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Abstract. Robust (fuzzy) extractors are very useful for, e.g., authenticated exchange from shared
weak secret and remote biometric authentication against active adversaries. They enable two parties
to extract the same uniform randomness with the “helper” string. More importantly, they have an
authentication mechanism built in that tampering of the “helper” string will be detected. Unfortunately,
as shown by Dodis and Wichs, in the information-theoretic setting, a robust extractor for an (n, k)-
source requires k > n/2, which is in sharp contrast with randomness extractors which only require
k = ω(logn). Existing work either relies on random oracles or introduces CRS and works only for
CRS-independent sources (even in the computational setting).
In this work, we give a systematic study of robust (fuzzy) extractors for general CRS dependent sources.
We show in the information-theoretic setting, the same entropy lower bound holds even in the CRS
model; we then show we can have robust extractors in the computational setting for general CRS-
dependent source that is only with minimal entropy. At the heart of our construction lies a new
primitive called κ-MAC that is unforgeable with a weak key and hides all partial information about the
key (both against auxiliary input), by which we can compile any conventional randomness extractor
into a robust one. We further augment κ-MAC to defend against “key manipulation” attacks, which
yields a robust fuzzy extractor for CRS-dependent sources.
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1 Introduction

Randomness extractors are well-studied tools that enable one to extract uniform randomness (usu-
ally with the help of a short random seed) from a weak random source that is with sufficient
entropy. Robust (fuzzy) extractors, that are randomness extractors that can be against an active
attacker, are very useful in the settings of authenticated key exchange (AKE) from weak secrets
and remote biometric authentication. Sometimes, a one-message AKE protocol from weak secrets is
directly known as a robust extractor (for close secrets, a robust fuzzy extractor) [6,10,12,13,25,28].
It consists of a generation algorithm Gen producing a nearly-uniform string R from a source W
along with a public helper string P (message sent in the public), and a reproduction algorithm
Rep recovering R from P using W . Besides the normal requirement as a randomness extractor
that the extracted R should be uniform, the robustness ensures that any manipulation on P by
active attackers will be detected. Furthermore, for composition with other applications that will
use the extracted randomness, stronger robustness (called post-application robustness) is usually

⋆ A preliminary version of this paper appeared in Theory of Cryptography Conference- TCC 2021, pp. 689-717. This
full version includes proofs for all theorems and lemmas. Among them, the proofs for Lemma 7 and Theorem
4 are redone, giving more accurate bounds on adversary advantages. It also corrects a flaw that the original
fuzzy unforgeability definition of κ-MAC is unnecessarily strong and cannot be achieved by our construction.
Furthermore, all results are revised to be applicable to sources with average-case conditional min-entropy which
is more general than the worst-case notion used in the preliminary version.



required, by allowing adversaries to have R directly, which ensures security even after adversaries
learn information about R from applications using R.

The one-message feature of robust extractors is indeed useful for many natural applications.
The most notable example could be secure authentication [6], where Alice could register (R,P )
at a server without leaking the secret W (which could be a scan of biometric), authenticate the
server by retrieving P , and later start a secure communication with the server using R as the key
recovered from P . This application is principally an AKE between Alice and herself at different
time points, but the AKE has to be one message. Another interesting application is authenticated
group key exchange (AGKE) from weak secrets. With a robust extractor, a user could broadcast
the helper information P , and all other users having the same (or close) weak secret can recover
the randomness R as the key. The communication cost remains one message. In contrast, it may
be onerous to generalize interactive AKEs into the group setting.

Robust extractors turn out to be expensive. It is known those information-theoretic robust
extractors require the (min-)entropy k of the source W ∈ {0, 1}n to be larger than n/2 [13, 15],
which is in contrast with both regular randomness extractors and interactive AKE protocols [15]
that only require a minimal entropy ω(log n) from the source.

Naturally, leveraging a random oracle as a “super” randomness extractor could be possible
to circumvent this entropy lower bound. Indeed, one can directly hash a source (with a minimal
entropy like ω(log n)) for this purpose. Moreover, one can also transform a fuzzy extractor [5, 14]
into a robust fuzzy extractor [6]. However, it is always desirable to see whether we can remove this
heuristic assumption [9], particularly in the setting of randomness extraction.

The other approach uses a common reference string (CRS), which could be generated by a
trusted third party once and for all. It enables us to transform a strong extractor into a robust
extractor, by just using the CRS as the seed. Clearly, this approach won’t require more entropy from
the source than the underlying extractor. It also can be extended to the fuzzy setting [10,25,26,28].
However, as the seed has to be independent of the source, this approach so far only works for
CRS-independent sources.

In many cases, sources could be dependent on the CRS. For example, for sources generated
from devices such as PUFs, adversaries might manufacture the devices after seeing the CRS and
insert some CRS-dependent backdoor into the device to gain advantages. More seriously, for all
sources, given a CRS-dependent leakage (which is possible as the leakage function is adversarially
chosen after seeing the CRS), the distribution of the remained secret will be dependent on the CRS
as well. We are interested in the following natural open question:

Can we have a robust (fuzzy) extractor that works for general CRS-dependent sources with
minimal min-entropy (ω(log n)) without relying on an RO? 1

1.1 Our Results

We systematically investigate this question, in both information-theoretic and computational set-
tings, for both non-fuzzy and fuzzy cases. All related results are summarized in Table 1.

1 For the non-fuzzy case, Dodis et al. [12] presented a partial solution in the computational setting. But their
construction only works for a very special source: the sample consists of (w, c) where c is a ciphertext that
probabilistically encrypts 0s under w; and they require the source to have any linear fraction of min-entropy. In
comparison, we are aiming for general sources that only have the minimal super logarithmic entropy. For the fuzzy
case, there is no feasibility result at all.
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Fuzzy? Schemes Model
CRS- IT/Computa- Low General

Dependent? tional? Entropy Rate? Sources?

