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ABSTRACT
Weaddress the problem ofmultiparty private set intersection against

a malicious adversary. First, we show that when one can assume no

collusion amongst corrupted parties then there exists an extremely

efficient protocol given only symmetric-key primitives. Second,

we present a protocol secure against an adversary corrupting any

strict subset of the parties. Our protocol is based on the recently

introduced primitives: oblivious programmable PRF (OPPRF) and

oblivious key-value store (OKVS).

Our protocols follow the client-server model where each party is

either a client or a server. However, in contrast to previous works

where the client has to engage in an expensive interactive crypto-

graphic protocol, our clients need only send a single key to each

server and a single message to a pivot party (where message size is

in the order of the set size). Our experiments show that the client’s

load improves by up to 10× (compared to both semi-honest and

malicious settings) and that factor increases with the number of

parties.

We implemented our protocol and conducted an extensive ex-

periment over both LAN and WAN and up to 32 parties with up to

2
20

items each. We provide a comparison of the performance of our

protocol and the state-of-the-art for both the semi-honest setting

(by Chandran et al.) and the malicious setting (by Ben Efraim et al.

and Garimella et al.).

1 INTRODUCTION
Private set intersection (PSI) allows several parties, each holding

a set of items, to learn the intersection of these sets and nothing

else. Over the last several years, two-party PSI has become truly

practical with extremely fast cryptographically secure implemen-

tations [3, 29, 32]. These protocols can process millions of items

in seconds and are only a small factor slower than the naïve and

insecure method of exchanging hashed values. PSI (both two-party

and multiparty) has many privacy-preserving applications such as

private contact discovery [6, 16], measuring the effectiveness of on-

line advertising [19] and password checkup [15]. Recently, private

contact tracing applications related to COVID-19 [1, 7, 9, 35] found

PSI as the ultimate cryptographic tool, allowing multiple parties (di-

agnosed users and healthcare providers) to privately match contact

information and notify users who may have been infected. There

are numerous applications that are better suited to the multiparty

case, for example, several calendar users wish to find a commonly

available time slot for a meeting; several companies wish to com-

bine their data to find a target audience for an ad campaign [19];

a set of enterprises with private audit logs of connections to their

corporate networks wish to identify similar activities in all net-

works. Recently, a variant of multiparty PSI [28] has been used for

cache sharing in edge computing, which allows multiple network

operators to store a set of common data items with the highest

access frequencies in their capacity-limited shared cache while

maintaining the privacy of their datasets. We can fairly say that

today, PSI is one of the most motivated questions within the field

of secure computation, which is well reflected in the progress made

in the recent several years.

In this work, we consider the problem of multiparty PSI and

devise protocols that are secure in the presence of a malicious

adversary whomay statically corrupt any strict subset of the parties.

1.1 State of the Art for Multiparty PSI
The complexity of various concretely efficient multiparty PSI pro-

tocols is presented in Table 1. Below we consider the works most

relevant to ours.

1.1.1 Kolesnikov et al. The first concretely efficient multiparty PSI

protocol was presented by Kolesnikov et al. in CCS’17 [23] which

is implemented using fast oblivious transfer (OT) extension and

is secure in the random oracle model. This protocol has two ver-

sions, one against a semi-honest adversary and the other against an

augmented semi-honest adversary (who may change the corrupted

parties’ inputs prior to the execution), such that in both versions the

adversary may corrupt an arbitrary strict subset of the parties. That

is, if the total number of parties is 𝑛, the adversary may corrupt any

𝑡 < 𝑛 parties. While the performance of their semi-honest version

improves as 𝑡 decreases, their augmented semi-honest version per-

forms evenly, no matter what 𝑡 is (e.g. a case where the parties are

relatively reliable, in which we can assume 𝑡 < 𝑛/2 or 𝑡 = 1 would

not improve the protocol’s performance). The main contribution of

[23] is the introduction of a two-party functionality called oblivious

programmable PRF (OPPRF) which is run between a sender and a

receiver. The sender has a set of points 𝑃 = {(𝑥𝑖 , 𝑦𝑖 )} that it wants
to ‘program’ (with distinct 𝑥 ’s and pseudorandom 𝑦’s) and the re-

ceiver has a set of queries {𝑞𝑖 }. For each query 𝑞𝑖 the functionality

outputs a PRF evaluation on 𝑞𝑖 to the receiver, under the following

condition. If 𝑞𝑖 = 𝑥 𝑗 for some 𝑗 then the functionality outputs 𝑦 𝑗
and otherwise it outputs 𝐹𝑘 (𝑞𝑖 ) (where 𝑘 is a random key chosen

by the functionality). The functionality guarantees that the receiver

cannot tell whether the obtained result is ‘programmed’ or not and

that the sender could not tell what are the receiver’s queries.

The first phase of the protocols in [23] requires the parties to

obtain many shares of zero. The main difference between the two

versions is that in the semi-honest setting an expensive conditional
zero-sharing protocol is required, which incurs an OPPRF invoca-

tion between each pair of parties; whereas for the augmented semi-

honest a cheap unconditional zero-sharing protocol is sufficient,

which requires each pair of parties to exchange only a symmetric

key.

When the receiver has only a single query, a protocol for OPPRF
can be instantiated very efficiently using only oblivious transfers

(OT). [23] demonstrated an efficient extension in order to allow the

receiver to have multiple queries as follows. The receiver maps its
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Protocol

Communication Computation Corruption Rounds Security Concretely

Leader Client Leader Client Threshold Efficient

HV17 [17]

𝑂 (𝑛𝑚𝜆) 𝑂 (𝑚𝜆) 𝑂 (𝑛𝑚 log𝑚𝜅) 𝑂 (𝑚𝜅)
𝑡 < 𝑛

4 semi-honest

No

𝑂 ((𝑛2 + 𝑛𝑚 log𝑚)𝜅) 𝑂 ((𝑛 +𝑚 log𝑚)𝜅) 𝑂 (𝑚2) 7 malicious

GN19 [14] 𝑂 ((𝑛2 + 𝑛𝑚)𝜅) 𝑂 (𝑛𝑚 log𝑚) 𝑂 (𝑚 log
2𝑚) 𝑡 < 𝑛 12 malicious No

KMPRT17 [23] 𝑂 (𝑛𝑚(𝜆 + 𝜅)) 𝑂 (𝑚(𝜆 + 𝜅))
𝑂 (𝑛𝜅) 𝑂 (𝑚𝜅)

𝑡 < 𝑛
3 augmented semi-honest

Yes

𝑂 (𝑚𝑡 (𝜆 + 𝜅)) 𝑂 (𝑚𝑡𝜅) 4 semi-honest

CDGOSS21 [2] 𝑂 (𝑛𝑚(𝜆 + 𝜅 + log𝑚)) 𝑂 (𝑚(𝜆 + 𝜅 + log𝑚)) 𝑂 (𝑛𝑚𝜅) 𝑂 (𝑚𝜅) 𝑡 < ⌊(𝑛 + 1)/2⌋ 8 semi-honest Yes

ENOC21 [10] 𝑂 (𝑛𝑚𝜅2 + 𝑛𝑚𝜅 log(𝑚𝜅)) 𝑂 (𝑚𝜅2 +𝑚𝜅 log(𝑚𝜅)) 𝑂 (𝑛𝑚𝜅) 𝑡 < 𝑛 8 malicious Yes

Ours- 3.3 𝑂 ((𝑚 + 𝑛)𝜅) 𝑂 (𝑚𝜅) 𝑂 (𝑛𝑚𝜅) 𝑂 (𝑚𝜅) t=1 5 malicious Yes

Ours- 4.4 𝑂 (𝑚𝜅 ·max {𝑡, 𝑛 − 𝑡}) 𝑂 (𝑚𝜅) 𝑂 (𝑚𝜅 (𝑛 − 𝑡)) 𝑂 (𝑚𝑡𝜅) 𝑡 < 𝑛 4 malicious Yes

Table 1: Analytic comparison of related work with our protocols. Notation: 𝑛 parties; at most 𝑡 are corrupted and colluding; each party holds a set of size𝑚. 𝜆
and 𝜅 are statistical and computational security parameters, respectively.

queries 𝑞1, . . . , 𝑞𝑚 to 𝑚′ bins, 𝐵1, . . . , 𝐵𝑚′ , using cuckoo hashing

with 𝑘 hash functions ℎ1, . . . , ℎ𝑘 , such that each bin has at most

one query in it. The sender, however, maps its points into𝑚′ bins
with simple hashing using all ℎ1, . . . , ℎ𝑘 , so each point (𝑥𝑖 , 𝑦𝑖 ) is
inserted to all bins𝐵ℎ 𝑗 (𝑥𝑖 ) for 𝑗 ∈ [𝑘]. By this, exceptwith negligible
probability, each sender’s bin contains at most 𝑂 (log𝑚) points.
Now, the sender and receiver can run𝑚′ instantiations of the single-
query OPPRF, such that in the 𝑖-th instantiation the sender inputs

all points that were mapped to its 𝐵𝑖 and the receiver inputs the

query that was mapped to its 𝐵𝑖 (or some dummy query if that bin

is empty).

That approach, however, is not secure against a malicious sender.

The sender may map the point (𝑥,𝑦) only to a subset of the re-

quired bins 𝐵ℎ1 (𝑥) , . . . , 𝐵ℎ𝑘 (𝑥) instead of all of them. Suppose that

the adversary learns whether the receiver obtained 𝑦 or not (this

information may be leaked in real-world scenarios). Such leakage

is not isolated, i.e. if the sender put (𝑥,𝑦) only in one bin 𝐵ℎ1 (𝑥)
and the receiver indeed obtained 𝑦, that necessarily means that the

receiver put its query 𝑞 = 𝑥𝑖 in bin 𝐵ℎ1 (𝑥) , which leaks information

related to other queries that could have been put in that bin.

Recently, Pinkas et. al. [29] proposed a two-party PSI secure

against a malicious adversary. Their protocol relies on cuckoo hash-

ing, and yet, protects from the malicious sender’s attack described

above. At the core of their construction is a hiddenmalicious version

of OPPRF supporting multiple queries
1
. We use that maliciously

secure OPPRF in our protocols and present the details in Appendix

B for completeness. Garimella et al. [13] used that version of OPPRF

to replace the OPPRF in [23] in order to obtain a protocol that is

secure against a malicious adversary. Their protocol, as we discuss

in Section 1.2, is secure against 𝑡 = 𝑛 − 1 parties, however, when
𝑡 < 𝑛 − 1 their protocol’s performance remains the same (i.e., as if

it has to protect against a coalition of 𝑡 = 𝑛 − 1 corrupted parties).

1.1.2 Chandran et al. A concurrent and independent work by

Chandran et al. [2] improves the above protocol, against a semi-

honest adversary, as well as extends it to circuit-based PSI (where

any post-processing function may be privately operated on the

intersection) and to Quorum PSI (allowing the protocol to output

values that are intersected by only a subset of the parties, instead of

all of them). [2] however, considers a weaker adversary, who may

corrupt at most 𝑡 < 𝑛/2 of the parties (i.e. honest majority). That

1
We note that a newer version of their PaXoS construction was introduced in [32] and

solves a minor security issue. We stress that future construction should consider using

the fixed version in [32].

relaxation of the adversarial power allows removing the expensive

conditional zero-sharing that is the bottleneck in [23] and use an

(𝑛, 𝑡)-secret sharing scheme (e.g. Shamir’s) instead. This ensures

that any subset of at most 𝑡 parties could not reveal intermediate

results during the execution of the protocol. In contrast to [2], the

protocol we present in this work is maliciously secure even in the

dishonest majority setting (i.e. 𝑛/2 ≤ 𝑡 < 𝑛). Furthermore, even

in the honest majority setting, our protocol offers slightly better

security as we can pick the 𝑡 + 1 parties with the highest reputation

to process the intersection (i.e. to play as servers). This means that

only if this particular set of 𝑡 + 1 parties collude they can reveal

information, whereas in [2] any 𝑡 + 1 parties may do so.

1.1.3 Ben Efraim et al. Another concurrent and independent work
by Ben Efraim et al. [10] presents the first concretely efficient ma-

liciously secure multiparty PSI, cleverly combining results from

semi-honest multiparty PSI [18] and malicious two-party PSI [31],

which are based on garbled bloom filter (GBF). A bloom filter (BF)

is a data structure mainly used for recording the membership of

items in a set. A set of items 𝐴 = (𝑎1, . . . , 𝑎𝑚) (with 𝑎𝑖 ∈ {0, 1}∗)
is encoded to a codeword 𝐵 = (𝑏1, . . . , 𝑏𝑚′) (where𝑚′ = 𝑂 (𝑚𝜆)
and 𝑏𝑖 ∈ {0, 1}) using a set of 𝑘 hash functions ℎ1, . . . , ℎ𝑘 . For every

𝑎 ∈ 𝐴 and for every 𝑗 ∈ [𝑘] it holds that 𝑏ℎ 𝑗 (𝑎) = 1 and all other

positions in 𝐵 equal 0. Thus, to check whether an item 𝑥 belongs to

𝐴, check whether

∧
𝑗 ∈[𝑘 ] 𝑏ℎ 𝑗 (𝑎) = 1. For every 𝑎 ∉ 𝐴 it holds that∧

𝑗 ∈[𝑘 ] 𝑏ℎ 𝑗 (𝑎) = 1 only with negligible probability (which accounts

to ‘false positive’).

A garbled bloom filter, introduced by Dong et al. [8] allows

encoding 𝐴 = (𝑎1, . . . , 𝑎𝑚) to a codeword 𝐵 = (𝑏1, . . . , 𝑏𝑚′) (with
𝑏𝑖 ∈ {0, 1}𝜆) such that for every 𝑎 ∈ 𝐴 it holds that

⊕
𝑖∈[𝑘 ] 𝑏ℎ𝑖 (𝑎) =

0
𝜆
whereas for 𝑎 ∈ 𝐴 it holds that

⊕
𝑖∈[𝑘 ] 𝑏ℎ𝑖 (𝑎) equals a random

value except with negligible probability. The false positive rate for

GBF is negligible, just like in a plain BF. A combination of GBF and

oblivious transfer (OT) leads to a very simple two-party PSI (against

a semi-honest adversary). Specifically, let a sender S and a receiver

R have the sets 𝑋 = (𝑥1, . . . , 𝑥𝑚) and 𝑌 = (𝑦1, . . . , 𝑦𝑚) respectively.
The receiver encodes 𝑌 ′ = 𝐵𝐹 (𝑌 ) = (𝑦′

1
, . . . , 𝑦′

𝑚′) and the sender

encodes 𝑋 ′ = 𝐺𝐵𝐹 (𝑋 ) = (𝑥 ′
1
, . . . , 𝑥 ′

𝑚′) (note that 𝑥
′
𝑖
∈ {0, 1}𝜆 and

𝑦′
𝑖
∈ {0, 1}). Then, for 𝑖 ∈ [𝑚′] the parties invoke an OT where

the sender inputs two strings (𝑚0,𝑚1) and the receiver inputs bit

𝑏 and obtains𝑚𝑏 , where𝑚0 ←$ {0, 1}𝜆 ,𝑚1 = 𝑥 ′
𝑖
and 𝑏 = 𝑦′

𝑖
. Let

𝑅 = (𝑟1, . . . , 𝑟𝑚′) be the vector of OT results. The receiver concludes

that 𝑦 ∈ 𝑌 is in the intersection iff

⊕
𝑖∈[𝑘 ] 𝑟ℎ𝑖 (𝑦) = 0

𝜆
.
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That simple protocol is insecure when the sender or receiver is

malicious. A malicious sender may encode more than𝑚 items into

the GBF (e.g. by setting 𝑦′
𝑖
= 0

𝜆
for every 𝑖 ∈ [𝑚′]) and the receiver

may input 1 in every OT instance, by which it obtains the entire GBF

of the sender, and may perform a brute force attack to extract the

sender’s input set 𝑋 . Protecting against a malicious sender is easy,

by using a random OT instead. In random OT (ROT) both messages

𝑚0 and𝑚1 are chosen uniformly at random by the functionality

and are given to the sender as an output. The new protocol is

exactly as above, except that the sender does not encode𝑋 to a GBF.

