
Toward Optimal Deep-Learning Based
Side-Channel Attacks: Probability Concentration

Inequality Loss and Its Usage

Akira Ito1, Rei Ueno1 and Naofumi Homma1

Miyagi, Japan, ito@riec.tohoku.ac.jp, rei.ueno.a8@tohoku.ac.jp,
homma@riec.tohoku.ac.jp

Abstract. In this paper, we present solutions to some open problems for constructing
efficient deep learning-based side-channel attacks (DL-SCAs) through a theoretical
analysis. There are two major open problems in DL-SCAs: (i) the effect of the differ-
ence in secret key values used for profiling and attack phases is unclear, and (ii) the
optimality of the negative log-likelihood (NLL) loss function used in the conventional
learning method is unknown. These two problems have hindered the accurate per-
formance evaluation and optimization of DL-SCAs. To address the problem (i), we
clarified the strict conditions under which the use of different correct keys in profiling
and attack phases affects the performance of DL-SCA. For the problem (ii), we then
analyzed the relationship between the NLL loss and direct performance metrics of
DL-SCAs (i.e., success rate (SR)/guessing entropy (GE)) and proved that the min-
imum NLL loss is sufficient but not necessary to achieve the optimal distinguisher
of DL-SCA. This explains why DL-SCA succeeds even when the NLL loss is large
and motivated us to design a new loss function. Based on the above analysis result,
we also propose a new loss function called the probability concentration inequality
(PCI) loss function. We derive the PCI loss as an upper bound of GE and a lower
bound of the SR using a probability concentration inequality. Minimizing the PCI
loss during training can directly optimize the GE and SR of the subsequent attack
phase. In this paper, we describe the characteristics of PCI loss and NLL loss and
introduce a new learning method that takes full advantage of the characteristics.
We also analytically investigate the difference between the PCI loss and ranking
loss reported in a previous work for a similar purpose and explain the advantage of
PCI loss over the ranking loss. Finally, we validate the analysis and demonstrate
the effectiveness of the proposed DL-SCA using the PCI loss through experimental
attacks on public datasets.
Keywords: Side-channel analysis · Deep learning · Optimal distinguisher

1 Introduction
1.1 Background
Deep-learning-based side-channel attacks (DL-SCAs) on cryptographic modules have in-
creasingly emerged in recent years [MHM14, CDP17, ZBHV19, HHGG20, RWPP21]. A
side-channel attack (SCA) extracts secret information by analyzing side-channel informa-
tion (e.g., power consumption and electromagnetic radiation) leaked from cryptographic
modules during the execution of cryptographic operations. DL-SCA is a type of profiling-
based SCA consisting of a profiling phase and an attack phase. In the profiling phase,
an attacker obtains side-channel traces from profiling device(s), which would have the

mailto:ito@riec.tohoku.ac.jp
mailto:rei.ueno.a8@tohoku.ac.jp
mailto:homma@riec.tohoku.ac.jp

2

same (or similar) leakage characteristics as the target device, in order to extract a model
representing the target’s characteristics using DL. In the attack phase, the attacker uses
the trained model to efficiently estimate the secret key from the side-channel informa-
tion of the target device. Compared with conventional profiling attacks such as template
attacks, DL-SCA has the advantage of not requiring any specific knowledge about the
detailed implementation or assumptions of the side-channel characteristics of the target
device. There is a high demand for the accurate assessment of DL-SCA threats because
of the increasing number of cryptographic devices that can be profiled, owing to the
deployment of Internet-of-Things applications.

There are two major open problems in DL-SCA: (i) the effect of secret key value(s)
used during the profiling phase is unknown, and (ii) the optimality of the loss function
used during training, such as NLL loss, is unclear. These major problems make it difficult
to optimize and assess the attack performance of DL-SCA.

Regarding Problem (i), DL-SCA has been evaluated in two ways: the secret key value
is fixed or variable during profiling; this is because several public datasets such as AS-
CAD [BPS+20], AES_HD [PHJ+19] and AES_RD [CK09] contain so-called “fixed-key
database” and “variable-key database” (Surprisingly, for some fixed-key databases, the
secret key values during profiling and attack phases are identical). However, the effect of
the difference between the fixed (or identical) and variable keys on the attack performance
has not been investigated analytically. In other words, it is unknown why and when we
can or cannot fix the secret key during the profiling phase. In addition, this problem
obscures the validity of the conventional loss functions presented for DL-SCA, namely the
cross-entropy ratio (CER) loss [ZZN+20] and ranking loss [ZBD+20], because they are
formulated using the secret key used in the profiling phase. Therefore, it is necessary to
clarify the strict conditions under which the secret key value used in the profiling does
not affect the attack performance in order to evaluate and optimize the performance of
DL-SCA with proper use of the known datasets and loss functions.

Concerning Problem (ii), some previous studies have already emphasized the difficulty
of evaluating the performance of the key estimation in the attack phase by the common
metrics in DL, such as accuracy and negative log-likelihood (NLL) [PHJ+19, ZZN+20,
RZC+21]. As an extreme example, in [PHJ+19], Picek et al. showed that a DL-SCA
could be successful even when the accuracy was 0%. Therefore, instead of the common
metrics, the guessing entropy (GE) and success rate (SR) are generally used as perfor-
mance metrics in SCAs; however, the analytical reason for the incomplete evaluation of
DL-SCA remains unclear. Measure et al. proved that NLL loss gives a lower bound of
the mutual information between the side-channel information and a target intermediate
value [MDP19]. Accordingly, the NLL loss gives an approximate lower bound of the SR
upper bound because this mutual information is known to give an upper bound of the
SR [dCGRP19], which is the first (but weak) relationship between NLL loss and SR/GE.
Recently, Zaid et al. argued that a model trained with ranking loss provides an upper
bound on the perceived information estimated by NLL loss and a lower bound of mutual
information [ZBD+20]. The authors mentioned that this is because the ranking loss max-
imized the SR during the attack phase, and the probability distribution maximizing the
SR provided mutual information. This argument is intuitive but it is not analytically or
theoretically rigorous.1 Consequently, their explanation does not validate the statement
that NLL loss is not the best method for evaluating DL-SCA. Thus, it is still unclear

1For example, Eq. (18) in [ZBD+20] contains some errors, although this equation is the basis of
Section 4.2, which insists on the superiority of ranking loss over NLL loss. Specifically, log2(maxθ Pr[Z =
z | ti, θ]) in the equation always becomes zero because maxθ Pr[Z = z | ti, θ] = 1 necessarily holds. It is
worth noting that Pr[Z = z | ti, θ] is not a likelihood function, but the estimated conditional probability
of an intermediate value given a trace ti by a model. Thus, Eq. (18) indicates that H(Z) = MI(Z; T),
which implies that the mutual information is always equal to the entropy of the intermediate value. This,
generally, does not hold.

Akira Ito, Rei Ueno and Naofumi Homma 3

why the NLL loss is incomplete for optimizing the performance of DL-SCA (i.e., obtain-
ing the optimal distinguisher). This problem also leads to difficulty in designing a more
appropriate loss function for DL-SCAs.

1.2 Our contributions
This paper first provides solutions to problems (i) and (ii) from the viewpoint of probability-
theoretic analysis. We therefore propose a new loss function and learning method that
improves the performance of DL-SCAs beyond conventional losses. Our contributions are
as follows.

• As a solution to problem (i), we clarify the condition for which the performance of
DL-SCAs in the attack phase is independent of the secret key value in the profil-
ing phase. We refer to it as the key-independence condition, which is derived by
analyzing the formal definition of GE. Under the key-independence condition, we
can demonstrate the utility of an arbitrary secret key value including a fixed key
value for profiling without any effect on the subsequent attack. We examine whether
typical AES software and hardware implementations satisfy the key-independence
condition.

• To solve problem (ii), we theoretically analyze the relationship between the optimal
distinguisher and the cross-entropy (CE) loss function because the NLL loss is an
approximation of the CE loss. Then, as a solution, we present a proof that the
minimum CE/NLL loss is sufficient but not necessary to provide an optimal distin-
guisher in DL-SCA. More precisely, our proof reveals that the model parameters
that (exactly) minimize the CE/NLL loss provide an optimal distinguisher; how-
ever, the probability distribution that gives the optimal distinguisher (i.e., yields
the maximized SR) does not necessarily have the minimum CE/NLL loss. The core
idea of the proof comprises a concrete method for deriving an infinite number of
different probability distributions that provide the optimal SR and GE but have a
larger CE/NLL. The proof suggests that a smaller (but non-minimum) value of the
NLL loss does not necessarily make the SR and GE, respectively, larger and smaller
in DL-SCA, which motivates us to propose a new loss function suitable for DL-SCA.

