
Succinct LWE Sampling, Random Polynomials, and Obfuscation

Lalita Devadas∗

MIT
Willy Quach†

Northeastern
Vinod Vaikuntanathan‡

MIT
Hoeteck Wee§

NTT Research
Daniel Wichs¶

Northeastern and NTT Research

October 18, 2021

Abstract

We present a construction of indistinguishability obfuscation (iO) that relies on the learning
with errors (LWE) assumption together with a new notion of succinctly sampling pseudorandom
LWE samples. We then present a candidate LWE sampler whose security is related to the
hardness of solving systems of polynomial equations. Our construction improves on the recent
iO candidate of Wee and Wichs (Eurocrypt 2021) in two ways: first, we show that a much weaker
and simpler notion of LWE sampling suffices for iO; and secondly, our candidate LWE sampler
is secure based on a compactly specified and falsifiable assumption about random polynomials,
with a simple error distribution that facilitates cryptanalysis.

∗E-mail:lali@mit.edu. Research supported by the third author’s grants.
†E-mail:quach.w@northeastern.edu. Part of this work was done during an internship at NTT Research.
‡E-mail:vinodv@mit.edu. Research supported by DARPA under Agreement No. HR00112020023, a grant from

the MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant, and a DARPA Young
Faculty Award.

§E-mail:wee@di.ens.fr
¶E-mail:wichs@ccs.neu.edu. Research supported by NSF grant CNS-1750795, CNS-2055510 and the Alfred P.

Sloan Research Fellowship.

Contents

1 Introduction 1
1.1 Our Contributions . 1
1.2 Technical Overview . 1
1.3 Discussion . 7

2 Preliminaries 9
2.1 Notations . 9
2.2 Learning With Errors . 9
2.3 Lattice Tools . 10
2.4 Homomorphic Operations . 10
2.5 Succinct Randomized Encodings . 11

3 Succinct LWE Sampler: Definition and Amplification 12
3.1 Definition and Discussion . 12
3.2 Weak Succinct LWE Samplers . 15
3.3 Amplification . 16

4 Candidate Succinct LWE Sampler 19
4.1 A Basic Framework . 19
4.2 Correctness, Succinctness, and LWE with respect to A∗ 20
4.3 Instantiating the Parameters . 23
4.4 Alternate Candidate Construction . 26
4.5 Cryptanalysis . 27
4.6 Cryptanalytic Challenges . 32

5 Our Succinct Randomized Encoding Construction 33
5.1 Security . 35

A Relations Among Notions of LWE Sampling 40
A.1 WW Oblivious LWE Sampling . 40

i

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01,GR07] is a probabilistic polynomial-time algorithm
O that takes as input a circuit C and outputs an (obfuscated) circuit C ′ = O(C) satisfying two
properties: (a) functionality: C and C ′ compute the same function; and (b) security: for any two
circuits C1 and C2 that compute the same function (and have the same size), O(C1) and O(C2) are
computationally indistinguishable. Since the first candidate for iO was introduced in [GGH+13], a
series of works have shown that iO would have a huge impact on cryptography.

In this work, we build upon the recent line of works on lattice-inspired iO candidates [Agr19,
CHVW19, AP20, BDGM20b, BDGM20a, WW21, GP21] that are plausibly post-quantum secure.
The dream goal here is to ultimately base iO on the hardness of the learning with errors (LWE)
problem together with an assumption about simple Boolean or integer pseudorandom generators
(PRGs). Such a result would, in particular, eliminate pairings from the recent break-through result
basing iO on well-founded assumptions [JLS21].

1.1 Our Contributions

We present a candidate construction of iO that relies on LWE together with a new notion of suc-
cinctly sampling pseudorandom LWE samples. In addition, we present a candidate sampler whose
security is related to the hardness of solving systems of polynomial equations. Our construction
improves on the recent iO candidate of Wee and Wichs [WW21] (henceforth referred to as the WW
construction) in two ways:

• First, our new notion of succinct LWE sampling simplifies and relaxes the notion of oblivious
LWE sampling from WW. Instead of a simulation-based definition as in WW, we have a
simple indistinguishability-based definition, where the generated LWE sample can be used
to drown out the differences between certain error distributions. Furthermore, we put forth
two variants of succinct LWE sampling, and provide a general amplification from a weak
(falsifiable) notion that refers to a specific error distribution to a strong (non-falsifiable)
notion that refers to general error distributions.

• Next, our candidate succinct LWE sampler is easy to describe and is based on random polyno-
mials. It yields an LWE sample with a simple error distribution that facilitates cryptanalysis.
This is in contrast to WW, where the LWE sampler involved complex FHE evaluation, and
the resulting error distribution in the samples was dependent on the concrete implementation
of the circuit being evaluated. Indeed, a recent work of [HJL21] carefully crafted circuit imple-
mentations that would render the WW candidate as well as the related candidate in [GP21]
insecure (see Section 1.3 for a more detailed discussion).

1.2 Technical Overview

The starting point of our construction is essentially the same as that of the Wee-Wichs (WW)
iO candidate, which in turn builds on [BDGM20a]. We begin by describing a notion of succinct
randomized encoding (SRE), which can be seen as a relaxation of the notions of split FHE and
functional encodings used in prior works. It is also very related to the notion of exponentially
efficient iO (XiO) from [LPST16], and is easily seen to imply it, but we find the SRE abstraction

1

easier to work with in the context of our work. By leveraging prior results on XiO [LPST16], our
notion of SRE implies iO under the LWE assumption.

Succinct Randomized Encodings. A succinct randomized encoding1 [BGL+15,LPST16] of a
function f : {0, 1}` → {0, 1}N is an efficient probabilistic algorithm Encode such that:

• functionality: we can efficiently recover f(x) given f and Encode(f, x);

• security: for any x0, x1 such that f(x0) = f(x1), we have Encode(f, x0) ≈c Encode(f, x1); and

• succinctness: Encode(f, x) is shorter than the output length of f . That is, |Encode(f, x)| =
Õ(N δ) for some constant δ < 1, ignoring factors polynomial in ` and the security parameter.

Henceforth, we will focus on building SRE for circuits.

Base Scheme. We start with a base scheme for succinct randomized encodings implicit in WW,
which is insecure, but serves as the basis of our eventual construction. The base scheme uses a
variant of the homomorphic encryption/commitment schemes of [GSW13,GVW15], along with the
“packing” techniques in [PVW08,MW16, BTVW17,PS19, GH19,BDGM19]. Given a commitment
C to an input x ∈ {0, 1}`, along with a circuit f : {0, 1}` → {0, 1}N , this scheme allows us to
homomorphically compute a commitment Cf to the output f(x). Moreover, the opening for the
output commitment is shorter than the output size N . Concretely, we define C,Cf as follows:

• We treat the function f : {0, 1}` → {0, 1}N as a function f : {0, 1}` → {0, 1}M×K , where M
and K are parameters we shall specify shortly, such that MK = N .

• Given a public random matrix A ∈ ZM×wq where M � w, we define a commitment C to an
input x as

C := AR + x⊗G + E

where A ← ZM×wq , R ← Zw×`M log q
q are uniformly random, E ← χM×`M log q has its entries

chosen from an error distribution χ, G ∈ ZM×M log q
q is the gadget matrix [MP12], and we

treat x as a row vector of length ` in x⊗G.

• Homomorphic evaluation of f on C yields Cf satisfying

Cf = ARf,x + Ef,x + f(x) · q2 ∈ ZM×Kq (1)

where f(x) ∈ {0, 1}M×K , Rf,x ∈ Zw×Kq and Ef,x has small entries.

A
R

x⊗G+ + E 7→ A
Rf,x

f(x) · q2+ + Ef,x

Our base scheme2 simply outputs

A, C := AR + x⊗G + E, Rf,x

1Our notion of succinct randomized encodings is weaker than prior works: indeed, [BGL+15] required the encoder
to run in time sublinear in N , whereas we allow the encoder run-time to be polynomial in N .

2In the WW terminology, this would be a candidate K-sim functional encoding for f1, . . . , fK : {0, 1}` → {0, 1}M .

2

as the encoding of x. Decoding computes Cf given (C, f), subtracts A · Rf,x to obtain f(x) · q2
plus error (following equation 1) and rounds to obtain f(x).

The encoding is also succinct: The total size of the encoding (in bits) is

O((Mw +M2`+ wK) · log q).

Setting M = N1/3,K = N2/3, w = O(λ) yields encoding size Õ(N2/3), where Õ(·) hides polynomial
factors in λ, ` and the depth of the circuit computing f .

The scheme is, however, completely insecure as written because, given C,Rf,x and a “guess”
for x, we can recover R by solving a system of linear equations, and test if our guess was correct
(see WW). This allows us to easily distinguish between encodings of any x0 and x1.

“Pseudorandom” LWE Sampling. Following [WW21], we fix the insecurity of the base scheme
by masking Rf,x using a “pseudorandom” LWE sample; similar ideas were used in several prior
works [BDGM20a,GP21,JLS21,AR17,Agr19,JLMS19,AJL+19] with “pseudorandom” noise. That
is, we generate a “pseudorandom” LWE sample B∗ = AS∗ + E∗ ∈ ZM×Kq and output

seedB∗ , A, AR + x⊗G + E, Rf,x + S∗ (2)

where seedB∗ is a succinct description of B∗, with |seedB∗ | ≤ (MK)δ for some δ < 1. Correctness
now relies on the fact that

A · (Rf,x + S∗) ≈ B∗ + Cf + f(x) · q2 .

WW’s security requirement for the pseudorandom LWE sample, “oblivious LWE sampling”, was
cumbersome to define, required a simulator, and only made sense in the common reference string
model. The reliance on a simulator means the definition did not have an inherently falsifiable format
that enables demonstrating insecurity by constructing an efficient attacker. Here, we reformulate
a simpler and falsifiable variant that we call “succinct LWE sampling”.3

Defining pseudorandom LWE sampling, in WW and in our work, is difficult because we want
B∗ = AS∗ + E∗ to look like a random LWE sample, but this is impossible since it is succinctly
described in seedB∗ . Instead, we essentially want E∗ to drown out the difference between any
two sufficiently small error distributions Z0 and Z1, in the sense that seedB∗ ,E∗ − Zb hides b.
Unfortunately, this too is impossible, since seedB∗ lets us get B∗ = AS∗ + E∗ from which we can
then derive AS∗ + Zb; this allows us to distinguish between (say) Z0 = 0 and Z1 being a small
Gaussian by checking rank. Our main observation is that we don’t need indistinguishability to hold
for worst-case distributions Zb, but rather only for ones where an LWE sample AR + Zb with the
error Zb and a truly random R would hide the bit b. Formally, the definition says that for any two
distributions of (Zb, auxb) where Zb is sufficiently short:

If (aux0,A,AR + Z0) ≈c (aux1,A,AR + Z1), (3)
then (seedB∗ , aux0,A,E∗ − Z0) ≈c (seedB∗ , aux1,A,E∗ − Z1). (4)

Note that, since seedB∗ defines AS∗ + E∗, giving E∗ − Zb in (4) is equivalent to giving AS∗ + Zb,
and hence we use these interchangeably in the definition.

3It is simpler in terms of syntax, since we do not refer to LWE trapdoors for A, and in terms of the security
requirement since we do not require a simulator, but instead have a simple indistinguishability criterion.

3

The above definition is not falsifiable since it quantifies over all (auxb,Zb) satisfying the pre-
condition (3). However, we also consider a weaker, falsifiable definition, where we fix a specific
(aux∗b ,Z∗b) that satisfies the pre-condition (3). We then show a generic transformation that lifts
any scheme realizing the weak definition into one that realizes the general definition. Specifically,
in the weak definition, we fix aux∗b = (B̂,C) to consist of a commitment B̂ to 0, along with a
commitment C to −b. We then homomorphically evaluate an AND operation (multiplication) on
the commitments B̂,C, which results in a commitment to 0, and we define Z∗b to be the error term
for this commitment. Formally,

aux∗b =
(
B̂ = AS0 + F, C = AR + E− bG

)
and Z∗b = EG−1(B̂)− bF,

where E and F are matrices with small entries. The transformation is inspired by a trick employed
in WW to frame the security of their candidate oblivious LWE sampler construction as a falsifiable
assumption. Here, we are able to abstract this trick out and formally prove that it amplifies a
weak definition of security to a strong one. Therefore, we get a simple and falsifiable definition of
succinct LWE sampling as our target. We refer to Section 3.3 for more details.

Our final definition introduces additional relaxations. Instead of a uniformly random matrix A,
we allow the use of matrices A∗, which may not be uniformly random and can have some additional
structure, as long as LWE still holds w.r.t. A∗. We also allow the succinct sampler to rely on a
non-succinct common reference string (CRS) of length poly(N). This is analogous to the reliance
on a CRS in WW (as well as [BDGM20a,GP21]) and suffices for iO.

Our Succinct Randomized Encoding. To go from succinct LWE sampling to SRE, we essen-
tially follow WW, and replace A with A∗ in (2). The SRE consists of:

seedB∗ , A∗, A∗R + x⊗G + E, Rf,x + S∗ . (5)

Correctness and succinctness follow readily as before. To prove security, we need to argue as follows
that Encode(f, xb) hides b as long as f(x0) = f(x1).

• As long as A∗ is full-rank, (Rf,xb + S∗) can be computed from A∗ and A∗ · (Rf,xb + S∗), so
it suffices to argue that:

seedB∗ , A∗, A∗R + xb ⊗G + E, A∗ · (Rf,xb + S∗)

hides b.

• Using Cf = A∗Rf,xb + Ef,xb + f(xb) · q2 and deriving B∗ = A∗S∗ + E∗ from seedB∗ , we can
write

A∗ · (Rf,xb + S∗) = Cf − f(xb) · q2 + B∗ −E∗ −Ef,xb ,

so it suffices to argue that

seedB∗ , A∗, A∗R + xb ⊗G + E, E∗ + Ef,xb

hides b.