Instead, the parties run𝑚′ ROT instances, by which the receiver

obtains 𝑅 as before. Let𝑚𝑖
0
,𝑚𝑖

1
be the random messages used in

the 𝑖-th ROT instance, then for each 𝑥𝑖 ∈ 𝑋 the sender computes

𝑥 ′
𝑖
=

⊕
𝑗 ∈[𝑘 ]𝑚

ℎ 𝑗 (𝑥𝑖 )
1

and send 𝑥 ′
𝑖
to the receiver. The receiver in

turn computes 𝑦′
𝑖
=

⊕
𝑗 ∈[𝑘 ] 𝑟ℎ 𝑗 (𝑦𝑖 ) for every 𝑦𝑖 ∈ 𝑌 . The receiver

concludes that 𝑦𝑖 is in the intersection iff 𝑦′
𝑖
∈ {𝑥 ′

1
, . . . , 𝑥 ′𝑚}. This

way the sender may input only𝑚 items to the PSI protocol since

it has to explicitly compute their random representation and send

them to the receiver.

Preventing against a malicious receiver is more involved. This

was first addressed by Rindal and Rosulek [31] using the cut-and-

choose technique, which allows the receiver to prove that it indeed

encoded only𝑚 items in its bloom filter 𝑌 ′. The result protocol,
which is secure against malicious adversaries, is quadratic in 𝜆 (the

statistical security parameter) whereas the protocols we present in

this paper are linear in 𝜆. That means that the storage, computation,

and communication (i.e. number of ROTs) of [10] are much larger

than the set size𝑚. We can observe from [10, Table 9] that the final

bloom filter size and the number of ROTs performed in the protocol

are almost 200× and 300× larger than the plain set size𝑚 whereas

in our protocols the concrete complexity is larger only by a small

factor (2-3).

We believe that, just like in the malicious two-party setting, a

transition from GBF-based [31] to GCT-based [29] protocols will

take place in the malicious multiparty setting as well and that the

GCT approach will prevail.

1.1.4 Other Multiparty PSI Protocols. The first multiparty PSI was

proposed by Freedman, Nissim and Pinkas [12], relying on oblivi-

ous polynomial evaluation (OPE), which in turn is based on homo-

morphic encryption (e.g. Paillier). In the two-party version, Alice

interpolates a polynomial 𝑝 (𝑥) = ∑𝑚
𝑖=0 𝛼𝑖𝑥

𝑖
whose roots are her

items 𝑥1, . . . , 𝑥𝑚 and sends the encrypted coefficients 𝐸𝑛𝑐𝑒𝑘 (𝛼𝑖 ) to
Bob (where (𝑒𝑘, 𝑑𝑘) is the encryption-decryption key pair and 𝑑𝑘

is known only to Alice). For every item 𝑦𝑖 of Bob, he then homo-

morphically computes the ciphertext 𝑦′
𝑖
= 𝐸𝑛𝑐𝑒𝑘 (𝑟𝑖 · 𝑝 (𝑦𝑖 ) + 𝑦𝑖 ),

for a uniformly random 𝑟𝑖 , and sends it back to Alice. Alice then

decrypts 𝑦∗ = 𝐷𝑒𝑐𝑑𝑘 (𝑦′𝑖 ) and concludes that 𝑦∗ is in the intersec-

tion iff 𝑦∗ ∈ 𝑋 . It is easy to see that this protocol is correct and

secure against a semi-honest adversary. That approach is followed

by other works, like [4, 5, 17, 21, 33, 34].

The recent work by Ghosh and Nilges [14] replaces the expensive

homomorphic encryption with an efficient protocol for oblivious

polynomial evaluation (OLE). Their asymptotic communication

complexity is near-optimal, however, their protocol requires the

parties to perform polynomial interpolations over a large number

of points (i.e. the polynomial degree is the set size 𝑂 (𝑚)), which

renders their protocol impractical for large sets (e.g. more than few

tens of thousands). As a result, it was not implemented.

Other protocols follow the bloom filter approach described above.

Miyaji et al. [25, 26] combine bloom filters with additively homo-

morphic encryption to obtain a non-colluding server-aided solution,

and Zhang et al. [36] achieve maliciously secure multiparty PSI, but

in a model in which the two ‘servers’ 𝑃0 and 𝑃1 do not collude (in

fact, their collusion would make the protocol insecure even against

a semi-honest adversary).

1.2 Overview of Our Results & Techniques
Our aim is at constructing a scalable maliciously secure multiparty

PSI protocol. We make use of two main building blocks: oblivious

programmable PRF (OPPRF) and oblivious key-value store (OKVS).

The former is the basis for the fastest multiparty PSI protocols in

the semi-honest setting [2, 23]. Pinkas et al. [29] strengthened the

original cuckoo hashing based OPPRF construction of [23] to the

malicious setting (see details in Appendix B).

An OKVS [13] is a data structure in which a sender has a set

of key-value mapping ({𝑥𝑖 , 𝑦𝑖 }) with (pseudo)random 𝑦𝑖 ’s, and

she wishes to hand that mapping over to a receiver (or receivers),

allowing the receiver to evaluate the mapping on any input but

without revealing the keys 𝑥𝑖 . Correctness of the data structure

must ensure that if the other party evaluates the OKVS on some

𝑞 = 𝑥 𝑗 then the result is 𝑦 𝑗 . Obliviousness here is similar to that

of the OPPRF: given the OKVS, the receiver cannot tell what keys

𝑥𝑖 ’s are encoded. The most compact OKVS that one can think of

is a polynomial. That is, the OKVS 𝑆 = (𝛼0, . . . , 𝛼𝑚) is the set of
coefficients of an (𝑚 − 1)-degree polynomial 𝑝 (𝑥) = ∑𝑚−1

𝑖=0 𝛼𝑖𝑥
𝑖

where𝑚 is the number of points and 𝑝 is interpolated over those

points ({𝑥𝑖 , 𝑦𝑖 }). Given the coefficients 𝑆 , the receiver can evaluate

the polynomial 𝑝 on every query. This OKVS is size-optimal: it

encodes𝑚 points using exactly𝑚 entries (coefficients). Correctness

is obvious; obliviousness follows from the fact that if the 𝑦’s are

(pseudo)random then so is the polynomial, and 𝑝 is independent

of the 𝑥 ’s. When𝑚 is large, however, that OKVS construction is

not practical as it requires interpolation and multi-point evaluation,

which are super linear in the degree. The PaXoS data structure

[29, 32], which is based on cuckoo hashing, is proven to be a much

more practical OKVS [13], which compromises a bit on compactness

(i.e. its size is 1.5 − 2.5× larger than the number of points𝑚), but

it is very fast to encode and decode (in analogy to interpolation

and evaluation). While our protocols can be instantiated with any

OKVS, we rely on that specific construction in our implementation.

The main difference between the two primitives is that OPPRF

actively enforces the receiver to evaluate the function 𝐹 on a limited

number of queries, whereas OKVS is simply a data structure that

is sent in the clear to the receiver, thus, no limit on the number of

evaluation is set. This difference has a significant impact on their

performance. Specifically, an OT-based OPPRF [22] incurs about

4.2− 4.5×more communication and is about 2× slower. In addition,

an OKVS is merely a single message sent from the sender to the

receiver while an OPPRF requires a 2-round protocol.

We present PSI protocols for two different settings. In the first

one we assume no collusion among the parties (i.e. 𝑛 parties and
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𝑡 ≤ 1) and in the second we assume an arbitrary collusion (i.e. 𝑛

parties and 𝑡 < 𝑛). We give a high-level idea of our techniques:

• No collusion. In this case we do not even require an OPPRF.

Specifically, we reduce the problem of multiparty PSI to the

problem of two-party PSI. As an example, consider three par-

ties 𝑃1, 𝑃2, 𝑃3 with sets𝐴
1, 𝐴2, 𝐴3

respectively. Party 𝑃1 picks

a random key 𝑘 and send it to 𝑃2, in addition, 𝑃1 generates an

OKVS 𝑆 using the points (𝑎1
𝑖
, 𝐹𝑘 (𝑎1𝑖 )) for every 𝑎

1

𝑖
∈ 𝐴1

and

sends it to 𝑃3. Then 𝑃2 computes 𝑏2
𝑖
= 𝐹𝑘 (𝑎2𝑖 ) for every 𝑎

2

𝑖

and 𝑃3 evaluates 𝑏
3

𝑖
= 𝑆 (𝑎3

𝑖
) for every 𝑎3

𝑖
∈ 𝐴3

. Note that at

this point if 𝑥 is in the intersection then both 𝑃2 and 𝑃3 have

𝑏2
𝑗
= 𝑏3

𝑗 ′ = 𝐹𝑘 (𝑥) for some 𝑗 and 𝑗 ′. Otherwise (if 𝑥 is not in

the intersection) then either 𝑃2 or 𝑃3 (or both) does not have

𝐹𝑘 (𝑥). Thus, 𝑃2 and 𝑃3 can run a two-party PSI protocol over

the inputs {𝑏2
𝑖
}𝑖∈[𝑛] and {𝑏3𝑖 }𝑖∈[𝑛] and obtain the intersec-

tion 𝐴1 ∩ 𝐴2 ∩ 𝐴3
. Furthermore, we observe that instead

of running the usual two-party PSI (e.g. [29, 31]), they can

run a server-aided PSI with 𝑃1 being the server. Since a mali-

cious server-aided PSI is much faster than a plain malicious

PSI (∼0.8 seconds vs. ∼5 seconds for sets size of 𝑚 = 2
20
)

the overall running time for the three party PSI decreases

from ∼9 seconds (with plain PSI) to ∼4.8 seconds for sets of
size𝑚 = 2

20
, almost 2× improvement. We extend this simple

idea to an arbitrary number of parties, resulting with an

extremely fast protocol. For instance, 𝑛 = 32 parties with set

size of𝑚 = 2
20

complete the protocol in 10 seconds.

Since a server-aided two-party PSI does not require OT (e.g,

public-key base OT), our multiparty PSI protocol relies only
on symmetric-key primitives. To the best of our knowledge,
this is the only construction with such a property.

• Arbitrary collusion. This is the challenging setting, in

which the adversary may corrupt any strict subset of the

parties. We present a simple protocol that can be described

in a modular fashion using only high level primitives OP-

PRF and OKVS (sealing lower-level complex primitives like

OT). Our protocol can be calibrated as a function of 𝑡 such

that the smaller 𝑡 is the faster the protocol. For example,

with 𝑛 = 15 and 𝑚 = 2
20

the runtimes of our protocol

are {7.2, 22.8, 32.5, 58.23} seconds for 𝑡 = {1, 4, 7, 14} respec-
tively. In the worst case, when 𝑡 = 𝑛 − 1, our protocol con-
verges with the protocol of Garimella et al. [13] (which is the

same as the augmented semi-honest version of [23], except

the OKVS instantiation); both have the same performance.

Calibration of the protocol according to the upper bound on

the number of corrupted parties is not trivial. That is, the

augmented semi-honest protocol by [23] and the malicious

protocols by [10, 13] protect from a collusion of 𝑛 − 1 parties
even though 𝑡 may be smaller. In addition, the semi-honest

honest majority protocol by [2] protects against a collusion

of 𝑛/2 − 1 parties even though 𝑡 may be smaller. It is not

known how to improve the performance of these protocols

in accordance to smaller 𝑡 .

To withstand a collusion of up to 𝑡 parties, our protocol

(very informally) reduces the problem of 𝑛-party PSI to the

problem of (𝑡 + 1)-party PSI. Specifically, 𝑛 − 𝑡 − 1 parties
play as clients, with a very lightweight computational and

network load. In addition, 𝑡 parties play as servers, and the

last party plays as a pivot. The challenge is to share the

clients’ sets to the possession of the pivot and the 𝑡 servers

in a way that does not reveal anything about the intersection

of the honest clients’ sets. To this end, we utilize a technique

similar to that in the non-collusion setting: Each client picks

a random PRF key for each server and sends it to that server.

Then, the client generates an OKVS where the keys are its

items and the values are a combination of PRF evaluation

using all these keys, and send that OKVS to the pivot party.

At this point, for each item in the intersection (of all parties’

sets) the servers and the pivot (in total 𝑡 + 1 parties) have a
sharing of zero. In contrast, for items not in the intersection,

their sharing is for a random value. The servers and pivot

find these items for which the shares sum up to zero by

running a dedicated ZeroXOR protocol.

We compare our protocols to recent (implemented) multi-

party PSI protocols [2, 10, 13].

2 PRELIMINARIES
Denote the set {1, . . . , 𝑛} by [𝑛]. Definitions for [oblivious, pro-
grammable] PRF (i.e. OPRF, PPRF, and OPPRF) are given below,

taken almost verbatim from [23]. Denote by 𝜅 and 𝜆 the computa-

tional and statistical security parameters, respectively. PPT is short

for probabilistic polynomial time. We denote the concatenation of

two bit strings 𝑥 and 𝑦 by 𝑥 | |𝑦. In our PSI protocols, we denote the

set of party 𝑖 of size𝑚 by 𝐴𝑖 = {𝑎𝑖
1
, . . . , 𝑎𝑖𝑚}.

2.0.1 Private Set Intersection. The functionality for 𝑛-party private
set intersection is given in Functionality 2.1. Note that in the semi-

honest setting the functionality may give the intersection output

to all parties (rather than to 𝑃𝑛 only) and the adversary always

sets abort = 0. Also note that even though the functionality allows

an unbounded bit-length for the items, in practice (and in our

protocols in particular) it is sufficient to consider items of length 𝜅 ,

so it is possible to input the item 𝐻 (𝑥) instead of the original item

𝑥 ∈ {0, 1}∗ where 𝐻 : {0, 1}∗ → {0, 1}𝜅 is a collision-resistant hash

function.

FUNCTIONALITY 2.1.
(
Multiparty PSI - F𝑛,𝑡,𝑚psi

)
Parameters: The number of parties 𝑛, the number of corrupted

parties 𝑡 < 𝑛 and the size of each input set𝑚.