• We propose the PCI (probability concentration inequality) loss function for DL-
SCA to overcome the NLL loss’s insufficiency. The PCI loss is derived from an
upper bound of GE and a lower bound of SR, which we present on the basis of a
probability concentration inequality. The PCI loss minimization directly maximizes
the attack performance of the DL-SCA. This study also investigates the relationship
between the PCI loss and a conventional loss function, the ranking loss. We prove
that the PCI loss is an upper bound of the ranking loss minimized by adjusting
the parametrizing coefficient. As it is unknown how to derive the coefficient for the
practical use and evaluation of ranking loss, the PCI loss has an advantage in that
it has no such coefficient to be derived.

• We propose a new model learning method that takes full advantage of both PCI
loss and NLL loss. The proposed learning method consists of two parts: training
with NLL loss and PCI loss. The first part trains a model with NLL loss to extract
information about the intermediate values of the correct key from the side-channel
traces. Subsequently, the second part trains another model with PCI loss to deter-
mine its output probability from the information extracted by the model trained
in the first part. In this study, the output distribution of the second model was
trained to directly optimize SR and GE, rather than NLL. Through experimental
evaluations via public datasets, we demonstrate that the proposed method achieves

4

a successful key recovery with fewer traces compared with using the ranking loss
and NLL loss alone.

1.3 Paper organization
The remainder of this paper is organized as follows: Section 2 describes the notation used
throughout this study and an overview of DL-SCA. Section 3 presents our probability-
theoretical analysis to solve two open problems in DL-SCAs. Section 4 proposes a new
loss function named PCI loss for DL-SCAs. Section 5 proposes a new learning method
that utilizes both PCI and NLL losses for a more efficient DL-SCA. Section 6 presents the
experimental attacks used to validate the proposed method. Finally, Section 7 concludes
this paper.

2 Preliminaries
2.1 Notation
A calligraphic letter (e.g., X) represents a set, and an uppercase variable (e.g., X) repre-
sents a random variable over the corresponding set (e.g., X); a lowercase variable (e.g.,
x) is an element of the corresponding set; Pr denotes a probability measure, and the
probability density and mass functions are denoted by the symbols p, q, and r; q cor-
responds to the true distribution (i.e., the true probability measure Pr); p denotes the
probability distribution represented by a neural network; and r represents any distribu-
tion. For example, the true probability mass function of discrete random variables X, Y
is qX,Y (x, y) = Pr(X = x ∧ Y = y). We may omit the subscripted random variables
if the random variables of the probability distribution are obvious. For instance, we
may simply write q(x, y) instead of qX,Y (x, y). The expectation is denoted by E, and
if we need to specify the target random variables to take the expectation, we write the
random variables as the subscript. For example, Ef(X, Y) = EX,Y f(X, Y) for a real-
valued function f : X × Y → R. The conditional probability distribution is denoted by
qX|Y (x | y) = q(x | y), and E [f(X, Y) | Y = y] denotes the expected value using the
conditional probability distribution q(x | y).

In the sequel, we describe the definitions of the symbols used in this study. We
represent side-channel traces as a multidimensional real vector x ∈ X ⊂ Rnt , where
nt ∈ N is the number of sample points of a side-channel trace. X denotes a random
variable of the side-channel trace. This study mainly targets DL-SCAs on block ciphers,
such as AES; therefore, the goal of DL-SCAs in this study is to estimate the correct
key value k∗ ∈ K by extracting from the side-channel trace x; the intermediate value is
denoted as g(k, m) ∈ N, where g is a selection function, k ∈ K = {0, 1}nk is a key and
m ∈ M = {0, 1}nm is public information such as plaintexts and ciphertexts. Here, nk is
the bit length of the partial key, and nm is the bit length of the plaintext and ciphertext.2
We represent the relationship between the side-channel trace and the correct key by the
Markov chain (K∗, M) → g(K∗, M) → X, where K∗ is the random variable of the correct
key. We also have X → g(K∗, M) → (K∗, M) because the Markov chain is also valid
in the opposite direction [CT06]. This relationship indicates that the side-channel trace
can be used to estimate the correct key. In this study, we assume that M and K∗ have
uniform distributions. We introduce an intermediate random variable Z∗ = g(K∗, M) to
simplify the notation. If we need to specify the correct key of the intermediate value, we
write the correct key value k∗ as Z(k∗) = g(k∗, M). Note that the probability of Z(k∗)

corresponds to the conditional probability of Z∗ (i.e., qZ(k∗)(z) = qZ∗|K∗(z | k∗)). In
2We often need two-byte ciphertexts c, c′ for DL-SCAs on hardware implementations such as AES. In

this case, m = (c, c′) ∈ M = {(c, c′) | c, c′ ∈ {0, 1}nm }, where nm = 8.

Akira Ito, Rei Ueno and Naofumi Homma 5

SCAs, we need to consider a key candidate k in addition to the correct key k∗, which
is actually used for cryptographic operations. Let K be a random variable of k. In
some previous studies, it was assumed that the intermediate value Z(k) of an incorrect
key k ̸= k∗ is ideally independent of the side-channel trace because the key candidate k
is not used for cryptographic operations [TPR13]; however, this is practically not true
because the intermediate value of the correct key Z(k∗) and that of the incorrect key k
are not independent owing to the characteristics of the S-box and the selection function
g [FDLZ15, ISUH21]. We therefore assume that the Markov chain X → Z(k∗) → Z(k)

holds, which causes ghost peaks in differential power analyses (DPAs) [BCO04].

2.2 Overview of DL-SCA
The DL-SCA consists of a profiling phase and an attack phase. In the profiling phase,
we trained a model estimate the secret key. Let Sp = { (Xi, Zi) | 1 ≤ i ≤ np } be a
training dataset used in the profiling phase. Here, Xi denotes the side-channel trace
(i.e., power consumption or electromagnetic radiation) of the i-th observation, and Zi

denotes the corresponding intermediate value. In addition, |Sp| = np is the number of
traces used in the profiling phase. We assume that X1, X2, . . . , Xnp and Z1, Z2, . . . , Znp

are independent and identically distributed random variables, respectively. Let θ denote
the model parameters of the NN (i.e., the weights). The goal of the profiling phase is
to estimate the optimal model parameter θ̂ using the training dataset Sp. This optimal
parameter is usually given as the solution to the minimization of the cross-entropy (CE)
function, defined as

H(q, p) = EZ,X [− log p(Z | X; θ)] = −
∫ ∑

z

qZ,X(z, x) log p(z | x; θ) dx, (1)

where Z and X are the random variables of a label z and trace x, respectively, [MDP19],
and p is the conditional probability distribution represented by the NN with the parameter
θ. In the profiling phase, the resulting θ̂ may vary depending on whether we choose the
key value randomly (i.e., Z = Z∗ = g(K∗, M)) or fix the key value k∗ (i.e., Z = Z(k∗) =
g(k∗, M)). In this study, we investigated the effect of key selection in the profiling phase
in Section 3.1.

The CE H(q, p) in Eq. (1) takes the minimum value if and only if p = q [Bis06,GBC16].
Therefore, we can obtain a model that approximates the true distribution q if we determine
the optimal parameter θ̂ that minimizes H(q, p); however, we cannot calculate Eq. (1)
because it contains the integral and summation of the unknown probability distribution
q. We therefore generally approximate H(q, p) using the training data Sp as follows:

H(q, p) ≈ LNLL(θ) = 1
np

np∑
i=1

− log p(Zi | Xi; θ). (2)

The approximated CE in Eq. (2) is called NLL. The NLL converges in probability into
CE H(q, p) as np → ∞.

In the attack phase, we then estimate the secret key k∗ of the target device using the
trained model parameter θ̂. Let Sa = { (Xj , Mj) | 1 ≤ j ≤ na } be a dataset used in the
attack phase, where |Sa| = na is the number of traces, Xj is the side-channel trace at the
j-th observation, and Mj is the corresponding plaintext and/or ciphertext. In the attack
phase, we calculate the following NLL of each hypothetical key candidate k ∈ K using the
intermediate value Z

(k)
j calculated from Mj as

L
(k)
NLL(θ̂) = 1

na

na∑
j=1

− log p(Z(k)
j | Xj ; θ̂).

