ R or 〈P(σ̂, u, w),V(σ, u)〉 = 1
∣∣ σ̂ ← S(λ), (u,w)← A(σ̂)

]
= 1.

Definition 2 (Statistical Witness-Extended Emulation). For any deterministic polynomial
time prover P∗, (S,P,V) has witness-extended emulation if there is a polynomial time emulator E
such that for any pair of interactive adversaries A1 and A2 such that

Pr

A1(tr)

= 1

∣∣∣∣∣∣∣∣∣
σ̂ ← S(λ),

(u, s)← A2(σ̂),

tr← 〈P∗(σ̂, u, s),
V(σ̂, u)〉

 ≈ Pr

A1(tr) = 1∧
(tr is accepting

⇒ (σ̂, u, w) ∈ R)

∣∣∣∣∣∣∣
σ̂ ← S(λ),

(u, s)← A2(σ̂),

(tr, w)← EO(σ̂, u)

 ,
7 E.g., a DL-based public key gx is a Pedersen commitment to zero.

8 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

where the oracle O = 〈P∗(σ̂, u, s),V(σ̂, u)〉 can rewind to some point and resume with new ran-
domness for the verifier V from this point onward.

Such an emulation above is used to define knowledge-soundness [12]. We consider s (which is the
output of the adversary A2 in the above equation) as the internal state of P∗ with randomness,
which follows that E can extract a witness whenever P∗ generates a convincing argument in s.

4 Security Model

We review the security model of a ring signature in [8]. A ring signature consists of four PPT
algorithms as follows:

RS


Setup(λ) →param

KeyGen(param) →(pk, sk)

Sign(param,M,pk, sk) →σ
Verify(param,M,pk, σ) →1/0

We use pk to represent a vector of public keys (pk1, . . . , pkn). For simplicity, we omit the input of
system parameters param to algorithms other than Setup in the rest of this paper.

Unforgeability w.r.t. insider corruption. Unforgeability w.r.t. insider corruption [8] means
that the adversary A cannot generate a valid signature without a secret key, even if he can
adaptively corrupt some honest participants and obtain their secret keys.

Definition 3 (Unforgeability w.r.t. Insider Corruption). For any polynomial time adver-
sary A, a ring signature is unforgeable if for some integer qk polynomial in λ:

Pr

1← Verify(M∗,pk∗, σ∗),
pk∗ ⊆ S \ C, (M∗,pk∗, ·)
was not the input of SO

∣∣∣∣∣∣
param← Setup(λ), for i ∈ [1, qk] :

(p̂ki, ŝki)← KeyGen(), S := {p̂ki}
qk
i=1,

(M∗,pk∗, σ∗)← ACO,SO(param, S)

 ≤ negl(λ),

where the oracles given to A is defined as:

– CO(i) outputs ŝki. We denote C as the set of corrupted users queried in CO.
– SO(M,pk, j): On input a message M , a vector of public keys pk and the signer index j, the

Signing Oracle outputs ⊥ if p̂kj /∈ pk. Otherwise, it outputs a signature σ ← Sign(M,pk, ŝkj).

Anonymity against full key exposure. We use the strong anonymity model in [8] that the
adversary A is given all randomness to generate the secret keys.

Definition 4 (Anonymity against Full Key Exposure). For any polynomial time adversary
(A1,A2), a ring signature is anonymous if for some integer qk polynomial in λ:∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′,

p̂ki0 , p̂ki1
∈ S ∩ pk∗.

∣∣∣∣∣∣∣∣∣∣∣∣

param← Setup(λ), for i ∈ [1, qk] :

(p̂ki, ŝki)← KeyGen(param;ωi),

S := {p̂ki}
qk
i=1,

(M∗,pk∗, i0, i1, St)← ASO1 (param, S),

b←s {0, 1}, σ ← Sign(M∗,pk∗, ŝkib),
b′ ← A2(σ, {ωi}qki=1, St)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Note that the set of public keys pk∗ chosen by A1 can include adversarially generated public
keys.

5 DualRing: Generic Ring Signature Construction

In this section, we show how to construct a generic ring signature scheme, DualRing, from a special
kind of canonical identification scheme.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 9

Algorithm 1: Type-T Signature

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → ∆c;
3 return param; // including H .

4 Procedure Sign(M, sk):
5 r ← ∆r;
6 R = A(sk; r);
7 c = H(M,R);
8 z = Z(sk, r, c);
9 return σ = (z, c);

10 Procedure KeyGen():
11 return (pk, sk);

12 Procedure Verify(M, pk, σ):
13 parse σ = (z, c);
14 R′ = V (pk, z, c);
15 if c 6= H(M,R′) then
16 return 0;

17 return 1;

Algorithm 2: Canonical Identification

1 Procedure Setup(λ):
2 return param;

3 Procedure KeyGen():
4 return (pk, sk);

5 Procedure Proof1(sk):
6 r ←s ∆r;
7 R = A(sk; r);
8 return (R, r);

9 Procedure Ch(R):
10 return c;

11 Procedure Proof2(sk, r, c):
12 return z = Z(sk, r, c);

13 Procedure Verify(pk, z, c):
14 R′ = V (pk, c, z);
15 if c 6= Ch(R′) then
16 return 0;

17 auxiliary checking with R′, c, z;
18 return 1;

5.1 AOS Ring Signature

The AOS ring signature [2] can be constructed from a standard signature of Type-H or Type-T.
We review the definition of Type-T in Algorithm 1.

– The Sign algorithm uses the algorithm A to generate a commitment R using a randomness
r (chosen from a randomness domain ∆r). Then, the message and R are hashed by H to
obtain the hash value c (within the range of hash function ∆c). Finally, the algorithm uses
the function Z to generate the signature using the secret key sk, r and c.

– The Verify algorithm allows the reconstruction of R′ from the public key pk, z and c using
the function V . The signature is validated by using H on the message and R′.

Schnorr signature, Guillou-Quisquater signature [24], Katz-Wang signature [25] and EdDSA [9]
are examples of Type-T signatures. Using Type-T signatures, a Type-T AOS ring signature can be
constructed as shown in Fig. 1. However, as mentioned before, there is no security proof for this
generic construction in [2], but only the instantiation with Schnorr signature is proven secure in [2].
In this paper, we give the first security proof for Type-T AOS ring signature in the Appendix A,
which solves the open problem in [2].

5.2 Canonical Identification

Canonical identification [1] is a three-move public-key authentication protocol of a specific form.
We first give canonical identification in Algorithm 2, based on the definition of Type-T signature
in [2]. We add the additional checking in line 17 of Algorithm 2, which is useful for lattice-
based construction. It is known that after applying the Fiat-Shamir transformation to canonical
identification, we obtain a Type-T signature.

We define a new security notion of special impersonation under key only attack for canonical
identification. It can be viewed as a combination of the special soundness and the impersonation
attack: the adversary wins by outputting two valid transcripts with the same commitment.

10 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Definition 5. A canonical identification is secure against special impersonation under key only
attack for any polynomial time adversary A:

Pr

Verify(pk, z, c)
= Verify(pk, z′, c′) = 1
∧ c 6= c′ ∧ c, c′ ∈ ∆c

∣∣∣∣∣∣
param← Setup(λ),
(pk, sk)← KeyGen(),
(z, c, z′, c′)← A(param, pk)

 ≤ negl(λ).

We use this new definition instead of special soundness together with key recovery under key
only attack in this paper, because the standard special soundness definition [26] is not satisfied by
the efficient lattice-based identification scheme used in §7. This stems from the so-called ‘knowledge
gap’ in efficient lattice-based zero-knowledge proofs. In particular, the knowledge extractor in such
schemes is not guaranteed to recover a secret key of a given public key, but rather recovers an
‘approximate’ witness of a relaxed relation closely related to the relation satisfied by a public-secret
key pair. Therefore, to keep the generality of our results, we use the special impersonation under
key only attack. We refer the reader to earlier works such as [19, 20, 32, 33] for further discussion
about this knowledge/soundness gap issue.

We also note that for the settings where the knowledge/soundness gap issue do not arise (i.e.,
standard special soundness is satisfied) such as the DL-setting, ‘special impersonation under key
only attack’ implies the standard ‘key recovery under key only attack’ [26] since the knowledge
extractor in that case recovers a secret key sk∗ with (sk∗, pk) ∈ KeyGen() given a public key pk
and two accepting transcripts.

Type-T* Canonical Identification. Next, we define Type-T* canonical identification, which is a
canonical identification with the following properties.

1. The function V in the verify algorithm consists of two functions V1 and V2 during the recon-
struction of R′, such that line 14 in Algorithm 2 becomes:

R′ = V1(z)� V2(pk, c),

where � is a commutative group operation for the domain of R′.
2. The function V1 is additively/multiplicatively homomorphic, i.e., V1(z1) � V1(z2) = V1(z1 ⊕
z2), where ⊕ is the additive/multiplicative operation. The homomorphic operation should be
efficiently computable.

3. Given the secret key sk corresponding to pk and c, there exists a function T that outputs
ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c).

4. The challenge space ∆c is a group with operation “⊗”. We denote the inverse operation of
⊗ as �. (For example, if ⊗ is defined as “ + ”, � will be “ − ”.) If c1 and c2 are uniformly
distributed in ∆c, then c1 ⊗ c2 is also uniformly distributed in ∆c.

It is easy to see that Schnorr identification and Guillou-Quisquater identification [24] are exam-
ples of Type-T* canonical identification. There are in fact many more examples from the literature.
For many identification schemes reviewed in [6], the verification function V can be split into V1(z)
and V2(pk, c), such as the FFS family, FF family, and Hs family. Apart from the above schemes, the
identification scheme from Katz-Wong signature [25], Chaum-Pedersen identification [15] and the
Okamoto-Schnorr identification are some examples of Type-T* canonical identification. Type-T*
canonical identification can also be applied to the lattice-based setting, in particular, effectively
to all “Fiat-Shamir with Aborts” [32,33]-based identification schemes (as shown in Section 7).