Non

Naive-RO RO - Computational
√ √

[13] Plain - IT ×
√

Naive-CRS CRS × IT
√

×
[12] CRS

√
Computational × ×

Ours(Sect.4) CRS
√

Computational
√ √

Fuzzy

[6] RO - Computational
√ √

[13, 21] Plain - IT ×
√

[10] CRS × IT
√

×
[25, 26,28] CRS × Computational

√
×

Ours (Sect.5) CRS
√

Computational
√ √

Table 1. Comparison between known robust (fuzzy) extractors. “Low Entropy-Rate?” asks whether the scheme works
for (n, k)-sources with k = ω(logn); “General Sources?” asks whether the scheme works for sources without other
requirements beyond that on (n, k) (so CRS-independent ones are all not general). “Naive-RO” denotes the trivial
construction that extracts randomness H(w) using a random oracle H; “Naive-CRS” denotes a strong extractor using
the CRS as the seed.

Lower-bound in the information-theoretic setting. We first give a negative answer to the
question in the information-theoretic setting, by proving that the lower-bound for plain-model
constructions [15] also holds for CRS-dependent constructions. Namely, if there is a CRS-model
information-theoretically-secure (IT-secure) pre-application robust extractor working for every source
W ∈ {0, 1}n that has min-entropy greater than k even conditioned on the CRS (we refer such a
source an (n, k)-source), it must be that k > n/2. This new lower bound justifies the necessity of
the CRS-independent requirement in existing CRS-model IT-secure robust (fuzzy) extractors [10].

A generic construction of computational CRS-model robust extractors. We then consider
circumventing our new lower bound in the computational setting. We present a generic construction
of CRS-model post-application robust extractors for CRS-dependent sources and thus firmly confirm
its existence. This construction is built upon a conventional randomness extractor and a novel
message authentication code (MAC) termed by key-private auxiliary-input MAC (κ-MAC for short)
for which we give efficient constructions from well-studied assumptions. Our construction works for
any efficiently samplable sources that have sufficient min-entropy (conditional on CRS) just to
admit a conventional randomness extractor.

An extended construction for robust fuzzy extractors. We further extend our solution and
construct a computational CRS-model robust fuzzy extractor by using a conventional randomness
extractor, a secure sketch, and a stronger κ-MAC that can work in the fuzzy setting. Here, a q-
secure sketch is a tool allowing one to convert a weak secret W ′ to a q-close one W with the help
of a small amount of information about W , which is the core of many fuzzy extractors and has
IT-secure instantiations.

For achieving error tolerance t, (namely, two close secrets W and W ′ whose distance is within
t), our construction requires the source to support a 2t-secure sketch 2. We note this requirement
indeed matches the requirement made by many existing CRS-model robust fuzzy extractors [25,26],
while our construction is the first one working for CRS-dependent sources.

1.2 Our Techniques

We give a technical overview as follows.

2 Note that secure sketches achieving t error tolerance are also subject to some entropy-rate lower-bounds [18], but
for almost all error-rate t/n (except a small range) the bound is notably smaller than 1/2.
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Proving lower-bounds for CRS-model IT-secure robust extractor. Our main technique for
the generalized lower bound is to show that a CRS-model IT-secure robust extractor implies a plain-
model IT-secure “authentication scheme”, which was the main tool for showing the lower-bound
on entropy rate [15].

Note that a CRS-model robust extractor for all (n, k)-sources trivially implies a CRS-model
“authentication scheme” {Auth,Vrfy}: Auth runs the generation algorithm Gen and outputs the
helper string P as an “authentication tag” ς; Vrfy runs Rep on input P and outputs 1 unless
Rep fails. For any (n, k)-source W and any unbounded adversary A, the scheme is correct and
unforgeable w.r.t. a randomly sampled crs according to the CRS distribution CRS. To show a
CRS-model “authentication schemes” gives a plain model one: we prove that there exists at least
one concrete CRS string crs∗ such that it will enable “correct” authentication and “unforgeability”
for all CRS-dependent sources. We proceed in two steps:

For unforgeability, assume that the advantage of any adversary forging a tag in the CRS-model
scheme is bounded by δ. First, we show that, for each sourceW , any adversary A, and any constant
c0, c1 ∈ (0, 1), there will be a good set SW,A with weight at least c0 (namely, Pr[CRS ∈ SW,A] ≥ c0)
such that for every crs ∈ SW,A, the advantage of A forging a valid tag for W is bounded by δ/c0.

Note that the above discussions give a “locally good” set for each W , but we need a “globally
good” set of CRSs for all sources and all adversaries. For anyA, we show that, ŜA, the intersection of
{SW,A} for all sources W , is with weight at least c0; and every crs ∈ ŜA, A’s advantage is bounded
by δ/c0. We proceed with proof by contradiction: if not, its complement ŜC

A will have the weight

of at least (1− c0). By definition, for every crs(i) ∈ ŜC
A , there is one source W (whose conditional

distribution is W
(i)
crs) s.t. A has advantage greater than δ/c0. We can define a “new” (n, k)-source

W ∗ = {W |crs} where W |crs(i) = W
(i)
crs if crsi ∈ ŜC

A and uniform otherwise. For such W ∗ and A,
there is no good SW ∗,A with weight greater than c0, which contradicts our previous argument.

Finally, we can prove
⋂
A ŜA is globally good, as otherwise, we can “construct” an adversary A∗

contradicting the existence of ŜA∗ .

By similar arguments, we can show there is a globally good CRS set S̃ for correctness as well.
Then by properly choosing c0 and c1, the sum weight of Ŝ and S̃ can be greater than 1, thus there
exists a crs∗ which is globally good for both correctness and unforgeability. Hardcoded with this
string crs∗, the CRS-model authentication scheme gives a plain-model authentication scheme.