6

Thereafter, the key candidate with the smallest NLL value was estimated as the correct
key. This is approximately equivalent to computing and comparing CE

Hk(q, p) = E[− log p(Z(k) | X; θ̂)],

for a key candidate k.
To evaluate the performance of (DL-)SCA, the success rate (SR) and guess entropy

(GE) are commonly used as quantitative metrics in the attack phase. The SR and GE
with na traces in the attack phase are represented as

SRna
= Pr(rank(k∗, na) = 1), (3)

GEna
= Erank(k∗, na),

respectively [SMY09]. Here,

rank(k∗, na) = 1 +
∑

k∈K\k∗

1{
L

(k∗)
NLL(θ̂)≥L

(k)
NLL(θ̂)

} = 1 +
∑

k∈K\k∗

1{ 1
na

∑na

j=1
∆(k)

j
(θ̂)≥0

}
denotes the rank of the correct key among all key candidates, where 1A is an indicator
function on a set A. Here, ∆(k∗,k)

j (θ̂) = − log p(Z(k∗)
j | Xj ; θ̂) + log p(Z(k)

j | Xj ; θ̂) is
the difference between the log probabilities of the correct key and another key. From the
definition, SR is the probability that the rank of the correct key is one, and GE is the
expected rank of the correct key.

3 Analyses and Solutions to Open Problems
As a theoretical basis of this study, this section provides solutions to the two problems
of DL-SCAs. The problems considered herein are that (i) the effect of key value(s) in
profiling is unknown and (ii) the optimality of the conventional loss function is unclear.
As a solution to Problem (i), we formulate the condition for which we can fix the key value
in the profiling phase. We can use any key value-dependent loss functions such as CER and
ranking losses if the target implementation satisfies the condition; this is because the key
value used in the profiling phase does not affect the DL-SCA performance. We describe
whether or not typical AES implementations satisfy the condition. To solve Problem (ii),
we prove that the minimum NLL loss, which is commonly used in conventional DL-SCAs,
is not a necessary condition for obtaining the optimal distinguisher. This indicates that
the NLL loss is not necessarily the best performance metric for DL-SCAs.

3.1 Effect of key value in profiling
3.1.1 Key Independence Condition

Our idea to solve Problem (i) is that the correct key value in the profiling phase would not
affect the attack performance if there is no difference in the attack performances against
the same two implementations with different secret keys. We derive it as a condition
where the key-value does not affect the attack performance, and we refer to this as “key
independence condition”. The key independence condition likely depends on the conditions
on the implementation and selection function, but, as we mention later, it depends only
on the selection function because of the Markov chain (M, K∗) → Z∗ → X. Here, we
focus on GE in deriving the key independence conditions for the profiling phase.

Let k∗
1 and k∗

2 be arbitrary key values. Then, let GEna,k∗
1

and GEna,k∗
2

be GEs when the
correct keys in the attack phase are k∗

1 and k∗
2 , respectively. Let ∆(k∗

1 ,k1)
j = − log p(Z(k∗

1)
j |

Xj ; θ) + log p(Z(k1)
j | Xj ; θ) and ∆(k∗

2 ,k2)
j = − log p(Z(k∗

2)
j | Xj ; θ) + log p(Z(k2)

j | Xj ; θ)

Akira Ito, Rei Ueno and Naofumi Homma 7

for other key candidates k1 and k2. In addition, let K\k∗
1

and K\k∗
2

denote the sets of
all key values, except for k∗

1 and k∗
2 , respectively. It is worth noting that ∆(k∗,k)

j is i.i.d
because the labels Z

(k)
j , Z

(k∗)
j and the traces Xj are i.i.d. Using GEna,k∗

1
and GEna,k∗

2
,

the condition can be written as:

GEna,k∗
1

= GEna,k∗
2

⇔
∑

k1∈K\k∗
1

Pr

(
1

na

na∑
j=1

∆(k∗
1 ,k1)

j ≥ 0

)
=

∑
k2∈K\k∗

2

Pr

(
1

na

na∑
j=1

∆(k∗
2 ,k2)

j ≥ 0

)
.

(4)

Equation (4) holds if, for any key k1, there exists a key k2 such that3

Pr

 1
na

na∑
j=1

∆(k∗
1 ,k1)

j ≥ 0

 = Pr

 1
na

na∑
j=1

∆(k∗
2 ,k2)

j ≥ 0

 . (5)

Then, let Yk∗
1 ,k1 and Yk∗

2 ,k2 be
∑na

j=1 ∆(k∗
1 ,k1)

j and
∑na

j=1 ∆(k∗
2 ,k2)

j , respectively. If Yk∗
1 ,k1 and

Yk∗
2 ,k2 have the same probability distribution, then Eq. (5): This holds if the characteristic

functions of these two random variables are identical. The characteristic function of Yk∗
1 ,k1

can be written as

E exp(itYk∗
1 ,k1) = E exp

(
it

na∑
j=1

∆(k∗
1 ,k1)

j

)
=

na∏
j=1

E exp
(

it∆(k∗
1 ,k1)

)
,

where i is the imaginary unit, and t is any real number. Hereafter, we omit the subscript
j of E exp

(
it∆(k∗

1 ,k1)) because it does not depend on j. We also denote the character-
istic function of Yk∗

2 ,k2 in a similar manner. Accordingly, the condition is equivalent to
E exp

(
it∆(k∗

1 ,k1)) = E exp
(
it∆(k∗

2 ,k2)). Using the Markov chain X → Z(k∗) → Z(k), we
rewrite E exp

(
it∆(k∗

1 ,k1)) as

E exp
(

it∆(k∗
1 ,k1)

)
= E

Z
(k∗

1)
,X

EZ(k1)

[
exp

(
it∆(k∗

1 ,k1)
)∣∣∣Z(k∗

1)
]

=
∑

z

∑
z′

q
Z(k1)|Z(k∗

1)(z′ | z)
∫

q
Z

(k∗
1)

,X
(z, x) exp

(
it∆(k∗

1 ,k1)
)

dx.

Because E exp
(
it∆(k∗

2 ,k2)) can also be rewritten in the same manner, we obtain the nec-
essary conditions as

∀k∗
1 , k∗

2 ∈ K, q
Z

(k∗
1)

,X
= q

Z
(k∗

2)
,X

, (6)

∀k∗
1 , k∗

2 ∈ K, k1 ∈ K\k∗
1
, ∃k2 ∈ K\k∗

2
, q

Z(k1)|Z(k∗
1) = q

Z(k2)|Z(k∗
2) . (7)

Then, we simplify the first equation (6), which can be rewritten as q
X|Z(k∗

1)q
Z

(k∗
1) =

q
X|Z(k∗

2)q
Z

(k∗
2) . It should be noted that q

X|Z(k∗
1) = q

X|Z(k∗
2) because of the Markov chain

(M, K∗) → Z∗ → X, where Z∗ = g(M, K∗). In fact, we have

qX|Z(k∗)(x | z) = qX|Z∗,K∗(x | z, k∗) =
∑
m

qX|Z∗(x | z)qZ∗,M,K∗(z, m, k∗)
qZ,K∗(z, k∗)

= qX|Z∗(x | z).

Thus, Eq. (6) becomes q
Z

(k∗
1) = q

Z
(k∗

2) . Combining Eqs. (6) and (7), we can define the
following key-independence condition for which the attack performance is independent of
the key value in profiling.

3This condition is not sufficient if there exist two different incorrect keys k, k′ ∈ K\k∗ and a correct

key k∗ such that Pr
(

1
na

∑na

j=1 ∆(k∗,k)
j ≥ 0

)
= Pr

(
1

na

∑na

j=1 ∆(k∗,k′)
j ≥ 0

)
. However, we ignore this

here because it does not hold in the case of AES mainly targeted in the present and previous works.

8

Definition 1 (Key-independence condition). We say that a target implementation satis-
fies the key-independence condition if, for any correct keys k∗

1 , k∗
2 , and any incorrect key

k1, there exists an incorrect key k2 such that ∀z, z∗, q
Z(k1),Z

(k∗
1)(z, z∗) = q

Z(k2),Z
(k∗

2)(z, z∗),
regarding the selection function.

Remark 1. The key-independence condition implies that, for any correct keys k∗
1 and k∗

2 ,
q

Z
(k∗

1) = q
Z

(k∗
1) holds. This is equivalent to the equal images under different subkeys (EIS)

[SLP05] and symmetric key assumptions [FDLZ15]. In [MOS11], Mangard et al. claimed
that the EIS assumption implies that SR does not change with the correct key value(s) in
DPA; however, the EIS assumption is weaker than the key-independence condition, hence
it is not sufficient to assume it for the purpose at hand.