Schnorr identification. The Setup algorithm outputs a cyclic group G of prime order p, with
a generator g. For each KeyGen execution, the algorithm picks a random sk ∈ Zp and computes
pk = gsk. The functions A,Z, V1, V2 are defined as:

R = A(sk; r) := gr,

z = Z(sk, r, c) := r − c · sk mod p,

R′ = V1(z)� V2(pk, c) := gz · pkc.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 11

Note that V1 is additively homomorphic: V1(z1) � V1(z2) = gz1 · gz2 = gz1+z2 = V1(z1 + z2).
Given the secret key sk corresponding to pk and c, it is easy to compute ẑ = T (sk, c) := sk · c mod
p such that V1(ẑ) = gsk·c = pkc = V2(pk, c). The challenge space Zp is a group under addition
modulo p. Therefore, Schnorr identification is a Type-T* canonical identification.

Theorem 1. Schnorr identification is secure against special impersonation under key only attack
if the DL assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under key only attack.
The algorithm B is given a DL problem (g, y) for a cyclic group G of prime order p. B gives
param = (G, p, g) and pk = y to A.
A returns (c, z, c′, z′) where c 6= c′. Then we have:

gz · pkc = gz
′
· pkc

′
.

Therefore B can extract the secret key sk = z−z′
(c′−c) as the solution to the DL problem. ut

Guillou-Quisquater (GQ) identification [24]. The Setup algorithm outputs a pair (N, e),
where N = pq, p and q are large prime numbers, e is a prime number less than N/4 and
gcd(e, φ(N)) = 1. For each KeyGen execution, the algorithm picks a random sk ∈ ZN and
calculates pk = ske. The functions A,Z, V1, V2 are defined as:

R = A(sk; r) := re,

z = Z(sk, r, c) := skc · r mod N,

R′ = V1(z)� V2(pk, c) := ze · pk−c mod N.

Note that V1 is multiplicatively homomorphic: V1(z1)�V1(z2) = ze1 · ze2 = (z1z2)e = V1(z1 · z2).
Given the secret key sk corresponding to pk and c, it is easy to compute ẑ = T (sk, c) := sk−c mod
N such that V1(ẑ) = ẑe = sk−ce = pk−c = V2(pk, c). The challenge space of GQ identification is Ze
and it is a group under addition. Therefore, GQ identification is a Type-T* canonical identification.

Theorem 2. GQ identification is secure against special impersonation under key only attack if
the RSA assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under key only attack.
The algorithm B is given a RSA problem (N, e, y). B gives param = (N, e) and pk = y to A.

A returns (c, z, c′, z′), where c 6= c′, we have ze · pk−c = z′
e · pk−c

′
. Then:

(z/z′)e = pk(c−c
′)

Since e is a prime and c, c′ ∈ Ze, B can compute integers A and B such that:

A · e+B · (c− c′) = gcd(e, (c− c′)) = 1,

by the Euclidean algorithm. Hence we have:

(z/z′)Be = pk1−Ae.

Therefore we can extract the secret key sk = (z/z′)BpkA as the solution to the RSA problem. ut

5.3 Our Construction: DualRing

We denote a Type-T* canonical identification scheme by T*. We use the symbol
⊙

and
⊗

to
represent consecutive � and ⊗ operations, respectively:

n⊙
i=1

ai := a1 � a2 � . . .� an−1 � an,
n⊗
i=1

bi := b1 ⊗ b2 ⊗ . . .⊗ bn−1 ⊗ bn.

12 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Algorithm 3: DualRing

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → ∆c;
3 return param← T*.Setup(λ);

4 Procedure
Sign(param,m,pk = {pk1, . . . , pkn}, skj):

5 r ←s ∆r, ci ←s ∆c for all i 6= j;
6 R = A(skj ; r)�

⊙
i 6=j V2(pki, ci);

7 c = H(m,pk, R);
8 cj = c�

⊗
i6=j ci;

9 z = Z(skj , r, cj);
10 return σ = (c1, . . . , cn, z);

11 Procedure KeyGen(param):
12 return (pk, sk)← T*.KeyGen(param);

13 Procedure
Verify(param,m,pk = {pk1, . . . , pkn}, σ):

14 parse σ = (c1, . . . , cn, z);
15 R = V1(z)�

⊙n
i=1 V2(pki, ci);

16 c =
⊗n

i=1 ci;
17 if c 6= H(m,pk, R) then
18 return 0;

19 auxiliary checking with (R, c, z);
20 return 1;

DualRing is shown in Algorithm 3. The high level idea is that we use V2 to add the decoy
public keys pki and their corresponding challenge values ci to the commitment R first. After
getting the real challenge value c, the signer with index j computes cj = c �

⊗
i 6=j ci ∈ ∆c. The

signer computes z according to the canonical identification scheme. To verify, the commitment R
is reconstructed from all public keys and their corresponding challenge values. The value

⊗
∀i ci

should be equal to the real challenge value c.

Theorem 3. DualRing is unforgeable w.r.t. insider corruption in the random oracle model if T*
is secure against special impersonation under key only attack and |∆c| > qs(qh + qs− 1), where qs
and qh are the number of queries to the signing oracle and the H oracle respectively.

Proof. Denote A as a PPT adversary breaking the unforgeability w.r.t. insider corruption of
DualRing. We build an algorithm B to break the special impersonation under key only attack of
T*. Suppose the algorithm B is given a system parameters param and a public key pk∗ from its
challenger C.

Setup. B picks a random index i∗ ∈ [1, qk]. B runs (p̂ki, ŝki) ← KeyGen() for i ∈ [1, qk], i 6= i∗. B
sets p̂ki∗ = pk∗. B gives param and S := {p̂ki}

qk
i=1 to A.

Oracle Simulation. B answers the oracle queries as follows.

– H: B simulates H as a random oracle.

– CO: On input i, B returns ŝki (If i = i∗, B declares failure and exits.).

– SO: On input a message M , a set of public key pk = (pk1, . . . , pkn) and the signer index j, it

outputs ⊥ if p̂kj /∈ pk. If j 6= i∗, then B returns σ ← Sign(param,M,pk, ŝkj).

Otherwise, B picks random c1, . . . , cn ∈ ∆c and z from the domain of response ∆z according
to the distribution of the output of Z(·). B computes R = V1(z) �

⊙n
i=1 V2(pki, ci). B sets

H(M,pk, R) =
⊗n

i=1 ci in the random oracle. If such value has been set in the random oracle,
B declares failure and exits. B returns σ = (c1, . . . , cn, z).

Challenge. A returns a forgery (M∗, {p̂kij}
n
j=1, σ

∗ = (c∗1, . . ., c∗n∗ , z
∗)). If pk∗ 6= p̂kij for all j ∈ [1, n],

B declares failure and exits. Otherwise, we denote j∗ as the index such that pk∗ = p̂kij∗ . Denote

pk∗ = {p̂kij}
n
j=1 and compute R∗ as in the Verify algorithm. B rewinds to the point that

(M∗,pk∗, R∗) is queried to H and returns a different c′ instead. A returns another signature
σ′ = (c′1, . . . , c

′
n, z
′). Since both σ∗ and σ′ are valid signatures, We have:

R∗ = V1(z∗)�
n⊙
j=1

V2(p̂kij , c
∗
j) = V1(z′)�

n⊙
j=1

V2(p̂kij , c
′
j).

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 13

Note that it is impossible to have c∗j = c′j for all j ∈ [1, n] (since
⊗n

j=1 c
∗
j 6=

⊗n
j=1 c

′
j). If c∗j∗ = c′j∗ ,

B declares failure and exits. With probability at least 1/n, we have c∗j∗ 6= c′j∗ . Observe that:

V1(z∗)�
n⊙
j=1

V2(p̂kij , c
∗
j)

=V1(z∗ ⊕ ẑ∗1 ⊕ . . .⊕ ẑ∗j∗−1 ⊕ ẑ∗j∗+1 ⊕ . . .⊕ ẑ∗n)� V2(pk∗, c∗j∗)

=V1(z̃∗)� V2(pk∗, c∗j∗),

where ẑ∗i = T (ŝki, c
∗
i) for i ∈ [1, n] \ j∗ and z̃∗ = z∗ ⊕ ẑ∗1 ⊕ . . . ⊕ ẑ∗j∗−1 ⊕ ẑ∗j∗+1 ⊕ . . . ⊕ ẑ∗n.

Similarly we have V1(z′) �
⊙n

j=1 V2(p̂kij , c
′
j) = V1(z̃′) � V2(pk∗, c′j∗) for some z̃′. Then B can

return (c∗j∗ , z̃
∗, c′j∗ , z̃

′) to its challenger C.
Probability Analysis. We analyse the probability of success (i.e., not aborting) in the above sim-
ulation. For qc queries to the CO, the probability of success in the first query is (1 − 1

qk
). The

probability of success in the second query is at least (1 − 1
qk−1). The probability of success after

qc queries is at least (1 − 1
qk

)(1 − 1
qk−1) · · · (1 − 1

qk−qc+1) = qk−qc
qk

= 1 − qc
qk

. (It is implied by the

security model that qk > qc + n.)
For qs queries to the SO, the probability of success in the first query is at least (1 − qh

|∆c|),

where qh is the number queries to the H oracle. The probability of success after qs queries to SO
is at least

(1− qh
|∆c|

)(1− qh + 1

|∆c|
) · · · (1− qh + qs − 1

|∆c|
) ≥ (1− qh + qs − 1

|∆c|
)qs ≥ 1− qs(qh + qs − 1)

|∆c|
.

Here we assume that |∆c| > qs(qh + qs − 1).

The probability of pk∗ 6= p̂kij in the challenge phase is (1 − 1
qk−qc)(1 − 1

qk−qc−1) · · · (1 −
1

qk−qc−n+1) = qk−qc−n
qk−qc . If the probability of forgery by A is ε, then the probability of B does not

return failure before rewinding is

εb := ε(1− qc
qk

)(1− qs(qh + qs − 1)

|∆c|
)(1− qk − qc − n

qk − qc
)

= ε(1− qs(qh + qs − 1)

|∆c|
)(
n

qk
).