4

• At this point, we will invoke security of our succinct LWE sampler with

auxb = A∗R + xb ⊗G + E, Zb = Ef,xb

For this step, we need to show that the pre-condition (3) holds:

(A∗R + x0 ⊗G + E, A∗, A∗S′ + Ef,x0) ≈c (A∗R + x1 ⊗G + E, A∗, A∗S′ + Ef,x1).

This follows from LWE w.r.t. A∗ and the fact that A∗S′ + Ef,xb ≡ A∗S′ + Cf − f(xb) · q2 ,
where f(x0) = f(x1).

Note that, in the above, we only relied on the security of the LWE sampler for the special case
where auxb is an encryption of xb and Zb is the error in the ciphertext one gets by homomorphically
computing f(xb) for some function f such that f(x0) = f(x1). However, as mentioned previously,
we can also rely on an even more restricted form of (auxb,Zb), essentially corresponding to the
extremely simple case where f just computes the AND of b and 0, and generically lift security to
the completely general case.

Our Candidate Succinct LWE Sampler. We want to design a succinct LWE sampler gener-
ating B∗ = A∗S∗ + E∗. The security requirement in Equation (4) implies that E∗ − Zb hides b for
any short matrices Z0,Z1 satisfying some additional properties which we shall ignore in the rest
of this overview. In addition, we want B∗ to admit a short description seedB∗ , which means that
E∗ ∈ ZM×K should compute a “pseudorandom” noise-flooding distribution.

Following [JLMS19, AJL+19], a good candidate for E∗ is to evaluate MK random degree-
d polynomials in dmk variables drawn from independent Gaussian distributions, where MK �
(dmk)d/2 to avoid linearization and potential sum-of-squares-based attacks; the ensuing distribution
is plausibly indistinguishable from MK independent samples from a “noise-flooding” distribution
D for a suitable choice of parameters. Concretely, thinking of d as a small constant, we sample
“secret” Gaussian matrices E1, . . . ,Ed ← χm×k and public Gaussian matrices P ← χM×m

d and
P′ ← χk

d×K and we define

E∗ := P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K

where P,P′ are published in the CRS. In the special case of m = M = 1 and P = 1, the
distribution of E∗ ∈ ZK corresponds roughly to the evaluation of K random (i.e. Gaussian)
degree-d (multilinear) polynomials in dk variables (where the dk variables are the entries of the
E1, . . . ,Ed and the coefficients of the polynomial are specified by P′). In the general case, we have
a collection of polynomials, where each one looks at a certain structured set of monomials. For
more details, see Section 4.5.

Next, we specify (B∗,A∗,S∗, seedB∗), starting with seedB∗ . Following [JLMS19], we additionally
sample Ai ← Zm×wq ,Si ← Zw×kq for i = 1, . . . , d and some w � m, k, and we define:

seedB∗ := (B1 := A1S1 + E1 , . . . , Bd := AdSd + Ed) ∈ (Zm×kq)d.

Inspired by the homomorphic operations of the Brakerski-Vaikuntanathan FHE [BV11], we want
to relate E∗ to B1 ⊗ · · · ⊗ Bd and from there, derive B∗,A∗,S∗ such that B∗ = A∗S∗ + E∗ (we

5

will discuss succinctness after that). We start with d = 2 for simplicity. By the mixed product
property:

B1 ⊗B2 = A1S1 ⊗B2 + E1 ⊗A2S2 + E1 ⊗E2 = [A1 ⊗ Im | Im ⊗A2]
(

S1 ⊗B2
E1 ⊗ S2

)
+ E1 ⊗E2.

We start by defining B∗ and “pre-cursor” values A∗,S∗, which we will use to derive the final A∗,S∗
later, via:

B∗︷ ︸︸ ︷
P · (B1 ⊗B2) ·P′ =

A∗︷ ︸︸ ︷
P[A1 ⊗ Im | Im ⊗A2] ·

S∗︷ ︸︸ ︷(
S1 ⊗B2
E1 ⊗ S2

)
P′+

E∗︷ ︸︸ ︷
P(E1 ⊗E2)P′

For general d, we have:

B∗ = P · (B1 ⊗ · · · ⊗Bd) ·P′ ∈ ZM×Kq , E∗ = P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K ,

A∗ = P · (A1 ⊗ Im ⊗ · · · ⊗ Im‖ · · · · · · ‖Im ⊗ · · · ⊗ Im ⊗Ad) ∈ ZM×dwm
d−1

q ,

S∗ =

S1 ⊗B2 ⊗ · · · ⊗Bd

E1 ⊗ S2 ⊗ · · · ⊗Bd
...

E1 ⊗E2 ⊗ · · · ⊗ Sd

 ·P′ ∈ Zdwm
d−1×K

q , which we show satisfy

B∗ = A∗ · S∗ + E∗.
Note that while the width of A in both the base scheme and WW is w = poly(λ), the width of A∗

is much larger and will in fact grow with N .
As mentioned above, it seems reasonable to conjecture that E∗ on its own is pseudo-iid. How-

ever, S∗ is structured and does not look random on its own, which is problematic since we want
S∗ + Rf,x to drown out differences in the distribution of Rf,x. Therefore, we will rely on a variant
of Kilian randomization [Kil88] to hide the structure of A∗,S∗. We compute a random basis A∗ of
the column span of A∗ and then solve for S∗ subject to A∗S∗ = A∗ · S∗. This ensures that A∗,S∗
essentially do not reveal more than the product A∗S∗.

Succinctness. With the above implementation of succinct LWE sampling, from (5), the encod-
ings of the resulting SRE have size

|Encode(f, x)| = Õ

 M2︸︷︷︸
A∗R+x⊗G+E

+ dmk︸ ︷︷ ︸
seedB∗

+Mdwmd−1︸ ︷︷ ︸
A∗

+Kdwmd−1︸ ︷︷ ︸
S∗+Rf,x

where Õ(·) hides poly(λ, log q, `) factors, which is in turn polynomial in λ, ` and circuit depth of f .
We set

w = poly(λ),

m = N
1

2d ,

k = m5 = N
5

2d ,

M = md−1/2 = N
1
2−

1
4d ,

K = md+1/2 = N
1
2 + 1

4d .

Then, |Encode(f, x)| = Õ(m2d−1/6) = Õ(N1− 1
12d), that is, our scheme achieves (1− 1

12d)-succinctness,
which can then be lifted to iO using [AJ15,BV15,LPST16].

6

Our Final Assumption: Subspace Flooding. Combined with the transformation discussed
earlier, we only need our sampler to satisfy weak security, which boils down to the following subspace
flooding assumption: that

P,P′, seedB∗ , A∗, B̂ = A∗S0 + F, C = A∗R + E− bG, E∗ + E ·G−1(B̂)− bF (6)

hides b where P ∈ ZM×md , P′ ∈ Zkd×K , E ∈ ZM×M log q, and F ∈ ZM×K and {Ei}i∈[d] are sampled
from small distributions;

E∗ = P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K ;

for i = 1, . . . , d, Ai is sampled from Zm×wq and Si is sampled from Zw×kq ;

seedB∗ = {Bi = AiSi + Ei}i∈[d] ∈ (Zm×wq)d;

S0 is sampled from Zdwmd−1×K
q and R is sampled from Zdwmd−1×M log q

q so B̂ ∈ ZM×Kq and C ∈
ZM×M log q
q ; and A∗ is the result of the Kilian randomization process described above.

Note that the columns of E·G−1(B̂) ∈ ZM×K live in a low-rank subspace defined by the columns
of E ∈ ZM×M log q where K �M log q and F is sampled independently from a small distribution.
Thus, the assumption states that E∗ masks whether the error EG−1(B̂)− bF ∈ ZM×K lives in this
low-rank subspace, hence the name “subspace flooding”.

A different, less syntactic, perspective on the subspace flooding assumption tells us that to
protect arbitrary computations, it is sufficient to protect a single homomorphic multiplication.
Indeed, consider C to be a GSW encryption of −b and B̂ to be a GSW encryption of 0. Their
homomorphic multiplication gives us

C ·G−1(B̂) = A∗(RG−1(B̂)− bS0) + (E ·G−1(B̂)− bF)

Subspace flooding says that adding E∗ “protects” the error E · G−1(B̂) − bF in the evaluated
ciphertext in the sense of hiding b.

Theorem 1.1 (Informal). Under the (subexponential hardness of the) learning with errors assump-
tion and the subspace flooding assumption (Equation 6 above), there exists an indistinguishability
obfuscation scheme.

1.3 Discussion

Noise Distribution in Prior Works. The sampler in WW sampler works by homomorphically
generating pseudorandom LWE samples using an encrypted (weak) pseudorandom function, such
as that given by k, u 7→ round(〈k, u〉) for key k and random input u. Prior works used the GSW
FHE for homomorphic evaluation, but did not specify the circuit implementation for the PRF.
Hopkins, Jain and Lin (HJL) [HJL21] presented attacks on these prior LWE samplers that “exploit
the flexibility to choose specific implementations of circuits and LWE error distributions in the
Gay-Pass and Wee-Wichs assumptions.” Specifically, they showed how to introduce redundancy
into the circuit used in homomorphic evaluation following the GSW FHE so that the last two bits
of E∗ + Zb leak b.

Note that the above attack can be circumvented by fixing some natural choice of a concrete weak
PRF, such as the aforementioned, which corresponds to FHE decryption; and a circuit evaluation of

7

it, such as [AP14], which is in fact a read-once branching program with k hardwired. Unfortunately,
writing down an explicit expression for the error distribution in the pseudorandom LWE sample is
far from straightforward, which in turn impedes any cryptanalytic efforts. In this work, we avoid
such considerations by directly considering succinct LWE samplers, as opposed to homomorphically
evaluated weak PRFs.

Relation to the “LWE with Leakage” Assumption of [JLMS19]. Our assumption basically
asserts that for small Z0,Z1 satisfying some precondition:

A1, . . . ,Ad, (Bi := AiSi + Ei)i∈[d], P,P′, P(E1 ⊗ · · · ⊗Ed)P′ − Zb

hides b. (In fact, we do not give away A1, . . . ,Ad, rather a random basis for the column span of
A∗. We ignore this difference for the rest of the comparison.)

The LWE with leakage assumption of [JLMS19] basically asserts that for small z0, z1, and
Ai ∈ Zm×wq , si ∈ Zw×1

q , ei ∈ χm×1:

A1, . . . ,Ad−2, (bi := Aisi + ei)i∈[d−2], P, P(e1 ⊗ · · · ⊗ ed) + zb

hides b.
The LWE with leakage assumption of [JLMS19] can be viewed as a variant of our flooding

assumption. Syntactically, their definition can be recovered from ours with three modifications:

1. Set k = 1 as opposed to our assumption where k � m;

2. Set P to be very compressing, namely, the output has length M � md/2, whereas in our case
M ≈ md−1/2; and

3. Do not release Ad−1,Ad,Bd−1,Bd to the distinguisher, ensuring that the only leakage about
ed−1, ed comes from E∗.

These syntactic differences have the following consequences:

• With k = 1 and M ≈ md−1/2, the assumption can indeed be broken with sum-of-squares
attacks (see, e.g., [BHJ+19].) Thus, our source of security comes from the fact that k is large.
Semantically, this means that we take multiple, albeit correlated, instances of the [JLMS19]
problem, defined by the kd columns of our matrix E1⊗· · ·⊗Ed, and output a “few”, namely,
K � kd/2 linear combinations of them.

• An adversary in our setting can check the rank of

P(B1 ⊗ · · · ⊗Bd)P′ −E∗ + Zb mod q

which is something that cannot be computed in the [JLMS19] assumption since Bd−1,Bd are
not given to the distinguisher. This allows the latter to plausibly handle worst-case small zb,
whereas we require an additional pre-condition on Zb.

Their final iO scheme additionally assume bilinear groups (in addition to LWE), which we do
not.

8

Cryptanalytic Challenges. A central open problem from this work is to design succinct LWE
samplers based on weaker assumptions and to carry out cryptanalysis of our candidate succinct
LWE sampler. To facilitate the latter, we describe concrete cryptanalytic challenges in Section 4.6.
Thanks to our amplification theorem, in order to base iO on our candidate LWE sampler, it suffices
for security to hold for a specific pair of distributions (Z0,Z1). On the other hand, the heuristic
underlying our candidate sampler (related to random polynomials being indistinguishable from
independent copies of a noise-flooding distribution D) does not refer to properties of the specific
distribution. For this reason, our cryptanalytic challenges also refer to more general distributions
Z0,Z1 that may not correspond to those which are sufficient for iO.

2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any function f such
that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = O(λc) for some c > 0.
For a probabilistic algorithm alg(inputs), we might explicitly refer to its random coins by writting
alg(inputs; coins). We will denote vectors by bold lower case letters (e.g. a) and matrices by bold
upper cases letters (e.g. A). We will denote by a> and A> the transposes of a and A, respectively.
We will denote by bxe the nearest integer to x, rounding towards 0 for half-integers. For matrices
A,B of appropriate dimensions, we will denote by (A‖B) their horizontal concatenation and

(A
B
)

their vertical concatenation. For an integer n ≥ 1, we denote by In the identity matrix of dimension
n. For integral vectors and matrices (i.e., those over Z), we use the notation ‖r‖, ‖R‖ to denote
the maximum absolute value over all the entries.

For matrices A,B, we denote by A ⊗ B their tensor (or Kronecker) product. We’ll use the
following mixed-product property: for matrices A,B,C,D of appropriate dimensions, we have
(AB)⊗ (CD) = (A⊗C) · (B⊗D).

For p ∈ Q, we write Roundp(x) = bx · 1/pe. If X is a matrix, Roundp(X) denotes the rounded
value applied component-wise. We denote by dxe the smallest integer larger or equal to x.

For a finite set S, s← S denotes sampling uniformly in S. We define the statistical distance be-
tween two random variables X and Y over some domain Ω as: SD(X,Y) = 1

2
∑
w∈Ω |X(w)− Y (w)| .

We say that two ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically indistin-
guishable, denoted X ≈s Y , if SD(Xλ, Yλ) ≤ negl(λ).