Behavior: Wait for input 𝐴𝑖 = {𝑎𝑖
1
, . . . , 𝑎𝑖𝑚 } ⊂ {0, 1}∗ from party

𝑃𝑖 and abort ∈ {0, 1} from the adversary. If abort = 0, give output⋂
𝑖∈[𝑛] 𝐴

𝑖
to 𝑃𝑛 . Otherwise give ⊥ to 𝑃𝑛 .

2.0.2 Oblivious PRF. An oblivious PRF (OPRF) [11] is a 2-party

protocol in which the sender learns a PRF key 𝑘 and the receiver

learns 𝐹 (𝑘, 𝑞1), . . . , 𝐹 (𝑘, 𝑞𝑚), where 𝐹 is a PRF and (𝑞1, . . . , 𝑞𝑚) are
inputs chosen by the receiver. Note that we consider a variant of

OPRF where the receiver obtains outputs of multiple statically cho-

sen queries. The OPRF ideal functionality is given in Functionality

2.2.

2.0.3 Programmable PRF (PPRF). A programmable PRF consists of

the following algorithms:
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FUNCTIONALITY 2.2.
(
Oblivious PRF - F𝐹,𝑚oprf

)
Parameters: A PRF 𝐹 , and a bound𝑚 on the number of queries.

Behavior: Wait for input (𝑞1, . . . , 𝑞𝑚) from the receiver R where

𝑞𝑖 ∈ {0, 1}𝜅 . Sample a random PRF key 𝑘 and give it to the sender

S. Give {𝐹 (𝑘,𝑞1), . . . , 𝐹 (𝑘,𝑞𝑚) } to the receiver.

• KeyGen(𝜅,P) → (𝑘, hint): Given a security parameter 𝜅

and set of points P = {(𝑎1, 𝑡1), . . . , (𝑎𝑛, 𝑡𝑚)} with distinct

𝑎𝑖 -values, where 𝑎𝑖 , 𝑡𝑖 ∈ {0, 1}𝜅 , generate a PRF key 𝑘 and

(public) auxiliary information hint. We denote the set {𝑎𝑖 }𝑖
by keys(P) and the set {𝑡𝑖 }𝑖 by vals(P).
• 𝐹 (𝑘, hint, 𝑥) → 𝑦: Evaluates the PRF on input 𝑥 , giving out-

put 𝑦 ∈ {0, 1}𝜅 .
A programmable PRF satisfies correctness if for all (𝑥,𝑦) ∈ P,

and (𝑘, hint) ← KeyGen(𝜅,P) it holds that 𝐹 (𝑘, hint, 𝑥) = 𝑦. For
security consider Experiment 2.3.

EXPERIMENT 2.3.
(
ExpA (P,𝑄,𝜅)

)
(1) For each 𝑎𝑖 ∈ P choose random 𝑡 ′

𝑖
← {0, 1}𝜅

(2) (𝑘, hint) ← KeyGen
(
𝜅, {(𝑎𝑖 , 𝑡 ′𝑖 ) | 𝑎𝑖 ∈ keys(P) }

)
.

(3) return A
(
hint, {𝐹 (𝑘, hint, 𝑞) | 𝑞 ∈ 𝑄 }

)
We say that a programmable PRF is (𝑚1,𝑚2)-secure if for all

P1,P2, 𝑄 where |P1 | = |P2 | =𝑚1, |𝑄 | =𝑚2, and all PPT adversary

A: ��
Pr[ExpA (P1, 𝑄, 𝜅)] − Pr[ExpA (P2, 𝑄, 𝜅)]

�� ≤ negl(𝜅)
Intuitively, security means that it is hard to tell which set of

points is programmed, given hint and 𝑚2 outputs of the PRF, if

the points were programmed to random outputs. Note that this

definition implies that unprogrammed PRF outputs (i.e., those not

set by the input to KeyGen) are pseudorandom. The ‘hint’ is part

of the syntax since all constructions of PPRF leak some object to

the receiver in addition to the PRF outputs. This object is called a

hint and security is guaranteed even though the hint is known to

the receiver.

Oblivious Programmable PRF (OPPRF). The formal definition of

an oblivious programmable PRF functionality is given in Function-

ality 2.4. It is similar to the plain OPRF functionality except that

(1) it allows the sender to initially provide a set of points P which

will be programmed into the PRF; (2) it additionally gives the “hint”

value to the receiver. OPPRF construction for both the semi-honest

and malicious setting were proposed by Kolesnikov et. al. [23] and

by Pinkas et. al. [29, 30] ([29] proposes the malicious construction).

FUNCTIONALITY 2.4.
(
F𝐹,𝑚1,𝑚2

opprf

)
Parameters: A programmable PRF 𝐹 , an upper bound 𝑚1 on

the number of points to be programmed, and a bound𝑚2 on the

number of queries.

Behavior: Wait for input P = {(𝑎1, 𝑡1), . . . , (𝑎𝑚1
, 𝑡𝑚1
) } from

the sender S and input (𝑞1, . . . , 𝑞𝑚2
) from the receiver R.

Run (𝑘, hint) ← KeyGen(𝜅, P) . Give (𝑘, hint) to S and

(hint, 𝐹 (𝑘, hint, 𝑞1), . . . , 𝐹 (𝑘, hint, 𝑞𝑚2
)) to R.

2.0.4 Key-Value Store (KVS). A Key Value Store consists of two

algorithms:

• Encode takes as input a set of (𝑘𝑖 , 𝑣𝑖 ) key-value pairs from
the key-value domain, K ×V , and outputs an object 𝑆 (or,

with negligible probability, an error indicator ⊥).
• Decode takes as input an object 𝑆 , a key 𝑥 and outputs a

value 𝑦.

A KVS is correct if, for all 𝐴 ⊆ K ×V with distinct keys:

• 𝑃𝑟 [Encode(𝐴) = ⊥] is negligible.
• if Encode(𝐴) = 𝑆 ≠ ⊥ and (𝑘, 𝑣) ∈ 𝐴 then Decode(𝑆, 𝑘) = 𝑣 .

Oblivious Key-Value Store (OKVS)[13]. Consider Experiment 2.5.

EXPERIMENT 2.5.
(
ExpA (K = (𝑘1, . . . , 𝑘𝑚))

)
(1) for 𝑖 ∈ [𝑚]: choose uniform 𝑣𝑖 ← V
(2) return A

(
Encode( {(𝑘1, 𝑣1), . . . (𝑘𝑚, 𝑣𝑚) })

)
We say that a KVS is oblivious if for all K1,K2 of size𝑚 and all

PPT adversaries A:��
Pr[ExpA (K1)] − Pr[ExpA (K2)]

�� ≤ negl(𝜅)
In other words, if the values 𝑣𝑖 are chosen uniformly then the output

of Encode hides the choice of the keys 𝑘𝑖 .
The key difference between OPPRF and OKVS is that an OPPRF

limits the number of queries the receiver can make, whereas in

OKVS the receiver is limited by its computational power only. We

show that, despite that relaxation, it is possible to replace some

invocations of OPPRF within a PSI protocol with invocations of

OKVS, which improves performance.

It is proven in [13] that the PaXoS data structure [29] satisfies

the correctness and obliviousness OKVS’s requirements described

above and we use it in our implementation.

2.0.5 Unconditional Zero Sharing [23]. As the name suggests, the

unconditional zero sharing provides the parties with a sharing

function 𝑆 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 and a key 𝐾𝑖 for party 𝑃𝑖 ,

such that for every 𝑥 , we have that 𝑠𝑖 = 𝑆 (𝐾𝑖 , 𝑥) is 𝑃𝑖 ’s random
share, and

⊕𝑛
𝑖=1 𝑠𝑖 = 0. The functionality from [23] is given below

for completeness of the presentation. Its construction 𝜋
𝐹,𝑛

zeroShare is

presented in Protocol C.1.

FUNCTIONALITY 2.6.
(
Zero-Sharing - F𝐹,𝑛zeroShare

)
Parameters: 𝑛 parties. The dictionary store is initialized to ∅.

Behavior: Upon an input 𝑥 from 𝑃𝑖 , if store[𝑥 ] does not ex-
ist, generate random values 𝑠1, . . . , 𝑠𝑛 s.t.

⊕𝑛
𝑖=1 𝑠𝑖 = 0 and store

store[𝑥 ] [𝑖 ] = 𝑠𝑖 for 𝑖 ∈ [𝑛]. Output store[𝑥 ] [𝑖 ] to 𝑃𝑖 .

3 PSI WITH NO COLLUSION
This section serves as a warm-up and presents simple protocols

for 𝑛-party PSI. Even though the general protocols in this section

are not the most efficient ones, the purpose of presenting them is

twofold: (1) demonstrating the simplicity of basing the PSI protocol

on the higher-level abstraction of OKVS; and (2) this presentation

yields the most efficient three-party PSI protocol to date, for both

the semi-honest and malicious settings.
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PROTOCOL 3.1.
(
Recursive PSI - 𝜋

𝑛,1,𝑚
psi

)
Parameters: There are 𝑛 > 2 parties 𝑃1, . . . , 𝑃𝑛 and an adversary

A. The protocol uses the functionality F𝑛−1,1,𝑚psi and an OKVS

scheme (Encode,Decode) .

Protocol:

(1) Party 𝑃1 chooses a PRF key 𝑘 and sends it to 𝑃2.

(2) 𝑃1 runs
a 𝑆 ← Encode

(
{(𝑎1

𝑗
, 𝐹 (𝑘, 𝑎1

𝑗
)) }

𝑎1
𝑗
∈𝐴1

)
, and sends 𝑆

to 𝑃3, . . . , 𝑃𝑛 .

(3) Party 𝑃2 computes 𝐴̃2 = {𝑎2
𝑗
| |𝐹 (𝑘, 𝑎2

𝑗
) }

𝑎2
𝑗
∈𝐴2 .

(4) Party 𝑃𝑖 ∈ {𝑃3, . . . , 𝑃𝑛 } computes 𝐴̃𝑖 =

{𝑎𝑖
𝑗
| |Decode(𝑆, 𝑎𝑖

𝑗
) }

𝑎𝑖
𝑗
∈𝐴𝑖 .

(5) Parties 𝑃2, . . . , 𝑃𝑛 invoke F𝑛−1,1,𝑚psi where 𝐴̃𝑖
is 𝑃𝑖 ’s input

set.

(6) Party 𝑃𝑛 obtains the intersection𝑋 = {𝑥 | |𝑥̃ }
𝑥 | |𝑥̃∈∩𝑖𝐴̃𝑖 from

F𝑛−1,1,𝑚psi and outputs {𝑥 | 𝑥 | |𝑥̃ ∈ 𝑋 }.

a
In case that A is malicious, party 𝑃𝑖 uses 𝐻 (𝑎𝑖𝑗 ) instead of 𝑎𝑖

𝑗
in steps

(2)-(4) above, where 𝐻 is a random oracle.

In Section 3.1, we present a recursive multiparty PSI protocol for

the case of no collusion, that is, the adversary corrupts at most one

party. In particular, this covers an important setting of 3 parties and

an honest majority (which was extensively explored in the MPC

literature, e.g. [27]). Obviously, if a multiparty protocol incurs𝑂 (1)
rounds, then the recursive protocol incurs 𝑂 (𝑛) rounds. In Section

3.2 we present an optimization of the first protocol, which has only

𝑂 (1) rounds.

3.1 A Recursive Construction with 𝑂 (𝑛) rounds
We reduce the problem of 𝑛-party PSI with no collusion (i.e. 𝑡 = 1)

to the problem of 𝑛 − 1-party PSI with no collusion. The idea

is that party 𝑃1 chooses a random PRF key 𝑘 , which she sends

to 𝑃2. She then encodes her input 𝐴1
into an OKVS 𝑆 as 𝑆 ←

Encode
(
{(𝑎1

𝑗
, 𝐹 (𝑘, 𝑎1

𝑗
))}𝑎1

𝑗
∈𝐴1

)
, which she sends to 𝑃3, . . . , 𝑃𝑛 . 𝑃2,

in turn, computes 𝐴̃2 = {𝐹 (𝑘, 𝑎2
𝑗
) | 𝑎2

𝑗
∈ 𝐴2}. 𝑃𝑖 ∈ {𝑃3, . . . , 𝑃𝑛} de-

codes the givenOKVS on its values𝐴𝑖 and obtains 𝐴̃𝑖 = {Decode(𝑆, 𝑎𝑖
𝑗
) |

𝑎𝑖
𝑗
∈ 𝐴𝑖 }. Now, parties 𝑃2, . . . , 𝑃𝑛 run F𝑛−1psi with their new sets 𝐴̃𝑖 .

The parties repeat this process recursively until party 𝑃𝑛 obtains

the result.

Note that the above simple recursive protocol has a caveat: a

malicious 𝑃1 could encode (𝑎′, 𝐹 (𝑘, 𝑎′′)) in the OKVSwhere 𝑎′ ∈ 𝐴𝑖
for all 𝑖 = 3, . . . , 𝑛 and 𝑎′′ ∈ 𝐴2

but neither 𝑎′ nor 𝑎′′ are in the

intersection (suppose that 𝑃1 has that auxiliary information). This

way, 𝑃𝑛 incorrectly obtains 𝑎′ in the output, since now all parties

𝑃𝑖 (𝑖 ∈ {1, . . . , 𝑛}) input 𝐹 (𝑘, 𝑎′′) to F𝑛−1psi .

We can easily mitigate that attack. Our protocol (Protocol 3.1)

instructs 𝑃2, . . . , 𝑃𝑛 to augment the items they input to F𝑛−1psi : in-

stead of only 𝑎𝑖
𝑗
= Decode(𝑆, 𝑎𝑖

𝑗
) party 𝑃𝑖 inputs both 𝑎𝑖𝑗 and 𝑎

𝑖
𝑗
(a

concatenation of them). This ensures that F𝑛−1psi outputs only the

correct intersection.

3.1.1 Recursion Base Case: Server-Aided Two-Party PSI. The tem-

plate above shows a reduction from 𝑛-party PSI to (𝑛 − 1)-party

PSI. Our base case would be a protocol for two parties. We ob-

serve that, since there is at most one corrupted party, this base case

can be instantiated by a server-aided two-party PSI, where one of

𝑃1, . . . , 𝑃𝑛−2 takes the role of the server. Specifically, we can use

the server-aided PSI in Kamara et al. [20] or the one by Le et al.

[24]. Both protocols allow two parties to obtain the intersection of

their sets using an untrusted third party where it is assumed that

the third party does not collude with neither of the parties. Since

these protocols with a non-colluding server are much more effi-

cient our overall construction becomes more efficient as well. For

completeness, a description of those protocols is given in Appendix

A.

3.1.2 Discussion: Insecurity in the Face of Collusion. We demon-

strate the reason the above protocol is insecure when the adversary

corrupts two or more parties. If 𝑃2 colludes with 𝑃𝑖 , 𝑃2 could send

the PRF key 𝑘 to 𝑃𝑖 . Now, 𝑃𝑖 can call Decode(𝑆, 𝑥) on any 𝑥 and

receive either 𝐹 (𝑘, 𝑥) or some random value, depending on whether

𝑥 ∈ 𝐴1
or not. If the inputs are known to be from a relatively small

domain (e.g phone numbers), 𝑃𝑖 can perform a check on every input

in the domain and expose all 𝑃1’s input items.