3.1.2 Software implementation

This subsection shows that the AES software implementations satisfy the key-independence
condition. We usually use the S-box output in the first round Z(k) = Sbox(k ⊕ M) as the
selection function (i.e., the intermediate value). Given the true probability distribution q
represented by the probability measure Pr, we rewrite the key-independence condition as

∀z, z∗, Pr(Sbox(k1 ⊕ M) = z, Sbox(k∗
1 ⊕ M) = z∗)

= Pr(Sbox(k2 ⊕ M) = z, Sbox(k∗
2 ⊕ M) = z∗), (8)

where k∗
1 , k∗

2 , and k1 are arbitrary key values. It is necessary for us to check whether there
exists an incorrect key k2 such that Eq. (8) holds. First, we focused on the right-hand
side. Let M ′ be a random variable of plaintext following a uniform distribution such that
M = M ′ ⊕ k∗

1 ⊕ k∗
2 . Substituting M ′ ⊕ k∗

1 ⊕ k∗
2 into M and letting k2 = k1 ⊕ k∗

1 ⊕ k∗
2 , we

rewrite the right-hand side of Eq. (8) as

Pr(Sbox(k2 ⊕ M) = z, Sbox(k∗
2 ⊕ M) = z∗)

= Pr(Sbox(k1 ⊕ M ′) = z, Sbox(k∗
1 ⊕ M ′) = z∗).

This is equivalent to the left-hand side of Eq. (8); therefore, the AES software imple-
mentation satisfies the key-independence condition, which means that we can use any
key value (including a fixed value) in the profiling phase. The proof also shows that a
dataset using the key k∗

2 during profiling can be converted to a dataset using the other
key k∗

1 by replacing the plaintext M and the incorrect key k2 with M = M ′ ⊕ k∗
1 ⊕ k∗

2
and k2 = k1 ⊕ k∗

1 ⊕ k∗
2 , respectively. Similarly, we can convert a dataset with random key

values into a dataset using a fixed key value. This indicates that the key value used is not
important in the profiling phase in the case of software implementation.

3.1.3 Hardware implementation

This subsection discusses whether round-based AES hardware implementations satisfy
the key-independence condition. In this case, the selection function is usually determined
from the register writing of the S-box output as Z(k) = Sbox−1(k ⊕ C) ⊕ C ′ (i.e., the
Hamming distance between the ciphertext byte and the corresponding 10-th round input
regarding ShiftRows), where C and C ′ are the random variables of ciphertexts. Depending
on ShiftRows, C = C ′ for the 1st, 5th, 9th, and 13th bytes, and C ̸= C ′ otherwise. The
distribution of Z(k) changes depending on whether C = C ′ or C ̸= C ′, as described below.

C = C′: Fix k ∈ K. Z(k) = Sbox−1(k ⊕ C) ⊕ C is not a bijection function of
C, and the output of the selection function does not appear depending on k. Thus,
∀z, q

Z
(k∗

1)(z) = q
Z

(k∗
2)(z) does not hold, which indicates that this case does not satisfy the

key-independence condition.

Akira Ito, Rei Ueno and Naofumi Homma 9

C ̸= C′: The key-independence condition holds if, for any sub-keys k∗
1 , k∗

2 , and k1, there
exists k2 such that

∀z, z∗, Pr(Sbox−1(k1 ⊕ C) ⊕ C ′ = z, Sbox−1(k∗
1 ⊕ C) ⊕ C ′ = z∗)

= Pr(Sbox−1(k2 ⊕ C) ⊕ C ′ = z, Sbox−1(k∗
2 ⊕ C) ⊕ C ′ = z∗). (9)

When we choose k2 = k∗
2 ⊕ k∗

1 ⊕ k1 and replace C with C ′′ ⊕ k∗
2 ⊕ k∗

1 , where C ′′ is a
uniformly distributed random variable, we obtain

Pr(Sbox−1(k2 ⊕ C) ⊕ C ′ = z, Sbox−1(k∗
2 ⊕ C) ⊕ C ′ = z∗)

= Pr(Sbox−1(k1 ⊕ C ′′) ⊕ C ′ = z, Sbox−1(k∗
1 ⊕ C ′′) ⊕ C ′ = z∗).

This is equivalent to the left-hand side of Eq. (9); therefore, this case satisfies the key-
independence condition. From the above, it is not justified to fix the key value in the
profiling phase when C = C ′; however, when C ̸= C ′, the key-independence condition is
satisfied and the key value is fixed. As in the software implementation, the dataset can be
converted to a fixed key even if the key value is changed randomly in the profiling phase.

3.2 CE loss minimization and optimal distinguisher
This section provides an analytical solution as an explanation why the conventional NLL
loss is an inadequate performance metric for evaluating DL-SCA in terms of SR and GE.
Here, we analyze the CE loss function instead of the NLL loss because the NLL loss is
an approximation of the CE loss, as mentioned in SubSection 2.2. First, we show that
a probability distribution with minimum CE yields the optimal distinguisher. We then
show that there is an infinite number of probability distributions that do not have the
minimum CE but can provide the optimal distinguisher (i.e., yield the maximized SR).
In other words, the CE can be large even for a probability distribution that provides
the optimal distinguisher. For simplicity, assuming that the key-independence condition
holds and the selection function g(k, m) is given as a bijection on k when m is fixed, we
write qZ∗|X instead of qZ(k∗)|X because the relationship between intermediate values and
side-channel traces does not depend on the correct key value under the key-independence
condition.

Probability distribution with the minimum CE gives the optimal distinguisher. We
first introduce the definition of the optimal distinguisher as follows:

Definition 2 (Optimal distinguisher). Let d denote the distinguisher, which is given as
a set function from a dataset to a key value. We say that d is the optimal distinguisher if,
for any dataset Sa = {(Xj , Mj) | 1 ≤ j ≤ na}, an attack using d(Sa) maximizes the SR.

We then provide Proposition 1, which indicates the sufficient condition for the opti-
mality of the distinguisher.

Proposition 1. Let Sa and d(Sa) be a dataset and a distinguisher for the attack phase,
respectively. The true distribution qZ∗|X gives the optimal distinguisher, as follows:

d(Sa) = arg max
k

na∑
j=1

log qZ∗|X(Z(k)
j | Xj).

Proof. See Appendix A.1 for the proof 4.
4Some previous studies [MDP19,ZBD+20] are based on Proposition 1, although they used the propo-

sition without proof.

10

Proposition 1 proves that the derivation of the true distribution, which necessarily
has the minimum CE loss, yields the optimal distinguisher. In other words, the CE loss
is the best loss function if we can obtain the true distribution qZ∗|X through CE loss
minimization. Note that, if the key-independence condition does not hold, we should
train models to approximate the conditional probability distribution qZ(k∗)|X of each key
candidate k∗ to get the optimal distinguisher (e.g., we should train 256 models for all
possible key candidates), because the conditional probability qZ(k∗)|X depends on the
secret key value.

Optimal distinguisher does not necessarily minimize CE loss. In reality, we cannot
usually obtain the true distribution during training because of errors known as bias, vari-
ance, and noise [HTF09]. The question that arises here is whether a smaller (but not a
minimum) CE value indicates a better performance of DL-SCAs. The CE loss can be a
good indicator if any probability distribution giving the optimal distinguisher necessarily
has the minimum CE loss (i.e., the converse of Proposition 1 is true). However, we prove
that this is not true for an explicit counterexample.

We introduce Lemma 1 to prove that the converse of Proposition 1 is false.

Lemma 1. Let

r′
Z∗|X(z(k) | x) =

rZ∗|X(z(k) | x)β∑
z rZ∗|X(z | x)β

,

where rZ∗|X is any probability distribution and β is a positive real number. SRna
and

GEna
are identical for any β in the SCA using r′ as a distinguisher.

Proof. See Appendix A.2

Lemma 1 guarantees that there are conversions from r to r′ with the preserved SCA
result. In particular, an infinite number of such conversions exist because β is any positive
real number. The CE, however, is not invariant to β. Thus, we have Proposition 2.

Proposition 2. Let Sa and d(Sa) be a dataset and an optimal distinguisher for the attack
phase, respectively. The optimal distinguisher d(Sa) does not necessarily have a probability
distribution with a minimum CE.

Proof. Let qZ∗|X(z(k) | x) be the true distribution that provides the optimal distinguisher.
From Lemma 1, q′

Z∗|X(z(k) | x) = qZ∗|X(z(k) | x)β/
∑

z qZ∗|X(z | x)β also provides the
optimal distinguisher for any β. However, H(qZ∗|X , q′

Z∗|X) generally does not reach the
minimum value when β ̸= 1. This completes the proof.