By the generalized forking lemma [4], the probability of a successful rewinding is at least εb
8 if

|∆c| > 8qh/εb (it runs in time τ · 8qn/εb · ln(8n/εb) if A runs in time τ). Finally we have c∗j∗ 6= c′j∗
with probability at least 1/n. As a result, the probability ε′ of B breaking the special impersonation
is:

ε′ ≥ (
εn

8qk
)(1− qs(qh + qs − 1)

|∆c|
).

if |∆c| > qs(qh + qs − 1) and |∆c| > 8qh/εb
8. We can further simplify the probability ε′ if we take

|∆c| ≥ 2qs(qh + qs − 1). Then if |∆c| > 16qhqk
εn , we have ε′ ≥ εn

16qk
. ut

Theorem 4. DualRing is anonymous in the random oracle model, if |∆c| > qs(qh+qs−1), where
qs and qh are the number of queries to the signing oracle and the H oracle respectively.

Proof. We show how to build an algorithm B providing perfect anonymity in the random oracle
model.

Setup. B runs param ← Setup(λ). B runs (pki, ski) ← KeyGen(param;ωi) for i ∈ [1, qk] with
randomness ωi. B gives param and S := {pki}

qk
i=1 to A1.

Oracle Simulation. B answers the oracle queries as follows.

8 The condition |∆c| > 8qh/εb is not needed if we use the forking lemma in [7] with a looser security
bound.

14 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

– SO: On input a message m, a set of public key pk with the signer index j, B returns σ ←
Sign(param,m,pk, skj).

– H: B simulates H as a random oracle.

Challenge. A1 gives B a message m and a vector of public keys pk and two indices i0, i1. B picks
random c1, . . . , cn ∈ ∆c and picks z from the domain of response ∆z according to the distribution
of the output of Z(·). B computes R = V1(z)�

⊙n
i=1 V2(pki, ci). B sets H(m,pk, R) =

⊗n
i=1 ci in

the random oracle. By Property 4, the distribution is correct. If the hash value is already set by
the H oracle, B declares failure and exits. B returns σ = (c1, . . . , cn, z) and {ωi}qki=1 to A2. B picks
a random bit b.

Output. Finally, A2 outputs a bit b′. Observe that b is not used in the generation of σ. Therefore,
A2 can only win with probability 1/2.

Probability Analysis. We analyse the probability of success (i.e., not aborting) in the above simu-
lation. For qh queries to the H oracle and qs queries to the SO, the probability of success in the
first query is at least (1− qh

|∆c|). The probability of success after qs queries to SO is at least

(1− qh
|∆c|

)(1− qh + 1

|∆c|
) · · · (1− qh + qs − 1

|∆c|
) ≥ (1− qh + qs − 1

|∆c|
)qs ≥ 1− qs(qh + qs − 1)

|∆c|
.

Here we assume that |∆c| > qs(qh + qs − 1). If B does not abort, then no PPT adversary can win
with non-negligible probability over half. ut

Difference with AOS Ring Signature. Our ring signature is a bit different from the AOS ring
signature. The AOS ring signature allows a mixture of different types of public keys, such as keys
from the Schnorr signature and the RSA signature. The security proof for the generic construction
of the AOS ring signature was not formally given in [2]. On the other hand, our scheme allows
different types of public keys from different Type-T* canonical identification schemes, with the
restriction that these canonical identification schemes should use the same V1 function9 (Otherwise,
we do not know which V1 function to use in the Verify algorithm). The security proof for our
generic construction holds for different Type-T* canonical identification schemes satisfying the
requirement above.

The AOS ring signature is generated sequentially by forming a “ring” of ci in a loop and
calculating zi for n times. On the other hand, our signature is generated by forming a “R-ring”
in one-shot during the commit phase, forming a “C-ring” in one-shot after getting the challenge
c and calculating z for one time only. Therefore, our scheme is more efficient than the AOS ring
signature.

Finally, our dual ring technique cannot be applied to the Type-H signature in [2]. Recall that
for our Type-T* DualRing, we require the use of V2(pki, ci) (for all non-signer indices) to generate
R. For Type-H, pki is tied with z by the one-way function F (z, pki). Hence, we cannot separate z
and pki into V1 and V2 to form the R-ring similarly.

Difference with CDS OR-proofs. The C-Ring in DualRing is similar to the use of secret
sharing in CDS 1-out-of-n OR proof [16]. Our construction of R-Ring leads to a single R and
hence a single z in the signature. On the contrary, [16] does not have the formation of R-Ring
and still has n commitments Ri’s. It results in n responses zi’s. So, the ring signature constructed
by [16] consists of (ci, zi) for i ∈ [n]. There is no trivial way to combine all zi’s, because each zi is
only related to Ri and ci, and not to other zj ’s. Hence, [16] does not (easily) achieve an O(log n)
size ring signature in the DL-based setting.

9 which implicitly implies all users should use the same set of security parameters including the same
group and generator for their sk and pk.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 15

5.4 Update over the Conference Version

Here, we describe an improvement over our DualRing construction provided in the conference
version of this work [38]. The algebraic properties needed from the challenge space (Property 4
of Type-T* canonical identification) can actually be removed using the following simple “trick”.
Assume that we want the challenge space to have 2κ elements for some parameter κ.10 Then, we
define a bijective map G : Zκ2 → ∆c. Let us call a pre-image of this map as a “pre-challenge” and
its output as a “challenge” as before. Then, we define the random oracle H to output values in
Zκ2 . Overall, in signing, the signer samples pre-challenge ĉi’s (for i 6= j) as κ-bit random strings,
gets a random κ-bit real pre-challenge ĉ as the output of the random oracle H and computes ĉj =
ĉ⊕
⊕

i 6=j ĉi where ⊕ and
⊕

now simply denote the XOR operation. From ĉi’s, it is straightforward
to compute the challenges ci = G(ĉi) needed for the functions V2 and Z. The signer in the end
outputs pre-challenges in the signature, i.e., σ = (ĉ1, . . . , ĉn, z). Similarly, verification is modified to
compute the real pre-challenge ĉ =

⊕n
i=1 ĉi, and check that it matches the random oracle output.

The above changes do not affect the security proofs and they still follow with minor modifications.
This technique helps to make our DualRing construction more generic by removing the re-

quirement for Property 4 of Type-T* canonical identification. Although it is not really helpful for
our DL-based instantiation DualRing-EC, it provides more flexibility in choosing the parameters
for our lattice-based instantiation DualRing-LB (see Appendix D).

6 DualRing-EC: Our Succinct DL-based Ring Signature

We give a new sum argument of knowledge which is useful to reduce the signature size of DualRing
from linear to logarithmic in the DL-based setting. The group operation ⊗ of the challenge space
is modular addition. This is the first combination of the classical ring structure with the argument
of knowledge.

Notations and Assumptions. For a security parameter λ, we use G to represent a cyclic group
of prime order p. We use [n] to denote the numbers 1, 2, ..., n.

We use the following notations for vectors for our DL-based construction: a[:l] and a[l:] represent
(a1, ..., al) and (al+1, ..., an). a◦b is the Hadamard product (a1b1, a2b2, ..., anbn). 〈a,b〉 is the inner
product

∑n
i=1 aibi. ab, a+b and ab represent (ab1, a

b
2, ..., a

b
n), (a1 +b, a2 +b, ..., an+b) and

∏n
i=1 a

bi
i

respectively.
∑

a and
∏

a denotes
∑n
i=1 ai and

∏n
i=1 ai.

Definition 6 (Discrete Logarithm Assumption). For all PPT adversaries A such that

Pr [y = ga|g, y ←s G, a← A(G, g, y)] ≤ negl(λ).

6.1 Sum Arguments of Knowledge

The sum argument of knowledge is a variant of inner product argument in [14]. The inner product
argument is an efficient proof system for the following relation:{

(g,h ∈ Gn, P ∈ G, c ∈ Zp; a,b ∈ Znp) : P = gahb ∧ c = 〈a,b〉
}

in which a prover P convinces a verifier V that c is the inner product of two committed vectors
a,b. Bootle et al. [12] presented an efficient zero-knowledge proof for inner product argument,
with communication complexity of 6 log2(n) (n is the dimension of vectors). Based on their works,
Bünz et al. proposed Bulletproofs [14] to reduce the communication complexity to 2 log2(n). They
achieve O(log n) complexity by running a recursive Pf algorithm, such that in each round two
vectors a,b of size n are committed into two commitments (L,R), and two vector of proofs a′,b′

of size n/2 are computed for challenge x, where Lx
2

PRx
−2

is equal to the commitment of a′,b′

and 〈a′,b′〉. In the next round, run the Pf algorithm with input vectors a′,b′ and the recursion
ends when n = 1.
10 We could also assume that |∆c| = mκ for m,κ ∈ Z+, but choose m = 2 for simplicity.

16 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

From Inner Product Argument to Sum Argument. To construct our logarithmic size ring
signature, we propose a new argument of knowledge named Sum Argument. First we give the
relation: {

(g ∈ Gn, P ∈ G, c ∈ Zp; a ∈ Znp) : P = ga ∧ c =
∑

a
}

(2)

In a sum argument, a prover convinces a verifier that he/she has the knowledge of a vector of scalars
a, such that P = ga and c =

∑
a. Our sum argument looks like an inner product argument, where

a vector of generators and a computation of multi-exponentiation is used. Although an inner
product argument can be converted into a sum argument by setting the vector b to 1n, this yields
a less efficient protocol than ours.

Assume that the system parameter param includes a generator u ∈ G in group G with order
p and two hash functions HZ , H

′
Z : {0, 1}∗ → Zp. A Non-interactive Sum Argument (NISA)

consists of a Proof algorithm which takes (param,g, P, c,a) and outputs a proof π; and a Verify
algorithm which takes(param,g, P, c, π) and outputs a bit 1/0. Our NISA is given in Algorithm 4.