Note that the attack above is possible since 𝑃𝑖 has a key 𝑘 and

an OKVS 𝑆 , both objects do not imply any limit on the number of

queries to them (i.e. 𝑃𝑖 can compute 𝐹 (𝑘, ·) and Decode(𝑆, ·) arbi-
trarily many times). In order to weaken the threshold assumption

(i.e. to make the protocol secure even against collusion), one may

use an F 𝐹,𝑚1,𝑚2

opprf in place of the OKVS. That is, in Step 2 of Protocol

3.1, 𝑃1 runs an OPPRF protocol with each of 𝑃3, . . . , 𝑃𝑛 . Now, by the

definition of OPPRF, 𝑃𝑖 can make only a limited number of queries.

Although that modification seems to strengthen the protocol

security, it would not satisfy the security requirement defined by

functionality F𝑛,𝑡,𝑚psi . Recall that the functionality outputs to 𝑃𝑛

only the items that are in the intersection of all sets. However, in
the modified protocol the adversary, who corrupts parties 𝑃𝑖 , 𝑃 𝑗
(2 < 𝑖, 𝑗 ) may learn the intersection of the sets of parties 𝑃1, 𝑃𝑖 , 𝑃 𝑗

by having 𝑃𝑖 , 𝑃 𝑗 agree on the same input set 𝐴𝑖 = 𝐴 𝑗 and compare

their OPPRF results. An equal OPPRF results on a query 𝑥 means

that 𝑥 ∈ 𝐴1 ∩𝐴𝑖 ∩𝐴 𝑗 whereas an unequal results on 𝑥 means that

𝑥 ∉ 𝐴1
. Such an intersection of three parties is not permitted by

functionality F𝑛,𝑡,𝑚psi .

3.1.3 Three-party and dishonest majority. Note that when 𝑛 =

3, the above adversarial behavior is not considered as an attack,

since the intersection of the sets of three parties is actually the

intersection of all sets, which is allowed to be revealed. Thus, we

find such a modification to Protocol 3.1 useful for implementing

F 3,2,𝑚
psi . That is, to securely compute the intersection of three sets

even when two of the parties are corrupted and colluding.

3.1.4 Complexity and Security. The protocol recursively invokes

itself with decreasing number of parties, where our base case is

a two-party PSI. That means that each of 𝑃1, . . . , 𝑃𝑛−2 encrypts a
single OKVS and decodes 𝑖 − 1 instances of OKVS. Furthermore,

that means that the protocol has 𝑂 (𝑛) rounds of communication,

which may be the bottleneck when the number of parties is large.
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Theorem 3.2. Protocol 3.1 (𝜋𝑛,1,𝑚psi ) securely computes functional-

ity F𝑛,1,𝑚psi in the F𝑛−1,1,𝑚psi -hybrid and random oracle model in the
presence of a malicious adversary.

Proof: Correctness is clear from the definitions of OKVS, PRF and

PSI. We turn to show security by presenting a simulator to each of

the following four cases, for each case we describe simulation in

both the semi-honest and malicious settings.

Corrupted 𝑃1. In the semi-honest setting, the simulator is given

the 𝑃1’s input 𝐴
1 = {𝑎1

1
, . . . , 𝑎1𝑚}, he inputs it to the ideal-

world functionality and obtains an empty output. In the

real execution 𝑃1 receives no further messages, thus, which

trivially concludes the simulation. In the malicious setting,

the simulator has to extract 𝑃1’s actual input. To do so,

the simulator internally runs 𝑃1 and for each call 𝐻 (𝑥) to
the random oracle, the simulator enters 𝑥 to a list 𝐿. Then,

playing the role of 𝑃2 who receives 𝑘 and 𝑃𝑖 (𝑖 = 3, . . . , 𝑛)
who receives 𝑆 , the simulator concludes with the actual in-

put set 𝐴1 = {𝑥 ∈ 𝐿 | 𝐹 (𝑘, 𝐻 (𝑥)) = Decode(𝑆, 𝐻 (𝑥))}.
The simulator inputs 𝐴1

to the ideal world functionality.

Note that except with negligible probability, for every 𝑥 ′

that was not queried the random oracle, it follows that

𝐹 (𝑘, 𝐻 (𝑥 ′)) ≠ Decode(𝑆, 𝐻 (𝑥 ′)), and thus 𝑥 ′ does not ap-
pear in the real execution result intersection. This concludes

the simulation because 𝑃1 does not receive any further mes-

sage in both worlds.

Corrupted 𝑃2. The simulator is given 𝐴2
, inputs it to the ideal

world functionality and receives nothing back. In the real

execution 𝑃2 receives a random key from 𝑃1, so the simulator

generates a random key𝑘 and sends it to 𝑃2, which concludes

the simulation in the semi-honest case.

In the malicious setting, the simulator runs 𝑃2 internally

and gives a random key 𝑘 . The simulator observes 𝑃2’s calls

to the random oracle and records them in the set 𝐿. Then,

the simulator observes the set of values, 𝐿′, input by 𝑃2
to the F𝑛−1,1,𝑚psi functionality and concludes with the set

𝐴2 = {𝑥 ∈ 𝐿 | ∃𝑦 ∈ 𝐿′ : 𝐹−1 (𝑘,𝑦) = 𝐻 (𝑥)}. The simulator

inputs 𝐴2
to the ideal world functionality. Note that for each

value 𝑦 ∈ 𝐿′ for which 𝐹−1 (𝑘,𝑦) is not a random oracle

output on some value from 𝐿, the probability that 𝐹−1 (𝑘,𝑦)
is a random oracle output for some value in 𝐴𝑖 (for 𝑖 ≠ 2) is

negligible, since there are at most (𝑛 − 1)𝑚 random oracle

outputs in the range {0, 1}𝜅 , the probability that 𝐹−1 (𝑘,𝑦) is
one of them is negligible. Therefore, with high probability 𝑦

would not impact the result intersection in the real execution.

Corrupted 𝑃𝑖 (3 ≤ 𝑖 < 𝑛). The simulator is given 𝐴𝑖 , sends

it to the ideal world functionality and receives no output.

In the real execution 𝑃𝑖 receives an OKVS from 𝑃1, so the

simulator computes 𝑆 ← Encode({(𝑘𝑖 , 𝑣𝑖 )}) with𝑚 random

pairs (𝑘𝑖 , 𝑣𝑖 ) and sends 𝑆 to 𝑃𝑖 . By the obliviousness property
of 𝑆 , it is not possible to distinguish between 𝑆 output by

the simulator and the OKVS that has 𝐴1
as keys in the real

execution.

In the malicious setting the simulator extracts 𝑃𝑖 ’s input set

as follows: it runs 𝑃𝑖 internally with the random OKVS 𝑆 as

its first message. It observes the set of 𝑃𝑖 ’s random oracle

queries and records them in the list 𝐿. Then, it receives 𝑃𝑖 ’s

input set 𝐿′ to the F𝑛−1,1,𝑚psi functionality and concludes with

the set 𝐴𝑖 = {𝑥 | 𝑥 ∈ 𝐿 ∧ Decode(𝑆, 𝐻 (𝑥)) ∈ 𝐿′}. As before,
for a value 𝑦 in 𝐿′ that is not in the range of Decode(𝑆, ·) or
is Decode(𝑆, 𝑟 ) where 𝑟 not being a random oracle respond

to any value in 𝐿, with high probability 𝑦 has no impact on

the result intersection in the real execution. Therefore we

may ignore it in the ideal world simulation.

Corrupted 𝑃𝑛 . The simulation here works exactly as in the previ-

ous case with 𝑆 being the OKVS sent to 𝑃𝑛 . The simulator

inputs the concluded set 𝐴𝑖 to the ideal world functionality

and indeed receives an output 𝑋 - the intersection of all

parties’ sets. The simulator hands {𝑥 | |Decode(𝑆, 𝑥)}𝑥 ∈𝑋 to

𝑃𝑛 (in the internal execution) and outputs whatever 𝑃𝑛 out-

puts. As argued in the previous case, with high probability

both worlds use the same input set of 𝑃𝑛 , therefore the result

intersection is the same.

□

3.2 Reducing to 𝑂 (1) Rounds
Protocol 3.3 has a constant number of rounds. The idea is to ‘push’

the computation workload to a small number of designated parties,

specifically, to parties 𝑃𝑛−1 and 𝑃𝑛 . Party 𝑃1 generates the PRF keys
𝑘𝑖 for all 𝑖 ∈ [2, 𝑛 − 2], and hands 𝑘𝑖 to 𝑃𝑖 , and uses the XOR of

all 𝐹 (𝑘𝑖 , 𝑎1𝑗 ) as
⊕𝑛−2

𝑖=2 𝐹 (𝑘𝑖 , 𝑎1𝑗 )𝑗 ∈[𝑚] to encode an OKVS 𝑆𝑛 , which

she then sends to 𝑃𝑛 . Party 𝑃𝑛 learns an OKVS 𝑆𝑛 , so she decodes it

on every 𝑎𝑛 ∈ 𝐴𝑛 , which equals

⊕𝑛−2
𝑖=2 𝐹 (𝑘𝑖 , 𝑎𝑛) if 𝑎𝑛 was encoded

in 𝑆𝑛 . Similarly, party 𝑃𝑛−1 receives the OKVS 𝑆𝑖 (encoded using

key 𝑘𝑖 received from 𝑃1) from party 𝑃𝑖 ∈ {𝑃2, . . . , 𝑃𝑛−2}, so she

can decode it on every 𝑎𝑛−1 ∈ 𝐴𝑛−1. Again, if 𝑎𝑛−1 was encoded
then the result is

⊕𝑛−2
𝑖=2 𝐹 (𝑘𝑖 , 𝑎𝑛−1). So for a value 𝑥 that is in the

intersection, both 𝑃𝑛−1 and 𝑃𝑛 compute the same value, which

looks pseudo-random to them (Because both parties learn only the

pseudo-random values encoded in the OKVS’s without knowing

the keys).

Note that, similar to Protocol 3.1, 𝑃𝑛−1 and 𝑃𝑛 augment their in-

put to F 2,1,𝑚
psi to be the concatenation of the plain item and its

PRF evaluation. This is required in order to mitigate a similar

attack to the one described above: a malicious 𝑃1 might encode

(𝑥,
⊕𝑛−1

𝑖=2 𝐹 (𝑘𝑖 , 𝑥 ′)) in 𝑆𝑛 (rememeber, 𝑃1 chooses all keys), where

𝑥 ′ ∈ 𝐴𝑖 for all 𝑖 ∈ {2, . . . , 𝑛−1} and 𝑥 ∈ 𝐴𝑛 , but neither 𝑥 nor 𝑥 ′ are
in the intersection. Now, when 𝑃𝑛 computes (Decode(𝑆𝑛, 𝑥)) she
obtains

⊕𝑛−1
𝑖=2 𝐹 (𝑘𝑖 , 𝑥 ′). Therefore, 𝑃𝑛−1, 𝑃𝑛 invoke F 2,1,𝑚

psi with⊕𝑛−1
𝑖=2 𝐹 (𝑘𝑖 , 𝑥 ′) as one of the values in their sets, leading 𝑃𝑛 to

falsely output the value 𝑥 .

Let us remark that in the case of 𝑛 = 3, party 𝑃2 acts as if

she is party 𝑃𝑛−1. Namely, 𝑃2 preforms steps 4 and 6, while she

does not preform step 3. As a consequence, in step 4, 𝑃2 computes

𝐴̃𝑛−1 =
{
𝑎𝑛−1
𝑗
| | 𝐹 (𝑘𝑛−1, 𝑎𝑛−1𝑗

)
}
𝑎𝑛−1
𝑗
∈𝐴𝑛−1 .

3.2.1 Discussion. Note that even a slight modification to Protocol

3.3 may turn it insecure. For example, suppose 𝑃𝑖 , for 𝑖 ∈ [2, 𝑛 − 2]
sends the OKVS 𝑆𝑖 directly to 𝑃𝑛 ; then 𝑃𝑛 could compute 𝑣 ′ ←⊕𝑛−2

𝑖=2 Decode(𝑆𝑖 , 𝑣) and 𝑣 ′′ ← Decode(𝑆𝑛, 𝑣), compare the two

values 𝑣 ′, 𝑣 ′′ and deduce if 𝑣 ∈ 𝐴1
, 𝑣 ∈ ∩𝑖𝐴𝑖 or neither. Since OKVS

7



PROTOCOL 3.3.
(
PSI - 𝜋

𝑛,1,𝑚
psi−opt

)
Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 and an adversary A.

The protocol uses the functionality F2,1,𝑚psi , and an OKVS scheme

(Encode,Decode) .
Protocol

a
:

(1) 𝑃1 chooses 𝑘𝑖 ∈ {0, 1}𝜅 uniformly and sends 𝑘𝑖 to 𝑃𝑖 , for

𝑖 = 2, . . . , 𝑛 − 2.
(2) 𝑃1 computes 𝑆𝑛 ← Encode( {(𝑎1

𝑗
,
⊕𝑛−2

𝑖=2 𝐹 (𝑘𝑖 , 𝑎1𝑗 )) }𝑗∈[𝑚] )
and sends 𝑆𝑛 to 𝑃𝑛 .

(3) 𝑃𝑖 (𝑖 ∈ {2, . . . , 𝑛 − 2}) computes 𝑆𝑖 ←
Encode( {(𝑎𝑖

𝑗
, 𝐹 (𝑘𝑖 , 𝑎𝑖𝑗 )) }𝑗∈[𝑚] ) and sends 𝑆𝑖 to 𝑃𝑛−1.

(4) 𝑃𝑛−1 computes

𝐴̃𝑛−1 =
{
𝑎𝑛−1𝑗 | |

𝑛−2⊕
𝑖=2

Decode(𝑆𝑖 , 𝑎𝑛−1𝑗 )
}
𝑗∈[𝑛]

(5) 𝑃𝑛 computes

𝐴̃𝑛 = {𝑎𝑛𝑗 | | Decode(𝑆𝑛, 𝑎𝑛𝑗 ) }𝑗∈[𝑛]
(6) Parties 𝑃𝑛−1, 𝑃𝑛 invoke F2,1,𝑚psi with inputs 𝐴̃𝑛−1

and 𝐴̃𝑛
, re-

spectively. 𝑃𝑛 obtains𝑋 = {𝑥 | |𝑥̃ }
𝑥 | |𝑥̃∈𝐴̃𝑛−1∩𝐴̃𝑛 and outputs

the intersection {𝑥 | 𝑥 | |𝑥̃ ∈ 𝑋 }.
a
In case that A is malicious, party 𝑃𝑖 uses 𝐻 (𝑎𝑖𝑗 ) instead of 𝑎𝑖

𝑗
in steps

(2)-(5) above, where 𝐻 is a random oracle.

does not imply any limit on the number of queries to it, 𝑃𝑛 can

preform this test with any 𝑣 , thus learning more information than

what the functionality allows.