Combining Propositions 1 and 2. We summarize the above argument on the optimal
distinguisher in Theorem 1 below.

Theorem 1. Let qZ∗|X(z(k) | x) be the true distribution, and let q′
Z∗|X(z(k) | x) be

any probability distribution. It is sufficient but not necessary to provide the optimal
distinguisher that H(q, q′) is the minimum value.

Proof. It is obvious from Propositions 1 and 2.

From Theorem 1, we can see that the (non-minimum) value of the CE (NLL) loss
does not necessarily correspond to the attack performance of DL-SCA. The theorem also
explains why a large CE loss does not necessarily mean that the DL-SCA would fail. In
fact, by adapting the parameter β, we can create a probability distribution q′ that is far
from the true distribution q with regard to the CE loss. Consequently, Theorem 1 suggests
that CE loss is not necessarily the best metric for evaluating the attack performance of

Akira Ito, Rei Ueno and Naofumi Homma 11

DL-SCA. This problem occurs because the CE loss function is not designed from the
DL-SCA metrics, namely, SR and GE. This motivated us to propose a new loss function
based on the SR and GE as described in the next section.

4 Probability Concentration Inequality Loss Function
This section derives the probability concentration inequality (PCI) loss function for DL-
SCA based on the above analyses and solutions and explains its intuitive meaning. In
addition, we describe the relationship between the PCI loss and the ranking loss introduced
in [ZBD+20]. We assume that the key-independence condition is satisfied throughout this
section because we should fix the correct key for deriving the PCI loss.

4.1 Derivation of PCI loss
The PCI loss is a differentiable function derived as a lower bound of SR. We first (i)
introduce an upper bound of GE, then (ii) derive a lower bound of SR from it using
Lemma 2, and finally (iii) provide the definition of the PCI loss by using the derived lower
bound of SR.

(i) Upper bound of GE. Let k∗ be a correct key. Let

∆(k)(θ̂) = − log p(Z(k∗) | X; θ̂) + log p(Z(k) | X; θ̂) (10)

be the difference between the negative log-probabilities of the correct and incorrect keys
k. For simplicity, we omit θ̂ as ∆(k). Note that the difference ∆(k) is a random variable.
Suppose that E|∆(k)| < ∞ and E[∆(k) − E∆(k)]2 < ∞. From this assumption, we can
define the mean E∆(k) and variance E[∆(k)−E∆(k)]2. Similarly, suppose that there exists a
constant positive real number Rk ∈ (0, ∞) such that |∆(k) −E∆(k)| < Rk with probability
1. If E∆(k) < 0 for all incorrect keys, the law of large numbers [Ver18] yields GEna

P−→ 1
as na → ∞, where P−→ is the convergence in probability. This indicates that, in this case
(i.e., E∆(k) < 0), DL-SCA should be successful if we can use an infinite number of traces;
however, the number of traces available in the attack phase is finite in practice, and the
GE gradually approaches a value of one as the number of traces increases. This approach
speed (i.e., upper bound of GE for a given number of traces) has been analyzed using
the central limit theorem in previous studies [Riv09,DZFL14,LPR+14,ZDF20]; however,
these methods provide only asymptotic results. In contrast, this study uses Bennett’s
inequality5 to obtain a meaningfully tighter bound, which is a concentration inequality
that holds for any number of traces. According to Bennett’s inequality, we introduce
Theorem 2.

Theorem 2 (Upper bound of GE). Let K\k∗ be the set of all the incorrect keys. Let
∆(k)

1 , ∆(k)
2 , . . . , ∆(k)

j , . . . , ∆(k)
na be independent copies of ∆(k) defined by Eq. (10). We

assume that |∆(k) − E∆(k)| < Rk almost surely for every k, where Rk ∈ (0, ∞). Let
µk and σ2

k be the mean and variance of ∆(k), respectively. The GE with na traces is
upper-bounded as

GEna ≤ 1 + |K′| +
∑

k∈K′

exp (−nack) ,

where K′ = { k | µk ≥ 0, k ∈ K\k∗ }, ck = σ2
k

R2
k

h
(

−Rkµk

σ2
k

)
, and h(u) = (1+u) log(1+u)−u.

5See Appendix C.

12

Proof. First, for µk ≥ 0, the law of large numbers yields that 1
na

∑na

j=1 ∆(k)
j

P−→ µk ≥ 0 as
na → ∞. Thus, we have

Pr

 1
na

na∑
j=1

∆(k)
j ≥ 0

 ≤ 1. (11)

Then, for µk < 0, applying Bennett’s inequality to ∆(k)
j , we obtain

Pr

 1
na

na∑
j=1

(∆(k)
j − µk) ≥ t

 ≤ exp
(

−na
σ2

k

R2
k

h

(
Rkt

σ2
k

))
,

for any real positive number t. If we substitute t = −µk and replace ck = σ2
k

R2
k

h
(

−Rkµk

σ2
k

)
,

we have

Pr

 1
na

na∑
j=1

∆(k)
j ≥ 0

 ≤ exp (−nack) . (12)

From these inequalities, (11) and (12), and the definition of GE in Eq. (3), we can deduce
the upper bound of GEna

as

GEna = 1 +
∑

k∈K\k∗

Pr

 1
na

na∑
j=1

∆(k)
j ≥ 0

 ≤ 1 + |K′| +
∑

k∈K\k∗

exp (−nack) .

To use this theorem in practice, we need to calculate Rk, σ2
k, and µk; the calculation

method is described in Section 5.2.

(ii) Lower bound of SR. In contrast to the upper bound of the GE, the lower bound
of the SR cannot be obtained by a direct evaluation via probability inequalities. This is
because SR is defined by

SRna
= Pr(rank(k∗, na) = 1) = Pr

 ∧
k∈K\k∗

 1
na

na∑
j=1

∆(k)
j < 0

 ,

cannot be simplified because ∆(k)
j for different keys is not independent [TPR13,LPR+14].

Therefore, instead of directly evaluating the SR, we focus on the inequality relation be-
tween SR and GE, introduced as Lemma 2.

Lemma 2. For SRna
and GEna

with na traces, we have

2 − GEna ≤ SRna ≤ |K| − GEna

|K| − 1
.

Proof. From Markov’s inequality, 6 and the definitions of SR and GE in Eq. (3), we derive
the upper bound as SRna = Pr (|K| − rank(k∗, na) ≥ |K| − 1) ≤ (|K| − GEna)/(|K| − 1).
For the lower bound, we rewrite SRna

= Pr(1 ≥ rank(k∗, na)) = 1−Pr(rank(k∗, na) ≥ 2).
Markov’s inequality yields Pr(rank(k∗, na) − 1 ≥ 1) ≤ Erank(k∗, na) − 1 = GEna

− 1.
Thus, 2 − GEna

≤ SRna
holds.

6Markov’s inequality is one of the most famous inequalities; that is, for any positive random variable
Y and for any positive number t, we have Pr(Y ≥ t) ≤ EY/t.

Akira Ito, Rei Ueno and Naofumi Homma 13

Consequently, we have Theorem 3 from Lemma 2 and Theorem 2.
Theorem 3 (Lower bound of SR). We define K′ and ck as in Theorem 2. The SR with
na traces is lower bounded as

1 − |K′| −
∑

k∈K′

exp (−nack) ≤ SRna .

Proof. It is obvious from Theorem 2 and Lemma 2.

(iii) Definition of PCI loss. We define the PCI loss as a loss function closely (and
analytically) related to the attack performance (i.e., SR and GE).
Definition 3 (PCI loss). We define PCI loss by

LPCI(θ̂) = 1
na

log

(
|K′| +

∑
k∈K′

exp (−nack)

)
.

From Theorems 3 and 2, we have that GEna
≤ 1 + exp(naLPCI) and SRna

≥ 1 −
exp(naLPCI).