Adding post-application robustness to randomness extractor for “free”. We then turn
to computational setting. In a conventional strong extractor Ext (which converts a weak secret w
into a uniform r with the help of a uniform seed s) we may view the seed as the “helper string”. To
make it robust, a natural approach is to let the “helper string” additionally include a MAC tag for
the seed such that adversaries cannot malleate it without being detected. One might want to use r
as the key, but the verifier will not have r until receiving s, which leads to circularity. We consider
taking w as the MAC key directly.

We can see that a normal MAC will be insufficient. On the one hand, the secret w is non-
uniform; Especially when we consider post-application robustness, the randomness r and the seed s
together give non-trivial information about w and will be leaked to adversaries. On the other hand,
the authentication tag itself may contain information about w, which in turn affects the quality of
randomness extraction.

We therefore introduce a new MAC called κ-MAC. Besides unforgeability, it satisfies key privacy,
that is, adversaries cannot learn anything new about the key from an authentication tag. Thus,
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the authentication tag will not affect the randomness extraction (in the computational setting).
Moreover, both unforgeability and key privacy should hold even when adversaries have arbitrary
admissible auxiliary information about the secret, making this primitive co-exist with (r, s). We
define κ-MAC in the CRS-model, and allow the distribution of secrets to be arbitrarily dependent
on the CRS, as long as it is efficiently samplable and has sufficient min-entropy (conditioned on
the CRS). We remark that a one-time κ-MAC suffices for constructing robust extractors.

κ-MAC from sLRH relation. It is natural to view κ-MAC as a special leakage-resilient (more
precisely, auxiliary-input secure) MAC, then upgrade it to add key privacy. A known approach to
auxiliary-input MAC is using the auxiliary-input signature in the symmetric setting, by taking both
verification key vk and signing key sk as the MAC key k. But in κ-MAC, k is just a non-uniform
string sampled from the source, which may not have a structure like (vk, sk); we have to deal with
it carefully.

We revisit Katz-Vaikuntanathan signature [22] that is shown to be auxiliary-input secure [16].
On rough terms, they used a true-simulation-extractable NIZK (tSE-NIZK) [11] to prove the knowl-
edge of a witness k∗ w.r.t. a statement y (contained in the verification key), such that (k∗, y) satisfy
a leakage-resilient hard (LRH) relation. In an LRH relation, for honest generated (y, k), and given
y and leakage about k, it is infeasible to find a witness of y. If there is a successful forgery, we can
extract k∗ for y (by tSE-NIZK), which contradicts the LRH relation.

For our κ-MAC, we take the signing key sk as the authentication key k, but vk cannot be posted
on a trusted bulletin board as in signatures, or be in k as the source might not be structured. We
address this challenge as follows. First, there is a part of vk (denoted by pp) can be generated
without k, and we put them in the CRS. For the other part (denoted by yk), while adversaries can
manipulate it, we strengthen the LRH relation to ensure this manipulation will not give advantages.
Specifically, we define the strengthened LRH relation (sLRH relation): given honestly generated
(pp, yk) along with leakage about k, adversaries cannot “frame” k, that is, find a (yk′, k′) such that
both (pp, yk′, k′) and (pp, yk′, k) satisfy the sLRH relation. Using tSE-NIZK to prove knowledge of
k w.r.t. (pp, yk) and attaching yk (and the proof) to the authentication tag could give an auxiliary-
input MAC from weak secrets.

For key privacy, we need yk to hide partial information about k, i.e., one can simulate the yk
distribution without k. Accordingly, we formulate the privacy of generators for a sLRH relation.
With a sLRH relation and its private generator, we have a κ-MAC construction in this way.

Constructing sLRH relation from DPKE+NIZK. The privacy of generator indeed prevents
adversaries from finding k from (pp, yk) and the leakage. If it further has a kind of “collision-
resistance”, namely, it is infeasible to find a distinct k′ along with yk′ such that both (pp, yk′, k)
and (pp, yk′, k′) belong to RLR, RLR with a private generator will be a sLRH relation.

We use an auxiliary-input-secure deterministic encryption scheme to instantiate an NP relation
Rde with a private generator. Specifically, (pk, c,m) ∈ Rde iff c = DEnc(pk,m). From the security
of DPKE, (pk, c) could hide partial information about m. For handling all hard-to-invert auxiliary
information, the DPKE scheme from exponentially hard DDH assumption [30] will be the only
choice.

Note that under a valid pk, (pk, c) uniquely determines the message m and thus adversaries
cannot find a second message. However, we cannot ensure the validity of pk by putting it into the
CRS. The problem is that DPKE only works for message distributions independent of pk, but we
need to work for CRS-dependent sources. To get around this obstacle, we use a NIZK to prove the
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validity of pk. Though NIZK needs a CRS as well, it is secure even when statements and witnesses
are dependent on the CRS.

Augmenting κ-MAC to defend against “key manipulations” attacks. Finally, we extend
our solutions to the fuzzy case. The starting point is using κ-MAC to authenticate the helper string
of a fuzzy extractor. We take the standard secure-sketch-based fuzzy extractor as a building block,
in which one can recover the secret w using his secret w′ first.

The κ-MAC we just defined will be insufficient for the fuzzy case. Adversaries may manipulate
the helper string, such that one recovers another secret w′′ (which is t-close to w′) that a forged tag
can be verified under w′′. We therefore need κ-MAC to satisfy fuzzy unforgeability, that is, given
an authentication tag from w, adversaries cannot forge an authentication tag being accepted by
shift(w), where shift is an efficient function specified by the adversary, modeling the manipulation
over w by adversarially altering the helper string. Note that the distance between w′′ and w is
bounded by 2t, so the output of shift(w) must be 2t-close to w.