In addition, a collusion of even two parties would break the secu-

rity of Protocol 3.3: If 𝑃1 colludes with 𝑃𝑛−1, 𝑃1 may send the PRF

keys 𝑘𝑖 to 𝑃𝑛−1. Now, 𝑃𝑛−1 may run Decode(𝑆𝑖 , 𝑥) on unlimited

number of values 𝑥 , by that, it receives either 𝐹 (𝑘𝑖 , 𝑥) or some pseu-

dorandom value, depending on whether 𝑥 ∈ 𝐴𝑖 or not. If inputs are
drawn from a rather small domain then 𝑃𝑛−1 may completely reveal

𝑃𝑖 ’s input set. We remark that the protocol remains secure against a

collusion of any subset in P({𝑃2, . . . , 𝑃𝑛−2}) ×{𝑃1, 𝑃𝑛−1, 𝑃𝑛} (where
P denotes the power set), as each party 𝑃𝑖 ∈ {𝑃2, . . . , 𝑃𝑛−2} holds
only its own key 𝑘𝑖 and set 𝑆𝑖 , which do not leak information re-

garding any other parties’ input.

3.2.2 Complexity and Security. We begin by the analysis of the

computational complexity. Party 𝑃1 computes a single OKVS, but

performs𝑂 (𝑛𝑚) calls to 𝐹 in order to do so. Party 𝑃𝑖 (𝑖 ∈ {2, . . . , 𝑛−
2}) computes a single OKVS with work linear in𝑚. 𝑃𝑛−1 decodes
𝑂 (𝑛) instances of OKVS, each on 𝑂 (𝑚) values, which incurs com-

putation of 𝑂 (𝑛𝑚). Finally, 𝑃𝑛 decodes a single OKVS on 𝑂 (𝑚)
values.

We continue with the round complexity. Party 𝑃1 sends 𝑘𝑖 to 𝑃𝑖
(𝑖 ∈ {2, . . . , 𝑛 − 2}) in the first round. She also sends 𝑆𝑛 to 𝑃𝑛 in the

same round. 𝑃𝑖 (𝑖 ∈ {2, . . . , 𝑛 − 2}) sends 𝑆𝑖 to 𝑃𝑛−1 at the second
round. Parties 𝑃𝑛−1 and 𝑃𝑛 invoke F 2,1,𝑚

psi in the third and last round.

Overall, the round complexity is 2 rounds more than the protocol

for two parties. We instantiate F 2,1,𝑚
psi using the server-aided PSI

by Kamara et al [20] which is 2 rounds. Therefore, our protocol has

an overall of 4 rounds.

Finally, consider communication complexity. Each party 𝑃𝑖 (𝑖 ∈
{1, . . . , 𝑛 − 2}) sends an OKVS encoded with 𝑂 (𝑚) values. Party
𝑃1 also sends 𝑂 (𝑛) 𝜅-length keys. 𝑃𝑛−1 and 𝑃𝑛 communication

complexity is determined by the exact protocol used to compute

the functionality F 2,1,𝑚
psi , which is 𝑂 (𝑚) as it can be instantiated

with a server-aided version.

Theorem 3.4. Protocol 3.3 (𝜋𝑛,1,𝑚psi−opt) securely computes function-

ality F𝑛,1,𝑚psi in the F 2,1,𝑚
psi -hybrid model in the presence of a malicious

adversary.

Proof:
To show correctness, we separate the proof to the case where 𝑥

is in the intersection and the cases where 𝑥 does not belong to 𝐴𝑖 ,

for each 𝑖 ∈ [𝑛].
Case 1:𝑥 in the intersection. 𝑃1 encodes the point (𝑥,

⊕𝑛−2
𝑖=2 𝐹 (𝑘𝑖 , 𝑥))

into 𝑆𝑛 , which is sent to 𝑃𝑛 . Party 𝑃𝑖 for 𝑖 ∈ {2, . . . , 𝑛 − 2} encodes
(𝑥, 𝐹 (𝑘𝑖 , 𝑥)) into 𝑆𝑖 , which is sent to 𝑃𝑛−1. Party 𝑃𝑛−1 decodes each
𝑆𝑖 with key 𝑥 , obtains 𝐹 (𝑘𝑖 , (𝑥) for all 𝑖 ∈ {2, . . . , 𝑛 − 2}, and sums

them up, resulting with

⊕𝑛−2
𝑖=2 𝐹 (𝑘𝑖 , (𝑥). This is exactly the value

obtained by 𝑃𝑛 when decoding 𝑆𝑛 on 𝑥 . Thus, both 𝑃𝑛−1 and 𝑃𝑛 adds
that value to their sets 𝐴̃𝑛−1 and 𝐴̃𝑛 , respectively, so 𝑃𝑛 outputs 𝑥

as part of the intersection.

Case 2: 𝑥 ∉ 𝐴1
. 𝑃1 sends 𝑆𝑛 to 𝑃𝑛 without encoding 𝑥 as a key in

𝑆𝑛 . Thus, 𝑦𝑛 = Decode(𝑆𝑛, 𝑥) is a pseudorandom value that with

overwhelming probability not equal to𝑦𝑛−1 =
⊕𝑛−2

𝑖=2 Decode(𝑆𝑖 , 𝑥).
Thus, even if 𝑥 ∈ 𝐴𝑖 for all 𝑖 ∈ {2, . . . , 𝑛}, the values 𝑥 | |𝑦𝑛−1 and
𝑥 | |𝑦𝑛 input to F 2,1,𝑚

psi would not match, therefore 𝑥 is not output as

part of the intersection.

Case 3: 𝑥 ∉ 𝐴𝑖 for some 𝑖 ∈ {2, . . . , 𝑛 − 2}. Party 𝑃𝑖 sends 𝑆𝑖 to
𝑃𝑛−1 without encoding 𝑥 as a key. Thus, Decode(𝑆𝑖 , 𝑥) is a pseu-
dorandom value that with overwhelming probability not equal to

𝐹 (𝑘𝑖 , (𝑥). Therefore, if 𝑃𝑛−1 has 𝑥 , it inputs to F 2,1,𝑚
psi 𝑥 | |𝑥 where 𝑥 is

a pseudorandom value not equal to 𝑥 =
⊕𝑛−2

𝑖=2 𝐹 (𝑘𝑖 , (𝑥) whereas if
𝑃𝑛 has 𝑥 it inputs 𝑥 | |𝑥 , meaning that 𝑥 is not part of the intersection.

Case 4: 𝑥 ∉ 𝐴𝑛−1 or 𝑥 ∉ 𝐴𝑛 . Parties 𝑃𝑛−1 and 𝑃𝑛 concatenate their
plain-text values in the beginning of each value of their sets 𝐴̃𝑛−1

and 𝐴̃𝑛 respectively. Thus, they do not obtain a value corresponding

to 𝑥 from F 2,1,𝑚
psi , from the correctness of this functionality.

Simulation. We turn to show security by presenting a simulator

to each of the following four cases, for each case, we describe

simulation in both the semi-honest and malicious settings.

Corrupted 𝑃1. In the semi-honest setting the simulator is given

𝑃1’s input 𝐴
1 = {𝑎1

1
, . . . , 𝑎1𝑚}, it inputs it to the ideal-world

functionality and obtains an empty output. In the real ex-

ecution, 𝑃1 receives no further messages, which trivially

concludes the simulation.

In the malicious setting, the simulator has to extract 𝑃1’s

actual input. To do so, the simulator internally runs 𝑃1 and

for each call𝐻 (𝑥) to the random oracle, the simulator enters

𝑥 to a list 𝐿. Then, playing the role of 𝑃𝑛 who receives 𝑆𝑛 and

𝑃𝑖 (𝑖 = 2, . . . , 𝑛 − 1) who receives 𝑘𝑖 , the simulator concludes

with the actual input set 𝐴1 = {𝑥 ∈ 𝐿 |
⊕𝑛−2

𝑖=2 𝐹 (𝑘𝑖 , 𝑥) =
Decode(𝑆𝑛, 𝐻 (𝑥))}. The simulator inputs 𝐴1

to the ideal-

world functionality. Note that except with negligible prob-

ability, for every 𝑥 ′ that was not queried to the random

oracle, it follows that

⊕𝑛−2
𝑖=2 𝐹 (𝑘𝑖 , 𝑥) ≠ Decode(𝑆𝑛, 𝐻 (𝑥 ′)),
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and thus 𝑥 ′ does not appear in the real execution result in-

tersection. This conclude the simulation because 𝑃1 does not

receive any further message in both worlds.

Corrupted 𝑃𝑖 (2 ≤ 𝑖 ≤ 𝑛 − 2). In the semi-honest setting, the

simulator is given 𝑃𝑖 ’s input 𝐴
𝑖
, so it inputs that set to the

ideal-world functionality. In addition, 𝑃𝑖 receives a random

key from 𝑃1 in the real execution, so the simulator generates

a random key 𝑘𝑖 and set it as 𝑃𝑖 ’s view, which concludes the

simulation since 𝑃𝑖 receives no further messages.

In order to extract 𝑃𝑖 ’s actual input in the malicious setting,

the simulator internally runs 𝑃𝑖 and for each call𝐻 (𝑥) to the
random oracle, the simulator enters 𝑥 to a list 𝐿. Then, play-

ing the role of 𝑃𝑛−1 who receives 𝑆𝑖 , the simulator concludes

with the actual input set 𝐴𝑖 = {𝑥 ∈ 𝐿 | Decode(𝑆𝑖 , 𝐻 (𝑥)) =
𝐹 (𝑘𝑖 , (𝐻 (𝑥))} where 𝑘𝑖 is the key that the simulator gives

𝑃𝑖 in the internal execution. The simulator inputs 𝐴𝑖 to the

ideal world functionality. Note that, except with negligible

probability, for every 𝑥 ′ that was not queried the random

oracle, it follows thatDecode(𝑆𝑖 , 𝐻 (𝑥 ′)) ≠ 𝐹 (𝑘𝑖 , 𝐻 (𝑥 ′)), and
thus 𝑥 ′ does not appear in the real execution result intersec-

tion. This concludes the simulation as 𝑃𝑖 receives no further

messages in the real execution.

Corrupted 𝑃𝑛−1. In the semi-honest case, the simulator has𝐴𝑛−1,
so it inputs that set to the ideal world functionality. In the

real execution 𝑃𝑛−1 receives an OKVS from 𝑃𝑖 (2 ≤ 𝑖 ≤
𝑛 − 2), so the simulator computes 𝑆𝑖 ← Encode({(𝑘𝑖 , 𝑣𝑖 )})
with𝑚 random pairs (𝑘 𝑗 , 𝑣 𝑗 ) and sends 𝑆𝑖 to 𝑃𝑛−1, for each
𝑖 ∈ (2, . . . , 𝑛−2). By the obliviousness property of 𝑆𝑖 , it is not
possible to distinguish between 𝑆𝑖 output by the simulator

and an OKVS that encodes 𝐴𝑖 as keys in the real execution.

This concludes the simulation since 𝑃𝑛−1 receives no further
messages in the real execution.

In the malicious setting, the simulator extracts 𝑃𝑛−1’s input
set as follows: it runs 𝑃𝑛−1 internally with the 𝑛 − 2 random
𝑆𝑖 as its first messages, as described above. It observes the set

of 𝑃𝑛−1’s random oracle queries and records them in a list 𝐿.

Then, it receives 𝑃𝑛−1’s input set 𝐿′ to the F 2,1,𝑚
psi function-

ality and concludes with the set 𝐴𝑛−1 = {𝑥 ∈ 𝐿 | 𝑥 | |𝑥 ∈ 𝐿′}
where 𝑥 =

⊕𝑛−2
𝑖=2 Decode(𝑆𝑖 , 𝐻 (𝑥)). The simulator inputs

𝐴𝑛−1 to the ideal world functionality. As before, values 𝑥 that
are not in 𝐿 or not in 𝐿′ would not be found in the intersec-

tion in the real execution (except with negligible probability)

and therefore can be ignored in the ideal world execution.

This concludes the simulation as 𝑃𝑛−1 receives no further

messages in the real execution.

Corrupted 𝑃𝑛 . In the semi-honest case, the simulator has 𝐴𝑛 ,

inputs it to the ideal world functionality, and obtains the

intersection𝑋 back. The simulator sends a random OKVS 𝑆𝑛
and the set 𝑋̃ = {𝑥 | |Decode(𝑆𝑛, 𝑥)}𝑥 ∈𝑋 to 𝑃𝑛 and outputs

whatever it outputs. By the obliviousness property of the

OKVS, 𝑆𝑛 and 𝑋̃ in both worlds are computationally indis-

tinguishable and expose the same correlation, i.e. for each

𝑥 | |𝑥 ∈ 𝑋̃ it follows that Decode(𝑆𝑛, 𝑥) = 𝑥 .
The extraction of 𝑃𝑛 ’s actual input in the malicious setting

follows. The simulator runs 𝑃𝑛 internally with the random

OKVS, 𝑆𝑛 , as its first message. It observes the set of 𝑃𝑛 ’s

random oracle queries and records them in the list 𝐿. Then,

it receives 𝑃𝑛 ’s input set 𝐿
′
to the F 2,1,𝑚

psi functionality and

concludes with the set 𝐴𝑛 = {𝑥 ∈ 𝐿 | 𝑥 | |𝑥 ∈ 𝐿′} where
𝑥 = Decode(𝑆𝑛, 𝐻 (𝑥)). The simulator inputs 𝐴𝑛 to the ideal

world functionality and receives 𝑋 back. It sends to 𝑃𝑛 the

set 𝑋̃ = {𝑥 | |Decode(𝑆𝑛, 𝐻 (𝑥))}𝑥 ∈𝑋 and outputs whatever it

outputs.

□

4 PSI WITH ARBITRARY COLLUSION
Recall the insecurity of Protocol 3.3 against a collusion of two

parties. Specifically, when 𝑃1 colludes with 𝑃𝑛−1, they have both

the keys𝑘𝑖 and the OKVSes 𝑆𝑖 for all 𝑖 ∈ [2, 𝑛−2], whichmeans they

can reveal 𝑃𝑖 ’s input if the domain is small enough. Furthermore,

when 𝑃𝑛−1 and 𝑃𝑛 collude, they can reveal the intersection of all

parties 𝑃1, . . . , 𝑃𝑛−2, which is not allowed by the functionlity.

We can mitigate the above attacks as follows: First, 𝑃1 picks key

𝑘𝑖 for 𝑃𝑖 for 𝑖 ∈ [2, 𝑛 − 3] and computes 𝑆𝑛 based on these keys.