4.2 Intuitive meaning of PCI loss
This subsection provides the intuitive meaning of the PCI loss and its minimization. For
simplicity, suppose that µk < 0 holds for any k ∈ K\k∗ ; that is,

LPCI(θ̂) = 1
na

log

 ∑
k∈K\k∗

exp
(

−na
σ2

k

R2
k

h

(
−Rkµk

σ2
k

)) . (13)

For the interpretation, we adopt the inequality h(u) ≥ u2/(2 + 2u/3) to rewrite Eq. (13)
into the following form corresponding to Bernstein’s inequality [Ver18]:

LPCI(θ̂) ≤ 1
na

log

 ∑
k∈K\k∗

exp
(

−naµ2
k/2

σ2
k − Rkµk/3

) . (14)

Because the PCI loss is designed based on the SR and GE bounds, a smaller PCI loss
can make the SR and GE larger and smaller, respectively. This leads to a more efficient
DL-SCA when the argument of the exponential in Eq. (14) is smaller. More concretely,
the attack is easier if (i) the number of traces na is larger, (ii) the absolute mean |µk| is
larger, and (iii) the variance σ2

k is smaller. In addition, minimizing the PCI loss trains
a model such that the NLL difference between the correct and other keys with a small
absolute mean |µk| and large variance σ2

k increases when na is large. To demonstrate the
intuitive meaning of PCI loss, we introduce Proposition 3.
Proposition 3. Let µk and σ2

k be the mean and variance of ∆(k), respectively. In addition,
let K be the set of keys. Suppose that µk < 0 holds for any incorrect key k. The PCI loss
LPCI(θ̂) parameterized by θ̂ is bounded as follows:

− min
k ̸=k∗

ck < LPCI(θ̂) ≤ − min
k ̸=k∗

ck + 1
na

log(|K| − 1). (15)

Proof. Let m = maxk ̸=k∗ −nack = − mink ̸=k∗ nack. We have

m = log exp(m) < log
∑

k ̸=k∗

exp(−nack) ≤ log
∑

k ̸=k∗

exp(m) = m + log(|K| − 1).

Substituting − mink ̸=k∗ nack for m, we obtain Eq. (15).

14

From Proposition 3, we confirm that mink ̸=k∗ ck characterizes the PCI loss because
LPCI → − mink ̸=k∗ ck as na → ∞. This indicates that the convergence rates of SR and GE
are determined by mink ̸=k∗ ck when the number of traces is sufficiently large. A similar
result was reported in a previous study on SR and GE approximation using the central
limit theorem [GHR15].

4.3 Relation to ranking loss
To clarify the relation between PCI and ranking losses, we formally represent the ranking
loss as

LRkL(θ) =
∑

k∈K\k∗

log2

1 + exp

αk

na∑
j=1

∆(k)
j

 , (16)

where αk ∈ (0, ∞) is any non-negative number. Note that the original definition of the
ranking loss in [ZBD+20] is equivalent to Eq. (16) when we set all αk to the same value
α. We first prove the relation between LRkL and GE/SR that GEna

≤ 1 + ELRkL and
SRna

≥ 1 − ELRkL. This proof is presented in Appendix B. In this sense, Eq. (16)
is a stronger inequality than that shown in [ZBD+20]. According to Eq. (16), we can
determine αk and then derive the PCI loss from it. Accordingly, Theorem 4 holds.
Theorem 4. We define µk and K\k∗ as in Theorem 2. Suppose µk < 0 for any incorrect
key k ∈ K\k∗ . We have

inf
α

ELRkL(θ) ≤ log2(e) exp(naLPCI(θ)),

where α = (αk)k∈K\k∗ ∈ (0, ∞)|K\k∗ |, and e is Napier’s number.
Proof. See Appendix A.3.

This theorem implies that the PCI loss can bound the minimum value of the ranking
loss. The theorem also suggests that the PCI loss can also be derived by an analytical
determination of the minimum parametrizing coefficient α of the ranking loss.

5 Learning method with PCI loss
5.1 Overview of learning method
This section proposes a new learning method that uses PCI loss. As explained in Sec-
tion 4.2, the PCI loss increases the difference in likelihood between the correct key k∗ and
other wrong keys. Side-channel traces, however, do not contain any information about the
wrong keys. The minimization of PCI loss would be useful because the intermediate values
of the correct and incorrect keys are not entirely independent (e.g., there is an incorrect
key that provides a similar tendency with the correct key about the Hamming weight of
outputs), and this dependence gives the pseudo-relationship between side-channel traces
and intermediate values corresponding to wrong keys (i.e., the assumption of the Markov
chain X → Z(k∗) → Z(k)).

Accordingly, our method trains two models with NLL and PCI losses. With the NLL
loss, the first model extracts the intermediate value of the correct key from the side-
channel trace. This corresponds to the Markov chain X → Z(k∗). Then, according to the
PCI loss, the second model estimates the adjusted probability of the intermediate value
using the output of the first model. We can handle the pseudo-relationship mentioned
above using this model because the second model is trained to reduce the negative effect
of wrong keys using the PCI loss. The proposed learning procedures are summarized as
follows:

Akira Ito, Rei Ueno and Naofumi Homma 15

1. We first train a model papprox(Z(k∗) | X; θapprox) to approximate the true distribu-
tion qZ(k∗)|X with NLL loss to extract the intermediate value Z(k∗) from side-channel
traces X. Learning can be performed in the same way as in conventional DL-SCAs.

2. Let Y = (log papprox(z | X; θ̂approx))z∈Z be the vector of log-output of the first
model (i.e., Y is usually a 256-dimensional vector in the case of AES.). Here,
θ̂approx is the first model parameter obtained in the previous step. Then, we train the
subsequent model pPCI(Z(k∗) | Y ; θPCI) with PCI loss to estimate the probability of
the intermediate values while considering the dependence between the side-channel
information and the intermediate values of the incorrect keys.

3. In the attack phase, we use the concatenated model of papprox and pPCI to estimate
the correct key. The key estimation with the concatenated model can be performed
in the same manner as in the conventional attack phase.

5.2 Calculation method of PCI loss
This subsection explains the calculation of the PCI loss in the profiling phase for the
proposed learning method. We omit the explanations of Steps 1 and 3 because they are
basically the same as in the conventional DL-SCA. Suppose that the key-independence
condition allows us to use PCI loss, which further allows us to fix the key value. Let k∗ be
the correct key, and let k be another wrong key. We need the parameters µk, σ2

k, and Rk

to compute the PCI loss. These parameters should be obtained using an infinite number
of traces; however, this is impossible in practice. Therefore, we estimate them from a
finite number of traces as follows:

µ̂k = 1
np

np∑
i=1

(− log pPCI(z(k)
i | yi; θ) + log pPCI(z(k∗)

i | yi; θ)),

σ̂2
k = 1

np

np∑
i=1

(− log pPCI(z(k)
i | yi; θ) + log pPCI(z(k∗)

i | yi; θ))2 − µ̂2
k,

R̂k = max
1≤i≤np

∣∣∣(− log pPCI(z(k)
i | yi; θ) + log pPCI(z(k∗)

i | yi; θ)) − µ̂k

∣∣∣ , (17)

where np is the number of traces in the profiling phase, and y1, y2, . . . , ynp are the output
vectors of the first model (i.e., yj = (log papprox(z | xi; θ̂approx))z∈Z , where xi is the i-th
side-channel trace) and z

(k∗)
1 , z

(k∗)
2 , . . . , z

(k∗)
np , z

(k)
1 , z

(k)
2 , . . . , z

(k)
np are the intermediate values

obtained in the profiling phase. We compute Eq. (17) for all wrong keys k ∈ K\k∗ , we
obtain the set K̂′ = {k | µ̂k ≥ 0, k ∈ K\k∗}, and calculate the empirical PCI loss as

L̂PCI(θ) = 1
np

log

|K̂′| +
∑

k∈K\k∗

exp

(
−np

σ̂2
k

R̂2
k

h

(
−R̂µ̂k

σ̂2
k

)) .

The number of parameters to be calculated is 3(|K| − 1).

6 Experimental attacks
6.1 Experimental setup
In the experiment, we employ the two datasets ASCAD and AES_HD according to the
conventional study on the ranking loss [ZBD+20]. We note that both datasets satisfy the
key-independence condition. The ASCAD dataset was the first public dataset introduced

16

as a benchmark for DL-SCA [BPS+20]. It contains the power traces from the masked
AES software on an 8-bit AVR microcontroller (ATmega8515). The leakage model is the
Sbox output of the third byte of the first-round SubBytes. The dataset also contains trace
data with different random delay countermeasures (0, 50, and 100). In this experiment,
as in [ZBD+20], we used 45,000 traces for training, 5,000 traces for validation, and 10,000
traces for testing.

The AES_HD dataset contains electromagnetic (EM) radiations measured from an un-
protected AES hardware on an FPGA [CK09]. The leakage model used in this dataset is in-
formation from the last round of register writing. In this experiment, we used 45,000 traces
for training, 5,000 traces for validation, and 25,000 traces for testing, as in [ZBD+20].