To construct a fuzzy unforgeable κ-MAC, we first introduce a fuzzy version of sLRH relation.
More specifically, for a 2t-fuzzy sLRH relation, it is infeasible to find (yk′, k′) to “frame” the
shift(k) for any efficient shift whose output is 2t-close to k. It is easy to verify the according
κ-MAC satisfies 2t-fuzzy unforgeability.

Interestingly, we do not need other tools to construct a fuzzy sLRH relation. Our construction of
sLRH relation is fuzzy already. Particularly, if a sLRH relation is “collision resistant”, the adversary
can “frame” some k′′ only when she finds k′′. It remains to argue that, given (pp, yk) from a private
generator on input k and the leakage of k, can adversaries find a secret k′′ that is 2t-close to k?

This question seems straightforward at first glance but turns out to need some care. Note that
the privacy of the generator cannot ensure that (pp, yk) hides all partial information about k, as
(pp, yk) itself must be non-trivial about k. The safest way to check whether a value can be recovered

from (pp, yk) is to see whether this value is useful for distinguishing yk and ŷk. For small t (say,
logarithmic in the security parameter), one knowing k′′ ∈ B2t(k) can guess the original k with a
non-negligible probability, and then she can use k to distinguish. The situation gets complicated
when t is large and B2t(k) has exponential many points. In this case, one cannot naively guess k
according to k′′. We overcome this challenge by observing the task of recovering k from k′′ can be
done with the help of 2t-secure sketch. More specifically, assume an adversary can recover k′′ from
(pp, yk). Then, the distinguisher specifies the leakage as a 2t-secure sketch, invokes the adversary
to have this k′′ ∈ B2t(k), and converts k′′ to k with the help of the secure sketch. Usually, auxiliary
inputs are considered a “bad” object to be against, but our proof leverages the auxiliary input to
get around barriers of security proof.

1.3 Open Problems and Subsequent Work

Our work raises two natural problems. The first is to construct computational robust extractors in
the plain model that work for random sources with a less-than-half entropy rate. In this work, we
authenticate the seed of a strong extractor using a κ-MAC which is then constructed in the CRS
model, resulting in a CRS-model robust extractor. Nonetheless, as κ-MAC captures the standard
properties of the random oracle in Boyen et al.’s construction [6], a “trivial” solution can be directly
assuming that a standard hash function like SHA3 is a κ-MAC. Therefore, an interesting solution
for this problem should be based on standard assumptions, particularly the complexity assumptions
formalized by Goldwasser and Kalai [20].

6



Significant progress towards the problem was recently made by Apon et al. [2], who introduced
a new notion of non-malleable point function obfuscation with associated data that can be viewed
as a weaker version of κ-MAC, presented its plain-model construction, and then used it to con-
struct a plain-model robust fuzzy extractor. However, their construction has to rely on an entropic
assumption (thus not a complexity assumption [20]) over fixed-generator groups, which is justified
in the generic group model [3]. As there exist cryptographic schemes secure in the generic group
model but insecure in practice, this problem is still interesting for further study.

Another interesting problem is to achieve reusability and robustness simultaneously for CRS-
dependent sources (or in the plain model), particularly in the fuzzy case. Reusability allows the
extraction of multiple independent keys from one weak secret, which is important for biometrics that
is practically reused and cannot be changed. In the literature, plain-model constructions for reusable
fuzzy extractors are known [8] and can also be easily adapted from CRS-model constructions like [25]
and [26]. A natural idea is applying our κ-MAC to a plain-model secure-sketch-based reusable
extractor. However, the main impediment here is that our κ-MAC scheme only achieves one-time
security, while a full-fledged κ-MAC for general auxiliary inputs is required.

2 Preliminaries

Notations. All adversaries considered in this paper are non-uniform, and we model an adversary
A by a family of circuits {Aλ}n∈N. For a set X, x ←$ X denotes sampling x from the uniform
distribution over X. For a distribution X, x ← X denotes sampling x from X. Let (X,Y ) be a
joint distribution, X|y denotes the conditional distribution of X conditioned on Y = y. If A is a
probabilistic algorithm, A(x1, x2, · · · ; r) is the result of running A on the input x1, x2, · · · and the
random coins r. We use y ← A(x1, x2, · · · ) to denote the experiment that choosing r at random
and getting y = A(x1, x2, · · · ; r).

2.1 Entropy and Strong Extractor

Min-entropy. The min-entropy of a distribution W is defined by

H∞(W ) = − log( max
w∈Supp(W )

Pr[W = w]).

Let n, k be functions of the security parameter. We call an ensemble of distributions W =
{Wλ}λ∈N an (n, k)-source, if for every λ ∈ N, Wλ is an (n(λ), k(λ))-distribution. Namely, Wλ is
defined over {0, 1}n(λ), and H∞(W ) ≥ k(λ).
Conditional min-entropy. For a joint distribution (W,Z), we mainly use the average-case min-
entropy [13] of W conditioned on Z, defined as

H̃∞(W |Z) = − log(Ez←Z [2
−H∞(W |z)]) = − log(Ez←Z [ max

w∈Supp(W )
Pr[W = w]]).

In our negative result (Sect. 3), we also use the worst-case entropy [23] of W conditioned on Z,
which, denoted by H∞(W |Z), is the minimal of H(W |z) over all z ∈ Supp(Z). It is trivial to see
H∞(W |Z) ≥ k̂ implies H̃∞(W |Z) ≥ k̂ for any joint distribution (W,Z).

We can extend the notions to ensembles. Namely, we call (W = {Wλ}λ∈N|Z = {Zλ}λ∈N)
an average-case (resp. worst-case) (n, k)-source, if for each λ, Wλ is defined over {0, 1}n(λ), and
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H̃∞(Wλ|Zλ) ≥ k(λ) (resp. H∞(Wλ|Zλ) ≥ k(λ)). For notational convenience, we may call W an
average-case (resp. worst-case) (n, k)-source w.r.t. Z, meaning (W|Z) forms an average-case (resp.
worst-case) (n, k)-source. Note that a wost-case (n, k)-source is also an average-case (n, k)-source.