Now, each 𝑃𝑖 for 𝑖 ∈ [2, 𝑛 − 3] picks an additional key 𝑘 ′
𝑖
and com-

putes its 𝑆𝑖 by 𝑆𝑖 ← Encode({(𝑎𝑖
𝑗
, 𝐹 (𝑎𝑖

𝑗
))}𝑗 ∈[𝑛] ) where 𝐹 (𝑎𝑖𝑗 ) =

𝐹 (𝑘 ′
𝑖
, 𝑎𝑖
𝑗
) ⊕ 𝐹 (𝑘𝑖 , 𝑎𝑖𝑗 ), and sends it to 𝑃𝑛−1. In addition, 𝑃𝑖 sends 𝑘

′
𝑖
to

𝑃𝑛−2, who computes {𝑎𝑛−2
𝑗
| |
⊕𝑛−3

𝑖=2 𝐹𝑘′𝑖
(𝑎𝑛−2
𝑗
) ⊕𝐹𝑘𝑛−2 (𝑎𝑛−2𝑗

)}𝑗 ∈[𝑚] .
At this point, the ‘important information’ of the parties is spread

amongst three parties 𝑃𝑛−2, 𝑃𝑛−1 and 𝑃𝑛 . Specifically, for an item

𝑎 in the intersection, party 𝑃𝑛−2 holds 𝑎𝑛−2 =
⊕𝑛−3

𝑖=2 𝐹𝑘′𝑖
(𝑎), party

𝑃𝑛−1 holds 𝑎𝑛−1 =
⊕𝑛−3

𝑖=2 𝐹𝑘𝑖 (𝑎) ⊕ 𝐹𝑘′𝑖 (𝑎) and party 𝑃𝑛 holds 𝑎𝑛 =⊕𝑛−3
𝑖=2 𝐹𝑘𝑖 (𝑎). Notice that 𝑎𝑛−2 ⊕ 𝑎𝑛−1 ⊕ 𝑎𝑛 = 0. For other values

𝑎 which are not in the intersection, the result of 𝑎𝑛−2 ⊕ 𝑎𝑛−1 ⊕ 𝑎𝑛
is pseudorandom. To find out the items for which the sum 𝑎𝑛−2 ⊕
𝑎𝑛−1⊕𝑎𝑛 = 0 the three parties 𝑃𝑛−2, 𝑃𝑛−1 and 𝑃𝑛 run a sub-protocol
called ZeroXOR, which outputs exactly those items. This solves the

aforementioned issues since now there are no two parties that

have sufficient information to reveal the intersection of the honest

parties.

In Section 4.1 we introduce the ZeroXOR functionality and proto-
col and in Section 4.2 we present our protocol that uses it in order

to resist an arbitrary corruption of 𝑡 < 𝑛 parties.

4.1 ZeroXOR
Let us introduce the ZeroXOR functionality. Intuitively, it allows 𝑛
parties, where 𝑃𝑖∈[𝑛] holds a set of key-value pairs𝑋𝑖 = {(𝑥𝑖𝑗 , 𝑦

𝑖
𝑗
)}𝑗 ∈[𝑚] ,

to determine all keys that satisfy the two conditions: (1) the key is

in the intersection set of all parties’ keys; (2) the XOR of the values

associated with these common key from each party is zero. We

formally present the ZeroXOR functionality and its construction in

Figure 4.1 and Figure 4.2, respectively.

FUNCTIONALITY 4.1.
(
F𝐹,𝑛,𝑚zeroXOR

)
Parameters: 𝑛 parties.

Behavior: Wait for input𝑋𝑖 = {(𝑥𝑖𝑗 , 𝑦𝑖𝑗 ) }𝑗∈[𝑚] , from 𝑃𝑖∈[𝑛] where

(𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
) ⊂ ( {0, 1}𝜅 , {0, 1}ℓ ) .

Give 𝑃𝑛 the set

{
𝑥 | ∀𝑖∈[𝑛] : (𝑥, 𝑦𝑖 ) ∈ 𝑋𝑖 and

⊕
𝑖∈[𝑛] 𝑦

𝑖 = 0

}
.
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PROTOCOL 4.2.
(
𝜋
𝐹,𝑛,𝑚
zeroXOR

)
Parameters: A PRF 𝐹 , an OPPRF functionality, 𝑛 parties where 𝑃𝑖

has the set 𝑋𝑖 = {(𝑥𝑖𝑗 , 𝑦𝑖𝑗 ) }𝑗∈[𝑚] .
Protocol:

(1) 𝑃𝑖∈[𝑛] invokes FzeroShare on 𝑥𝑖𝑗 and obtains its share 𝑠𝑖
𝑗
=

𝑆 (𝐾𝑖 , 𝑥𝑖𝑗 ) for every 𝑗 ∈ [𝑚].
(2) 𝑃𝑖∈{1,...,𝑛−1} and 𝑃𝑛 jointly invoke F𝐹,𝑚,𝑚

opprf :

• 𝑃𝑖 acts as a sender, programming P = {(𝑥𝑖
𝑗
, 𝑠𝑖

𝑗
⊕

𝑦𝑖
𝑗
) }𝑗∈[𝑚]

• 𝑃𝑛 acts as a receiver with queries {𝑥𝑛
𝑗
}𝑗∈[𝑚] .

• 𝑃𝑛 obtains {(𝑥𝑛
𝑗
, 𝑧𝑖

𝑗
) }𝑗∈[𝑚] where𝑧𝑖𝑗 = 𝑦𝑖𝑗′ if (𝑥

𝑖
𝑗′ , 𝑦

𝑖
𝑗′ ) ∈

𝑋𝑖 and a pseudorandom value otherwise.

(3) Party 𝑃𝑛 outputs

{
𝑥𝑛
𝑗
| 𝑠𝑛

𝑗
+ 𝑦𝑛

𝑗
=

⊕
𝑖∈[𝑛−1] 𝑧

𝑖
𝑗

}
One could use an OPPRF to implement our ZeroXOR as follows.

Each party 𝑃𝑖∈[𝑛−1] with a set of key-value pairs𝑋𝑖 = {(𝑥𝑖𝑗 , 𝑦
𝑖
𝑗
)}𝑗 ∈[𝑚]

allows 𝑃𝑛 to submit {𝑥𝑛
𝑗
}𝑗 ∈[𝑚] as queries, and to obtain the asso-

ciated responses 𝑧𝑖
𝑗
from 𝑃𝑖 . Now, 𝑧

𝑖
𝑗
is equal to 𝑦𝑖

𝑗 ′ if 𝑥
𝑛
𝑗
= 𝑥𝑖

𝑗 ′ ,

otherwise, 𝑧𝑖
𝑗
is pseudorandom. Consequently, if all parties have

the key 𝑥𝑛
𝑗
, the XOR of all responses 𝑧𝑖

𝑗
,∀𝑖 ∈ [𝑛 − 1], are equal to

𝑃𝑛 ’s value 𝑦
𝑛
𝑗
, by which 𝑃𝑛 concludes that 𝑥𝑛

𝑗
is in the intersection.

While the above correctly implements ZeroXOR functionality

and may be adequate in some scenarios, it is not secure in general.

Concretely, 𝑃𝑛 learns the actual associated values of the common

items of other parties 𝑃𝑖 even if their keys are not in the intersection.

To address this security issue, we rely on the zero-sharing idea

of [23], which serves as a one-time-pad over the values associated

with the parties’ keys. The zero-sharing functionality and protocol

are given in Section 2. Note that the zero-sharing construction

of [23] is ‘unconditional’, i.e., it produces an unlimited number of

pseudorandom zero-sharings derived from short seeds that can be

exchanged in a one-time initialization step.

The security of ZeroXOR follows in a straightforward way from

the security of its building blocks (e.g. OPPRF and zero-sharing).

Thus, we omit the proof of the following theorem.

Theorem 4.3. Protocol 𝜋𝐹,𝑛,𝑚zeroXOR (Figure 4.2) securely implements

F 𝐹,𝑛,𝑚zeroXOR (Figure 4.1) in the presence of a malicious adversary cor-

rupting 𝑡 < 𝑛 parties, in the FzeroShare, F 𝐹,𝑚1,𝑚2

opprf -hybrid model.

4.2 The Protocol
The construction of our 𝜋

𝑛,𝑡,𝑚
psi is formally presented in Protocol 4.4

and the intuition follows. The idea described above specifically for

𝑡 = 2 can be extended to any 𝑡 < 𝑛 as follows. Let 𝑣 = 𝑛 − 𝑡 , the
parties 𝑃1, . . . , 𝑃𝑣−1, 𝑃𝑣, 𝑃𝑣+1, . . . , 𝑃𝑛 are separated to three parts.

The first part 𝑃1, . . . , 𝑃𝑣−1 take a role of a client; the third part

𝑃𝑣+1, . . . , 𝑃𝑛 take a role of a server; and the final 𝑃𝑣 is a pivot. Each

client 𝑃𝑖 generates and sends a key 𝑘
𝑗
𝑖
to every server 𝑃 𝑗 . In addition,

the client 𝑃𝑖 generates an OKVS 𝑆𝑖 such that each item 𝑎𝑖𝑞 ∈ 𝐴𝑖 is
associated with the XOR of the PRF results using all keys, namely,⊕

𝑗 ∈[𝑣+1,𝑛] 𝐹𝑘 𝑗

𝑖

(𝑎𝑖𝑞). Each client 𝑃𝑖 sends 𝑆𝑖 to the pivot party, who

decodes and XOR them according to its own set. That is, for every

item𝑎𝑣𝑞 ∈ 𝐴𝑣 , compute

⊕
𝑖∈[𝑣−1] Decode(𝑆, 𝑎𝑣𝑞). A server 𝑃 𝑗 has all

PROTOCOL 4.4.
(
PSI with collusion - 𝜋

𝑛,𝑡,𝑚
psi

)
Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 and an adversary A.

Party 𝑃𝑖 has the set 𝐴
𝑖 = {𝑎𝑖

𝑗
}𝑗∈[𝑚] . The protocol uses an OKVS

scheme (Encode,Decode) and a PRF 𝐹 modeled as a random oracle

in the malicious setting.

Protocol
a
:

(1) Let 𝑣 = 𝑛 − 𝑡 . That is, the parties are 𝑃1, . . . , 𝑃𝑣, . . . , 𝑃𝑛 s.t.

| {𝑃𝑣+1, . . . , 𝑃𝑛 } | = 𝑡 .
(2) Party 𝑃𝑖 for 𝑖 ∈ [1, 𝑣−1] chooses keys {𝑘 𝑗

𝑖
} for 𝑗 ∈ [𝑣+1, 𝑛]

and sends 𝑘
𝑗

𝑖
to 𝑃 𝑗 .

(3) Party 𝑃𝑖 for 𝑖 ∈ [1, 𝑣 − 1] sends 𝑆𝑖 to 𝑃𝑣 where

𝑆𝑖 ← Encode( {(𝑎𝑖𝑞,
𝑛⊕

𝑗=𝑣+1
𝐹
𝑘
𝑗
𝑖

(𝑎𝑖𝑞)) }𝑞∈[𝑚] )

(4) Party 𝑃𝑣 received 𝑆𝑖 for 𝑖 ∈ [1, 𝑣 − 1]. It computes the key-

values set

𝑋 𝑣 =

{
(𝑎𝑣𝑞,

𝑣−1⊕
𝑖=1

Decode(𝑆𝑖 , 𝑎𝑣𝑞)
}
𝑞∈[𝑚]

(5) Party 𝑃𝑖 for 𝑖 ∈ [𝑣+1, 𝑛] received keys {𝑘𝑖𝑗 } for 𝑗 ∈ [1, 𝑣−1].
It computes the key-values set

𝑋 𝑖 =

{
(𝑎𝑖𝑞,

𝑣−1⊕
𝑗=1

𝐹
𝑘𝑖
𝑗
(𝑎𝑖𝑞)

}
𝑞∈[𝑚]

(6) Parties 𝑃𝑣, . . . , 𝑃𝑛 invoke functionality F𝐹,𝑡+1,𝑚zeroXOR with their

corresponding sets 𝑋𝑣, . . . , 𝑋𝑛 , by which 𝑃𝑛 obtains the in-

tersection.

a
In case that A is malicious, party 𝑃𝑖 uses 𝐻 (𝑎𝑖𝑗 ) instead of 𝑎𝑖

𝑗
in steps

(3)-(5) above, where 𝐻 is a random oracle.

keys𝑘
𝑗
𝑖
for 𝑖 ∈ [𝑣−1]. It uses those keys to obtain

⊕
𝑖∈[𝑣−1] 𝐹𝑘 𝑗

𝑖

(𝑎 𝑗𝑞)

for every 𝑎
𝑗
𝑞 ∈ 𝐴 𝑗 . If 𝑥 is in the intersection then the values obtained

by the pivot and the 𝑡 servers are XORed to zero, and otherwise, they

are XORed to a pseudorandom value. To find which ones are XORed

to zero the pivot and servers invoke the ZeroXOR functionality. It

holds that the 𝑡 +1 parties 𝑃𝑣, . . . , 𝑃𝑛 (i.e. the pivot and the 𝑡 servers)

hold the information in order to determine which items are in the

intersection. In addition, any subset of 𝑡 or fewer parties could not

determine the intersection.

4.2.1 Complexity and security. In the following, we analyze the

performance of our protocol, considering the only dependency in𝑚

and 𝑡 . All complexities also depend on the computational security

parameter 𝜅, which we omit.

The computational complexity for clients is proportional to the

set size𝑚 and the number of corrupted parties 𝑡 , since each client

𝑃𝑖 for 𝑖 ∈ [𝑣 − 1] generates an OKVS based on all 𝑡 keys 𝑘
𝑗
𝑖
for

𝑗 ∈ [𝑣 + 1, 𝑛]. A single OKVS is sent from each client to the pivot

party, and thus the communication complexity of a client depends

only on𝑚

The computational complexity for the pivot party depends on𝑛−
𝑡 since it decodes the OKVS given from each client. The computation

and communication complexities of the ZeroXOR protocol depend

on the cost of the OPPRF, which is linear in 𝑚. Therefore, the

overall (communication and computation) cost for the pivot party

is 𝑂 (𝑚(𝑛 − 𝑡)).
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Servers receive only keys from the clients which does not depend

on the set size. Their computation is a PRF computation per key

per item. In addition, they are engaged in the ZeroXOR protocol,

which incurs a linear overhead in𝑚 for all parties, except for 𝑃𝑛 ,

who is involved in 𝑡 OPPRF invocations (with each of 𝑃𝑖 for 𝑖 ∈
[𝑣, 𝑛−1]). Thus, for server 𝑃𝑖 (𝑖 ∈ [𝑣 +1, 𝑛−1]) the computation and

communication complexities are𝑂 (𝑚(𝑛−𝑡)) and𝑂 (𝑚) respectively
and for the server 𝑃𝑛 they are 𝑂 (𝑚(𝑛 − 𝑡)) and 𝑂 (𝑚𝑡).

Consider the round complexity of the protocol. Steps (2)-(3) are

run in parallel, steps (4)-(5) are computation only, and step 6 is

the ZeroXOR protocol which incurs one round for the ZeroShare

protocol in addition to the round complexity of the OPPRF. Overall,

there are 4 rounds.

Theorem 4.5. Protocol 4.4 securely computes functionality F𝑛,𝑡,𝑚psi

in the F 𝐹,𝑛,𝑚zeroXOR-hybrid and random oracle model in the presence of a
malicious adversary corrupting 𝑡 < 𝑛 parties.

Proof Sketch. As explained in the introduction, each client 𝑃𝑖
(𝑖 ∈ [𝑣 − 1]) essentially produces a conditional zero sharing for

each item 𝑥 ∈ 𝐴𝑖 . That is, it provide the pivot with an OKVS 𝑆

and the servers with keys 𝑘
𝑗
𝑖
( 𝑗 ∈ [𝑣 + 1, 𝑛]) such that if they

query these object on 𝑥 ∈ 𝐴𝑖 they obtain the shares 𝑠𝑣, 𝑠𝑣+1, . . . , 𝑠𝑛
such that ⊕𝑛

𝑗=𝑣
𝑠 𝑗 = 0. Otherwise, if even one of 𝑃𝑣, . . . , 𝑃𝑛 , say 𝑃𝑘 ,

does not query about 𝑥 , then the probability that it holds 𝑠𝑘 such

that ⊕𝑛
𝑗=𝑣
𝑠 𝑗 = 0 is negligible. Now, to obtain only those items for

which their shares sum up to zero, the pivot and the servers use

the ZeroXOR functionality.