We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are computation-
ally indistinguishable, denoted X ≈c Y , if, for all (non-uniform) PPT distinguishers A, we have
|Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| ≤ negl(λ). We also refer to sub-exponential security, meaning
that there exists some ε > 0 such that the distinguishing advantage is at most 2−λε .

2.2 Learning With Errors

Definition 2.1 (B-bounded distribution). We say that a distribution χ over Z is B-bounded if

Pr[χ ∈ [−B,B]] = 1.

We recall the definition of the (decision) Learning with Errors problem, introduced by Regev [Reg05].

9

Definition 2.2 ((Decision) Learning with Errors ([Reg05])). Let n = n(λ) and q = q(λ) be
integer parameters and χ = χ(λ) be a distribution over Z. The Learning with Errors (LWE)
assumption LWEn,q,χ states that for all polynomials m = poly(λ) the following distributions are
computationally indistinguishable:

(A,As + e) ≈c (A,u)

where A← Zm×nq , s← Znq , e← χm,u← Zmq .

Just like many prior works, we rely on LWE security with the following range of parameters.
We assume that for any polynomial p = p(λ) = poly(λ) there exists some polynomial n = n(λ) =
poly(λ), some q = q(λ) = 2poly(λ) and some B = B(λ)-bounded distribution χ = χ(λ) such that
q/B ≥ 2p and the LWEn,q,χ assumption holds. Throughout the paper, the LWE assumption
without further specification refers to the above parameters. The sub-exponentially secure LWE
assumption further assumes that LWEn,q,χ with the above parameters is sub-exponentially secure,
meaning that there exists some ε > 0 such that the distinguishing advantage of any polynomial-time
distinguisher is 2−λε .

The works of [Reg05,Pei09] showed that the (sub-exponentially secure) LWE assumption with
the above parameters follows from the worst-case (sub-exponential) quantum hardness SIVP and
classical hardness of GapSVP with sub-exponential approximation factors.

2.3 Lattice Tools

Noise Flooding. We will use the following fact.

Lemma 2.3 (Flooding Lemma (e.g., [AJL+12])). Let B = B(λ), B′ = B′(λ) ∈ Z be parameters
and let U([−B,B]) be the uniform distribution over the integer interval [−B,B]. Then for any
e ∈ [−B′, B′], the statistical distance between U([−B,B]) and U([−B,B]) + e is B′/B.

Gadget Matrix [MP12]. For an integer q ≥ 2, define: g = (1, 2, · · · , 2dlog qe−1) ∈ Z1×dlog qe
q . The

gadget matrix G is defined as G = g ⊗ In ∈ Zn×mq where n ∈ N and m = ndlog qe. There exists
an efficiently computable deterministic function G−1 : Znq → {0, 1}m such for all u ∈ Znq we have
G ·G−1(u) = u. We let G−1($) denote the distribution obtained by sampling u← Znq uniformly at
random and outputting t = G−1(u). These extend directly to matrices: G−1 : Zn×kq → {0, 1}m×k
by concatenating the outputs.

2.4 Homomorphic Operations

In this section, we describe how to perform homomorphic operations over certain encodings of
inputs. For readers familiar with lattice-based primitives, these essentially are packed versions of
the GSW homomorphism.

Our operations follow readily from [WW21] (building on [GSW13, GVW15], along with the
“packing” techniques in [PVW08,MW16,BTVW17,PS19,GH19,BDGM19]), who build homomor-
phic operations for f : {0, 1}` → {0, 1}M , producing some vector cf ∈ ZMq . We extend these
operations to functions f : {0, 1}` → {0, 1}M×K to produce some matrix Cf ∈ ZM×Kq , obtained by
concatenating K vectors cfi . This yields the following.

10

Definition 2.4 (Homomorphic operations). Let M,W, q, `,K, t be parameters. We define the fol-
lowing efficient algorithms:

• Eval(f : {0, 1}` → {0, 1}M×K , C ∈ ZM×`M log q
q): deterministically outputs a matrix Cf ∈

ZM×Qq .

• Evalopen(f,A ∈ ZM×Wq , x ∈ {0, 1}`,R ∈ ZW×`M log q
q ,E ∈ ZM×`M log q): deterministically

outputs two matrices (Rf,x ∈ ZW×Qq ,Ef,x ∈ ZM×Q).

These operations have the following property. For all f : {0, 1}` → {0, 1}M×K of depth t,
x ∈ {0, 1}`, A ∈ ZM×Wq , R ∈ ZW×`M log q

q and E ∈ ZM×`M log q, if

C = AR + x> ⊗G + E ∈ ZM×`M log q
q ,

Cf = Eval(f,C),
(Rf,x,Ef,x) = Evalopen(f,A, x,R,E),

where we view x as a row vector x ∈ {0, 1}1×`, then

Cf = ARf,x + q/2 · f(x) + Ef,x ∈ ZM×Kq ,

where f(x) ∈ {0, 1}M×K . Furthermore ‖Ef,x‖ = ‖E‖ ·Mg(t) for some efficiently computable g such
that g(t) = O(t).

Similarly to [WW21], these algorithms extend to functions f with outputs in Zq.

• Evalq(f : {0, 1}` → ZM×Kq , C ∈ ZM×`M log q
q): deterministically outputs a matrix Cf ∈ ZM×Qq .

• Evalqopen(f,A ∈ ZM×Wq , x ∈ {0, 1}`,R ∈ ZW×`M log q
q ,E ∈ ZM×`M log q): deterministically

outputs two matrices (Rf ∈ ZW×Qq ,Ef ∈ ZM×Q).

The correctness requirement becomes:

Cf = ARf,x + f(x) + Ef,x ∈ ZM×Kq ,

where C = AR + x⊗G + E ∈ ZM×`M log q
q , x being again seen as a row vector, Cf = Evalq(f,C)

and (Rf,x,Ef,x) = Evalqopen(f,A, x,R,E), and f(x) ∈ ZM×Kq . Again, ‖Ef,x‖ = ‖E‖ ·Mg(t).

2.5 Succinct Randomized Encodings

Next, we define succinct randomized encodings [BGL+15,BCG+18,LPST16].
Definition 2.5. A succinct randomized encoding scheme (SRE) for the function family F`,N,t =
{f : {0, 1}` → {0, 1}N} of circuits of depth at most t, is a tuple of PPT algorithms (CRSGen,Encode,Decode)
with the following syntax:

• CRSGen(1λ,F`,N,t)→ crs: on input the security parameter and a function family, outputs crs.

• Encode(crs, f, x)→ C: on input crs, a function f ∈ F`,N,t and x ∈ {0, 1}`, outputs an encoding
C.

• Decode(crs, C, f) → y: a deterministic algorithm which, on input crs, an encoding C, and a
function f ∈ F`,N,t, outputs a value y ∈ {0, 1}N .

We require the following properties:

11

Correctness: For f ∈ F`,N,t and any x ∈ {0, 1}`:

Pr [Decode(crs,Encode(crs, f, x), f) = f(x)] ≥ 1− negl(λ),

where crs← CRSGen(1λ,F`,N,t) (over the randomness of CRSGen,Encode).

δ-Succinctness: There exists a constant δ < 1 such that, for all crs ← CRSGen(1λ,F`,N,t),
C ← Encode(crs, f, x), we have:

|C| = N δ · poly(λ, `, t).

Indistinguishability-based Security: For all PPT A, all x0, x1 ∈ `, and all f ∈ Ft,`,N such
that f(x0) = f(x1), the following distributions are indistinguishable for b = 0 and b = 1:

• Db: Sample crs← CRSGen(1λ,Ft,`,N), Cb ← Encode(crs, f, xb). Output (crs, Cb).

Relation to XiO. Our notion of SRE is also very related to the notion of exponentially efficient
iO (XiO) from [LPST16]. An XiO scheme obfuscates a circuit C : {0, 1}logN → {0, 1} with the
same security guarantee as iO, but the run-time of the obfuscator can be as high as poly(λ, |C|, N)
and the only constraint that makes the problem non-trivial is that the obfuscated circuit is succinct,
of size at most N δpoly(λ, |C|) for δ < 1. An SRE scheme immediately yields an XiO scheme by
thinking of f as the universal circuit that takes as input a circuit x = C an evaluates it on
all N inputs in {0, 1}logN . The output size of f is N and the depth of f can be bounded by
t = poly(|C|), so the succinctness of the SRE yields the corresponding succinctness of the XiO.
Therefore, by leveraging the prior work of [LPST16] that shows how to go from XiO (in the CRS
model) to iO via LWE, we get the following theorem.

Theorem 2.6. [AJ15, BV15, LPST16] Assuming sub-exponentially secure SRE exist and sub-
exponentially secure LWE, there exists an iO scheme.

3 Succinct LWE Sampler: Definition and Amplification

In Section 3.1, we define the notion of succinct LWE samplers. In Section 3.2, we describe a
seemingly weaker notion of LWE sampler, and prove that it implies the first (and stronger) notion.

3.1 Definition and Discussion

Definition 3.1 (Succinct LWE Sampler). A succinct LWE sampler is a tuple of PPT algorithms
(SampCRSGen, LWEGen,Expand) with the following syntax:

• SampCRSGen(1λ, 1N , α): on input the security parameter λ, a size parameter N and a blow-
up factor α, samples a common reference string crs, which include parameters params =
(q,M,K, χ,B).

• LWEGen(crs): samples (seedB∗ ,A∗,S∗).

• Expand(crs, seedB∗) is a deterministic algorithm that outputs a matrix B∗.

12

Domains and Parameters. The outputs of LWEGen and Expand satisfy:

A∗ ∈ ZM×Wq , S∗ ∈ ZW×Kq , B∗ ∈ ZM×Kq ,

for some integer W . We require that:

• N = MK;

• B = poly(N);

• χ is a B-bounded noise distribution; and

• q ≥ 8 · 2λ · α ·B.

Correctness. We require that

||B∗ −A∗S∗|| := β ≤ q/8

where crs← SampCRSGen(1λ, 1N , α), (seedB∗ ,A∗,S∗)← LWEGen(crs) and B∗ := Expand(crs, seedB∗).
Furthermore, we require that A∗ is full-rank with overwhelming probability over the randomness of
SampCRSGen and LWEGen.

δ-Succinctness. We require the total bit length of the output of LWEGen is small. That is,

bitlength(seedB∗ ,A∗,S∗) ≤ N δ · poly(λ, log q) = (MK)δ · poly(λ, log q) ,

where δ < 1 is a constant. When we omit δ, it means succinctness holds for some constant δ < 1.

LWE with respect to A∗. We require that

(coinscrs, coinsseed,A∗s′ + e′) ≈c (coinscrs, coinsseed,b),

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) ← LWEGen(crs; coinsseed), s′ ← ZWq ,
and e′ ← χM .

Security (or β0-Flooding). Let D0, D1 be any two polynomial-time samplable distributions such
that (auxb,Zb)← Db(A∗) satisfies Zb ∈ ZM×K , ‖Zb‖ ≤ β0 where β0 · 2λ ≤ β and

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux1)

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) = LWEGen(crs; coinsseed) and S′ ←
ZW×Kq . Then,

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

We will refer to the assumption on D0, D1 as the pre-condition for security, and the resulting
indistinguishability the post-condition.
Furthermore, as we will later describe a relaxed notion of security, we will sometimes refer to the
notion above as strong security to avoid ambiguity.

13

Remark 3.1 (Alternate formulation). Since the sampler allows us to compute Expand(crs, seedB∗) =
B∗ = A∗S∗ + E∗, the security post-condition can be equivalently stated as:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 3.2 (Implied Statements). The randomness coinscrs and coinsseed respectively used by
SampCRSGen and LWEGen allow us to compute crs, seedB∗ ,A∗,S∗. In particular, LWE with respect
to A∗ implies that

(crs, seedB∗ ,A∗,S∗,A∗s′ + e) ≈c (crs, seedB∗ ,A∗,S∗,b),

and the pre-condition on D0, D1 for security implies that

(crs, seedB∗ ,A∗,S∗, aux0,A∗S′ + Z0) ≈c (crs, seedB∗ ,A∗,S∗, aux1,A∗S′ + Z1).

Remark 3.3 (Restrictions on Z0,Z1). We note that security (namely, the post-conditionition)
cannot hold for arbitrary Z0,Z1, for which the pre-condition does not hold. Even if one only
required that Z0 and Z1 had small entries, one can efficiently distinguish Z0 = 0 from any Z1
not in the column span of A∗. In particular, the rank of A∗S∗ + Zb would leak b: this is because
A∗S∗ is rank-deficient by succinctness. We can rule out such distinguishers simply by requiring
that Z0 − Z1 lies in the column span of A∗; our pre-condition is in some sense a “distributional”
or “computational” relaxation of such a requirement.

Remark 3.4 (Triviality without succinctness). We remark that it is easy to build a succinct LWE
sampler if there are no restrictions on the bit-length of seedB∗ (looking ahead, such a sampler would
not be sufficient to build iO). Indeed, without any succinctness requirement, we could set:

crs = ∅, seedB∗ = A∗S∗ + E∗ ∈ ZM×Kq

where S∗ is random and E∗ has small entries, but large enough to “noise-flood” Zb (namely,
β0/β = 2−λ).

For convenience, we consider the equivalent notion of security from Remark 3.1. We claim that
this construction (unconditionally) satisfies security. To see this, first note that for all b ∈ {0, 1}:

(seedB∗ , A∗, E∗ − Zb, auxb) ≈s (A∗S∗ + (E∗ + Zb), A∗, E∗, auxb)

by noise flooding, where we use that E∗ is sampled independently of auxb,Zb. The pre-condition
then implies that

(A∗, (A∗S∗ + Z0) + E∗,E∗, aux0) ≈c (A∗, (A∗S∗ + Z1) + E∗,E∗, aux1),

where we again use that E∗ is sampled independently of auxb,Zb,S∗, and that S∗ is sampled
uniformly at random independently of the other components (and takes the role of S′ in the pre-
condition).