Average-case strong extractor. Strong extractors can convert a non-uniform randomness into
a nearly uniform randomness with the help of a public randomness called a seed. For generality, we
give the computational definition of average-case strong extractors in the following.

Let n, k, ℓ be integer functions of the security parameter. An (n, k, ℓ)-strong randomness ex-
tractor Ext is a deterministic algorithm, which on inputs w ∈ {0, 1}n(λ) along with a public seed
iext (with length si(λ)) outputs another randomenss r ∈ {0, 1}ℓ(λ). Ext satisfies ϵ-privacy, if for any
polynomial-time A and any average-case (n, k)-source (W|Z) , A’s advantage AdvextW,Z,A(λ) is not
greater than ϵ(λ), with the advantage defined as∣∣∣∣∣Pr

[
(w, z)← (Wλ, Zλ), iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) : 1← A(iext, r, z)

]
− Pr

[
(w, z)← (Wλ, Zλ), iext ←$ {0, 1}si(λ)

r ←$ {0, 1}(ℓ(λ)) : 1← A(iext, r, z)

]∣∣∣∣∣ .
We say an (n, k, ℓ) extractor Ext is ϵinv-hard to invert, if for any polynomial adversary A and

any (n, k)-source (W|Z), it holds that,

Pr[(w, z)← (Wλ, Zλ), iext ←$ {0, 1}si(λ), r ← Ext(iext, w), w
′ ← A(iext, r, z) : w = w′] ≤ ϵinv(λ).

Note that Ext sastifying ϵ-privacy for small ϵ is naturally hard-to-invert w.r.t. some small ϵinv. We
do not view “hard-to-invert” as an extra property for Ext but may use it for convenience.

2.2 CRS-Model Robust Extractor

We present both information-theoretical and computational definitions of robust extractors in the
CRS model.

CRS-dependent sources. Being different from all previous CRS-model works of fuzzy extractors
[10, 25–28] that require sources to be independent of the CRS, we consider all sources that could
potentially depend on the CRS while having sufficient conditional min-entropy. Formally, a source
W = {Wλ}λ∈N and the CRS CRS = {CRSλ}λ∈N are ensembles of distributions, and we allow W
and CRS to be correlated as long as W has enough average-case min-entropy conditioned on CRS,
namely, H̃(Wλ|CRSλ) ≥ k(λ) for some k. While CRS is usually described by a specific sampler
algorithm, we may explicitly describe the sampling process of (W,CRS) as

crs← CRSλ, w ←Wλ|crs.

In the computational setting, we further require each Wλ|crs to be efficiently samplable by a
uniform polynomial-bounded circuit.

Definition 1 (Efficiently-samplable source w.r.t. CRS). For a distributions ensembles CRS =
{CRSλ}λ∈N andW = {Wλ}λ∈N, we callWλ an efficiently-samplable distribution w.r.t. CRSλ, if there
is a circuit Gλ whose running time is polynomial in λ, such that for every crs ∈ Supp(CRSλ), it
holds that

Gλ(crs) =Wλ|crs.

If for every λ ∈ N, Wλ is an efficiently-samplable distribution w.r.t. CRSλ, we call W an efficiently-
samplable source w.r.t. CRS.
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Remark 1. We consider efficiently samplable sources in the computational setting, as the depen-
dence between a source being extracted and the CRS distribution is usually caused by an efficient
adversary. A typical scenario could be that a non-uniform PPT adversary A = {Aλ}λ∈N “cre-
ates” a source after seeing the CRS. Therefore, we ask a uniform polynomial-bounded circuit Gλ

(which can be considered as Aλ) for every crs ∈ Supp(CRSλ), rather than different polynomial-
bounded circuits for different crs. Similar settings appeared in the recent works on two source
extractors [1, 19].

Robust extractor. A robust extractor rExt in the CRS-model is defined by a triplet of efficient
algorithms {CRS,Gen,Rep}. CRS is a sampler algorithm that specifies the CRS distribution. Gen
takes as inputs a CRS and a weak secret w and outputs a randomness R along with a helper string
P . Then, Rep can recover R from P using w. rExt requires privacy and robustness. The former
says R is pseudorandom conditioned on P , and the latter captures the infeasibility of forging a
different P that will not lead to the failure of Rep. Particularly, when A is given both R and P , the
robustness is called post-application robustness; when only P is given, it is called pre-applicaiton
robustness. Formally, we define a robust extractor below.

Definition 2 (Robust extractor). For integer functions n, k, ℓ of the security parameter, an
(n, k, ℓ)-robust extractor rExt is defined by the following PPT algorithms.

– crs ← CRS(1λ). On input the security parameter λ, it outputs a CRS crs, whose distribution
is denoted by CRSλ.

– (R,P ) ← Gen(crs, w). On inputs crs and a string w ∈ {0, 1}n(λ), it outputs a randomness
R ∈ {0, 1}ℓ(λ) along with a helper string P .

– R← Rep(crs, w, P ). It recovers the randomness R from P by using w.

Correctness: For a function ρ : N→ [0, 1], we say rExt satisfies ρ-correctness, if for any average-
case (n, k)-source W w.r.t. CRS, for every λ, it holds that

Pr[crs← CRSλ;w ←Wλ|crs; (R,P )← Gen(crs, w) : Rep(crs, w, P ) = R] ≥ ρ(λ).