Observe that for the k-th recursion in Pf, the value of b is
∏k
i=1(xi + x−1i)1

n

2k , where xi is the
i-th output of HZ . This b is known to the verifier and hence we do not need a vector of generators
h to commit b in L,R as in [12]. As a result, we can set h as 1n and can save almost half of the
exponentiation during the recursion. In addition, the computation of P is also not needed by the
prover.

Theorem 5. Our sum argument has statistical witness-extended emulation for non-trivial discrete
logarithm relation among g, u or a valid witness a.

We defer its security proof to the Appendix B.
Compared with [14], our protocol is simpler. In each iteration, we compute (4n′+2) exponenti-

ations to generate a proof, then compute a multi-exponentiation of size (1+n+2 log2(n)) to verify.
For an inner product argument [14], the corresponding computations are (8n′+8) exponentiations
and a multi-exponentiation of size (1 + 2n + 2 log2(n)), respectively. The proof sizes are similar;
however we omit almost half of exponentiations.

6.2 Logarithmic Size DL-based Ring Signature

We give the full construction of compact DL-based ring signature, by combining DualRing with
the sum argument of knowledge and Schnorr identification. Then, we compare the efficiency with
the existing ring signature schemes.

Matching Sum Argument with Ring Signature. Notice that the sum argument proves the
relation for some ai ∈ Zp, given gi, P ∈ G and c ∈ Zp:

P =

n∏
i=1

gaii ∧ c =

n∑
i=1

ai.

On the other hand, the verification of our generic ring signature includes:

R� (V1(z))−1 =

n⊙
i=1

V2(pki, ci) ∧ H(m, pk, R) =

n⊗
i=1

ci.

Interestingly, the two examples (DL- and RSA-based) of the Type-T* canonical identification have
V2(pki, ci) = pkcii . Therefore, we can use the sum argument for the relation:

R · (V1(z))−1 =

n∏
i=1

pkcii ∧ H(m, pk, R) =

n∑
i=1

ci.

As a result, we can give a logarithmic size ring signature from Type-T* canonical identification
scheme with matching non-interactive sum argument.

DualRing-EC Construction. Our DL-based construction DualRing-EC is shown in Algorithm
5, by using DualRing and NISA for Relation 2.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 17

Algorithm 4: NISA

1 Procedure NISA.Proof({param,g, P, c},a):

2 Run protocol Pf on input (g, uH
′
Z(P,u,c),a,1n);

3 Procedure Pf(g, û,a,b):
// L, R are initially empty, but maintain its memory throughout the recurrsion.

n is the length of vector a and b.
4 if n = 1 then
5 Output π = (L, R, a, b).

6 else
7 Compute n′ = n

2
, cL = 〈a[:n′],b[n′:]〉 ∈ Zp, cR = 〈a[n′:],b[:n′]〉 ∈ Zp;

8 L = g
a[:n′]
[n′:] û

cL ∈ G and R = g
a[n′:]
[:n′] û

cR ∈ G;

9 Add L to L and R to R and compute x = HZ(L,R);

10 Compute g′ = gx
−1

[:n′] ◦ gx[n′:] ∈ Gn
′
, a′ = x · a[:n′] + x−1 · a[n′:] ∈ Zn

′
p and

b′ = x−1 · b[:n′] + x · b[n′:] ∈ Zn
′
p ;

11 Run protocol Pf on input (g′, û,a′,b′);

12 Procedure NISA.Verify(param,g, P, c, π = (L, R, a, b)):

13 P ′ = P · uc·H
′
Z(P,u,c);

14 Compute for all j = 1, ..., log2 n: xj = HZ(Lj , Rj);

15 Compute for all i = 1, ..., n: yi =
∏
j∈[log2 n]

x
f(i,j)
j , f(i, j) =

{
1 if (i− 1)’s j-th bit is 1

−1 otherwise
;

16 Set y = (y1, . . . , yn), x = (x1, . . . , xlog2 n) ;

17 if Lx2

P ′Rx−2

=ga·yuab·H
′
Z(P,u,c) then

18 Output 1

19 Output 0

Theorem 6. DualRing-EC is unforgeable w.r.t. insider corruption if DualRing is unforgeable
w.r.t. insider corruption and the NISA has statistical witness-extended emulation.

Proof. Suppose that A is an adversary breaking the unforgeability w.r.t. insider corruption of
DualRing-EC. Then, we can construct an algorithm B breaking the unforgeability of DualRing. B
is given the system parameter param′ and a set of public keys S from the challenger of DualRing.
B picks a random generator u ∈ G and returns param = (param′, u) to A.

WhenA asks for a signing oracle query, B asks the signing oracle of DualRing and obtains σ′ =
(c1, . . . , cn, z). B computes R by running DualRing.Verify on σ′. B computes c = c1 + · · ·+ cn
and P = R� (V1(z))−1. B runs the NISA.Proof and obtains π. B returns (c, z, R, π).

In the challenge phase, A returns a signature σ∗ = (c∗, z∗, R∗, π∗) with respect to a message
M∗ and {pk∗i }ni=1. By the statistical witness-extended emulation of NISA, B can run an extractor
E to obtain (c∗1, . . . , c

∗
n), where P ∗ = R∗ � (V1(z∗))−1 =

⊙n
i=1 V2(pk∗i , c

∗
i). Then B returns the

signature σ′ = (c∗1, . . . , c
∗
n, z
∗), the message M∗ and {pk∗i }ni=1 to the challenger of DualRing. ut

Theorem 7. DualRing-EC is anonymous if DualRing is anonymous.

Proof. Suppose that A is an adversary breaking the anonymity of DualRing-EC. Then, we can
construct an algorithm B breaking the anonymity of DualRing. B is given param′ and the set S
from its challenger. B picks a random generator u ∈ G and gives param = (param′, u) to A.

When A asks for a signing oracle query, B simulates it as in the proof of unforgeability.

In the challenge phase, A gives M∗, ~pk
∗
, i0, i1) to B and B forwards it to its challenger. B re-

ceives ((c∗1, . . . , c
∗
n, z
∗), {ωi}qki=1). B computes σ∗ by line 7-9 of the Sign algorithm and returns

(σ∗, {ωi}qki=1) to A.
Finally A returns a bit b′ and B sends b′ to its challenger to break the anonymity of DualRing.

ut

18 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Algorithm 5: DualRing-EC

1 Procedure Setup(λ):
2 param′ ← DualRing.Setup(λ);
3 pick a generator u←s G;
4 return param = (param′, u);

5 Procedure Sign(param,m,pk, skj):
6 (c1, . . . , cn, z)← DualRing.Sign

(param,m,pk, skj);
// (c,R) is computed in DualRing.Sign

7 a← (c1, . . . , cn);
8 P = R� (V1(z))−1;
9 π ← NISA.Proof({param,pk, u, P, c},a);

10 return σ = (z,R, π);

11 Procedure KeyGen(param):
12 return (pk, sk)← DualRing.KeyGen(param′);

13 Procedure Verify(param,m,pk, σ):
14 parse σ = (z,R, π);
15 c = HZ(m,pk, R);
16 P = R� (V1(z))−1;
17 if 0← NISA.Verify(param,pk, u, P, c) then
18 return 0;

19 return 1;

102 103 104

1,000

2,000

3,000

4,000

Ring Size

S
ig

n
a
tu

re
S
iz

e
(B

y
te

s)

[23]

[11]

[39]

[28]

DualRing-EC

AOS

Fig. 3: The signature size of ring signature schemes for n public keys, when implemented on elliptic
curve with λ = 128.

6.3 Efficiency Analysis

Signature Size. We compare our DL-based instantiation for n public keys with other O(log n)-
size DL-based ring signatures without trusted setup in Table 1. Most accumulator-based O(1)-size
ring signatures require trusted setup. The lattice-based logarithmic ring signatures [19, 20, 29]
are still at least 100 times longer than DL-based construction. Our ring signature is 789/921
bytes for the ring size = 1024/4096 with λ = 128. We can see that DualRing-EC (Algorithm 5
with Schnorr Identification) is the shortest ring signature without trusted setup. Fig. 3 shows the
concrete signature size when an element in Zp is represented by 32 bytes and an element in G is
represented by 33 bytes. Note that the signature size for a ring with size [log(n− 1) + 1, log n] is
the same. Therefore, the signature size increases for ring size 1025, 2049, 4097, etc.
Computational Efficiency. We implement our DualRing-EC in Python, using the P256 curve
in the fastecdsa library. It is tested on a computer with Intel Core i5 2.3GHz, 8GB RAM with
MacOS 10. The running time is shown in Fig. 4.

We compare the asymptotic running time of our scheme with [11, 23] 11. The running time
of the signer for both [23] and [11] are both dominated by O(n log n) exponentiations. On the

11 For simplicity, we compare the schemes by assuming that a multi-exponentiation of size ` is the same
as ` exponentiation in G.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 19

other hand, the signer’s running time for DualRing-EC is O(n) exponentiations only. Comparing
with [28, 39], the major difference for the signer’s running time is the use of the inner product
argument in [28, 39] and the use of NISA in our scheme. As discussed in the section of NISA, we
only use half of the exponentiation used in the inner product argument. Verification time for out
scheme is dominated by Line 17 of Algorithm 4, which contains n + 2 log n + 1 exponentiations
for a ring size of n. [28, 39] used Bulletproof which contains 2n + 2 log n + 1 exponentiations in
verification. To conclude, our DualRing-EC outperforms [11, 23, 28, 39] in terms of signature size
and the running time of the signer and the verifier.

0 200 400 600 800 1,000
0

2

4

6

8

10

12

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

(a) Running time of Sign.

0 200 400 600 800 1,000
0

1

2

3

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

(b) Running time of Verify.

Fig. 4: Running times of DualRing-EC

7 DualRing-LB: Our Lattice-Based Ring Signature

In this section, we give a concrete ring signature construction based on standard (module) lattice
assumptions using DualRing. As a slight improvement over the conference version of this work,
we describe in Appendix D how the construction here can be optimized using the technique from
Section 5.4.