Remark 3.5 (Heuristic necessity of a CRS). We heuristically show that security requires a (long)
CRS if seedB∗ is required to be short, namely the CRS needs to be of length ≈ N for any δ-succinct
scheme with δ < 1.

Suppose for contradiction that there is such a sampler that expands some short input (crs, seedB∗)
of length at most N δ ·poly(λ, log q) to some Expand(seedB∗) = B∗ = A∗S∗+E∗ of bit-length N log q.
Let Zb be a random LWE error and let auxb be an obfuscation of the following program:

14

Pb,A∗,Zb : on input (crs, seedB∗) of bit-length N δ · poly(λ, log q), and B̃ of bit-length N log q,

• Check that B̃− Zb is in the column span of A∗, and output ⊥ if not.
• Compute B∗ = Expand(crs, seedB∗) = A∗S∗ + E∗. Output b if ‖B∗ − B̃ + Zb‖ ≤ β, and

output ⊥ otherwise.

Then (crs, seedB∗ , B̃ = A∗S∗+Z0, aux0) is efficiently distinguishable from (crs, seedB∗ , B̃ = A∗S∗+
Z1, aux1), by running auxb on input ((crs, seedB∗), B̃) and using the fact that (crs, seedB∗) has bit-
length at most Õ(N δ) by assumption, that ‖E∗‖ ≤ β, that A∗S∗ has low rank by succinctness, and
that A∗S∗ + Z0 − Z1 has high rank w.h.p.

Furthermore, suppose heuristically that auxb acts like an ideal obfuscation of Pb,Zb , meaning
that it does not reveal more than black-box access to the program. Then, the pre-condition would
hold since given (coinscrs, coinsseed,Bb = A∗S′ + Zb) and black-box access to Pb,Zb , one cannot
distinguish b = 0 vs b = 1. The idea is that the only way to learn anything about b is to provide
a “good” input to Pb,Zb that makes it output something other than ⊥. Any good input must be
of the form ((crs′, seed′B∗),Bb + A∗S) for some S ∈ ZW×Kq . But if Bb was uniform, there would be
no inputs of this form, where (crs′, seed′B∗) is short, such that ‖Expand(crs′, seed′B∗) − Bb + A∗S‖
is also small, meaning that Pb,Zb would always output ⊥ in this case. This follows by a counting
argument, where the sizes of crs′, seed′B∗ and S are much smaller than the size of Bb whenever δ is
sufficiently small, and β is relatively small compared to q. Therefore finding a good input to Pb,Zb
would require breaking LWE with respect to A∗.

3.2 Weak Succinct LWE Samplers

We now present a weaker security notion for succinct LWE samplers. Instead of quantifying over
all (Zb, auxb) that satisfy the specified pre-condition as we did previously, we now fix one particular
and simple choice of (Zb, auxb). In particular, this makes the definition falsifiable. We then show
in Theorem 3.3 that there is a generic compiler that upgrades this type of weak security to the
previous definition of strong security (Definition 3.1).

Definition 3.2. Weak Security (or Weak β0-Flooding). Define D0, D1 as follows.

Db : auxb =
(
B̂ := A∗Ŝ + Ê, C = A∗R + E− b ·G

)
Zb = EG−1(B̂)− bÊ,

where

• SampCRSGen defines (q,M,K, χ,B) = params;

• LWEGen defines A∗ ∈ ZM×Wq ;

• B̂ ∈ ZM×Kq , Ŝ← ZW×Kq , and Ê← [−Bflood, Bflood]M×K , where Bflood = (β0 +B) · 2λ;

• C ∈ ZM×M log q
q , R ← ZW×M log q

q , and E← χM×M log q.

We say that the sampler (SampCRSGen, LWEGen,Expand) is weakly secure if

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

15

Remark 3.6 (Alternate formulation of security). Similar to Remark 3.1, as the sampler allows us
to compute Expand(crs, seedB∗) = B∗ = A∗S∗ + E∗, weak security equivalently states that:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 3.7 (Pre-condition from LWE). We note that the distributions D0, D1 satisfy the pre-
condition for security of Definition 3.1, assuming LWE, namely:

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux0), (7)

where (auxb,Zb)← Db and S′ ← ZW×Kq .
This is true because one can efficiently sample A∗S′ + Zb given only (A∗, auxb), as follows:

• Compute CB̂ = CG−1(B̂) ∈ ZM×Kq ; and

• Output CB̂ + A∗S for some random S← ZW×Kq .

Indeed,

CB̂ + A∗S = (A∗R + E− bG)G−1(B̂) + A∗S = A∗(RG−1(B̂)− bŜ + S) + (EG−1(B̂)− bÊ)

and the latter term is distributed identically to A∗S′ + Zb with a random S′.
Therefore, to show the precondition equation (7), it suffices to prove that (coinscrs, coinsseed, auxb)

hides b. But this follows from LWE with respect to A∗ (Definition 3.1) with noise distribution χ.

3.3 Amplification

We now describe a general compiler that lifts weak security (Definition 3.2) to strong security
(Definition 3.1). The idea is based on a trick used in the specific oblivious LWE sampler construction
of WW, but now abstracted out as a general compiler.

The compiler works as follows. We start with a weakly secure scheme and augment the seed by
adding a commitment C = A∗R + E + flag ·G to a “flag” bit initially set to flag = 0.4 We also
add a long uniformly random value B̂ ∈ ZM×Kq to the CRS. If the original weakly secure scheme
outputs some LWE sample B∗ = A∗S∗+E∗, we define the new LWE sample to be B∗−CG−1(B̂).
In the proof, we switch B̂ to be an LWE sample and we switch the flag bit to 1 by relying on the
weakly secure LWE sampler. We can then prove strong security by “programming” the random
LWE sample B̂ in the CRS, analogously to the trivial scheme in Remark 3.4.

Construction. Let (SampCRSGen, LWEGen,Expand) be a weakly secure succinct LWE sampler.
We build one satisfying strong security as follows:

• SampCRSGen(1λ, 1N , α ; coinscrs): Using randomness coinscrs = (coinscrs, ρcrs), compute crs =
SampCRSGen(1λ, 1N ,min(α, 2λ); coinscrs). Sample B̂← ZM×Kq using ρcrs. Output:

crs = (crs, B̂).
4In this section, we denote by flag the bit b corresponding to the weak security we assume, to differentiate it from

the bit b corresponding to standard security which we aim to build.

16

• LWEGen(crs ; coinsseed) : Using randomness coinsseed = (coinsseed, ρseed), compute (seedB∗ ,A∗,S∗) =
LWEGen(crs; coinsseed), and set

C = A∗R + E ∈ ZM×M log q
q ,

using ρseed to sample R ← ZW×M log q
q and E ← χM×K (where χ is defined by crs), and

output: (
seedB∗ = (seedB∗ , C), A∗, S∗ = (S∗ −RG−1(B̂))

)
.

• Expand(crs, seedB∗) : Compute B∗ = Expand(crs, seedB∗) and output

B∗ = B∗ − C ·G−1
(
B̂
)
.

Theorem 3.3. Suppose (SampCRSGen, LWEGen,Expand) is a weakly secure, δ-succinct LWE sam-
pler (Definition 3.2). Suppose furthermore that it satisfies M2 ≤ N δ ·poly(λ, log q). Then, assuming
LWE, (SampCRSGen, LWEGen,Expand) is a secure δ-succinct LWE sampler, satisfying strong secu-
rity (Definition 3.1). Moreover, with the parameters of Definition 3.2, (SampCRSGen, LWEGen,Expand)
is (strongly) β0-flooding.

Proof. Correctness follows directly by setting E∗ = E∗−E ·G−1
(
B̂
)
. δ-succinctness follows by δ-

succinctness of (SampCRSGen, LWEGen,Expand) and as bitlength(C) = M2 log q ≤ N δ ·poly(λ, log q)
by assumption. LWE with respect to A∗ is directly inherited as B̂,C are sampled independently
from coinscrs, coinsseed, and thus a reduction can sample the associated randomness by itself. We
will now focus on proving security. Let D0, D1 be two distributions satisfying the pre-condition.
That is, for (auxb,Zb)← Db(A∗), we have:

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, , aux1).

Using the equivalent notion of security from Remark 3.6, we wish to prove that:

(crs, seedB∗ ,A∗,E
∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E

∗ − Z1, aux1),

where E∗ = E∗ + E ·G−1
(
B̂
)
. We proceed by a hybrid argument.

H0(b). This is the original distribution with the challenge bit b:

H0(b) = (crs = (crs, B̂), seedB∗ = (seedB∗ ,C), A∗, E∗ − Zb, auxb).

H1(b). We switch how B̂ is computed. Instead of choosing it uniformly at random, we now set it
to an LWE sample:

B̂ = A∗Ŝ + Ê,

where Ŝ ← ZW×Kq , Ê ← [−Bflood, Bflood]M×K (where we recall that Bflood = (β0 + B) · 2λ). The
resulting distribution is:

H1(b) = (crs = (crs, B̂ = A∗Ŝ + Ê), seedB∗ = (seedB∗ ,C), A∗, E∗ − Zb, auxb).

17

We claim that, assuming LWE with respect to A∗ (Definition 3.1) with a B-bounded distribution
χ, we have:

H0(b) ≈c H1(b)
This follows since LWE with the error distribution χ also implies LWE with the wider error dis-
tribution Ê ← [−Bflood, Bflood]M×K ; in particular, Ê is statistically close to Ê + E for E ← χ and
hence A∗Ŝ + Ê ≈s (A∗Ŝ + E) + Ê ≈c U where U is uniform. The last indistinguishability follows
from LWE with respect to A∗ for the weak scheme, which holds even given crs, seedB∗ ,A∗,S∗ by
Remark 3.2; the reduction can sample all the other components given in H0(b), H1(b) on its own.

H2(b). We switch how C is computed. We now set flag = 1 and compute:

C = A∗R − flag ·G + E ∈ ZM×M log q
q .

This means that we now have

E∗ = E∗ −E ·G−1
(
B̂
)

+ flag · Ê,

and implicitly S∗ = S∗−RG−1(B̂) + flag · Ŝ. Note that flag = 0 corresponds to H1(b) and flag = 1
corresponds to H2(b), where the hybrids consist of:

H1+flag(b) = (crs = (crs, B̂), seedB∗ = (seedB∗ ,C), A∗, E∗ − Zb, auxb).
We claim that:

H1(b) ≈c H2(b)
by weak security of the succinct LWE sampler (SampCRSGen, LWEGen,Expand) with

auxflag = (B̂,C = A∗R − flag ·G + E)
Zflag = E ·G−1

(
B̂
)
− flag · Ê

which states that:

(crs, seedB∗ ,A∗,E∗ − Z0︸ ︷︷ ︸
E∗

, aux0︸ ︷︷ ︸
B̂,C

) ≈c (crs, seedB∗ ,A∗,E∗ − Z1︸ ︷︷ ︸
E∗

, aux1︸ ︷︷ ︸
B̂,C

).

The claim follows by having the reduction sample (auxb, Zb) ← Db(A∗) on its own given A∗
and b to convert the above two distributions into H1(b) and H2(b) respectively.

H3(b). We modify how we compute B̂ and exchange Ê with Ê + Zb. In particular, we set the
distribution as:

H3(b) = (crs = (crs, B̂ = A∗Ŝ + Ê + Zb︸ ︷︷ ︸
Ênew

), seedB∗ = (seedB∗ ,C),A∗, E∗︸︷︷︸
E∗new−Zb

, auxb),

where E∗ = E∗ − E ·G−1
(
B̂
)

+ Ê and E∗new = E∗ − E ·G−1
(
B̂
)

+ Ênew. Therefore, the only
difference between H2(b) vs H3(b) is the difference between using Ê vs Ênew in B̂, and the other
changes then follow as a function of this change.

We argue H2(b) ≈s H3(b) by noise flooding (Lemma 2.3). In particular, Ê and Ênew = Ê + Zb
are statistically close since Ê is sufficiently large to flood out Zb by way we set the parameter Bflood.

18

H3(0) ≈c H3(1): Finally, we argue that H3(0) ≈c H3(1) follows by the pre-condition on D0, D1.
Namely, the pre-condition ensures that:

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux1),

where coinscrs = (coinscrs, ρ1), coinsseed = (coinsseed, ρ2) are the random coins used by SampCRSGen
and LWEGen, respectively.

The reduction computes crs = SampCRSGen(1λ, 1N ,min(α, 2λ); coinscrs), samples Ê on its own,
sets B̂ = (A∗S′+Zb)+Ê and sets crs = (crs, B̂). It computes (seedB∗ ,A∗,E∗) = LWEGen(crs; coinsseed),
samples C,E on its own, and sets seedB∗ = (seedB∗ ,C). Finally it computes E∗ = E∗ − E ·
G−1

(
B̂
)

+ Ê, and can therefore generate

H3(b) = (crs = (crs, B̂ = A∗Ŝ + Ê + Zb), seedB∗ = (seedB∗ ,C), A∗, E∗, auxb).

Taken together, the above shows that H0(0) ≈c H3(0) ≈c H3(1) ≈c H0(1) and therefore H0(0) ≈c
H0(1), which concludes the proof.

4 Candidate Succinct LWE Sampler

In Section 4.1, we present the template of our main candidate. In Section 4.2, we consider prove
correctness and succinctness. In Section 4.3, we explain how to setup parameters, and state our
conjectured security. Last, we discuss the plausibility of our conjecture in Section 4.5.

4.1 A Basic Framework

We describe a basic template to build succinct LWE samplers. Looking ahead, the SRE construction
in Section 5 requires an additional succinctness requirement, namely, that additional encodings
produced by the SRE are succinct. We make sure that our template and the parameters we
propose are compatible with that constraint.