As a corollary, combining the conditional zero-sharing produced

by all clients leads to that the pivot and the servers have a shares

of zero only for items that are in the intersection of all parties.

Extracting any party’s input is done by the simulator internally

running the party 𝑃𝑖 and for each call 𝐻 (𝑥) to the random oracle,

the simulator enters the input 𝑥 to a list 𝐿. After the party sent

her derived OKVS 𝑆𝑖 to 𝑃𝑣 (for 𝑃𝑖 , 𝑖 ∈ [1, 𝑣 − 1]) or key-value set
𝑋𝑖 to F 𝐹,𝑡+1,𝑚zeroXOR (for 𝑃𝑖 , 𝑖 ∈ [𝑣, 𝑛]), the simulator can conclude with

the actual input set 𝐴𝑖 , similarly to the proof of Theorem 3.4. We

denote the set or parties corrupted by A as 𝐶 . The case where

𝐶 ⊆ {𝑃1, . . . , 𝑃𝑣−1} is trivial, as none of these parties receive any
information which depends on any input set𝐴 𝑗 . For the case where

𝑃𝑣 ∈ 𝐶 , we note that any input 𝑎𝑖𝑞 received through 𝑆𝑖 is encrypted

using 𝑃𝑖 ’s 𝑡 generated PRF keys. Thus, simulating 𝑆𝑖 is easy as 𝑆𝑖
appears random to 𝑃𝑣 , even if she receives any 𝑡 − 1 PRF keys. Next,
assume Party 𝑃𝑖 ∈ 𝐶, 𝑖 ∈ [𝑣 + 1, 𝑛]. 𝑃𝑖 receives only PRF keys from

𝑃 𝑗 , 𝑗 ∈ [1, 𝑣 − 1], and not any item which depends on other party’s

input. Thus, all the simulator has to do is generate random PRF

keys and hand it to A. 𝑃𝑛 also receives the outputs from F 𝐹,𝑡+1,𝑚zeroXOR ,

so the simulator outputs whatever 𝑃𝑛 outputs.

5 PERFORMANCE EVALUATION
We implemented our protocols 3.3 and 4.4 for the cases of no col-

lusion and arbitrary collusion, respectively, and compared them

with the state-of-the-art multiparty PSI protocols by Kolesnikov

et al. [23] (in both the semi-honest and augmented semi-honest

settings), Chandran et al [2] (for semi-honest honest majority) and

Ben Efraim et al. [10] (for malicious dishonest majority). Note that

the comparison with the augmented semi-honest version of [23]

covers also a comparison with the malicious version of [13], since

they only diverse in the OPPRF instantiation and the former is

faster. In our reports, for 𝑡 = 1 we used our protocol 3.3 and for

𝑡 > 1 we used protocol 4.4. When 𝑡 = 𝑛 − 1, 𝜋𝑛,𝑡,𝑚psi protocol 4.4 in

fact requires only performing ZeroXOR with 𝑛 parties, each holding

𝑋 𝑖 = {(𝑎𝑖𝑞, 0𝜅 )}𝑞∈𝑚 . That is, when 𝑡 = 𝑛 − 1 we have no clients, the
pivot party is 𝑃1 and 𝑃2, . . . , 𝑃𝑛 are servers.

Similar to [2, 23], we used a single machine 2x 36-core Intel Xeon

2.30GHz CPU and 256GB of RAM and simulated network using the

Linux tc command. Our LAN setting has 0.02ms round-trip latency

and 10 Gbps network bandwidth. OurWAN setting has 96ms round-

trip latency and 200 Mbps network bandwidth. Similar to [2, 23], in

order to ensure parallelism as promised in our protocols, each party

uses a separated thread to communicate with each other party.

𝑚 2
12

2
16

2
20

Encode 0.052 0.103 2.838

Decode 0.003 0.005 0.99

Table 2: OKVS performance: Run time in seconds of the PaXoS [29] algo-
rithms Encode and Decode.

Our implementation uses the table-based OPPRF
2
code from [23],

OPRF code from [22]. We use Encode and Decode based on PaXoS

data structure [29] and give a detailed running time for it in Table 2.

For the PaXoS cuckoo table we use the expansion parameter of 2.5,

i.e. the number of bins in the cuckoo table is 2.5𝑚. We instantiate

the PRF 𝐹 using AES-NI. All evaluations were performed with

item input length of 128 bits, statistical security parameter 𝜆 = 40

and computational security parameter 𝜅 = 128. When 𝑡 = 𝑛 − 1,
our 𝜋

𝑛,𝑡,𝑚
psi protocol can be optimized by only performing ZeroXOR

with 𝑛 parties, each holding 𝑋 𝑖 = {(𝑎𝑖𝑞, 0𝜅 )}𝑞∈𝑚 . Our complete

implementation is available on GitHub: https://github.com/asu-

crypto/mPSI

5.1 Comparison with Prior Work
For the most direct comparison, we consider the following values

of (𝑛, 𝑡) ∈ {(4, {1, 3}), (10, {1, 4, 9}), (15, {1, 4, 7, 14})}. Note that

(4, 1), (10, 4), (15, 7) were reported explicitly in the experimental

analysis of [2]. The settings with 𝑡 > 𝑛
2
is not supported by the

protocol [2]. Due to lack of time, we are unable to run the im-

plementation of ENOC [10] (which was on Github
3 ∼3 months

ago) on our benchmark machine (due to errors in the build process

which we could not handle at that time frame). Therefore, ENOC

runtimes are taken from [10, Table 5]. Table 5 [10] does not report

on 𝑛 ∈ {10, 15}, therefore we use 𝑛 ∈ {8, 12} for them instead (on

which they do report), respectively, which is more favour to them.

The communication cost of ENOC [10] is calculated from their pro-

tocol description. The exact calculation we performed is detailed

in Appendix D. In their evaluation reports it can be seen that their

protocol does not scale beyond 16 parties with sets larger than 2
16

and beyond 32 parties even for sets larger than 2
14
. In contrast, our

protocols perform well with 32 parties, even with sets of 2
20

items.

Recall that our 𝜋
𝑛,𝑡,𝑚
psi protocol consists of three types of par-

ties: client 𝑃𝑖∈[1,𝑣−1] , pivot 𝑃𝑣 , and server 𝑃𝑖∈[𝑣+1,𝑛] . Since clients

2
Note that the table-based OPPRF which is secure against a semi-honest adversary is

about 3× slower than the state-of-the-art malicious PaXoS-based OPPRF.

3
https://github.com/ArielCyber/Malicious-MPSI
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Sett. Protocols

(𝑛, 𝑡) (4,1) (4,3) (10,1) (10,4) (10,9) (15, 1) (15, 4) (15, 7) (15, 14)

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

LAN

KMPRT[23](aug)

Client 0.21 1.05 15.57 0.21 1.05 15.57 0.277 1.36 18.77 0.277 1.36 18.77 0.277 1.36 18.77 0.34 1.76 25.18 0.34 1.76 25.18 0.34 1.76 25.18 0.34 1.76 25.18
Total 0.24 1.29 19.19 0.24 1.29 19.19 0.365 2.59 38.04 0.365 2.59 38.04 0.365 2.59 38.04 0.47 3.78 58.23 0.47 3.78 58.23 0.47 3.78 58.23 0.47 3.78 58.23

KMPRT[23] 0.24 1.29 19.19 0.34 3.16 52.25 0.365 2.97 46.08 0.67 6.77 98.04 1.01 2.97 46.08 0.46 4.28 64.28 0.81 8.01 154.2 1.37 13.47 201.12 1.85 20.61 304.36

ENOC[10] 1.31 14.24 56.87 1.31 14.24 56.87 2.41 23.24 - 2.41 23.24 - 2.41 23.24 - 3.57 32.82 - 3.57 32.82 - 3.57 32.82 - 3.57 32.82 -

CDGOSS [2] 0.23 1.6 23.8 - - - - - 0.31 2.48 31.45 - - - - - - - - - 0.44 3.27 39.45 - - -

Ours

Client 0.06 0.15 3.34 0.21 1.05 15.57 0.06 0.16 3.35 0.06 0.17 3.39 0.28 1.36 18.77 0.06 0.13 3.95 0.06 0.11 3.52 0.06 0.16 3.48 0.34 1.76 25.18
Total 0.07 0.25 5.16 0.24 1.29 19.19 0.08 0.35 6.07 0.24 1.42 22 0.37 2.59 38.04 0.1 0.35 7.25 0.26 1.46 22.8 0.31 2.12 32.56 0.47 3.78 58.23

WAN

KMPRT[23](aug)

Client 1.29 2.67 21.59 1.29 2.67 21.59 2.46 5.08 41.07 2.46 5.08 41.07 2.46 5.08 41.07 3.33 6.95 61.37 3.33 6.95 61.37 3.33 6.95 61.37 3.33 6.95 61.37
Total 1.75 7.31 95.19 1.75 7.31 95.19 3.04 13.88 219.81 3.04 13.88 219.81 3.04 13.88 219.81 3.35 20.76 336.84 3.35 20.76 336.84 3.35 20.76 336.84 3.35 20.76 336.84

KMPRT[23] 1.75 7.31 95.19 3.18 17.47 233.1 3.3 26.42 400.9 4.2 37.6 615.4 7.81 112.8 1915 3.63 39.11 664.08 6.24 110.52 1824.3 9.87 150.85 2641 16.42 263.2 -

ENOC[10] - - - - - - - - - - - - - - - - - - - - - - - - - -

CDGOSS [2] 1.9 7 69.6 - - - - - 3 10.4 153.9 - - - - - - - - - 3.3 15.4 244.8 - - -

Ours

Client 0.06 0.83 8.52 1.29 2.67 21.59 0.05 0.75 7.87 0.06 0.59 7.89 2.46 5.08 41.07 0.05 0.92 8.39 0.06 0.58 14.57 0.06 0.59 15.4 3.33 6.95 61.37
Total 0.36 1.83 18.48 1.75 7.31 95.19 0.37 3.08 20.28 1.78 8.42 124.26 3.04 13.88 219.81 0.38 5.7 24.67 1.79 8.8 116.22 1.94 11.31 180.56 3.35 20.76 336.84

Table 3: Running time in second of multiparty PSI protocols for 𝑛 parties with corruption threshold 𝑡 on sets of size𝑚. KMPRT[23] and CDGOSS[2] in semi-
honest setting, our protocol and ENOC[10] are in malicious setting. Cells with − denote trials that are not supported or not reported by the protocol.

Protocols

(𝑛, 𝑡) (4,1) (4,3) (10,1) (10,4) (10,9) (15, 1) (15, 4) (15, 7) (15, 14)

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

KMPRT[23](aug)

Client 1.84 31.69 556.39 1.84 31.69 556.39 1.84 31.69 556.39 1.84 31.69 556.39 1.84 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39 1.85 31.69 556.39

Total 7.36 126.76 2225.56 7.36 126.76 2225.56 18.4 316.9 5563.9 18.4 316.9 5563.9 18.4 316.9 5563.9 27.75 475.35 8345.85 27.75 475.35 8345.85 27.75 475.35 8345.85 27.75 475.35 8345.85

KMPRT[23]

Client 1.84 31.69 556.39 4.92 77.8 1402 1.84 31.69 556.39 8.3 131.7 2373.5 14.76 233.41 4208 1.85 31.69 556.39 8.3 131.7 2373.5 13.1 207.5 3741 22.96 363.09 6547

Total 7.36 126.76 2225.56 19.68 311.2 5608 18.4 316.9 5563.9 44.7 706.2 12730.4 147.6 2334.1 42080 27.75 475.35 8345.85 62.25 987.75 17801.25 103.4 1635.4 29487.9 344.4 5446.35 98205

ENOC[10]

Client 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204 44.76 655.88 10204

Total 258.91 2279.16 31080.96 258.91 2279.16 31080.96 714.44 6370.22 93654.3 714.44 6370.22 93654.3 714.44 6370.22 93654.3 1094.04 10995.6 147396.98 1094.04 10995.6 147396.98 1094.04 10995.6 147396.98 1094.04 10995.6 147396.98

CDGOSS [2]

Client 1.3 19.9 318 - - - - - 2 30.8 492.1 - - - - - - - - - 2.4 38.8 620.1 - - -

Total 3.2 49.4 790.2 - - - - - 12.3 192.4 3077.2 - - - - - - - - - 22.5 353.4 5652.9 - - -

Ours

Client 0.16 2.62 41.94 1.84 31.69 556.39 0.16 2.62 41.94 0.16 2.62 41.94 1.84 31.69 556.39 0.16 2.62 41.94 0.16 2.62 41.94 0.16 2.62 41.94 1.85 31.69 556.39
Total 0.79 12.58 201.33 7.36 126.76 2225.56 1.77 28.31 452.98 3.76 62.67 1054.6 18.4 316.9 5563.9 2.59 41.42 662.7 4.54 75.17 1254.62 5.23 85.37 1416.9 27.75 475.35 8345.85

Table 4: Communication (in MB) of multiparty PSI protocols for 𝑛 parties with corruption threshold 𝑡 on set of size𝑚. KMPRT[23] and CDGOSS[2] in semi-
honest setting, our protocol and ENOC[10] are in malicious setting. Cells with − denote trials that are not supported or not reported by the paper.

Sett.

𝑛 3 4 5 8 16 32

𝑡/𝑚 1 1 2 1 2 3 1 3 4 1 3 4 1 3 16

LAN

2
12

0.06 0.07 0.21 0.06 0.26 0.28 0.07 0.29 0.29 0.08 0.3 0.37 0.1 0.31 0.53

2
16

0.2 0.25 1.25 0.23 1.57 1.45 0.28 1.46 1.56 0.43 1.47 2.51 0.74 1.48 4.57

2
20

4.67 5.16 19.05 5.26 25.78 24.11 5.5 25.04 26.7 7.57 25.4 39.28 10.71 25.52 76.89

WAN

2
12

0.25 0.06 1.67 0.36 1.87 1.8 0.36 1.8 1.83 0.37 1.81 2.04 0.4 1.8 2.61

2
16

1.02 1.83 6.27 1.74 6.44 7.16 2.66 7.2 8.66 4.73 7.77 12.92 5.44 9.83 25.12

2
20

10.57 18.48 70 18.78 70.18 93.98 19.36 97.54 119.02 25.21 109.38 210.04 34.05 131.82 422.46

Table 5: Running time in seconds of party 𝑃𝑛 (the one with most workload) of our protocols.

𝑃𝑖∈[1,𝑣−1] do not involve into the entire PSI computation process,

we report their running time separately. In contract, all parties in

protocols [2, 10, 23] require to participate in the mostly full com-

putation process. In terms of communication cost, all protocols

are asymmetric with respect to the server(s) and other parties (e.g.

clients). Thus, similar to [2], we separate the client and the total

communication costs, where by ‘total’ we refer to the communica-

tion of sent/received data of all parties.