Privacy: For ϵ : N→ (0, 1), rExt satisfies the ϵ-IT-privacy, if for any unbounded adversary A and
for any average-case (n, k)-source W w.r.t. CRS, it holds that

AdvprivA,W(λ) := |Pr[Exppriv,0A,W (λ) = 1]− Pr[Exppriv,1A,W (λ) = 1]| ≤ ϵ(λ). (1)

Robustness: For δ : N → (0, 1),rExt satisfies δ-IT-post-application-robustness (or pre-application
robustness, without boxed items in the experiment ExprobA,W), if for any unbounded adversary A, and
any (n, k)-source W, it holds that

AdvrobA,W(λ) = Pr[ExprobA,W(λ) = 1] ≤ δ(λ). (2)

Computational definitions can be defined by only considering polynomial-time adversaries and
efficiently-samplable sources. We directly call these computational versions ϵ-privacy and δ-post-
application-robustness (by removing “IT”).
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Exppriv,bA,W(λ)

crs← CRSλ;w ←Wλ|crs;
(R,P )← Gen(crs, w);

R0 ←$ {0, 1}ℓ(λ);R1 = R; b′ ← A(crs, P,Rb)

return b′

ExprobA,W(λ)

crs← CRSλ;w ←Wλ|crs

(R,P )← Gen(crs, w);P ∗ ← A(crs, P ,R )

if P ∗ ̸= P ∧ Rep(crs, P ∗, w) ̸=⊥) then return 1

return 0

2.3 CRS-Model Robust Fuzzy Extractor

Fuzzy extractors allow the generation algorithm and the reproduction algorithm to use different
but close secrets w, w̃.

Metric spaces. We first introduce metric spaces that allow us to define “close” secrets formally. A
metric spaceM = {Mλ}λ∈N is a collection of sets with a distance function dist :Mλ×Mλ → [0,∞).
Throughout this paper, we consider Mλ = {0, 1}n(λ) equipped with a distance function (e.g.,
Hamming distance).

For an integer t̂, we say w is t̂-close to w̃, if dist(w, w̃) ≤ t̂. For (W,Z) and (W̃,Z) where W
and W̃ are defined overM, we say (W, W̃) a t-pair for an integer function t w.r.t. Z, if for every
λ ∈ N and z ∈ Supp(Zλ), it holds that

Pr[(w, w̃)← (Wλ|z, w̃λ|z) : dist(w, w̃) ≤ t(λ)] = 1.

Secure sketch. Secure sketches allow to convert a secret w into a different but close secret w′ with
the help of certain information from w′, which is an essential building block for fuzzy extractors. We
introduce average-case secure sketches [13] below. Formally, for a metric spaceM, an (M, k, k′, t)-
secure sketch scheme is a pair of PPT algorithms SS and Rec that satisfies correctness and security.
For every λ ∈ N,

– SS on input w ∈Mλ, outputs a sketch ss;
– Rec takes as inputs a sketch ss and w̃ ∈Mλ, and ouputs w′.

Correctness. ∀w̃ ∈Mλ, if dist(w, w̃) ≤ t(λ), then Rec(w̃,SS(w)) = w.

Security. For every λ, any (n, k)-source (W,Z) (whereMλ = {0, 1}n(λ)) , it holds that

H̃∞(W |SS(W ), Z) ≥ k′(λ).

Robust fuzzy extractor. Now we extend the robust extractor definition into the fuzzy case.

Definition 3 (Robust fuzzy extractor). For a metric spaceM and integer functions n, k, ℓ of
the security parameter, an (M, k, ℓ, t)-robust fuzzy extractor rfExt is defined by the following PPT
algorithms.

– crs ← CRS(1λ). On input the security parameter λ, it outputs a CRS crs, whose distribution
is denoted by CRSλ.

– (R,P ) ← Gen(crs, w). On inputs crs and a string w ∈ {0, 1}n(λ), it outputs a randomness
R ∈ {0, 1}ℓ(λ) along with a helper string P .

– R← Rep(crs, w̃, P ). It recovers the randomness R from P using w̃.
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Correctness: For a function ρ : N → [0, 1], we say rfExt satisfies ρ-correctness, if for any t-pair

of average-case (n, k)-sources (W, W̃) w.r.t. CRS, for every λ, it holds that

Pr[crs← CRSλ; (w, w̃)← (Wλ|crs, W̃λ|crs); (R,P )← Gen(crs, w) : Rep(crs, w̃, P ) = R] ≥ ρ(λ).

Privacy: For ϵ : N→ (0, 1), rfExt satisfies the ϵ-IT-privacy, if for any unbounded adversary A and
any average-case (n, k)-source W w.r.t. CRS, it holds that

AdvfprivA,W(λ) := |Pr[Expfpriv,0A,W (λ) = 1]− Pr[Expfpriv,1A,W (λ) = 1]| ≤ ϵ(λ). (3)

Robustness: For δ : N → (0, 1), rfExt satisfies the δ-IT-post-application-robustness (or pre-
application robustness, without boxed items in the experiment ExpfrobA,W,W̃), if for any unbounded

adversary A, and any t-pair of average-case (n, k)-sources (W, W̃) w.r.t. CRS, it holds that

AdvfrobA,W(λ) = Pr[ExpfrobA,W(λ) = 1] ≤ δ(λ). (4)

Expfpriv,bA,W (λ)

crs← CRSλ;w ←Wλ|crs; (R,P )← Gen(crs, w);

R0 ←$ {0, 1}ℓ(λ);R1 = R; b′ ← A(crs, P,Rb)

return b′

ExpfrobA,W,W̃(λ)

crs← CRSλ; (w, w̃)← (Wλ|crs, W̃λ|crs)

(R,P )← Gen(crs, w);P ∗ ← A(crs, P ,R )

if P ∗ ̸= P ∧ Rep(crs, P ∗, w̃) ̸=⊥) then return 1

return 0

Accordingly, computational robust fuzzy extractors can be defined by focusing on polynomial-
time adversaries and efficiently-samplable sources.

2.4 Other Cryptographic Notions

Hard-to-invert Function. A function ensemble F = {fλ} is ϵhv-hard-to-invert w.r.t. a distribu-
tion ensemble W = {Wλ}, if for any polynomial-time adversary A, it holds that

Pr[w ←Wλ : A(fλ(w)) = w] ≤ ϵhv(λ).