We now describe our framework. It uses a set of parameters:

parameters := (d,m, k, w,M,K, χ, χ, β, q)

which in particular includes params = (q,M,K, χ,B, χ) directly output by SampCRSGen. Infor-
mally,

• the security of our sampler is related to the hardness of solving systems of random degree d
polynomials;

• q is the underlying LWE modulus;

• m, k,w define the dimensions of the ”seed” LWE samples Ai,Si,Ei, which together with d,
determine M,K, which are the dimensions for “expanded” sample B∗;

• χ is the noise distribution for Ei; it is B-bounded over Z;

• χ is the noise distribution used for LWE w.r.t A∗; it is B-bounded over Z;

19

• DP a σ-bounded distribution over Z. We will take DP = χ for simplicity.

We now describe our candidate (SampCRSGen, LWEGen,Expand).

• SampCRSGen(1λ, 1N , α): Derive parameters = (d,m, k, w,M,K, χ,B, χ, β, q) from (1λ, 1N , α)
as described later in Section 4.3. Set params = (q,M,K, χ,B, χ).
Sample P′ ← χk

d×K and P← χM×m
d . Output

crs = (params,P,P′).

• LWEGen(crs): On input crs = (params,P,P′), sample, for i ∈ [d], Ai ← Zm×wq , Si ← Zw×kq ,
Ei ← χm×k where χ is specified in params. Compute:

Bi = AiSi + Ei ∈ Zm×kq .

Set:

A∗ = P·(A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · · ‖ Im ⊗ · · · ⊗ Im ⊗Ad) ∈ ZM×dwm
d−1

q

S∗ =

S1 ⊗B2 ⊗ · · · ⊗Bd

E1 ⊗ S2 ⊗ · · · ⊗Bd
...

E1 ⊗E2 ⊗ · · · ⊗ Sd

 ·P′ ∈ Zdwm
d−1×K

q .

Sample a random basis A∗ ∈ ZM×Wq of the column space of A∗, and solve for S∗ ∈ ZW×Kq

such that A∗S∗ = A∗ · S∗. Output:

seedB∗ = {Bi}i∈[d], A∗, S∗.

• Expand(crs, seedB∗): On input crs = (params,P,P′) and seedB∗ = {Bi}i∈[d], output:

B∗ = P · (B1 ⊗ · · · ⊗Bd) ·P′ ∈ ZM×Kq .

4.2 Correctness, Succinctness, and LWE with respect to A∗

We show that for appropriate parameters, the sampler described above is correct and succinct.

Claim 4.0.1. Assume β ≥ B2(mkB)d. Then the sampler (SampCRSGen, LWEGen,Expand) de-
scribed above satisfies correctness (Definition 3.1).

Proof. We first prove that
B∗ = A∗ · S∗ + E∗, (8)

where E∗ = P
(⊗d

i=1 Ei

)
P′ ∈ ZM×Kq .

Let Â :=
(

A1 ⊗ Im ⊗ · · · ⊗ Im‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖

Im ⊗ · · · ⊗ Im ⊗Ad

)
∈ Zm

d×dwmd−1
q

20

Ŝ =

S1 ⊗B2 ⊗ · · · ⊗Bd

E1 ⊗ S2 ⊗ · · · ⊗Bd
...

E1 ⊗E2 ⊗ · · · ⊗ Sd

 ∈ Zdwm
d−1×kd

q .

In particular, A∗ = PÂ and S∗ = ŜP′.
For i ∈ [d], let A(i) be the i-th block (out of d blocks) of wmd−1 columns of Â, namely

A(i) =

i−1⊗
j=1

Im

 ⊗Ai ⊗

 d⊗
j=i+1

Im

 ,
and S(d) be the i-th block (out of d blocks) of wmd−1 rows of Ŝ, namely

S(i) =

i−1⊗
j=1

Ej

 ⊗ Si ⊗

 d⊗
j=i+1

Bj

 .
We have:

Â · Ŝ =
d∑
i=1

A(i)S(i)

=
d∑
i=1

i−1⊗
j=1

Ej

⊗ (AiSi)⊗

 d⊗
j=i+1

Bi

=

d∑
i=1

i−1⊗
j=1

Ej

⊗ (Bj −Ej)⊗

 d⊗
j=i+1

Bi

=

d∑
i=1

i−1⊗
j=1

Ej

 ·
 d⊗
j=i

Bj

 −

 i⊗
j=1

Ej

 ·
 d⊗
j=i+1

Bj

=

d⊗
i=1

Bi −
d⊗
i=1

Ei,

where the first equality is by definition of A(i),S(i), the second equality follows by the mixed product
property, and the last by observing the last sum is telescoping. Multiplying on the left by P and
on the right by P′ gives Eq. (8).
In particular, by construction of A∗ and S∗, we also have:

B∗ = A∗S∗ + E∗.

Moreover, if χ is a B-bounded distribution, then ‖E∗‖ ≤ β := B2 · (mkB)d. Last, A∗ is full-rank
by construction.

Claim 4.0.2. Suppose there exists δ < 1 such that

(dmk +MW +WK) ≤ N δ · poly(λ, log q),

where W is the width of A∗. Then (SampCRSGen, LWEGen,Expand) described above is δ-succinct.

21

Proof. This follows as bitlength({Bi}i∈[d],A∗,S∗) = (dmk +MW +WK) · log q.

Next, we show that LWE holds with respect to A∗ (assuming standard LWE), for our candidate
sampler. We first show that it holds with respect to A∗.
Lemma 4.1 (LWE with respect to A∗). Let χ(λ) be a B(λ)-bounded distribution. Let DP be a σ-
bounded distribution over Z such that if P = DM×md

P (coinsP) is sampled using randomness coinsP ,
then with overwhelming probability over coinsP , P is full-rank. Suppose furthermore that M ≤ md.

Suppose LWEw,q,χ holds. Let χ = U([−B,B]) be the uniform distribution in [−B,B], where
B ≥ σmdB · 2λ. Then:(

coinsP ,P, {Ai}i∈[d],A
∗
,A∗ · s + e

)
≈c
(

coinsP ,P, {Ai}i∈[d],A
∗
,b
)
,

where P = DM×md
P (coinsP), b← ZMq , s← Zdwmd−1

q , e← χM .
Proof. Assuming LWEw,q,χ holds, we have for all integer L ≥ 1:

(A, A⊗ IL, (A⊗ IL) · s + e) ≈ (A, A⊗ IL,b), (9)
where A ← Zm×wq , s ← ZnLq , e ← χmL and b ← ZmLq (e.g. [CC17]). Therefore, writing A∗ =
(A1 ⊗ Imd−1‖Ã) for some Ã ∈ ZM×(d−1)wmd−1

q , and setting L = md−1, we have
(coinsP ,P, {Ai}i∈[d], A∗, A∗ · s + e)

≡ (coinsP ,P, {Ai}i∈[d], A∗, P(A⊗ IL)s + PÃs + e)
≈s (coinsP ,P, {Ai}i∈[d], A∗, P ((A⊗ IL)s + e) + PÃs + e)
≈c (coinsP ,P, {Ai}i∈[d], A∗, Pb + PÃs + e)
≈s (coinsP ,P, {Ai}i∈[d], A∗, b′),

where s =
(s

s
)
← Zdwmd−1

q , e ← [−B,B]M , e ← χm
d , b ← Zmdq and b′ ← ZMq . The first statistical

indistinguishability follows by noise flooding (Lemma 2.3) by definition of B, and the computational
indistinguishability follows from Eq. (9). The last statistical indistinguishability by assumption on
χ, M and md, which implies (coinsP ,P,Pb) ≈s (coinsP ,P,b′) where P = DM×md

P (coinsP),b ←
Zmdq and b′ ← ZMq .

Corollary 4.2 (LWE with respect to A∗). Let χ(λ) be a B(λ)-bounded distribution. Suppose
furthermore that M ≤ md. Then, assuming LWEw,χ,q, (SampCRSGen, LWEGen,Expand) satisfies
LWE with respect to A∗ with noise distribution χ = U([−B,B]) where B = B2 ·md · 2λ.
Proof. First, by construction of A∗, the distributions A∗s′ where S ← ZWq and A∗ · s where
s ← Zdwmd−1

q are identically distributed, namely, they are uniformly distributed in the column-
span of A∗. In particular, by Lemma 4.1:

(coinsP ,P, {Ai}i∈[d],A∗s′ + e) ≡ (coinsP ,P, {Ai}i∈[d],A
∗ · s + e) ≈c (P, {Ai}i∈[d],b′)

where s′ ← ZWq , s ← Zdwmd−1
q , e ← χ and b′ ← ZMq . Observe furthermore that DP = χ satisfies

the constraints of Lemma 4.1.
The claim then follows by observing that one can generate the randomness coinscrs, coinsseed used

by SampCRSGen, LWEGen given coinsP ,Ai. This is because Ai is sampled uniformly at random in
Zm×wq , and one can sample the additional coins used to generate P′,Si,Ei on its own.

22

4.3 Instantiating the Parameters

Parameters. We first go through our parameters, and show that they satisfy the constraints of
Definition 3.1.

Our candidate is a “degree-d” sampler, where d ≥ 2 is a fixed constant integer. It expands LWE
samples Bi ∈ Zm×kq to a matrix B∗ ∈ ZM×Kq , using matrices P← χM×m

d and P′ ← χk
d×K .5 This

expansion has stretch γ, in the sense that MK = (mk)γ . w and W are the respective widths of the
underlying matrices Ai ∈ Zm×wq and A∗ ∈ ZM×Wq . δ is the succinctness parameter of our sampler.

χ denotes a B-bounded distribution used to sample seedB∗ , namely the matrices {Ei}i∈[d], and
we assume that LWEw,q,χ holds. β is a bound on ‖E∗‖ which depends on B.

χ denotes a B-bounded distribution such that LWE with respect to A∗ holds (assuming LWE
holding for some fixed parameters only dependent on the security parameter λ). α denotes a blow-
up factor that defines the noise bound β0 that the sampler is masking in the security property,
namely β0 = αB.

We gather the constraints on our parameters below:

• N = MK //constraint of the sampler

• (dmk +MW +WK) ≤ N δ · poly(λ, log q) for some δ < 1 //δ-succinctness

• M2 ≤ N δ · poly(λ, log q) //for SRE succinctness

• M ≤ md //LWE with respect to A∗ (Corollary 4.2)

• χ is a B-bounded distribution such that LWEw,q,χ holds. //base LWE assumption

• B = B2md · 2λ //LWE with respect to A∗ (Corollary 4.2)

• β = B2(mkB)d //bound on ‖E∗‖

• B is large enough so that β ≥ β0 · 2λ where β0 = αB. //constraint of the sampler

• q ≥ 8β. //constraint of the sampler

We additionally add the following constraints to ensure security:

• γ < d/2 //to avoid SOS attacks (Section 4.5).

• M ≤ md,K ≤ kd //to avoid rank attacks6 (Section 4.5).

Next, we show our candidate sampler satisfies these constraints. Given the security parameter
λ, fix a degree d = O(1), a dimension w = w(λ), and a bound B = B(λ). Given additional
parameters N ≥ w6d and α as input, our candidate sets the following parameters.

It fixes a stretch parameter γ ∈
[

2d
2d−1/6 , d/2

)
.

Set m = N1/2d ≥ w3. It then defines the following “dimension” parameters k,M,K:

k = m
2d
γ
−1
, M = md−1/2, K = md+1/2

5In general, we can use a different (small) distributions DP and DP ′ for P, P′. We only set DP = D′P = χ to
minimize the number of distributions and parameters.

6The first constraint is redundant with the constraints of Corollary 4.2.

23

and wmd−1 ≤W = rank
(
A∗
)
≤ md − (m−w)d < dwmd−1 = width

(
A∗
)

by construction of A∗.7

Note that the second inequality is strict as m > w,8 that is, A∗ is rank deficient.
It then defines the following “bound” parameters B, β:

B = B2md · 2λ, β = B2(mkB)d,

where we assume that χ is B-bounded with B ≥ (α·22λ)1/d

k such that LWEw,q,χ holds.9
Let χ = U([−B,B]) be the uniform distribution over [−B,B]. It finally sets the modulus q as

q = 8β.

We show that the setting of parameters satisfy all the constraints described above. First, by
definition, N = m2d = MK. Furthermore:

bitlength(seedB∗ ,A∗,S∗) = dmk log q + M ·W log q + W ·K log q

<
(
dm2d/γ + dwm2d−3/2 + dwm2d−1/2

)
· log q

=
(
m2d− 1

6 + dm2d/γ
)
· log q

= N δ · poly(λ, log q)

with δ = 1− 1
12d = 2d−1/6

2d , where we used W < dwmd−1, w ≤ m1/3, which follows as N ≥ w6d and
m = N1/2d, and 1/γ ≤ δ.

We furthermore have M2 = m2d−1 ≤ N δ.
We have by construction: B = B2md · 2λ, β0 = αB , β = β0 · 2λ, β ≥ B2(mkB)d and q = 8β,

so that the constraint β ≥ β0 · 2λ can be rewritten as:

B2(mkB)d ≥ α · 2λ · (B2md2λ),

which is exactly our constraint on B.
Last, we have γ < d/2 by definition, M = md−1/2 ≤ md, and K = md+1/2 ≤ (m3)d.

Remark 4.1 (Length of the CRS). As noted in Remark 3.5, a long CRS is required for security
to hold if we allow arbitrary auxiliary information aux. We note this is the case for the param-
eters of Conjecture 1. Indeed: bitlength(P′) = kdK log q ≥ m4d+1/2 log q ≥ N poly(λ, log q) =
m2d poly(λ, log q).

Remark 4.2 (Parameters as a function of γ.). Our construction induces different parameters,
according the choice of γ. The main affected parameter is k, which goes from k = m3+o(1) to k ≈
m2d. We note here that it also makes sense to use a constant γ ∈

(
1, 2d

2d−1/6

]
for our construction.

The only difference is that the succinctness of the scheme then becomes 1/γ as opposed to 1 −
O(1/d).

We gather some example parameters in the table below. In all cases, we set d ≥ 4 be a
constant, m ≥ w3 so that N = m2d, M = md−1/2 and K = md+1/2. The third column represent
the components that should have size bounded by N δ to satisfy δ-succinctness.