Notations and Assumptions. We define q as an odd modulus and Rq as a ring Zq[X]/(Xd+ 1)
of dimension d. Define In as the identity matrix with size n, Uk as a set of polynomials in
Z[X]/(Xd + 1) with infinity norm at most k ∈ Z+, and U as the uniform distribution. The
Euclidean ‖·‖ and infinity ‖ · ‖∞ norms of a polynomial (or a vector of polynomials) are defined in
the standard fashion w.r.t. the coefficient vector of the polynomial. Define the following challenge
space:

C = { c ∈ Z[X]/(Xd + 1) : ‖c‖∞ = 1 }. (3)

Observe that |C| = 3d. That is, for d = 128, we have |C| = 3128 > 2202.
We review the hardness of Module-SIS (M-SIS) (defined in “Hermite normal form” as in [5])

and Module-LWE (M-LWE) problems [19].

Definition 7 (M-SISn,m,q,βSIS
Assumption). For all PPT adversaries A,

Pr

[
A′ ←s U(R

n×(m−n)
q),

A = [In||A′], z ← A(A)
:
Az = 0 ∈ Rnq ,
0 < ‖z‖ ≤ βSIS

]
≤ negl(λ).

Definition 8 (M-LWEn,m,q,χ Assumption). Let χ be a distribution over Rq and s ←s χ
n

be a secret key. Define LWEq,s as the distribution obtained by sampling a ←s R
n
q , e ←s χ and

outputting (a, 〈a, s〉+ e). For all PPT adversaries A, the probability of distinguishing between m
samples from LWEq,s and U(Rnq , Rq) is negl(λ).

20 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Algorithm 6: Lattice-based Type-T* Canonical Identification

1 Procedure Setup(λ):
2 set M-LWE parameters k,m, d, q;
3 define a hash function H : {0, 1}∗ → C;
4 pick G′ ← R

k×(m−k)
q ;

5 G = [Ik ‖G′];
6 return param = (k,m, d, q,G,H);

7 Procedure KeyGen():
8 pick x← Um1 ;
9 compute c = G · x;

10 return (pk, sk) = (c,x);

11 Procedure Proof1(sk):
12 pick r ← Ummd2 ;
13 R = A(sk; r) := G · r;
14 return (R, r);

15 Procedure Ch(R):
16 pick c← C;
17 return c;

18 Procedure Proof2(sk, r, c):
19 z = Z(sk, r, c) := c · sk− r;
20 if ‖z‖∞ > md2 − d then
21 restart Proof1;

22 return z;

23 Procedure Verify(pk,z, c):
24 R′ = V1(z) + V2(pk, c) := −G · z + c · pk;
25 if c 6= Ch(R′) then
26 return 0;

27 if ‖z‖∞ > md2 − d then
28 return 0;

29 return 1;

7.1 Lattice-based Canonical Identification

We give a Type-T* canonical identification from M-LWE/SIS in Algorithm 6. We use the rejection
sampling technique from [32] to make sure that no information about the signer’s secret key is
revealed in the response.

We can observe the following

1. The function V1 is additively homomorphic:

V1(z1) + V1(z2) = −G · z1 −G · z2 = −G · (z1 + z2) = V1(z1 + z2).

2. Given sk, pk and c, we can compute z̃ = −c · sk such that V1(z̃) = G · (c · sk) = V2(pk, c).
3. The challenge space C is a group under addition mod 3.

Theorem 8. Algorithm 6 is secure against special impersonation under key only attack if M-

SISk,m+1,q,βSIS (in HNF) for βSIS ≈ 2d2
√
m ·

(
1 +m

√
d
)

and M-LWEm−k,k,q,U1 are hard.

Proof. Suppose that A is an adversary breaking the special impersonation under key only attack.

Suppose that B is given Ĝ =
[
Ik ‖G′ ‖ g

]
∈ Rk×(m+1)

q as the M-SIS matrix where G′ and g are

sampled uniformly at random. Denote G =
[
Ik ‖G′

]
, which is used as the commitment key in

the oracle simulations by B. The number of public keys generated by the challenger is qk. B sets

pk = G · r + g (4)

for r ← Um1 . Observe that ‖r′‖ ≤
√
md+ 1 for r′ =

(
r
1

)
. Also, note that we can write G · r =

r0 + G′ · r1 for r0 ∈ Uk1 and r1 ∈ Um−k1 . Therefore, by M-LWEm−k,k,q,U1
assumption, G · r is

computationally indistinguishable from a random element in Rkq and so is pk = G · r + g. B gives
param = (k,m, d, q,G,H) and pk to A.
A returns (c, z, c′, z′), where c 6= c′, we have:

−G · z + c · pk = −G · z′ + c′ · pk

(c− c′) · pk = G · (z − z′) = Ĝ ·
(
z − z′

0

)

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 21

Further, multiplying Eq. (4) by (c− c′), we have

(c− c′) · pk = G · (c− c′) · r + (c− c′) · g = Ĝ · (c− c′) ·
(
r
1

)
.

Therefore, we get:

Ĝ · (c− c′) ·
(
r
1

)
= Ĝ ·

(
z − z′

0

)
.

That is, Ĝ · s = 0 over Rq for s = (c− c′) ·
(
r
1

)
−
(
z − z′

0

)
. Observe that s cannot be the zero

vector as c 6= c′ and the last coordinate of s is (c− c′). Since ‖z‖∞ , ‖z′‖∞ ≤ md2−d, we also have

‖s‖ ≤ 2d
√
d
√
md+ 1 + 2 · (md2

√
md) ≈ 2d2

√
m ·

(
1 +m

√
d
)
.

Hence, s is a solution to M-SISk,m+1,q,βSIS for βSIS ≈ 2d2
√
m
(

1 +m
√
d
)
. ut

Remark. It is not known how to build an efficient lattice-based ZK proof for sum argument.
There is a theoretical work on constructing a lattice analog of Bulletproofs in [13]. However,
in practice, the construction is inefficient. As the lattice analog of the Sum Argument cannot
be constructed efficiently, the signature size of our lattice-based construction remains at O(n),
while [10,19] achieve O(log n) signature size. Hence, after some point, our construction eventually
produces longer signatures.

7.2 Efficiency Analysis of DualRing-LB

Signature Size. The practical security estimations of M-SIS and M-LWE against known attacks
are done by following the methodology detailed in [18, Section 3.2.4]. In particular, we aim for
a “root Hermite factor” of around 1.0045. The root Hermite factor is a common metric used in
lattice-based cryptography to measure practical hardness. We refer to [18] for further discussion.
We refer to Table 3 for the concrete parameter setting. In general, for d = 128, the signature
length can be approximated by the following formula:

|σ| = |z|+ n · |ci| ≈ 4536 + 26n bytes. (5)

The above formula stems from the fact that |ci| = d log 3/8 bytes and |z| = md log(2md2)/8 bytes
since z ∈ Rm with ‖z‖∞ ≤ md2. Plugging in (d,m) = (128, 15) yields (5).

Although Theorems 3 and 8 imply that DualRing-LB is secure, they do not provide all the
information required in the concrete parameter setting. Unlike the classical DL- or factoring-based
constructions, in the lattice setting, it is important for the concrete parameter setting to know the
precise (Euclidean) norm bound βSIS of M-SIS solution that arises in the security reduction. This
is because the practical security estimations depend on the βSIS parameter of the M-SIS problem.
Therefore, we also need to investigate in more detail the M-SIS solution length βSIS for the ring
signature (not the underlying Type-T* canonical identification as in Theorem 8) and see how it
depends on the parameters. We do this in the full version of the paper and show concretely what
the length of the M-SIS solution is for the ring signature, which gives βSIS ≈ 2d

√
md · (md+ n).

The proof follows the same blueprint in the generic unforgeability proof of DualRing (Theorem
3), but we keep track of the norms as the proof proceeds.
Computational Efficiency. First, the modulus q is always less than 32 bits in length for the
parameters in Table 3. Therefore the values in our construction fit into 32-bit registers, boosting
the computational efficiency. Another advantage of our construction is that no (discrete) Gaussian
sampling is required, making the implementation easier to protect against side-channel attacks.

We show the running times of DualRing-LB in Fig. 5. The code is written in Python, using
the polynomial arithmetic and NTT transform in the sympy library. It is tested on a computer

22 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

n k m log q Signature Size PK Size SK Size Size of (c1, . . . , cn) Size of z

2 7 15 26 4.48 2.84 0.23 0.05 4.43
4 7 15 26 4.53 2.84 0.23 0.10 4.43
8 7 15 26 4.63 2.84 0.23 0.20 4.43
16 7 15 26 4.83 2.84 0.23 0.40 4.43
32 7 15 26 5.22 2.84 0.23 0.79 4.43
64 7 15 26 6.02 2.84 0.23 1.59 4.43
128 7 15 26 7.60 2.84 0.23 3.17 4.43
256 7 15 26 10.78 2.84 0.23 6.34 4.43
512 8 16 26 17.44 3.25 0.25 12.69 4.75
1024 8 16 26 30.13 3.25 0.25 25.38 4.75
2048 8 16 26 55.50 3.25 0.25 50.75 4.75
4096 8 17 27 106.57 3.38 0.27 101.50 5.07

Table 3: The parameter setting of DualRing-LB. The root Hermite factor for both M-SIS and
M-LWE are ≤ 1.0045. d = 128 always. The sizes are in KB.

0 50 100 150 200 250
0

50

100

150

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

DualRing-LB

[19]

(a) Running Time of Sign.

0 50 100 150 200 250
0

5

10

15

20

25

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

DualRing-LB

[19]

(b) Running Time of Verify.

Fig. 5: Lattice-based ring signatures

with Intel Core i5 2.3GHz, 8GB RAM with MacOS 10. For our scheme, the expected number
of iterations due to rejection sampling in Sign is about 2.72 and our experiment matches this
prediction. The running time for a single run of sign and verify algorithms are about the same.
However, the expected number of iterations for sign is 2.72. Therefore, we have the running time
for sign as in Fig. 5.