The proposed method employs two consecutive models as mentioned in Section 5.1:
the former model trained with NLL loss (i.e., papprox) and the latter model trained with
PCI loss (i.e., pPCI). In this experiment, we use the model with NLL loss in [ZBD+20]
as papprox , which is released in the GitHub repository7. The model for pPCI is an MLP
with four layers, where the activation function is the Softmax function for the last layer
and SELU [HNL+19] for the other layers. The number of nodes in each layer is 256. The
optimizer used is the same as that used by Adam [KB15], and the learning rate was set
to 0.001. The batch size was set to 500 for ASCAD and 1,000 for AES_HD. The number
of epochs was set to 10, and the model with the smallest PCI loss to the validation data
was used for the attack. The experiment was run on a workstation with an Intel Xeon
Gold 6130 CPU, 128 GB memory, and GeForce RTX 3090. The libraries used in this
experiment were Tensorflow 2.4.1 [AAB+15] and Keras 2.4.0 [C+15]. To calculate the SR
and GE, we need to estimate the average rank of the correct key for each trace used in the
attack. In this experiment, we performed 1,000 attacks while shuffling the test data and
obtained the average rank value empirically. To validate our analysis and the proposed
method, we compared the proposed model trained using the proposed learning method
(i.e., pPCI(Z | Y ; θPCI)) along with the models trained using the NLL loss and the ranking
loss found in the GitHub repository.

6.2 Experimental results
Figure 1 shows the experimental attack results, where the horizontal axis denotes the
number of traces for the attack phase, and the vertical axis denotes the SR or GE. As can
be seen from the figure, the SRs and GEs for NLL loss and ranking loss are almost the
same. The previous study [ZBD+20] showed that there was negligible difference in the
number of traces required to reach GE = 1 between the models trained with the ranking
loss and NLL loss, when 45,000 traces were used in the profiling phase for any dataset.
Thus, these results are consistent with [ZBD+20].

Figure 1 also shows that the proposed method is advantageous to the conventional
methods in terms of SR and GE for ASCAD with desynchronization (i.e., ASCAD 50 and
ASCAD 100). This is because papprox is not trained adequately to acquire the true distri-
bution q owing to the SCA countermeasure, which makes the training difficult. Therefore,
papprox would be away from the optimal distinguisher, and thus the proposed model pPCI,
which may be closer to the optimal distinguisher owing to the training via the PCI loss,
is more efficient for the attack on the ASCAD dataset with desynchronization compared
with the other two models. In contrast, there is negligible difference in using ASCAD
without desynchronization and AES_HD. From Theorem 1, the proposed method does
not improve the performance of DL-SCAs if papprox is well trained to sufficiently approxi-
mate the true probability distribution q. This implies that the optimal distinguisher may
be derived by training with NLL loss for the cases of ASCAD without desynchronization
and the AES_HD dataset. Note that the SR of our method for ASCAD with desynchro-

7https://github.com/gabzai/Ranking-Loss-SCA

https://github.com/gabzai/Ranking-Loss-SCA

Akira Ito, Rei Ueno and Naofumi Homma 17

0 200 400
Traces

0

5

10
G

ue
ss

in
g

en
tro

py NLL loss
Ranking loss
This work

0 200 400
Traces

0.0

0.5

1.0

Su
cc

es
s r

at
e

NLL loss
Ranking loss
This work

(a) Attack results of ASCAD dataset without desynchronization.

0 200 400
Traces

0

5

10

G
ue

ss
in

g
en

tro
py NLL loss

Ranking loss
This work

0 200 400
Traces

0.0

0.5

1.0

Su
cc

es
s r

at
e

NLL loss
Ranking loss
This work

(b) Attack results of ASCAD dataset with desynchronization 50.

0 200 400
Traces

0

5

10

G
ue

ss
in

g
en

tro
py NLL loss

Ranking loss
This work

0 200 400
Traces

0.0

0.5

1.0

Su
cc

es
s r

at
e

NLL loss
Ranking loss
This work

(c) Attack results of ASCAD dataset with desynchronization 100.

0 500 1000 1500
Traces

0

5

10

G
ue

ss
in

g
en

tro
py NLL loss

Ranking loss
This work

0 500 1000 1500
Traces

0.0

0.5

1.0

Su
cc

es
s r

at
e

NLL loss
Ranking loss
This work

(d) Attack results of AES_HD dataset.

Figure 1: Experimental results

18

nization is very close to that for ASCAD without desynchronization. There should be no
difference in the amount of information contained in a trace between the datasets with
and without desynchronization because the desynchronized ASCAD dataset is created by
adding time shifts to the ASCAD dataset without desynchronization. In this sense, these
results indicate that our method can close the gap in SRs between them.

The GEs in Fig. 1 show that the performance of the proposed method may be worse
than that of the other methods when the number of traces used in the attack is quite
small. We explain the reason for this finding. As described in Section 4.2, the convergence
rates of the SR and GE curves are determined by the key candidate with the smallest
ck when the number of traces used in the attack na is sufficiently large. However, all
the key candidates would have almost equal influence when na is small, and the influence
of a single key candidate does not determine the convergence rate of SR and GE. In
this experiment, the batch sizes of ASCAD and AES_HD were set to 500 and 1,000,
respectively. Thus, the PCI loss mainly trained the models to reduce the influence of the
key candidate with the smallest ck. This would be preferable in the sense of increasing
SR, although the convergence rate tends to be worse when na is small.

From the experimental results, we confirm that our learning method can improve the
DL-SCA performance by deforming the output probability distribution of the approximate
model when the NLL loss does not sufficiently train the model. This deformation makes
the trained model output close to the optimal distinguisher, which validates the utility of
the PCI loss as the performance evaluation metric in DL-SCA.

7 Conclusion

In this paper, we provided solutions to two important open problems in DL-SCA: (i) effect
of the key value used in profiling on the attack performance, and (ii) clarification on the
optimality of the loss function used during training, such as NLL loss. Furthermore, we
proposed the PCI loss function for DL-SCA based on the solutions to problems (i) and
(ii) above; we also introduced a new learning method using both PCI and NLL losses.
Finally, we validated our analyses and theorems and demonstrated the effectiveness of
our method through experimental attacks on two public datasets.

An interesting future work on the proposed method is to investigate the effect of
the imbalanced data problem in DL-SCA. A comparison with some methods for solving
imbalanced data problems, such as CER loss, is important. In addition, the application
of the proposed method to various cryptographic hardware is worth investigating. While
we focused on typical AES software and hardware implementations, more sophisticated
implementations, such as hardware implementations with various countermeasures should
also be investigated.

A Proofs

A.1 Proof of Proposition 1

Heuser et al. showed in [HRG14] that the optimal distinguisher is given as

d(Sa) = arg max
k

na∑
j=1

log qX|M,K∗(Xj | Mj , k).

Akira Ito, Rei Ueno and Naofumi Homma 19

With the Markov chain X → Z(k∗) → (M, k∗), we have

d(Sa) = arg max
k

na∑
j=1

log

(
1

qK∗,M (k, Mj)
∑

z

qK∗,M |Z(k∗)(k, Mj | z)qZ(k∗)|X(z | Xj)qX(Xj)

)
.

From the assumption where the selection function is a bijection function,

qK∗,M |Z(k∗)(k, Mj | z) =

{
1/|K| (g(k, Mj) = z)
0 (otherwise)

.

Note that there only exists z such that qK∗,M |Z(k∗)(k, Mj | z) ̸= 0 because kand Mj are
the fixed value for j. Let Z

(k)
j = g(k, Mj). Then,

d(Sa) = arg max
k

na∑
j=1

log qZ(k∗)|X(Z(k)
j | Xj).

A.2 Proof of Lemma 1
It is necessary to show that SRna and GEna are independent of the value of β. This holds
if and only if rank(k∗, na) is invariant to β. When we use probability distribution r′, the
rank of the secret key can be written as

rank(k∗, na) = 1 +
∑

k∈K\k∗

1{ 1
na

∑na

j=1
∆(k)

j
≥0
},

where ∆(k)
j = − log r′(Z(k∗)

j | Xj) + log r′(Z(k)
j | Xj). We can rewrite the argument for

the indicator function as follows:

1
na

na∑
j=1

∆(k)
j ≥ 0 ⇔ 1

na

na∑
j=1

(
− log

r(Z(k∗)
j | Xj)β∑

l r(z | X)β
+ log

r(Z(k)
j | Xj)β∑

z r(z | X)β

)
≥ 0

⇔ 1
na

na∑
j=1

(
− log r(Z(k∗)

j | X)β + log r(Z(k)
j | X)β

)
≥ 0

⇔ 1
na

na∑
j=1

(
− log r(Z(k∗)

j | Xj) + log r(Z(k)
j | Xj)

)
≥ 0.

Thus, rank(k∗, na) is invariant to β.