24

Stretch γ Dimension k M2 + bitlength(seedB∗ ,A∗,S∗) Succinctness δ

γ = d/3 k = m5 O(m2d−1/6) δ = 1− 1
12d

γ = 2d
2d−1/6 k = m2d−7/6 O(m2d−1/6) δ = 1− 1

12d = 1/γ

γ = 2d
2d−ε k = m2d−ε−1 O(m2d−ε) δ = 1/γ

Figure 1: Example parameters. In the above, we fix a constant d ≥ 4 and w = w(λ). The output
size is N = m2d where N ≥ w6d.

Next, we state our main conjecture for our candidate, namely that it satisfies the weak notion
of security of Definition 3.2. Looking ahead, thanks to Theorem 3.3, this suffices to imply iO.

Conjecture 1 (Conjectured security). Let χ be a B-bounded distribution, and assume LWEw,q,χ
holds. Then (SampCRSGen, LWEGen,Expand) with any of the parameters above satisfies weak β0-
flooding (Definition 3.2), where β0 = αB.

Remark 4.3 (Security as a function of d). Our constructions decouples the stretch γ, defined as
(bitlength({Bi}i∈[d))γ = bitlength(B∗) (up to polynomial factors in λ, log q), from the degree d. In
particular, for a fixed (constant) stretch γ ≥ 2d

2d−1/6 , we expect Conjecture 1 to be weaker as d
increases.

Next, combining the above with Theorem 3.3, we describe two distributions whose indistin-
guishability would imply the existence of succinct LWE sampler with θ-flooding (Definition 3.1)
for some parameter θ. Looking ahead, combined with Theorem 5.1, this suffices to imply an iO
scheme.

Conjecture 2 (Stand-alone θ-flooding). Let β0 = θ · 2λ. With any of the parameters params
described above, the following distributions ∆b are indistinguishable:

∆b = (P,P′, seedB∗ , A∗, B̂ = A∗S0 + F, C = A∗R + E− bG, E∗ + E ·G−1(B̂)− bF)

where
P← χM×m

d
, P′ ← χk

d×K ,

seedB∗ = {Bi}i∈[d] ∈ (Zm×wq)d

B̂ ∈ ZM×Kq , where S0 ← ZW×Kq , F← χM×Kflood

C ∈ ZM×M log q
q , where R ← ZW×M log q

q , E← χM×M log q

where (seedB∗ ,A∗,S∗) ← LWEGen(params,P,P′), B∗ = Expand(params,P,P′, seedB∗), and E∗ =
B∗ −A∗S∗. Furthermore, χ is a noise distribution such that LWE with respect to A∗ holds, and
χflood is a β0-bounded distribution that floods θ-bounded distributions.

7We prove that rank
(
A∗
)
≤ md − (m− w)d in Section 4.5, paragraph Rank of A∗S∗.

8Writing m = m′ + w where m′ > 0, the difference (m′ + w)d − (m′d + dw(m′ + w)d−1) is the sum of monomials
in m′, w with positive coefficients.

9This is without loss of generality by defining for instance χ′ = χ + [−B,B] where B′ is large enough to satisfy
the previous constraint. A direct reduction ensures that if LWE holds with χ, then it holds with χ′.

25

4.4 Alternate Candidate Construction

Here we present a variant of the construction in Section 4.1. The main intuition is that this new
variant sums T copies of the candidate of Section 4.1, but reusing the same matrices Ai across all
copies.

We now describe our variant (SampCRSGen, LWEGen,Expand). It uses the same parameters as
Section 4.1, and an additional parameter T = T (λ).

• SampCRSGen(1λ, 1N , α): Derive parameters = (d,m, k, w,M,K, χ,B, χ, β, q) from (1λ, 1N , α)
as described below. Set params = (q,M,K, χ,B, χ).
Sample P′ ← χk

d×K . Output
crs = (params,P′).

• LWEGen(crs): On input crs = (params,P′), sample P ← χM×m
d . For i ∈ [d], sample Ai ←

Zm×wq . For i ∈ [d], j ∈ [T], sample S(j)
i ← Zw×kq , E(j)

i ← χm×k where χ is specified in params.
Compute:

B(j)
i = AiS(j)

i + E(j)
i ∈ Zm×kq .

Set:

A∗ = P · (A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ · · · ⊗ Im ⊗Ad) ∈ ZM×Wq

S∗
(j)

=

S(j)

1 ⊗B(j)
2 ⊗ · · · ⊗B(j)

d

E(j)
1 ⊗ S(j)

2 ⊗ · · · ⊗B(j)
d

...
E(j)

1 ⊗E(j)
2 ⊗ · · · ⊗ S(j)

d

 ·P′ ∈ ZW×Kq .

S∗ =
T∑
j=1

S∗(j) ·P′

Sample a random basis A∗ ∈ ZM×Wq of the column space of A∗, and solve for S∗ ∈ ZW×Kq

such that A∗S∗ = A∗ · S∗. Output:

seedB∗ =
(
P, {B(j)

i }i∈[d],j∈[T]
)
, A∗, S∗.

• Expand(crs, seedB∗): On input crs = (P′) and seedB∗ = (P, {B(j)
i }i∈[d],j∈[T]), output:

B∗ = P ·

 T∑
j=1

B(j)
1 ⊗ · · · ⊗B(j)

d

 ·P′ ∈ ZM×Kq .

Intuitively, this new candidate sums T copies of the construction in Section 4.1, except it
reuses the same Ai (and P,P′) across all copies. In particular, all of those copies generate a new
B∗(j) = A∗S∗(j) + E∗(j), for the same matrix A∗; in particular the dimensions of B∗,A∗ and S∗
are the same as in Section 4.1. In particular, correctness follows by linearity, and succinctness can
be argued with a very similar argument as in Claim 4.0.2.

26

The parameters can be set very similarly as in Section 4.3. For concreteness, we could require
T ≤ w3, simarly set N = m2d as before, and

k = m2d/γ−1

T
≥ m

2d
γ
−2
,

and set all the other dimension parameters as a function of m, d. The bound β on ‖E∗‖ becomes
β = (TmkBseed)d, and the modulus remains q = 8β. Correctness, succinctness and LWE with
respect to A∗ follow with almost identical proofs as in Section 4.2.

4.5 Cryptanalysis

We comment here on the plausible security of our candidate from Section 4.1 instantiated with the
parameters of Section 4.3.

Recall that security of a succinct LWE sampler requires

(crs, seedB∗ ,A∗,E∗ − Zb, auxb)

to hide b for appropriate auxb and small Zb.
Ignoring the auxiliary information related to the sampler for now, the crucial requirement is

that E∗−Zb (or, equivalently, A∗S∗+Zb) hides b for sufficiently small Zb. As noted in the technical
overview, pseudorandomness of E∗ cannot hold given seedB∗ : one can compute B∗−E∗ and check
that it is low rank. Nonetheless, as a sanity check, we would like to ensure that the marginal
distribution of E∗ is pseudorandom by itself, i.e. in the absence of seedB∗ . We first describe some
attacks on the pseudorandomness of E∗, and their influence on our parameters in Section 4.3.

4.5.1 Linearization Attacks.

A strong break for the pseudorandomness of E∗ is to recover the initial errors Ei ∈ Zm×k such that
P
(⊗d

i=1 Ei

)
P′ = E∗. This would be enough to break pseudorandomness: only a small fraction of

small E∗ ∈ ZM×K have such a succinct description as long as N = MK is large enough compared
to m and k (say MK = (mk)γ for some constant γ > 1).

One way of recovering the Ei’s given E∗, P and P′ is to view the equation

P
(

d⊗
i=1

Ei

)
P′ = E∗

as a set of linear equations with the (mk)d variables

Xi1,j1,··· ,id,jd = Ei1,j1
1 × · · · ×Eid,jd

d

where i1, · · · , id ∈ [m] and j1, · · · , jd ∈ [k], and where Ei,j denotes the (i, j)th component of E.
In particular, this is solvable as long as the number of equations is no smaller than the number of
variables, that is:

MK ≥ (mk)d.
Our choice of parameters reflects security against linearization attacks. We also note that the
linearization attack (in contrast to the sum of squares attack) works just as well over any finite
field as it does over the integers.

27

4.5.2 Low-Degree Polynomials and Sum of Squares.

The recovery attack described above can be generically improved using the more refined sum of
squares (SOS) attacks. These ensure that pseudorandomness of E∗ cannot hold whenever

MK ≥ (mk)d/2.

We refer the reader to [BHJ+19] for more details on sum of squares attacks. In our scheme,
we explicitly require that the stretch of our sampler, namely γ such that MK = (mk)γ , is smaller
than d/2.

Security when m = 1. When m = 1, P is a scalar that we will ignore. We are given

e∗ =
(

d⊗
i=1

ei

)
P′

which is a vector of length K. Since ⊗d
i=1 ei is simply the set of all degree-d multilinear monomials

with a variable from each of the ei, this can be interpreted as evaluating K degree-d polynomials
with Gaussian coefficients on the dk variables in e1, . . . , ed. Since K � kd/2, neither linearization
nor sum of squares seems to apply [BHJ+19].

The work of Kosov [Kos20] tells us each entry in E∗ by itself, namely a polynomial with Gaussian
coefficients evaluated on Gaussian inputs, comes from a noise-flooding distribution (for mild choices
of parameters).

This analysis also points to the qualitative distinction between our assumption and the analysis
above for m = 1. When m = 2, for example, we obtain MK polynomials evaluated on a number
of correlated random variables. That is, setting the two rows of Ei to be ei1 and ei2,

E∗ = P

e11 ⊗ e21 ⊗ · · · ⊗ ed1
e12 ⊗ e21 ⊗ · · · ⊗ ed1

...
e12 ⊗ e22 ⊗ · · · ⊗ ed2

P′

To the best of our knowledge, all attacks described above still fail. In fact, we don’t even have an
attack if P = I2d was the identity and M = 2d. However, this is certainly a cryptanalytic avenue
worth pursuing in the future.

4.5.3 Covariance Analysis.

We now consider a class of attacks which attempt to distinguish E∗ from E∗ + M for an arbitrary
matrix M with small entries by computing the covariance between pairs of input entries. We rule
out such an attack for d = 2 with the following result:

Theorem 4.3. Let E∗ = P (E1 ⊗E2) P′ with P,P′,E1,E2 drawn as in Section 4.3 where χ (the
B-bounded distribution entries of E1 and E2 are drawn from) is N (0, σ2). Then for any matrix
M with entries bounded by β0 defined as in Section 4.3 and any indices i, j, k, l, the following
distributions are indistinguishable:

{E (YiYjYkYl)− E (YiYj)E (YkYl)) | Y = E∗ + b ·M}b∈{0,1} .

28

Proof. Using Claim 4.3.1 and Claim 4.3.3, i.e. that for any i, j, k, E (E∗i) = E
(
E∗iE∗jE∗k

)
= 0, we

have for any i, j, k, l that

E
(
(E∗i + Mi)(E∗j + Mj)(E∗k + Mk)(E∗l + Ml)

)
− E

(
(E∗i + Mi)(E∗j + Mj)

)
E ((E∗k + Mk)(E∗l + Ml)))

= E
(
E∗iE∗jE∗kE∗l

)
− E

(
E∗iE∗j

)
E
(
E∗kE∗l

)
+ E(E∗iE∗k)MjMl + E(E∗iE∗l)MjMk + E(E∗jE∗k)MiMl + E(E∗jE∗l)MiMk.

Using Claim 4.3.2 and Claim 4.3.4, we can now simplify distribution for b = 0 to

E
(
E∗iE∗jE∗kE∗l

)
− E

(
E∗iE∗j

)
E
(
E∗kE∗l

)
≥ 2 · E

(
E∗iE∗j

)
E
(
E∗kE∗l

)
= 2σ8 · (PP>)i1j1(P′>P′)i2j2(PP>)k1l1(P′>P′)k2l2 .

Note that all the extra M-dependent terms in distribution 1 have coefficient σ4, since they are
multiplied by the expectation of the product of two entries of E∗. Since the entries of M are bounded
by β0 and therefore will be flooded by the entries of E∗, we can conclude that the distributions are
indistinguishable.

Claim 4.3.1. For any i = (i1, i2), E (E∗i) = 0.

Proof. The entries of E1 and E2 are drawn from independent Gaussians with mean 0, so the
expectation E (E1,β1γ1E2,β2γ2) = 0, ∀ β = β1n + β2, γ = γ1n + γ2. Then the expected value of an
entry of E∗ is by linearity of expectation

E (E∗i) =
∑
β,γ

Pi1βE (E1,β1γ1E2,β2γ2) P′γi2 =
∑
β,γ

(
Pi1β · 0 ·P′γi2

)
= 0.

Claim 4.3.2. For any i = (i1, i2) and j = (j1, j2), E
(
E∗iE∗j

)
= σ4 · (PP>)i1j1(P′>P′)i2j2 .

Proof. The expectation of the product of two entries of E∗ is

E
(
E∗iE∗j

)
=

∑
β,γ,β′,γ′

Pi1βPj1β′P′γi2P
′
γ′j2E

(
E1,β1γ1E2,β2γ2E1,β′1γ′1E2,β′2γ′2

)
(10)

by linearity of expectation. The entries of E1 and E2 are drawn from independent Gaussians with
mean 0 and variance σ2, so

E
(
E1,β1γ1E2,β2γ2E1,β′1γ′1E2,β′2γ′2

)
=
{
σ4 if β = β′, γ = γ′

0 otherwise.

This allows us to simplify Eq. (10) to obtain

E
(
E∗iE∗j

)
= σ4 ·

∑
β

Pi1βPj1β

(∑
γ

P′γi2P
′
γj2

)
= σ4 · (PP>)i1j1(P′>P′)i2j2 .

29

Claim 4.3.3. For any i = (i1, i2), j = (j1, j2), and k = (k1, k2), E
(
E∗iE∗jE∗k

)
= 0.

Proof. Again using the fact that the entries of E1 and E2 are independently drawn with mean 0,
it’s easy to see that the expected value of the product of three entries of E∗ is 0, since every term
will include at least one entry of E1 and at least one entry of E2 that isn’t squared, and thus sends
the expectation to 0.