The construction in [19] is at least 5 times slower than DualRing-LB for both sign and verify.
Some of the possible reasons include: (1) their expected number of iterations due to rejection
sampling in Sign is about 4.757, (2) they use a polynomial of degree d = 256. Their scheme does
not exhibit a linear increase in running time since [19] changes the system parameters (e.g., matrix
dimension, degree of polynomial) for different ring size to optimize their signature size.

8 Conclusion

In this paper, we propose a generic construction of ring signature scheme using a dual ring struc-
ture. When we instantiate in the DL-setting, it is the shortest ring signature scheme without using
trusted setup. When instantiated in M-LWE/SIS, we have the shortest ring signature for ring size
between 4 and 2000.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 23

Acknowledgment

We thank Vadim Lyubashevsky and Ngoc Khanh Nguyen for pointing out the “trick” in Section
5.4.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the fiat-
shamir transform: Necessary and sufficient conditions for security and forward-security. IEEE Trans.
Information Theory 54(8), 3631–3646 (2008)

2. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: ASIACRYPT 2002.
LNCS, vol. 2501, pp. 415–432. Springer (2002)

3. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: Logarithmic-
size, no setup - from standard assumptions. In: EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311.
Springer (2019)

4. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete logarithm as-
sumption and a generalized forking lemma. In: CCS 2008. pp. 449–458. ACM (2008)

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from
structured lattice assumptions. In: SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer (2018)

6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature
schemes. In: EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer (2004)

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma.
In: CCS 2006. pp. 390–399. ACM (2006)

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without
random oracles. J. Cryptology 22(1), 114–138 (2009)

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-security signatures. In:
CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer (2011)

10. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: Logarithmic (linkable) ring signatures
from isogenies and lattices. In: ASIACRYPT (2). LNCS, vol. 12492, pp. 464–492. Springer (2020)

11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures
based on DDH. In: ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer (2015)

12. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arith-
metic circuits in the discrete log setting. In: EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357.
Springer (2016)

13. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-pcp approach to succinct quantum-safe
zero-knowledge. In: CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer (2020)

14. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for
confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
315–334 (2018)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO ’92. LNCS, vol. 740, pp.
89–105. Springer (1992)

16. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of
witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO ’94. Lecture Notes in Computer Science,
vol. 839, pp. 174–187. Springer (1994)

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer (2004)

18. Esgin, M.F.: Practice-Oriented Techniques in Lattice-Based Cryptography. Ph.D. thesis, Monash Uni-
versity (5 2020). https://doi.org/10.26180/5eb8f525b3562

19. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: New techniques for
shorter and faster constructions and applications. In: CRYPTO 2019. LNCS, vol. 11692, pp. 115–146.
Springer (2019)

20. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs
and applications to ring signatures. In: ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer (2019)

21. Esgin, M.F., Steinfeld, R., Zhao, R.K.: MatRiCT+: More efficient post-quantum private blockchain
payments. Cryptology ePrint Archive, Report 2021/545 (2021), ia.cr/2021/545 (to appear at IEEE
S&P 2022)

22. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: Efficient, scalable and post-
quantum blockchain confidential transactions protocol. In: ACM CCS. pp. 567–584. ACM (2019),
(Full version at ia.cr/2019/1287)

https://doi.org/10.26180/5eb8f525b3562
ia.cr/2021/545
ia.cr/2019/1287

24 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

23. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and spend a coin. In:
EUROCRYPT 2015. pp. 253–280. LNCS, Springer (2015)

24. Guillou, L.C., Quisquater, J.: A ”paradoxical” indentity-based signature scheme resulting from zero-
knowledge. In: CRYPTO ’88. LNCS, vol. 403, pp. 216–231. Springer (1988)

25. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In:
CCS 2003. pp. 155–164. ACM (2003)

26. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In:
CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer (2016)

27. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain. In:
ESORICS (2). LNCS, vol. 10493, pp. 153–173. Springer (2017)

28. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: Scaling
private payments without trusted setup. In: CCS 2019. pp. 31–48. ACM (2019)

29. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators:
Logarithmic-size ring signatures and group signatures without trapdoors. In: EUROCRYPT 2016.
LNCS, vol. 9666, pp. 1–31. Springer (2016)

30. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security from the DDH
assumption. In: ESORICS 2018. LNCS, vol. 11099, pp. 288–308. Springer (2018)

31. Lu, X., Au, M.H., Zhang, Z.: Raptor: A practical lattice-based (linkable) ring signature. In: ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer (2019)

32. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In:
ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer (2009)

33. Lyubashevsky, V.: Lattice signatures without trapdoors. In: EUROCRYPT 2012. LNCS, vol. 7237,
pp. 738–755. Springer (2012)

34. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lattices with appli-
cations to ring signatures and confidential transactions. In: CRYPTO 2021. LNCS, vol. 12826, pp.
611–640. Springer (2021)

35. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015),
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf.

36. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey, J.,
Miller, A., Narayanan, A., Christin, N.: An empirical analysis of traceability in the monero blockchain.
PoPETs 2018(3), 143–163 (2018)

37. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT 2001. LNCS, vol. 2248,
pp. 552–565. Springer (2001)

38. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: Dualring: Generic construction of ring sig-
natures with efficient instantiations. In: CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer
(2021)

39. Yuen, T.H., Sun, S., Liu, J.K., Au, M.H., Esgin, M.F., Zhang, Q., Gu, D.: Ringct 3.0 for blockchain
confidential transaction: Shorter size and stronger security. In: FC 2020. LNCS, vol. 12059, pp. 464–
483. Springer (2020)

A Type-T AOS Ring Signature and its security analysis

We denote T as a Type-T signature. We also denote ∆z as the domain of z. The AOS ring
signature [2] is summarized in Algorithm 7. There is no security proof for the generic construction
of AOS ring signature in [2]. The instantiation of AOS ring signature with Schnorr signature is
proven secure in [2].

A.1 Formal Security Proof for Type-T AOS Ring Signature

We changed the definition of AOS Ring Signature from Type-T Signature to Canonical Identifica-
tion as shown in Algorithm 8. We can prove the security of the (modified) AOS ring signature if
the Canonical Identification has special soundness.

Theorem 9. The AOS ring signature is unforgeable if T is secure against key recovery under key
only attack and T has special soundness.

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 25

Algorithm 7: AOS Ring Signature from Type-T Signature T

1 Procedure Setup(λ):
2 return param← T.Setup(λ);

3 Procedure KeyGen():
4 return (pk, sk)← T.KeyGen();

5 Procedure Sign(m,pk = {pk1, . . . , pkn}, skj):
6 rj ←s ∆r;
7 Rj = A(skj ; rj);
8 for i← j + 1, . . . , n, 1, . . . j − 1 do
9 ci = H(m,pk, Ri−1);

10 zi ←s ∆z;
11 Ri = V (pki, zi, ci) ;

/* Define R0 = Rn */

12 cj = H(m,pk, Rj−1);
13 zj = Z(skj , rj , cj);
14 return σ = (c1, z1, . . . , zn);

15 Procedure Verify(m,pk = {pk1, . . . , pkn}, σ):
16 parse σ = (c1, z1, . . . , zn);
17 R1 = V (pk1, z1, c1);
18 for i← 2 to n do
19 ci = H(m,pk, Ri−1);
20 Ri = V (pki, zi, ci);

21 if c1 6= H(m,pk, Rn) then
22 return 0;

23 return 1;

Algorithm 8: AOS Ring Signature from Canonical Identification T

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → ∆c;
3 return param← T.Setup(λ);

4 Procedure KeyGen():
5 return (pk, sk)← T.KeyGen();

6 Procedure Sign(m,pk = {pk1, . . . , pkn}, skj):
7 (Rj , rj)← T.Proof1(skj);
8 for i← j + 1, . . . , n, 1, . . . j − 1 do
9 ci = H(m,pk, Ri−1);

10 zi ←s ∆z;
11 Ri = V (pki, zi, ci) // Define R0 = Rn

12 cj = H(m,pk, Rj−1);
13 zj = T.Proof2(skj , rj , cj);
14 return σ = (c1, z1, . . . , zn);

15 Procedure Verify(m,pk = {pk1, . . . , pkn}, σ):
16 parse σ = (c1, z1, . . . , zn);
17 R1 = V (pk1, z1, c1);
18 for i← 2 to n do
19 ci = H(m,pk, Ri−1);
20 Ri = V (pki, zi, ci);

21 if c1 6= H(m,pk, Rn) then
22 return 0;

23 return 1;

Proof. Denote A as a PPT adversary breaking the unforgeability of the AOS ring signature. We
build an algorithm B to break the key recovery under active attack of T. Suppose the algorithm
B is given the system parameters param and the public key pk∗ from its challenger CT .

Setup. B picks a random index i∗ ∈ [1, qk]. B runs (pki, ski) ← KeyGen() for i ∈ [1, qk], i 6= i∗. B
sets pki∗ = pk∗. C gives param and S := {pki}

qk
i=1 to A. B maintains an initially empty list H.

Oracle Simulation. B answers the oracle queries as follows.

– H: B simulates H as a random oracle. On the k-th distinct query with input (m,pk, R), B
picks a random c ∈ ∆c, puts (k,m,pk, R, c) in H and returns c.

– CO: On input i, B returns ski (if i = i∗, B declares failure and exits).

– SO: On input a message m, a set of public key pk with the signer index j, if j 6= i∗, then B
returns σ ← Sign(param,m,pk, skj).

Otherwise, B picks random c1, z1, . . . , zn ∈ Zp (such that (·, ·, ·, ·, c1) /∈ H) and computes
Ri = V (pki, zi, ci) and ci+1 = H(m,pk, Ri), for i = 1, . . . , n. B sets H(m,pk, Rn) = c1 by the
random oracle H. (If there exists (·,m,pk, Rn, ·) ∈ H, then B picks random c1, z1, . . . , zn ∈ Zp
again.) B returns σ = (c1, z1, . . . , zn).