When comparing the protocols, we find that the client’s running

time of our protocol is significantly less than that of the prior works,

requiring only 3.4 seconds to perform a PSI with (𝑛, 𝑡) = (15, 7)
for set size 𝑚 = 2

20
in the LAN setting. This is a 10 − 23× and

1.6 − 82× improvement in running time compared to [2, 23] in

the semi-honest setting and [10] in malicious setting. For the total

running time, our protocol shows 1.2−6.5× and 1.2−8.5× faster than
the concurrent work CDGOSS [2] and KMPRT [23], respectively.

When 𝑡 = 𝑛 − 1, our protocol essentially consists only of the 𝑛-

party ZeroXOR protocol, which has the same communication and

computation cost as the augmented semi-honest version of KMPRT.

Table 3 shows the communication overhead of the protocols.

Our protocol requires 7 − 15×, 2.5 − 90×, and 18 − 270× less com-

munication cost than CDGOSS [2], KMPRT [23], and ENOC [10]

on the client’s side, respectively. Note that the bandwidth require-

ment of our client is almost constant in 𝑡 < (𝑛 − 1) and 𝑛 since

the client’s major communication cost falls in sending encoding

set to a pivot party 𝑃𝑣 . Therefore, the client’s performance of our

protocol is extremely favorable when 𝑡 and 𝑛 are large. For the total

communication cost, our protocol also shows a 3 − 4×, 2.6 − 20×,
and 16 − 330× improvement compared to previous work [2, 10, 23],

respectively.

5.2 Extended Evaluation of Our Protocols
To understand the scalability of our protocols, we evaluate them on

the range of the number parties 𝑛 ∈ {3, 4, 5, 8, 16, 32}, corruption
threshold 𝑡 ∈ {1, 3, [𝑛

2
]} on the set size𝑚 ∈ {212, 216, 220}.

We report their detailed computational performance results in

Table 5, showing total running time in both LAN and WAN settings.

We find that our protocols scale well in the experiments. Indeed, the

performance of our protocol is mostly constant in the number of

parties 𝑛 when 𝑡 is fixed, because the ZeroXOR protocol dominates

the run time. For instance, when fixing 𝑡 = 3, the total running

times of our protocol for 𝑛 = 5 and 𝑛 = 32 are 24.11 and 25.52

seconds, respectively, for𝑚 = 2
20
.
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A SERVER-AIDED TWO-PARTY PSI
We present below the protocol by Kamara et al. [20] that com-

putes functionality F 2,1,𝑚
psi (another protocol was recently proposed

by Le et al. [24], which is better suitable to the circuit-based PSI

functionality).

The protocol utilizes a third-party non-colluding server, which

may be malicious. The semi-honest version of the protocol is pre-

sented in Protocol A.1.

A.1 Kamara et al. [20]
The parties have to withstand a corrupted server, who tries to omit

items from the intersection. This is done as follows. Each party

augments its set 𝐴𝑖 with 𝜆 copies of each element. Specifically,

party 𝑃𝑖 generates the set 𝐴̃
𝑖 = {𝑎𝑖

𝑗
| |1, . . . , 𝑎𝑖

𝑗
| |𝜆}𝑗 ∈[𝑚] (each item

is replicated 𝜆 times, each time it is concatenated with the next

index from 1, . . . , 𝜆). Then, the parties run the semi-honest protocol

above on the sets 𝐴̃1
and 𝐴̃2

. Now, to omit a single item 𝑥 from

the intersection, the server has to omit 𝜆 pseudorandom items
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PROTOCOL A.2.
(
Server-Aided 2-Party PSI [20] - 𝜋

2,1,𝑚
psi

)
Parameters: There are 2 parties 𝑃1, 𝑃2 and a third-party server 𝑆 .

𝑃1 and 𝑃2 have sets 𝐴1
and 𝐴2

as input, respectively. 𝑆 does not

have inputs. Let 𝐹 be a PRF.

Protocol:

(1) 𝑃1 chooses sets 𝐷0, 𝐷1, 𝐷2 and a key 𝑘 such that |𝐷0 | =
|𝐷1 | = |𝐷2 | = 𝑑 , sends them to 𝑃2 and set𝐴

1 ← 𝐴∪𝐷0∪𝐷1.

(2) 𝑃2 sets 𝐴
2 ← 𝐴2 ∪𝐷0 ∪𝐷2.

(3) Party 𝑃𝑖 (𝑖 ∈ (1, 2)) sends a shuffled version of 𝐴̃𝑖 =

{𝐹 (𝑘, 𝑥) }𝑥∈𝐴𝑖 to 𝑆 .

(4) 𝑆 computes 𝑋 = 𝐴̃1 ∩ 𝐴̃2
and sends 𝑋 to 𝑃1, 𝑃2.

(5) 𝑃𝑖 aborts if:

(a) Either 𝐷0 ⊄ 𝐹
−1 (𝑘,𝑋 ) or 𝐷𝑖 ∩ 𝐹−1 (𝑘,𝑋 ) ≠ ∅

(b) There exists 𝑥 ∈ 𝐴𝑖
and 𝛼, 𝛽 ∈ [𝜆] such that 𝑥 | |𝛼 ∈

𝐹−1 (𝑘,𝑋 ) and 𝑥 | |𝛽 ∉ 𝐹−1 (𝑘,𝑋 )
(6) The parties output distinct items in {𝐹−1 (𝑘, 𝑥) }𝑥∈𝑋 \𝐷0.

from 𝑋 , namely, the items 𝐹 (𝑘, 𝑥 | |1), . . . , 𝐹 (𝑘, 𝑥 | |𝜆). Since all values
seen by the server are pseudorandom, it is difficult to tell which

pseudorandom items encode the same value and thus it is unlikely

that the server omits exactly those 𝜆 items.

Note that it is still possible for the server to omit all values from
the intersection. This is easily fixed by having the parties add an

agreed upon item to both sets𝐴1
and𝐴2

, by which, it is guaranteed

that the intersection is not empty. So if the server returns 𝑋 = ∅, it
is caught cheating.

Finally, note that it is still possible for the server to return𝑋 = 𝐴̃1

to 𝑃1 (and similarly 𝑋 = 𝐴̃2
to 𝑃2) by which the parties conclude

that the intersection includes all items. This is again easily fixed

by agreeing on one dummy item 𝑑1 which is added only to 𝐴1
and

another dummy item𝑑2 which is added only to𝐴
2
. This ensures that

the intersection does not contain the entire set, hence, returning

𝑋 = 𝐴̃1
is immediately treated a cheating. This is presented formally

in Protocol A.2.

B MALICIOUS OPPRF
There are two parties, sender S and receiver R. The sender S has

a set of points P = {(𝑎1, 𝑡1), . . . , (𝑎𝑚1
, 𝑡𝑚1
)} and the receiver R

has queries (𝑞1, . . . , 𝑞𝑚2
). The template of an OPPRF construction

follows: The parties run an OPRF which outputs a key 𝑘 to the

sender and the PRF results 𝐹 (𝑘, 𝑞1), . . . , 𝐹 (𝑘, 𝑞𝑚) to the receiver.

The sender computes the hint as follows. For each 𝑎𝑖 compute

𝑡𝑖 = 𝐹𝑘 (𝑎𝑖 ) ⊕ 𝑡𝑖 . Then, the sender generates an OKVS by 𝑆 ←
Encode({(𝑎𝑖 , 𝑡𝑖 )}𝑖∈[𝑚] ) and sends it to the receiver. For each of the

receiver’s query𝑞𝑖 and OPRF results 𝐹 (𝑘, 𝑞1), the receiver computes

the OPPRF result 𝑦𝑖 = 𝐹 (𝑘, 𝑞1) ⊕ Decode(𝑆, 𝑞𝑖 ).
Suppose that the receiver queries the OPRF on some 𝑞 = 𝑎 𝑗 ,

then the OPPRF result is𝑦𝑖 = 𝐹 (𝑘, 𝑎 𝑗 ) ⊕Decode(𝑆, 𝑎 𝑗 ) = 𝐹 (𝑘, 𝑎 𝑗 ) ⊕
𝐹 (𝑘, 𝑎 𝑗 ) ⊕ 𝑡 𝑗 = 𝑡 𝑗 as required. On the other hand, for a query 𝑞 ≠ 𝑎 𝑗
for all 𝑗 , the result 𝑦𝑖 = 𝐹 (𝑘, 𝑞) ⊕ Decode(𝑆, 𝑞) is pseudorandom
because 𝐹 (𝑘, 𝑞) is a pseudorandom value that has never been used

before in the construction of 𝑆 .

The above template builds on an OPPRF that supports multiple

queries by the receives (specifically𝑚2 queries) whereas concretely

efficient OPPRFs directly support a single query only.

PROTOCOL C.1.
(
Zero-Sharing - 𝜋

𝐹,𝑛

zeroShare

)
Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 and an adversary A.

There is a PRF 𝐹 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 .

Protocol:

(1) Each party 𝑃𝑖 picks a random seed 𝑟𝑖,𝑗 for 𝑗 ∈ [𝑖 +
1, 𝑛] and sends 𝑟𝑖,𝑗 to 𝑃 𝑗 . The key 𝐾𝑖 of party 𝑃𝑖 is

(𝑘1,𝑖 , . . . , 𝑘𝑖−1,𝑖 , 𝑘𝑖,𝑖+1, . . . , 𝑘𝑖,𝑛) .
(2) To obtain its share for value 𝑥 , party 𝑃𝑖 computes

𝑆 (𝐾𝑖 , 𝑥) =
(⊕
𝑗<𝑖

𝐹𝑘 𝑗,𝑖
(𝑥)

)
⊕

(⊕
𝑗>𝑖

𝐹𝑘𝑖,𝑗 (𝑥)
)

To overcome this, two approaches have been proposed. The first

one is developed by [23, 30], in which the receiver uses cuckoo hash-

ing and the sender uses a simple hashing. This way, for each bin the

receiver has at most one item and the sender has 𝑂 (log𝑚1) items,

so they can invoke the single-query OPPRF per bin. This however is

secure in the semi-honest setting only because a malicious sender,

who knows (via auxiliary information) that the receiver has item 𝑥 ,

may put 𝑥 only in one of the possible bins instead of in all of them.

This way, by the PSI result it may learn in which bin the receiver

put its item 𝑥 and by this leaking information on other items that

the receiver has. We refer the reader to [23, 30] for more details.

Alternatively, [29] proposed a different approach via a data struc-

ture called PaXoS (Probe and XOR of Strings) along with a 1-out-of-

N random OT that has an homomorphic properties. This approach

withstands a malicious adversary. The receiver encodes its queries

in a data structure 𝐷 = (𝑑1, . . . , 𝑑𝑚′) of size𝑚′ (which is greater

than 𝑚2). Suppose that the PaXoS is parameterized with 𝑘 hash

functions ℎ1, . . . , ℎ𝑘 , then for every receiver’s query 𝑞 it follows

that 𝑞 = Decode(𝐷,𝑞) = 𝑑ℎ1 (𝑞) ⊕ 𝑑ℎ2 (𝑞) ⊕ . . . ⊕ 𝑑ℎ𝑘 (𝑞) .
Then, the sender and receiver run a 1-out-of-N ROT for 𝑚′

times, where in the 𝑖-th ROT the receiver obtains the value 𝑟𝑖 =

𝑎𝑖 + 𝑠 ∧𝐶 (𝑑𝑖 ) and the sender obtains 𝑎𝑖 , where 𝑠 is a random string

that is used in all ROT instances (i.e. for all 𝑖) and𝐶 is a linear code.

After running all instances of ROT, the receiver treats the results

𝑅 = (𝑟1, . . . , 𝑟𝑚′) as a PaXoS data structure. Thus, to obtain the

result associated with a query 𝑞 it computes

𝑦 = Decode(𝑅, 𝑞) = 𝑟ℎ1 (𝑞) ⊕ 𝑟ℎ2 (𝑞) ⊕ . . . ⊕ 𝑟ℎ𝑘 (𝑞)
= (𝑎ℎ1 (𝑞) ⊕ . . . ⊕ 𝑎ℎ𝑘 (𝑞) ) ⊕ 𝑠 ∧ (𝐶 (𝑑ℎ1 (𝑞)) ⊕ . . . ⊕ 𝐶 (𝑑ℎ𝑘 (𝑞)))
= (𝑎ℎ1 (𝑞) ⊕ . . . ⊕ 𝑎ℎ𝑘 (𝑞) ) ⊕ 𝑠 ∧𝐶 (𝑑ℎ1 (𝑞) ⊕ . . . ⊕ 𝑑ℎ𝑘 (𝑞))
= (𝑎ℎ1 (𝑞) ⊕ . . . ⊕ 𝑎ℎ𝑘 (𝑞) ) ⊕ 𝑠 ∧𝐶 (𝑞)

From the homomorphic property of the ROT scheme, it follows

that the sender may obtain the same value 𝑦, since it knows all ROT

results 𝑎1, . . . , 𝑎𝑚′ and 𝑠 . If the sender wants to program the point

(𝑞, 𝑡) in the OPPRF (for a random 𝑡 ), it first computes 𝑡 ′ = 𝑡 ⊕ 𝑦 (it

can compute 𝑦 on its own) and encode the point (𝑞, 𝑡 ′) in the OKVS

𝑆 sent to the receiver. Upon receiving the OKVS 𝑆 , the receiver

compute the OPPRF result 𝑦′ = Decode(𝑅,𝑞) ⊕ Decode(𝑆, 𝑞) =
𝑦 ⊕ 𝑡 ′ = 𝑡 as required, where 𝑅 is the PaXoS structure interpretation

of the ROT results and 𝑆 is the OKVS sent by the sender.

C ZERO SHARING PROTOCOL
See Protocol C.1.
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D ESTIMATING COMMUNICATION FOR BEN
EFRAIM ET AL.

We calculate the concrete communication complexity of [10] based

on the formulae and optimal parameter instantiations they report

in Table 4 and Appendix E of their paper.

The parameters are 𝑁𝑂𝑇 , 𝑁𝐶𝐶 , 𝑁𝐵𝐹 provided to the protocol,

where 𝑁𝑂𝑇 represents the number of random OTs to perform, 𝑁𝐶𝐶

represents the number of bits to choose for the cut-and-choose

check and 𝑁𝐵𝐹 represents the size of the Bloom filter.

We calculate a client’s (𝑃𝑖 , 𝑖 > 0) communication by:

2𝑁𝑂𝑇𝜅+𝑁𝐶𝐶 log
2
𝑁𝑂𝑇 +𝑁𝐶𝐶 log

2
𝑁𝑂𝑇 +𝜅+𝑁𝐵𝐹 log2 𝑁𝑂𝑇 +𝑁𝐵𝐹𝜅

And server’s (𝑃0) communication by:

2𝑛𝑁𝑂𝑇𝜅 + 𝑛𝑁𝐶𝐶 log
2
𝑁𝑂𝑇 + 𝑛𝑁𝐶𝐶 log

2
𝑁𝑂𝑇 + 𝜅 + 𝑛𝑁𝐵𝐹 log2 𝑁𝑂𝑇
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