Claim 4.3.4. For any i = (i1, i2), j = (j1, j2), k = (k1, k2), and l = (l1, l2), E
(
E∗iE∗jE∗kE∗l

)
≥

3 · E
(
E∗iE∗j

)
E
(
E∗kE∗l

)
.

Proof. We will now use a similar technique as above to simplify the expectation of the product of
four entries of E∗, which by linearity of expectation is

E
(
E∗iE∗jE∗kE∗l

)
=

∑
β,γ,β′,γ′,β′′,γ′′,β′′′,γ′′′

Pi1βPj1β′Pk1β′′Pl1β′′′P′γi2P
′
γ′j2P

′
γ′′k2P

′
γ′′′l2

· E
(
E1,β1γ1E2,β2γ2E1,β′1γ′1E2,β′2γ′2E1,β′′1 γ′′1 E2,β′′2 γ′′2 E1,β′′′1 γ′′′1

E2,β′′′2 γ′′′2

)
(11)

where we have β = β1n+ β2, γ = γ1n+ γ2, and so on for β′, β′′, β′′′, γ′, γ′′, γ′′′. Because the entries
of E1 and E2 are drawn from independent Gaussians with mean 0 and variance σ2, we have that

E
(
E1,β1γ1E2,β2γ2E1,β′1γ′1E2,β′2γ′2E1,β′′1 γ′′1 E2,β′′2 γ′′2 E1,β′′′1 γ′′′1

E2,β′′′2 γ′′′2

)

=

9σ8 if β = β′ = β′′ = β′′′

3σ8 if β1 = β′1 = β′′1 = β′′′1 , β2 = β′2 6= β′′2 = β′′′2 , and symmetrical cases
σ8 if β1 = β′1 6= β′′1 = β′′′1 , β2 = β′2 6= β′′2 = β′′′2 , and symmetrical cases
0 otherwise.

where the conditions are always symmetrical for (β, β′, β′′, β′′′) and (γ, γ′, γ′′, γ′′′). Let us denote

T β,β
′,γ,γ′

i,j,k,l = Pi1βPj1βPk1β′Pl1β′P′γi2P
′
γj2P

′
γ′k2P

′
γ′l2 + Pi1βPj1β′Pk1βPl1β′P′γi2P

′
γ′j2P

′
γk2P

′
γ′l2

+ Pi1βPj1β′Pk1β′Pl1βP′γi2P
′
γ′j2P

′
γ′k2P

′
γl2 .

and for β(0) = β1 · n+ β2, β
(1) = β′1 · n+ β2, β

(2) = β1 · n+ β′2, β
(3) = β′1 · n+ β′2, and symmetrically

γ(0), γ(1), γ(2), γ(3), let us denote

S
β1,β′1,γ1,γ′1,β2,β′2,γ2,γ′2
i,j,k,l = Pi1β(0)Pj1β(1)Pi′1β

(2)Pj′1β
(3)P′γ(0)i2

P′γ(1)j2
P′γ(2)i′2

P′γ(3)j′2

+ Pi1β(0)Pj1β(2)Pi′1β
(1)Pj′1β

(3)P′γ(0)i2
P′γ(2)j2

P′γ(1)i′2
P′γ(3)j′2

+ Pi1β(0)Pj1β(1)Pi′1β
(3)Pj′1β

(2)P′γ(0)i2
P′γ(1)j2

P′γ(3)i′2
P′γ(2)j′2

+ Pi1β(0)Pj1β(2)Pi′1β
(2)Pj′1β

(1)P′γ(0)i2
P′γ(3)j2

P′γ(2)i′2
P′γ(1)j′2

+ Pi1β(0)Pj1β(2)Pi′1β
(3)Pj′1β

(1)P′γ(0)i2
P′γ(2)j2

P′γ(3)i′2
P′γ(1)j′2

+ Pi1β(0)Pj1β(3)Pi′1β
(1)Pj′1β

(2)P′γ(0)i2
P′γ(3)j2

P′γ(1)i′2
P′γ(2)j′2

)

30

This allows us to rewrite Eq. (11) to obtain

E
(
E∗iE∗jE∗kE∗l

)
= 9σ8 ·

∑
β,γ

Pi1βPj1βPk1βPl1βP′γi2P
′
γj2P

′
γk2P

′
γl2

+ 3σ8 ·
∑
β1,γ1

∑
β2 6=β′2,γ2 6=γ′2

T β,β
′,γ,γ′

i,j,k,l + 3σ8 ·
∑

β1 6=β′1,γ1 6=γ′1

∑
β2,γ2

T β,β
′,γ,γ′

i,j,k,l

+ σ8 ·
∑

β1 6=β′1,γ1 6=γ′1

∑
β2 6=β′2,γ2 6=γ′2

T β,β
′,γ,γ′

i,j,k,l + σ8 ·
∑

β1 6=β′1,γ1 6=γ′1

∑
β2 6=β′2,γ2 6=γ′2

S
β1,β′1,γ1,γ′1,β2,β′2,γ2,γ′2
i,j,k,l

= 3σ8 ·
∑

β,β′,γ,γ′

T β,β
′,γ,γ′

i,j,k,l

− 2σ8 ·
∑

β1 6=β′1,γ1 6=γ′1

∑
β2 6=β′2,γ2 6=γ′2

T β,β
′,γ,γ′

i,j,k,l + σ8 ·
∑

β1 6=β′1,γ1 6=γ′1

∑
β2 6=β′2,γ2 6=γ′2

S
β1,β′1,γ1,γ′1,β2,β′2,γ2,γ′2
i,j,k,l

After noting that E
(
E∗iE∗j

)
E
(
E∗kE∗l

)
= σ8 ·

∑
β,γ,β′,γ′ Pi1βPj1βPk1β′Pl1β′P′γi2P

′
γj2P

′
γ′k2

P′γ′l2 , i.e.
summing over only one term of T β,β

′,γ,γ′

i,j,k,l instead of all three, we can conclude the claim.

4.5.4 Rank Attacks.

Towards analyzing the case of larger m, we attempt another class of attacks which consist of looking
at the rank of the various matrices that arise in the assumption.

Rank Attack on E∗. Note that a random (e.g. Gaussian) E∗ would be full-rank with over-
whelming probability. In particular, as

E∗ = P
(

d⊗
i=1

Ei

)
P′,

where P ∈ ZM×md and P′ ∈ Zkd×K , the rank of E∗ is at most the rank of P,P′. In particular,
P and P′ need to be full-rank and compressing, meaning that M ≤ md and K ≤ kd, respectively.
Our setting of parameters (see Section 4.3) ensure these restrictions hold.

The rank of ⊗d
i=1 Ei is the product of the ranks of Ei, and is therefore, min(md, kd) with high

probability. Heuristically, then, the rank of E∗ is exactly min(K,M) with high probability, as long
as the Gaussians have sufficiently large width, a statement that we verified experimentally.

Rank Attack on A∗S∗. Note that if A∗S∗ is computationally indistinguishable from A∗S′ for a
uniformly random S′ given crs, seedB∗ ,A∗, auxb, then the pre-condition implies the post-condition
in Definition 3.1, guaranteeing security. Thus, we evaluate possible distinguishers between A∗S∗
and A∗S′.

One such class of attacks consist in comparing the rank of A∗S∗ to the rank of A∗. We
heuristically and experimentally analyzed the ranks of A∗ and A∗S∗ to reason about these attacks.

31

First, note that A∗S∗ = A∗S∗. Recall that the matrices Ai ∈ Zm×wq are random and therefore
w.h.p. full-rank (i.e., rank w). Let A⊥i ∈ Z(m−w)×m

q be a basis for the left-kernel of Ai, that is,
they are rank-(m− w) matrices such that

A⊥i Ai = 0 (mod q)

We note that w.h.p. the rank of the matrix

(A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · · ‖ Im ⊗ · · · ⊗ Im ⊗Ad) ∈ Zm
d×dwmd−1

q

is at most md−(m−w)d ≈ dwmd−1−d2w2md−2/2 (the approximation assumes that m� w which
is the case for us) since the row-span of A∗ is contained in the right kernel of (A⊥1 ⊗· · ·⊗A⊥d), and
the latter has rank md−(m−w)d. Our experiments indicate that the rank is indeed md−(m−w)d
w.h.p. In other words, this matrix is rank-deficient by approximately d2w2md−2/2.

Heuristically,

A∗ = P · (A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ · · · ⊗ Im ⊗Ad)

has the same rank since P ∈ ZM×md is Gaussian and nearly full-rank, i.e., rank M ≈ md−1/2. That
is, w.h.p., (heuristically)

rank(A∗) = md − (m− w)d

Also, heuristically, A∗S∗ has this rank as long as S∗ has sufficiently many columns, i.e. as long as
K is large enough compared to rank(A∗). (Note that the entries of A∗ and S∗ are correlated.)

To test these heuristic statements, we ran experiments for d = 3 and a range of values of m, k
and q. We found that A∗ had rank md − (m−w)d as expected (in all the runs of our experiment,
suggesting a high probability statement). We also found that when k ≥ m and K is large enough
so that S∗ is wide, A∗S∗ = A∗S∗ also had rank md − (m− w)d with high probability. This is the
same as one would expect from A∗S′ for a random S′, suggesting that rank attacks fail.

4.6 Cryptanalytic Challenges

We describe a few cryptanalytic challenges and how they relate to our candidate and our assump-
tions. For each of these problems, we can also consider easier challenges where (a) the challenger
also gets A∗; and (b) we replace P with the identity matrix.

Pseudo-flooding in the Absence of seedB∗. Our intuition says that for any two low-norm
matrices Z0 and Z1, E∗ + Zb hides b. Concretely, let χ be a discrete Gaussian of sufficiently large
parameter σ. A challenge is to come up with matrices Z0 and Z1 where ||Zb|| < σ/2λ such that
the bit b can be recovered given

P
(

d⊗
i=1

Ei

)
P′ + Zb .

We note that when m = 1 and P = 1, as argued above, this seems to follow from the noise-flooding
properties of random (e.g. Gaussian) polynomials [BHJ+19].

32

Pseudo-flooding in the Presence of seedB∗. Our stronger notion of security (Definition 3.1)
would imply that it would be hard to recover b from

(seedB∗ , A∗S∗ + Zb, E∗ − Zb), b← {0, 1}

for the following concrete distributions of Z0,Z1:

• (norm and ideal membership) Z0 is drawn from a Gaussian, and Z1 = 2Z0, and q is odd. In
particular, an attacker that manages to learn the parity of Zb or accurately approximate the
norm of Zb will be able to learn b.

• (subspace membership) Zb = E0M + bÊ where ‖E0‖ � ‖Ê‖ and M is a public low-norm
matrix. The distribution here is closely related to that for weak flooding. Here, ‖Z0‖ ≈ ‖Z1‖,
but an attacker that manages to learn whether Zb lies in the row span of M will be able to
learn b.

In both cases, an attacker could try to exploit the leakage on b from A∗S∗+Zb or from E∗−Zb. For
instance, an efficient algorithm that recovers E∗ from seedB∗ or one that recovers b from E∗ − Zb
solves this problem.

Distinguishing A∗S∗ from A∗S′. As described above, we think the following claim is plausible:

A∗S∗ ≈c A∗S′

where S′ ← ZW×Kq . As A∗S∗ = A∗ · S∗ (where A∗,S∗ are defined in Section 4.1), and given that
A∗ and A∗ have the same column span, this is equivalent to

A∗ · S∗ ≈c A∗ · S′′

where S′′ ← Zdwmd−1×K
q , and A∗,S∗ have closed form expressions described in Section 4.1.

A distinguisher here does not immediately break strong or weak-flooding, but we believe it
constitutes strong evidence that strong-flooding is false.

5 Our Succinct Randomized Encoding Construction

Let (SampCRSGen, LWEGen,Expand) be a succinct LWE sampler (Definition 3.1) with parameters
to be determined later.

We now describe our SRE for the family F`,N,t = {f : {0, 1}` → {0, 1}N} of depth-t circuits.
Let q be a modulus and χ be a B-bounded distribution to be determined later.

Let g(t) = O(t) be the function defined in Definition 2.4.

• CRSGen(1λ,F`,N,t): Output crs ← SampCRSGen(1λ, 1N , Ng(t)). It in particular includes pa-
rameters params = (q,M,K, χ,B).

• Encode(crs, f, x): Compute (seedB∗ ,A∗,S∗) ← LWEGen(crs), where A∗ ∈ ZM×Wq , S∗ ∈
ZW×Kq .

33

Sample R ← {0, 1}W×`M log q, and E← χM×`M log q. Compute

C = A∗R + x⊗G + E ∈ ZM×`M log q
q ,

where we view x ∈ {0, 1}1×` as a row vector, and compute (Rf,x,Ef,x) = Evalopen(f,A∗, x,R,E).
Output:

C = (seedB∗ , C, A∗, (Rf,x + S∗)).

• Decode(crs, C, f)): On input C = (seedB∗ ,C,A∗,V), compute Cf = Eval(f,C), and B∗ =
Expand(crs, seedB∗). Output

f(x) = Roundq/2 (Cf + B∗ −A∗ ·V) ∈ {0, 1}M×K .

Theorem 5.1. Suppose (SampCRSGen, LWEGen,Expand) is a succinct LWE sampler satisfying δ-
succinctness and β0-flooding (Definition 3.1) with β0 = B ·Ng(t). Suppose furthermore that:

M2 = N δ · poly(λ, `, t).

Then (CRSGen,Encode,Decode) is an SRE for F`,N,t satisfying δ-succinctness.

Next, we show that the construction above satisfies correctness and succinctness.

Claim 5.1.1 (Correctness). Suppose (SampCRSGen, LWEGen,Expand) satisfy the parameters con-
straints and correctness Definition 3.1. Then (CRSGen,Encode,Decode) is correct.

Proof. Define V = (Rf,x + S∗). By Definition 2.4, we have

Cf + B∗ −A∗ · (Rf,x + S∗) = f(x) · q/2 + Ef,x + E∗.