26 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Challenge. A returns a forgery (m∗,pk∗, σ∗ = (c∗1, z∗1 , . . ., z
∗
n)). Denote pk∗ = {pk1, . . . pkn}. If

pk∗ 6= pkj∗ for any j∗ ∈ [1, n], B declares failure and exits. Otherwise, denote pk∗ = pkj∗ .
B computes R∗i = V (pki, z

∗
i , c
∗
i) and c∗i+1 = H(m∗,pk∗, R∗i), for i = 1, . . . , n. Note that for

any index i ∈ [1, n], (·,m∗,pk∗, R∗i , c
∗
i+1) /∈ H has probability 1

|∆c| . With probability at least

(1 − 1
|∆c|)

n ≥ 1 − n
|∆c| , (·,m∗,pk∗, R∗i , c

∗
i+1) ∈ H for all i. In this case, there exists at least one

index i such that (ki,m
∗,pk∗, R∗i−1, c

∗
i) ∈ H and (ki+1,m

∗,pk∗, R∗i , c
∗
i+1) ∈ H such that ki > ki+1.

We call this type of index a reverse index. Reverse index exists because these H queries form a
ring. With probability at least 1/n, the index j∗ is a reverse index. B rewinds to the point that
(m∗,pk∗, R∗j∗−1) is queried to H and returns a different c′j∗ instead. A returns another signature
σ′ = (c′1, z

′
1, . . . , z

′
n). Since j∗ is a reverse index, R∗j∗ remains the same for σ∗ and σ′. Since both

σ∗ and σ′ are valid signatures, We have:

R∗j∗ = V (pkj∗ , z
∗
j∗ , c

∗
j∗) = V (pkj∗ , z

′
j∗ , c

′
j∗).

Therefore, we have two accepting transcripts (R∗j∗ , c
∗
j∗ , z

∗
j∗) and (R∗j∗ , c

′
j∗ , z

′
j∗) with c∗j∗ 6= c′j∗ . By

the special soundness property of T, there exists an extractor Ext which can output sk∗ with
respect to pk∗. B uses sk∗ to break the key recovery under key only attack.

Theorem 10. The AOS ring signature is anonymous in the random oracle model.

Proof. We show how to build an algorithm B providing perfect anonymity in the random oracle
model.

Setup. B runs param ← Setup(λ). B runs (pki, ski) ← KeyGen(param;ωi) for i ∈ [1, qk] with
randomness ωi. B gives param and S := {pki}

qk
i=1 to A1.

Oracle Simulation. B answers the oracle queries as follows.

– SO: On input a message m, a set of public key pk with the signer index j, B returns σ ←
Sign(param,m,pk, skj).

– H: B simulates H as a random oracle.

Challenge. A1 gives B a message m and a vector of public keys pk and two indices i0, i1. B
picks random c1, z1, . . . , zn ∈ Zp and computes Ri = V (pki, zi, ci) and ci+1 = H(m,pk, Ri), for
i = 1, . . . , n. B sets H(m,pk, Rn) = c1 in the random oracle. (If the hash value is already set by the
H oracle, B picks another random c1, z1, . . . , zn ∈ Zp and tries again.) B returns σ = (c1, z1, . . . , zn)
and {ωi}qki=1 to A2. B picks a random bit b.

Output. Finally, A2 outputs a bit b′. Observe that b is not used in the generation of σ. Therefore,
A2 can only win with probability 1/2.

B Security Proof for Sum Argument

To show the security of our NISA protocol, we define a new relation:{
(g ∈ Gn, u ∈ G, P ∈ G,b = 1n; a ∈ Znp) : P = gau〈a,b〉

}
(6)

Not only we set the vector b = 1n, we also remove the vector of generators h corresponding to b
to further improve the efficiency. It is because we do not need to prove the public vector of scalars
b in our sum argument.

First, we give Algorithm 9 for Relation 2. Here, we note that the DL relation between generators
g and u is unknown by P. In Algorithm 9, V chooses a x to P, ensuring that

∑
a = c.

To complete Algorithm 9, we propose Algorithm 10. Algorithm 10 shows how to construct
a sum argument based on an inner product argument from [14]. The main idea of our protocol
is to set one of the two vectors of inner product argument b = 1n. And we omit the multi-
exponentiations corresponding to b since both P and V know its value. As we can see, length of

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 27

Algorithm 9: Interactive proof system (P,V) for Relation 2

input: (g ∈ Gn, u, P ∈ G, c ∈ Zp;a ∈ Znp);
input of P : (g, u, P, c,a), input of V : (g, u, P, c);

1 V : x← Z?p;
2 V → P : x;
3 P and V computes:P ′ = P · ux·c;
4 run Algorithm 10 on input (g, ux, P ′,1n;a);

Algorithm 10: Interactive proof system (P,V) for Relation 6

input: (g ∈ Gn, u, P ∈ G,b ∈ Znp ;a ∈ Znp);
input of P : (g, u, P,b,a);
input of V : (g, u, P,b);
output: {accept or reject};

1 if n = 1 then
2 P → V : a ∈ Zp;
3 V computes c = b · a;
4 if P = gauc then
5 V outputs accept;

6 else
7 V outputs reject;

8 else
9 P computes n′ = n

2
, cL = 〈a[:n′],b[n′:]〉 ∈ Zp, cR = 〈a[n′:],b[:n′]〉 ∈ Zp;

10 P computes L = g
a[:n′]
[n′:] u

cL ∈ G and R = g
a[n′:]
[:n′] u

cR ∈ G;

11 P → V : L,R;
12 V → P : x← Zp;
13 P and V compute: g′ = gx

−1

[:n′] ◦ gx[n′:] ∈ Gn
′
, P ′ = Lx

2

PRx
−2

∈ G, and

b′ = x−1 · b[:n′] + x · b[n′:] ∈ Zn
′
p ;

14 P computes a′ = x · a[:n′] + x−1 · a[n′:] ∈ Zn
′
p ;

15 run this protocol on input (g′, u, P ′,b′;a′);

vector a is reduced by half in each iteration, thus we get a value a instead of a vector a in the
last iteration. The outputs of each iteration are two scalars (L,R), therefore the communication
complexity of our protocol is O(log2(n)). Moreover, our protocol can become non-interactive by
applying the Fiat-Shamir transformation.

Security of Sum Argument. Perfect completeness of the sum argument is straightforward. The
proof of Theorem 5 is as follows.

Proof. We prove that there is an efficient extractor X which uses n2 transcripts. The argument is
trivially sound if n = 1 since the witness a is given to the verifier V. Considering each iteration
with input (g, u, P,b) there is an extractor that can easily extract a witness a or a non-trivial
discrete logarithm relation between g, u from the prover. It has access to the prover to get L and R
and can obtain four vectors a′i ∈ Zn′p after rewinding the prover three times with three challenges
{xi}i∈[3] such that {|xi| 6= |xj |}1≤i<j≤3. Recall that

Lx
2
iPRx

−2
i =

(
g
x−1
i

[:n′] ◦ gxi

[n′:]

)a′i
u〈a
′
i,b
′
i〉, i ∈ [3]. (7)

28 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Then we set {vj,i}j∈[3],i∈[3] such that

∑
i

v1,ix
2
i = 1∑

i

v1,i = 0∑
i

v1,ix
−2
i = 0



∑
i

v2,ix
2
i = 0∑

i

v2,i = 1∑
i

v2,ix
−2
i = 0



∑
i

v3,ix
2
i = 0∑

i

v3,i = 0∑
i

v3,ix
−2
i = 1

We raise the three equalities of (7) to powers {v1,i}i∈[3] such that

∏
i

(
Lx

2
iPRx

−2
i

)v1,i
=
∏
i

((
g
x−1
i

[:n′] ◦ gxi

[n′:]

)a′i
u〈a
′
i,b
′
i〉
)v1,i

L
∑

i v1,ix
2
iP

∑
i v1,iR

∑
i v1,ix

−2
i =

∏
i

(
g
x−1
i a′i

[:n′] g
xia
′
i

[n′:]u
〈a′i,b

′
i〉
)v1,i

L = g
∑

i v1,ix
−1
i a′i

[:n′] g
∑

i v1,ixia
′
i

[n′:] u
∑

i v1,i〈a
′
i,b
′
i〉.

We denote L = gaLucL for some aL ∈ Znp , cL ∈ Zp, such that

aL = (
∑
i

v1,ix
−1
i a′i,

∑
i

v1,ixia
′
i), cL =

∑
i

v1,i〈a′i,b′i〉.

Similarly, we can denote P = gaP ucP and R = gaRucR for some aP ∈ Znp , cP ∈ Zp,aR ∈ Znp , cR ∈
Zp, such that

aP = (
∑
i

v2,ix
−1
i a′i,

∑
i

v2,ixia
′
i), cP =

∑
i

v2,i〈a′i,b′i〉,

aR = (
∑
i

v3,ix
−1
i a′i,

∑
i

v3,ixia
′
i), cR =

∑
i

v3,i〈a′i,b′i〉.

We note that (7) can be described as follows:

Lx
2
iPRx

−2
i = g

x−1
i a′i

[:n′] g
xia
′
i

[n′:]u
〈a′i,b

′
i〉, i ∈ [3].

By putting back the definition of L = gaLucL , R = gaRucR and P = gaP ucP , we also have:

Lx
2
iPRx

−2
i = gx

2
iaL+aP+x−2

i aRux
2
i cL+cP+x−2

i cR , i ∈ [3].

It implies for i ∈ [3],

x−1i a′i = x2iaL,[:n′] + aP,[:n′] + x−2i aR,[:n′],

xia
′
i = x2iaL,[n′:] + aP,[n′:] + x−2i aR,[n′:],

〈a′i,b′i〉 = x2i cL + cP + x−2i cR. (8)

Here we can get a non-trivial DL relation among g, u if any of these equations are not equal.
Otherwise we have {

a′i = x3iaL,[:n′] + xiaP,[:n′] + x−1i aR,[:n′]

a′i = xiaL,[n′:] + x−1i aP,[n′:] + x−3i aR,[n′:]
, i ∈ [3]

combining the two equations we have

0 = x3iaL,[:n′] + xi(aP,[:n′] − aL,[n′:]) + x−1i (aR,[:n′] − aP,[n′:])− x−3i aR,[n′:], i ∈ [3].