A.3 Proof of Theorem 4
From the inequality log(x + 1) ≤ x, we have

ELRkL(θ̂) ≤
∑

k∈K\k∗

log2(e)E exp

αk

na∑
j=1

∆(k)
j


=

∑
k∈K\k∗

log2(e) exp(αknaµk)
na∏

j=1
E exp

(
αk(∆(k)

j − µk)
)

.

20

Using the inequality 1 + x ≤ ex, we obtain

E exp
(

αk(∆(k)
j − µk)

)
=

∞∑
i=0

αi
kE(∆(k)

j − µk)i

i!
≤ 1 +

∞∑
i=2

αi
kσ2

kRi−2
k

i!

= 1 + σ2
k

R2
k

(exp (αkRk) − αkRk − 1) ≤ exp
(

σ2
k

R2
k

(exp (αkRk) − αkRk − 1)
)

.

Thus,

exp(αknaµk)
na∏

j=1
E exp

(
αk(∆(k)

j − µk)
)

≤ exp(αknaµk) exp
(

naσ2
k

R2
k

(
eαkR − αkR − 1

))
.

Therefore, we have

inf
α

ELRkL(θ̂) ≤ inf
α

∑
k∈K\k∗

log2(e) exp(αknaµk) exp
(

naσ2
k

R2
k

(
eαkR − αkR − 1

))
.

We have αk = (1/Rk) log(−Rkµk/σ2
k +1) by minimizing the right-hand side. Substituting

this, we obtain:

inf
α

ELRkL(θ̂) ≤ log2(e) exp(naLPCI(θ̂)).

B Definition of the ranking loss
Proposition 4 (Generative form of ranking loss). Define the ranking loss by

LRkL(θ̂) =
∑

k∈K\k∗

log2

(
1 + e

αk

∑na

j=1
∆(k)

j

)
.

We have GEna
≤ 1 + ELRkL(θ̂) and SRna

≥ 1 − ELRkL(θ̂).

Proof. Let ϕα(s) = log2(1 + eαs) be a logistic loss function. Note that 1X≥0 ≤ ϕα(X)
holds for any random variable X. Thus,

rank(k∗, na) = 1 +
∑

k∈K\k∗

1{ 1
na

∑na

j=1
∆(k)

j
≥0} ≤ 1 +

∑
k∈K\k∗

ϕαk

 na∑
j=1

∆(k)
j

 .

From this, we immediately have GEna
≤ 1 +ELRkL(θ̂). In addition, Lemma 2 yields that

SRna
≥ 1 − ELRkL(θ̂).

C Bennett’s inequality
Theorem 5 (Bennett’s inequality [Ver18,Ben62]). Let Y1, Y2, . . . , Yn be independent ran-
dom variables. Assume that |Yi −EYi| ≤ R almost surely for every i. Then, for any t > 0,
we have

Pr

(
1
n

n∑
i=1

(Yi − EYi) ≥ t

)
≤ exp

(
n

σ2

R2 h

(
Rt

σ2

))
,

where σ2 = 1
n

∑n
i=1 E(Yi − EYi)2, and h(u) = (1 + u) log(1 + u) − u.

Akira Ito, Rei Ueno and Naofumi Homma 21

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Anal-
ysis with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, edi-
tors, Cryptographic Hardware and Embedded Systems - CHES 2004, Lecture
Notes in Computer Science, pages 16–29, Berlin, Heidelberg, 2004. Springer.

[Ben62] George Bennett. Probability inequalities for the sum of independent random
variables. Journal of the American Statistical Association, 57(297):33–45,
1962.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, June 2020.

[C+15] Francois Chollet et al. Keras, 2015.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In
Cryptographic Hardware and Embedded Systems –CHES 2017, volume 10529
of Lecture Notes in Computer Science, pages 45–68. Springer, 2017.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random
delay generation in embedded software. In Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 156–170. Springer, 2009.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-Interscience,
USA, 2006.

[dCGRP19] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2019, Issue 2:49–79, 2019.

[DZFL14] A. Adam Ding, Liwei Zhang, Yunsi Fei, and Pei Luo. A statistical model
for higher order dpa on masked devices. In CHES, pages 147–169. Springer,
2014.

[FDLZ15] Yunsi Fei, A. Adam Ding, Jian Lao, and Liwei Zhang. A statistics-based
success rate model for DPA and CPA. Journal of Cryptographic Engineering,
5(4):227–243, November 2015.

22

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GHR15] Sylvain Guilley, Annelie Heuser, and Olivier Rioul. A Key to Success.
In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology – IN-
DOCRYPT 2015, Lecture Notes in Computer Science, pages 270–290, Cham,
2015. Springer International Publishing.

[HHGG20] Benjamin Hettwer, Tobias Horn, Stefan Gehrer, and Tim Güneysu. Encoding
power traces as images for efficient side-channel analysis. In 2020 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 46–56, 2020.

[HNL+19] Zhen Huang, Tim Ng, Leo Liu, Henry Mason, Xiaodan Zhuang, and Daben
Liu. SNDCNN: Self-normalizing deep CNNs with scaled exponential linear
units for speech recognition. October 2019.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough
- deriving optimal distinguishers from communication theory. In CHES, pages
55–74. Springer, 2014.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing — Data Mining, Inference, and Prediction. Springer, second edition,
2009.

[ISUH21] Akira Ito, Kotaro Saito, Rei Ueno, and Naofumi Homma. Imbalanced data
problems in deep learning-based side-channel attacks: Analysis and solution.
IEEE Transactions on Information Forensics and Security, pages 1–1, 2021.

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proceedings of 3rd International Conference on Learning Rep-
resentations, 2015.

[LPR+14] Victor Lomneacute;, Emmanuel Prouff, Matthieu Rivain, Thomas Roche,
and Adrian Thillard. How to estimate the success rate of higher-order side-
channel attacks. In CHES, pages 35–54. Springer, 2014.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of
deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020, Issue 1:348–375, 2019.

[MHM14] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power
analysis using neural network. In Aurélien Francillon and Pankaj Rohatgi, ed-
itors, Smart Card Research and Advanced Applications, pages 94–107, Cham,
2014. Springer International Publishing.

[MOS11] S. Mangard, E. Oswald, and F.-X. Standaert. One for all – all for one: Unify-
ing standard differential power analysis attacks. IET Information Security,
5(2):100–110, June 2011.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019, Issue 1:209–237, 2019.

http://www.deeplearningbook.org

Akira Ito, Rei Ueno and Naofumi Homma 23

[Riv09] Matthieu Rivain. On the Exact Success Rate of Side Channel Analysis in the
Gaussian Model. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography, pages 165–183, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforce-
ment learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2021.

[RZC+21] Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, and
Amaury Habrard. Online performance evaluation of deep learning networks
for profiled side-channel analysis. In Guido Marco Bertoni and Francesco
Regazzoni, editors, Constructive Side-Channel Analysis and Secure Design,
pages 200–218, Cham, 2021. Springer International Publishing.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Cryptographic Hardware and Em-
bedded Systems, Lecture Notes in Computer Science, pages 30–46. Springer,
2005.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryp-
tology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 5479 of Lecture
Notes in Computer Science, pages 443–461. Springer, 2009.

[TPR13] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through
confidence: Evaluating the effectiveness of a side-channel attack. In CHES,
pages 21–36. Springer, 2013.

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Ap-
plications in Data Science. Cambridge University Press, first edition, Septem-
ber 2018.

[ZBD+20] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and
Alexandre Venelli. Ranking loss: Maximizing the success rate in deep learn-
ing side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021, Issue 1:25–55, 2020.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020, Issue 1:1–
36, 2019.

[ZDF20] Ziyue Zhang, A. Adam Ding, and Yunsi Fei. A fast and accurate guessing
entropy estimation algorithm for full-key recovery. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020, Issue 2:26–48, 2020.

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.
A novel evaluation metric for deep learning-based side channel analysis and
its extended application to imbalanced data. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020, Issue 3:73–96, 2020.

	Introduction
	Background
	Our contributions
	Paper organization

	Preliminaries
	Notation
	Overview of DL-SCA

	Analyses and Solutions to Open Problems
	Effect of key value in profiling
	CE loss minimization and optimal distinguisher

	Probability Concentration Inequality Loss Function
	Derivation of PCI loss
	Intuitive meaning of PCI loss
	Relation to ranking loss

	Learning method with PCI loss
	Overview of learning method
	Calculation method of PCI loss

	Experimental attacks
	Experimental setup
	Experimental results

	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Theorem 4

	Definition of the ranking loss
	Bennett's inequality