It can be natuarally extended to conditional distributions: F is ϵhv-hard-to-invert w.r.t. (W|Z), if
for any polynomial-time adversary A,

Pr[(w, z)← (Wλ, Zλ) : A(fλ(w), z) = w] ≤ ϵhv(λ).

Equivalently, we can consider gλ(w, z) = (fλ(w), z) as a hard-to-invert function w.r.t. the distribu-
tion (W,Z).
NIZK. Non-interactive zero-knowledge argument systems (NIZKs) enable a prover, having an NP
statement x and its witness w, to convince a verifier of the truthness of x, by sending a single
message and without disclosing any information about w. For our purpose, it is more convenient to
use the notion of same-string NIZKs from [11,24], and we only ask for the single-theorem version.

A NIZK Π for an NP relation R can be described by the following three algorithms.
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– Szk(1
λ). The setup algorithm generates a CRS crs and a trapdoor key tk.

– Pzk(crs, x, ψ). The prover algorithm takes as inputs a CRS crs, a statement x and a witness
ψ, and outputs a proof π.

– Vzk(crs, x, π). The verifier algorithm checks the validity of π.

Perfect completeness: if for any λ ∈ N and for any (x, ψ) ∈ R,

Pr[(crs, tk)← Szk(1
λ);π ← Pzk(crs, x, ψ) : Vzk(crs, x, π) = 1] = 1.

Adaptive soundness: Π satisfies ϵsnd-soundness, if for any polynomial-time adversary A, its
advantage AdvsndA (λ) (defined below) is not greater than ϵsnd(λ).

AdvsndA (λ) = Pr[(crs, tk)← Szk(1
λ); (x, π)← A(crs) : Vzk(σ, x, π) = 1 ∧ (∀ψ, (x, ψ) /∈ R)].

Single-theorem ZK: Π satisfies one-time ϵzk-ZK, if there exists a simulator SPzk, such that for
any polynomial-time A = (A1,A2), it holds that

AdvzkA (λ) =

∣∣∣∣∣∣∣∣∣Pr

(crs, tk)← Szk(1

λ),

(x, ψ, st)← A1(crs),

π ← Pzk(crs, x, ψ) :

1← A2(st, πb)

− Pr


(crs, tk)← Szk(1

λ),

(x, ψ, st)← A1(crs),

π ← SPzk(crs, tk, x) :

1← A2(st, πb)


∣∣∣∣∣∣∣∣∣ ≤ ϵzk(λ),

where A1 is only allowed to output (x, ψ) ∈ R.
One-time true-simulation extractability (tSE): tSE is a strengthened soundness notion [11],
which says that any efficient adversary A cannot produce a valid proof π∗ for x∗ without knowing
x∗’s witness, even A can see a simulated proof for a valid statement x.

For a tSE-NIZK, its setup algorithm Setup outputs an additional extraction key ek, apart
from outputting crs and tk. We say Π satisfies one-time ϵtse-tSE, if there exists a simulation-
knowledge extractor KExtzk, such that for any polynomial-time adversary A = (A1,A2), its advan-
tage AdvtseA (λ) (defined below) is not greater than ϵtse2(λ) ,

Pr

[
(crs,tk, ek)← Szk(1

λ), (x, ψ, st)← A1(crs), π ← SPzk(crs, tk, x),

(x∗, π∗)← A2(st, π), ψ
∗ ← KExtzk(crs, tk, x

∗, π∗) : (x∗, ψ∗) /∈ R

]
,

where (x, ψ) outputted by A1 must be in R.

Deterministic public-key encryption (DPKE). A DPKE scheme Σ is defined by a triple of
PPT algorithms: the generation algorithm Kde, the encryption algorithm Ede, and the decryption
algorithm Dde, where Ede and Dde are deterministic. Below we introduce the PRIV-IND-security
with respect to hard-to-invert auxiliary inputs by following [7].

Σ is (n, ϵhv, ϵind)-PRIV-IND-secure, if for any message sourceW defined over {{0, 1}n(λ)}λ∈N and
any function ensemble F = {fλ}λ∈N such that F is ϵhv-hard-to-invert w.r.t.W, for any polynomial-
time adversary A, its advantage AdvindA,W,F (λ) defined below is not greater than ϵind(λ).∣∣∣∣∣∣∣Pr

(pk, sk)← Kde(1
λ),m←Wλ,

c← Ede(pk,m) :

1← A(c, pk, fλ(m))

− Pr

(pk, sk)← Kde(1
λ),m←Wλ

m′ ←$ {0, 1}n(λ), c← Ede(pk,m
′) :

1← A(c, pk, fλ(m))


∣∣∣∣∣∣∣ .

We assume w.l.o.g. that Σ has a key relation Rpk such that for every (pk, sk) ∈ Rpk, it follows
that Dde(sk,Ede(pk,m)) = m for any message m.
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3 A New Lower Bound for IT-secure Robust Extractors

As briefly explained in the introduction, a plain-model IT-secure robust extractor for all (n, k)-
sources exists only when k > n/2 [15]. This lower bound can be trivially circumvented by assuming
a CRS but working only for the special sources independent of the CRS. We are interested in the
case of general sources which may be CRS-dependent. In this section, we give a negative result that
IT-secure robust extractors for all (n, k)-sources also require that k > n/2 in the CRS setting. The
fuzzy case trivially inherits this generalized lower bound.