Since the above holds for all xi,

aL,[:n′] = 0, aR,[n′:] = 0, aP,[:n′] = aL,[n′:], aR,[:n′] = aP,[n′:].

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 29

Using this we have
a′i = xiaP,[:n′] + x−1i aP,[n′:], i ∈ [3].

Then we compute an inner product

〈a′i,b′i〉 = 〈xiaP,[:n′] + x−1i aP,[n′:], x
−1
i b[:n′] + xib[n′:]〉

= 〈aP ,b〉+ x2i 〈aP,[:n′],b[n′:]〉+ x−2i 〈aP,[n′:],b[:n′]〉, i ∈ [3]

where the vector b is public as we defined in Relation 6. Recall from equation (8) that

〈a′i,b′i〉 = x2i cL + cP + x−2i cR, i ∈ [3].

The above holds for all xi. Thus we can conclude that the extractor X extracts either a DL relation
among g, u or a witness aP such that 〈aP ,b〉 = cP .

For Algorithm 9, we construct an extractor Xs which receives two witness a1,a2 using the
extractor X twice with different challenges x1, x2. Thus we can compute:

u(x1−x2)c = ga1−a2ux1〈a1,b〉−x2〈a2,b〉.

Assuming we cannot find non-trivial DL relation among g, u, we get c = 〈a1,b〉 since a1 = a2. As
a result, we conclude that our protocol has statistical witness-extended emulation.

Non-Interactive Sum Argument. In the Random Oracle Model, it is easy to obtain a non-
interactive protocol for sum argument using the Fiat-Shamir heuristic. For Algorithm 9, the prover
P computes HZ(g, P, c) to replace x. And for Algorithm 10, xj = HZ(Lj , Rj) in each iteration.
Correspondingly, the verification should be computed as

Lx2

PRx−2 ?
= gaua·b,

where (L,x,R) are generated in log2 n iterations.
To accelerate the verification, the verifier V computes g = gy where

yi =
∏

j∈[log2 n]

x
f(i,j)
j , f(i, j) =

{
1 if (i− 1)’s j-th bit is 1

−1 otherwise

The same trick is used when computing b.

C Further Analysis for DualRing-LB

For completeness, let us analyze in more detail how the unforgeability of the ring signature works.
The proof still follows the same blueprint in the generic proof of Theorem 3, but we keep track
of the norms as in the proof of Theorem 8. We show that if there exists an PPT forger A who
has a non-negligible success probability of creating a successful forgery, then there is a PPT
M-SIS solver B that can break M-SISk,m+1,q,βSIS

(in HNF) with non-negligible probability for

βSIS ≈ 2d
√
md · (md+ n). We use techniques similar to those in [19, 20] to handle the relaxation

in the underlying zero-knowledge proof.

Setup. Suppose that B is given Ĝ =
[
Ik ‖G′ ‖ g

]
∈ Rk×(m+1)

q as the M-SIS matrix where G′ and

g are sampled uniformly at random. Denote G =
[
Ik ‖G′

]
, which is used as the commitment key

in the oracle simulations by B. The number of public keys generated by the challenger is qk. B picks
i∗ ← {1, . . . , qk} and generates a set of public keys S = {p̂ki}

qk
i=1 by running (ŝki, p̂ki)← Keygen()

except for index i∗. B sets
p̂ki∗ = G · r + g (9)

for r ← Um1 . Observe that

‖r′‖ ≤
√
md+ 1 for r′ =

(
r
1

)
. (10)

30 T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au and Z. Ding

Also, note that we can write G · r = r0 + G · r1 for r0 ∈ Uk1 and r1 ∈ Um−k1 . Therefore, by
M-LWEm−k,k,q,U1

assumption, G · r is computationally indistinguishable from a random element

in Rkq and so is p̂ki∗ = G · r + g. Thus, since any public key generated by Keygen satisfy the

same property by M-LWEm−k,k,q,1 assumption, p̂ki∗ is computationally indistinguishable from any
other public key. B gives param = (k,m, d, q,G,H) and S to A,

Oracle Simulation. B answers the oracle queries as follows.

– H: B simulates H as a random oracle.
– CO: On input i, B returns ŝki (If i = i∗, B declares failure and exits.).
– SO: On input a message M , a set of public key pk = (pk1, . . . , pkn) and a signer index j, it

outputs ⊥ if p̂kj /∈ pk. If j 6= i∗, then B returns σ ← Sign(param,M,pk, ŝkj).
Otherwise, B picks random z with ‖z‖∞ ≤ md2 − d and random c1, . . . , cn ∈ C and computes

R =
n∑
i=1

cipki−G · z. B sets H(M,pk, t) =
∑n
i=1 ci mod 3 in the random oracle. If such value

has been set in the random oracle, B declares failure and exits. B returns σ = (z, c1, . . . , cn).

Challenge. In the end, A outputs a forgery (M∗, {p̂kij}
n
j=1, σ = (z, c1, . . ., cn)). Denote pk∗ :=

(pk1, . . . , pkn) = (p̂ki0 , . . . p̂kin). If p̂ki∗ 6= p̂kij for all j, B declares failure and exits. Otherwise,

denote p̂ki∗ = p̂kij∗ for some j∗ ∈ [1, n].

B computes R =
n∑
i=1

cipki −G · z. B rewinds to the point that (M∗,pk∗,R) is queried to the

random oracle and returns a different c′ instead. A outputs another signature σ′ = (z′, c′1, . . . , c
′
n)

such that ‖z‖∞ , ‖z′‖∞ ≤ md2 − d and the following holds

n−1∑
i=0

cipki −G · z =

n∑
i=1

c′ipki −G · z′. (11)

Since c1 + · · · + cn ≡ c (mod 3) and c′1 + · · · + c′n ≡ c′ (mod 3) for two distinct random oracle
outputs c 6= c′, there must be a j∗ ∈ [1, n] such that cj∗ 6= c′j∗ . With probability 1/n, i∗ = ij∗ . We
rewrite (11) and obtain

(
cj∗ − c′j∗

)
pkj∗ = G · z −G · z′ +

n∑
j=1,i6=j∗

(
c′j − cj

)
pkj

= G ·

z − z′ +

n∑
j=1,j 6=j∗

(
c′j − cj

)
· rj


= Ĝ ·

(z − z′

0

)
+

n∑
j=1,j 6=j∗

(
c′j − cj

)
·
(
rj
0

) . (12)

Further, multiplying (9) by (cj∗ − c′j∗), we have(
cj∗ − c′j∗

)
p̂ki∗ = G ·

(
cj∗ − c′j∗

)
r +

(
cj∗ − c′j∗

)
g

= Ĝ ·
(
cj∗ − c′j∗

)(r
1

)
. (13)

Note that pkj∗ = p̂kij∗ = p̂ki∗ . Plugging (13) into (12), we get

Ĝ ·
(
cj∗ − c′j∗

)(r
1

)
= Ĝ ·

(z − z′

0

)
+

n∑
j=1,j 6=j∗

(
c′j − cj

)
·
(
rj
0

) .

DualRing: Generic Construction of Ring Signature with Efficient Instantiations 31

That is, Ĝ · s = 0 over Rq for

s =
(
cj∗ − c′j∗

)(r
1

)
−

(z − z′

0

)
+

n∑
j=1,j 6=j∗

(
c′j − cj

)
·
(
rj
0

) .
Observe that s cannot be the zero vector as cj∗ 6= c′j∗ in that case and the last coordinate of s is

cj∗ − c′j∗ . Since ‖z‖∞ , ‖z′‖∞ ≤ md2 − d, we also have

‖s‖ ≤ 2d
√
md+ 1 + 2 · (md2

√
md) + (n− 1) ·

(
2d
√
md
)

≈ 2d
√
md · (md+ n) .

Therefore, s gives a solution to M-SISk,m+1,q,βSIS for

βSIS ≈ 2d
√
md · (md+ n) . (14)

ut

D Optimized DualRing-LB

We describe here how to use the “trick” from Section 5.4 to optimize DualRing-LB slightly. We first
choose κ = 192 as a reasonable choice for the entropy of the challenge space. It is straightforward
to adjust it as desired. In particular, some works choose a 128-bit challenge space and κ = 128
could be assumed to compare with such works. Then, we re-define the challenge space as

C = { c ∈ Z[X]/(Xd + 1) : ‖c‖
1

= w ∧ ‖c‖∞ = 1 }. (15)

For example, setting (d,w) = (256, 39) leads to |C| > 2192 and we can just discard some elements
to match |C| = 2κ = 2192.

With this, we can now bound the βSIS more tightly as βSIS ≈ 2w
√
md · (md+ n) since the

`1-norm of a challenge has dropped from d to w. Then, looking at the concrete parameters, we
can set (d,w) = (256, 39), q ≈ 226, k = 3 and m = 7 for n ≤ 2048. Overall, the ring signature
length can then be approximated as

|σ| = |z|+ n · |ĉi| ≈ 3829 + κn/8 bytes = 3829 + 24n bytes, (16)

saving about 700 bytes in the “constant” cost.

	DualRing: Generic Construction of Ring Signatures with Efficient Instantiations
	Introduction
	DualRing: New Generic Construction of Ring Signature
	Efficient Instantiations of DualRing
	Our Contributions

	Related Work
	Preliminaries
	Security Model
	DualRing: Generic Ring Signature Construction
	AOS Ring Signature
	Canonical Identification
	Our Construction: DualRing
	Update over the Conference Version

	DualRing-EC: Our Succinct DL-based Ring Signature
	Sum Arguments of Knowledge
	Logarithmic Size DL-based Ring Signature
	Efficiency Analysis

	DualRing-LB: Our Lattice-Based Ring Signature
	Lattice-based Canonical Identification
	Efficiency Analysis of DualRing-LB

	Conclusion
	Type-T AOS Ring Signature and its security analysis
	Formal Security Proof for Type-T AOS Ring Signature

	Security Proof for Sum Argument
	Further Analysis for DualRing-LB
	Optimized DualRing-LB