Let β0 = B · Ng(t). The setting of parameters β, B and q from (SampCRSGen, LWEGen,Expand)
imply ‖E‖ ≤ B and therefore ‖Ef,x‖ ≤ BMg(t) ≤ Ng(t) = β0 by definition of g (Definition 2.4),
and using M ≤ N . Furthremore β ≥ β0 · 2λ and q ≥ 8β so that ‖Ef,x + E∗‖ < q/4, and therefore

Roundq/2 (Cf + B∗ −A∗ ·V)) = Roundq/2 (f(x) · q/2 + Ef,x + E∗) = f(x).

Claim 5.1.2. Suppose the sampler (SampCRSGen, LWEGen,Expand) is δ-succinct (Definition 3.1),
and suppose that the sampler furthermore satisfies

M2 = N δ · poly(λ, `, t).

Then (CRSGen,Encode,Decode) is δ-succinct.

Proof. The setting of the parameters implies log q = poly(λ, t). Then `M2 log2 q = N δ ·poly(λ, `, t).
Furthermore V = (Rf,x + S∗) ∈ ZW×Kq and therefore bitlength(seedB∗ ,C,A∗,V) ≤ N δ ·

poly(λ, `, t) by δ-succinctness of (SampCRSGen, LWEGen,Expand). Therefore the SRE is δ-succinct.

34

5.1 Security

Claim 5.1.3 (Indistinguishability-based security.). Let f : {0, 1}` → {0, 1}N of depth t, and
x0, x1 ∈ {0, 1}` such that f(x0) = f(x1). Suppose (SampCRSGen, LWEGen,Expand) is secure (Defi-
nition 3.1), and LWE hold. Then:

(crs,Encode(crs, f, x0)) ≈c (crs,Encode(crs, f, x1)),

where crs← CRSGen(1λ,F`,N,t).

Proof. We prove the claim by analyzing a sequence of distributions Hj(0), Hj(1), for j = 0, 1, 2.

H0(b): The claim states that H0(0) ≈c H0(1) where

H0(b) = (crs,Encode(crs, f, xb))) = (crs, seedB∗ ,Cb,A∗, (Rf,xb + S∗))

for b ∈ {0, 1}, where Cb = A∗R + xb ⊗G + E ∈ ZM×`M log q
q .

H1(b): Next, consider

H1(b) = (crs, seedB∗ ,Cb,A∗,Fb = A∗(Rf,xb + S∗)),

where Cb and Rf,xb are functions of xb. We claim that

H1(0) ≈c H1(1) =⇒ H0(0) ≈c H0(1)

Namely, if H0(0) can be efficiently distinguished from H0(1), then one can also efficiently distinguish
H1(0) from H1(1). This is because H0(b) can be efficiently sampled as a randomized function
of H1(b), by solving for Vb ∈ ZM×Kq such that A∗Vb = Fb, given A∗. By definition of the
sampler, A∗ ∈ ZM×Wq is full column-rank. Therefore Vb ∈ ZW×Kq is the unique solution to
A∗Vb = A∗(Rf,xb + S∗), namely Vb = Rf,xb + S∗.

H2(b): Finally, consider
H2(b) = (crs, seedB∗ ,Cb,A∗,Ef,xb + E∗).

We claim that
H2(0) ≈c H2(1) =⇒ H1(0) ≈c H1(1)

This is because one can write Fb as:

Fb = Cf,b + B∗ − f(xb) · q/2− (Ef,xb + E∗),

where Cf,b = Eval(f,Cb), (Rf,xb ,Ef,xb) = Evalopen(f,A∗, x,R,E) and B∗ = Expand(crs, seedB∗),
by definition of Eval and Evalopen (Definition 2.4) and correctness of the sampler (Definition 3.1).

H2(0) ≈c H2(1): To prove Claim 5.1.3, it suffices to show that H2(0) ≈c H2(1). We claim that this
follows from β0-flooding (Definition 3.1), by setting auxb = Cb and Zb = Ef,xb , using the fact that
f(x0) = f(x1), and that ‖Ef,x‖ ≤ BMg(t) ≤ BNg(t) = β0 by Definition 2.4. It only remains to
argue that the pre-condition of Definition 3.1 holds for (auxb,Zb), namely:

(coinscrs, coinsseed, A∗S′ + Ef,x0 , A∗R + x0 ⊗G + E)
≈c (coinscrs, coinsseed, A∗S′ + Ef,x1 , A∗R + x1 ⊗G + E).

(12)

35

where S′ ← ZW×Kq , and where we view x0, x1 ∈ {0, 1}1×` as row vectors.
LWE wrt A∗ implies (12). We show that LWE with respect to A∗ (Definition 3.1) implies (12). To
prove (12), it suffices to show that:

(coinscrs, coinsseed,A∗R + x0 ⊗G + E) ≈c (coinscrs, coinsseed, A∗R + x1 ⊗G + E).

This is because given (A∗,Cb), one can efficiently sample A∗S′ + Zb by sampling S← ZW×Kq and
computing

Eval(f,Cb) + A∗S− f(xb) · q/2 = A∗(Rf,xb + S) + Ef,b

= A∗S′ + Zb

where S′ = (Rf,xb+S) is uniformly random in ZW×Kq over the randomness of S alone. In particular,
using again the fact that f(x0) = f(x1), any distinguisher against the precondition implies a
distinguisher against (coinscrs, coinsseed,Cb).

Last we have that (coinscrs, coinsseed,Cb) ≈c (coinscrs, coinsseed,B), where B ← ZM×Kq by LWE
with respect to A∗ (Definition 3.1), thus proving (12) and finishing the proof.

Combining Theorem 5.1 with our candidate succinct LWE sampler (Sections 4.1 and 4.3), noting
that our proposed parameters in Section 4.3 satisfy M2 = N δ · poly(λ, `, t), gives a candidate SRE.
Invoking Theorem 2.6, we obtain the following.

Corollary 5.2. Assuming Conjecture 1 and sub-exponential LWE, there exists an iO scheme.

We can furthermore use Theorem 3.3 to relax the requirement on our candidate succinct LWE
sampler (Section 4.1), and only rely on weak security (Definition 3.2), thus obtaining the following.

Corollary 5.3. Assuming Conjecture 2 and sub-exponential LWE, there exists an iO scheme.

Acknowledgements

We thank Pravesh Kothari for his pointers to and conversations about the literature on SOS and
low-degree polynomial attacks. LD and VV were supported by DARPA under Agreement No.
HR00112020023, a grant from the MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft
Trustworthy AI grant, and a DARPA Young Faculty Award. WQ completed part of this work during
an internship at NTT Research. DW was supported by NSF grant CNS-1750795, CNS-2055510,
and the Alfred P. Sloan Research Fellowship.

References

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019. 1, 3

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015. 6, 12

36

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer,
Heidelberg, April 2012. 10

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. In-
distinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
284–332. Springer, Heidelberg, August 2019. 3, 5

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 297–314. Springer, Heidelberg, August 2014. 8

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps:
Attacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 110–140. Springer, Heidelberg,
May 2020. 1

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, re-
visited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677
of LNCS, pages 173–205. Springer, Heidelberg, November 2017. 3

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia
Lin, Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability
obfuscation for RAM programs and succinct randomized encodings. SIAM J. Comput.,
47(3):1123–1210, 2018. 11

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
407–437. Springer, Heidelberg, December 2019. 2, 10

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO
from homomorphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 79–109. Springer, Heidel-
berg, May 2020. 1, 3, 4

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for iO: Circular-secure LWE suffices. Cryptology ePrint
Archive, Report 2020/1024, 2020. 1

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001. 1

37

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, 47th ACM STOC, pages 439–448. ACM Press, June 2015. 2, 11

[BHJ+19] Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit Sahai.
Sum-of-squares meets program obfuscation, revisited. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 226–250.
Springer, Heidelberg, May 2019. 8, 28, 32

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Heidelberg,
November 2017. 2, 10

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011. 5

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190.
IEEE Computer Society Press, October 2015. 6, 12

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from
LWE. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 446–476. Springer, Heidelberg, April / May 2017.
22

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs:
Constructions, attacks, and applications to obfuscation. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 55–80. Springer,
Heidelberg, December 2019. 1

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013. 1

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
438–464. Springer, Heidelberg, December 2019. 2, 10

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In STOC, 2021. 1, 3, 4

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vad-
han, editor, TCC 2007, volume 4392 of LNCS, pages 194–213. Springer, Heidelberg,
February 2007. 1

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran

38

Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013. 2, 10

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomor-
phic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015. 2, 10

[HJL21] Sam Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new circular security
assumptions underlying iO, 2021. 1, 7

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019. 3, 5, 8

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, 2021. 1, 3

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988. 6

[Kos20] Egor Kosov. Distributions of polynomials in gaussian random variables under struc-
tural constraints, 2020. 28

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfus-
cation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages
447–462. Springer, Heidelberg, March 2016. 1, 2, 6, 11, 12

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012. 2, 10

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016. 2, 10

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342.
ACM Press, May / June 2009. 10

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidelberg,
August 2019. 2, 10

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008. 2, 10

39

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005. 9, 10

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In EUROCRYPT, 2021. 1, 3, 10, 11, 40

A Relations Among Notions of LWE Sampling

A.1 WW Oblivious LWE Sampling

We present the definition of oblivious sampling from [WW21], with a few syntactic modifications
to fit our new notion. Instead of sampling the LWE matrix A with a trapdoor which we later use
to solve our generated LWE samples, we have LWEGen sample the LWE matrices and output the
matrix and secrets for the LWE samples that can be generated from pub. We also allow LWEGen and
Sim access to the crs. For consistency within this paper, we will use SampCRSGen, LWEGen,Expand
instead of WW’s notation (CRSGen, Init,Sample).

Definition A.1 (Definition 6.1 from [WW21]). An (N, q, χ̂, BOLWE)-oblivious LWE sampler is
a tuple of algorithms (SampCRSGen, LWEGen,Expand,Sim) that satisfy the following properties.
We require N = MK. Let crs ← SampCRSGen(1λ, 1N), (seedB∗ ,A∗ ∈ ZM×Wq ,S∗ ∈ ZW×Kq) ←
LWEGen(crs), B∗ ← Expand(crs, seedB∗). Then

Correctness. Let E∗ = B∗ −A∗S∗. With overwhelming probability, ‖E∗‖ ≤ BOLWE .

Security. Let Ŝ← ZW×Kq , Ê← χ̂M×K , B̂ := A∗Ŝ+Ê, (crsSim, seedB∗Sim,S∗Sim)← Sim(crs,A∗, B̂).
Then the following “real” and “simulated” distributions are indistinguishable:

(crs,A∗, seedB∗ ,S∗) ≈c (crsSim,A∗, seedB∗Sim,S∗Sim + Ŝ).

We will sketch a proof that WW’s security notion implies our new security notion. Namely,
given an oblivious LWE sampler (SampCRSGen, LWEGen,Expand, Sim) which satisfies WW security
as written above, (SampCRSGen, LWEGen,Expand) satisfies security from Definition 3.1.

Claim A.1.1. Let N, q,B be parameters and (SampCRSGen, LWEGen,Expand,Sim) a tuple of algo-
rithms such that for crs← SampCRSGen(1λ, 1N ; coinscrs), (seedB∗ ,A∗,S∗)← LWEGen(crs; coinsseed), Ŝ←
ZW×Kq , Ê ∈ [−B,B]M×K , B̂ := A∗Ŝ + Ê, (crsSim, seedB∗Sim,S∗Sim)← Sim(crs,A∗, B̂), we have that

(crs,A∗, seedB∗ ,S∗) ≈c (crsSim,A∗, seedB∗Sim,S∗Sim + Ŝ). (13)

Then for any two polynomial-time sampleable distributions D0, D1 such that (auxb,Zb) ← Db(A∗)
satisfies ‖Zb‖ ≤ B0 and for S′ ← ZW×Kq ,

(coinscrs, coinsseed, aux0,A∗S′ + Z0) ≈c (coinscrs, coinsseed, aux1,A∗S′ + Z1), (14)

we have that

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

40

Proof. (Sketch.) We proceed by a hybrid argument.
H0(b) is the real distribution: (crs, seedB∗ ,A∗,A∗S∗ + Zb, auxb).
H1(b) is the simulated distribution: (crsSim, seedB∗Sim,A∗,A∗(S∗Sim + S′) + Zb, auxb)

• H0(b) ≈c H1(b) by reduction to security of the WW simulator (Eq. (13)): Given as challenge
(crs,A∗, seedB∗ ,S), the reduction itself samples (aux0,Z0) ← D0(A∗) and then outputs
(crs, seedB∗ ,A∗,A∗S + Z0, aux0).

• H1(0) ≈c H1(1) by reduction to the precondition (Eq. (14)): Given as challenge
(coinscrs, coinsseed, auxb,A∗S′ + Zb), reduction samples crs ← SampCRSGen(1λ, 1N ; coinscrs),
(seedB∗ ,A∗,S∗)← LWEGen(crs; coinsseed), (crsSim, seedB∗Sim,S∗Sim)← Sim(crs,A∗,A∗S′+ Zb)
and outputs (crsSim, seedB∗Sim,A∗,A∗S′ + Zb + A∗S∗Sim, auxb).

41

	Introduction
	Our Contributions
	Technical Overview
	Discussion

	Preliminaries
	Notations
	Learning With Errors
	Lattice Tools
	Homomorphic Operations
	Succinct Randomized Encodings

	Succinct LWE Sampler: Definition and Amplification
	Definition and Discussion
	Weak Succinct LWE Samplers
	Amplification

	Candidate Succinct LWE Sampler
	A Basic Framework
	Correctness, Succinctness, and LWE with respect to A*
	Instantiating the Parameters
	Alternate Candidate Construction
	Cryptanalysis
	Cryptanalytic Challenges

	Our Succinct Randomized Encoding Construction
	Security

	Relations Among Notions of LWE Sampling
	WW Oblivious LWE Sampling