Previous tool for the plain model lower bound. Dodis and Wichs’s [15] lower-bound comes
from a plain-model IT-secure authentication scheme (for an-(n̂, k̂)-distribution W ), which is triv-
ially implied by an IT-secure robust extractor. Such an authentication scheme could be described
by a pair of randomized functions {Auth,Vrfy}, formed by Auth : {0, 1}n̂ → {0, 1}ŝ, and Vrfy :
{0, 1}n̂ × {0, 1}ŝ → {0, 1}, where n̂, ŝ are integers. It satisfies (1) ρ̂-correctness: Pr[w ← W :
Vrfy(w,Auth(w)) = 1] ≥ ρ̂; and (2) δ̂-unforgeability: for any adversary A, Pr[w ← W, ς ←
Auth(w), ς∗ ← A(ς) : Vrfy(w, ς∗) = 1] ≤ δ̂.

Lemma 1 ( [15]). If there exists an authentication scheme for all (n̂, k̂)-distributions with ρ̂-
correctness and δ̂-unforgeability, and δ̂ < ρ̂2/4, it follows that k̂ > n̂/2.

Generalizing the lower-bound. We present a new lower bound for the CRS-model in the follow-
ing theorem, and our main technical lemma is to show that a CRS-model authentication scheme
could imply that in the plain model (Lemma 2).

Theorem 1. Let n, k, ℓ : N → N and ρ, δ : N → {0, 1} be functions of the security parame-
ter. If there exists an (n, k, ℓ) IT-secure robust extractor with ρ-correctness and δ-pre-application-
robustness, then for any λ ∈ N s.t. δ(λ) ≤ ρ(λ)2/4, it follows that k(λ) > n(λ)/2.

Proof. For ease of analysis, our proof uses the worst-case conditional min-entropy without loss of
generality. As, by definition, a robust extractor for average-case sources is one for worst-case sources
with the same parameters, any lower bound for the latter naturally applies to the former.

We first define a CRS-model authentication scheme, which consists {CAuth,CVrfy} (randomized)

along with a CRS distribution ĈRS, satisfying the following, for any worst-case (n̂, k̂)-source W :

– ρ̂-correctness: Pr[crs← ĈRS, w ←W |crs : Vrfy(crs, w,Auth(crs, w)) = 1] ≥ ρ̂.
– δ̂-unforgeability: for any adversary A,

Pr

[
crs← ĈRS, w ←W |crs, ς ← Auth(crs, w),

ς∗ ← A(crs, ς) : Vrfy(crs, w, ς∗) = 1.

]
≤ δ̂.

If there is a CRS-model IT-secure (n, k, ℓ)-robust extractor {CRS,Gen,Rep} with ρ-correctness
and δ-robustness, then, for each λ ∈ N, we can construct {CAuth,CVrfy} along with a CRS dis-

tribution ĈRS = CRSλ that satisfies ρ̂ = ρ(λ)-correctness and δ̂ = δ(λ)-unforgeability w.r.t all
worst-case (n(λ), k(λ))-distributions. More detailly,

– CAuth(crs, w) : Invoke (R,P )← Gen(crs, w), and return σ = P ;

– CVrfy(crs, w, σ) : If Rep(crs, w, σ) =⊥, return 0; otherwise, return 1.
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Next, we give our main technical lemma for the CRS-model authentication scheme, whose
detailed proof is deferred later.

Lemma 2. If there exists a CRS-model IT-secure authentication scheme {CAuth,CVrfy} (along

with a CRS distribution ĈRS) for all worst-case (n̂, k̂)-distributions (w.r.t. ĈRS) with ρ̂-correctness
and δ̂-unforgeability, then for any ĉ0, ĉ1 ∈ (0, 1) satisfying (1 − ĉ1)ρ̂ + ĉ0 > 1, there exists a plain-
model IT-secure authentication scheme {Auth,Vrfy} for all (n̂, k̂)-distributions with ĉ1ρ̂-correctness
and δ̂/ĉ0-unforgeability.

By Lemma 1, if δ̂/ĉ0 < (ĉ1ρ̂)
2/4, {Auth,Vrfy} established in Lemma 2 exists only when k̂ > n̂/2.

Putting requirements together, {CAuth,CVrfy} with ρ̂-correctness and δ̂-unforgeability could imply
such {Auth,Vrfy}, if there exists ĉ0, ĉ1 ∈ {0, 1}, such that

δ̂ <
ĉ0ĉ

2
1ρ̂

2

4
, and (1− ĉ1)ρ̂+ ĉ0 > 1. (5)

It remains to show when such (ĉ0, ĉ1) exist. Note for any ρ̂ ∈ (0, 1), there always exists (ĉ0, ĉ1) ∈
(0, 1)2 satisfying (1 − ĉ1)ρ̂ + ĉ0 > 1 (denote the solution space by Sρ̂). Then, we can have (ĉ0, ĉ1)

satisfying Eq.5 for (ρ̂, δ̂), unless 4δ̂
ρ̂2
≥ ĉ0ĉ21 for any (ĉ0, ĉ1) ∈ Sρ̂.

By standard analysis, we have the following result. For any ρ̂, v̂ ∈ (0, 1), there always exists
(ĉ0, ĉ1) ∈ Sρ̂ such that ĉ0ĉ

2
1 > v̂. It follows that whenever δ̂ < ρ̂2/4, such (ĉ0, ĉ1) exist. Recall

that for any λ s.t. δ(λ) < ρ(λ)2/4, the robust extractor could give such {CAuth,CVrfy} for all
(n(λ), k(λ))-distributions. It follows k(λ) < n(λ)/2 in this case. ⊓⊔

Deferred proof for Lemma 2. The overall goal is to show there exists a “good” CRS crs∗ in
the support of ĈRS, such that with crs∗ hardcoded, {CAuth(crs∗, ·),CVrfy(crs∗, ·)} is the plain-
model authentication scheme. For both correctness and unforgeability, we will prove that there
exists a sufficiently large “good” set of CRSs (S and S̃) for each of them. Then by properly tuning
parameters, we can see S ∩ S̃ ̸= ∅; thus, we can find a string crs∗.

In the claim below, we show the existence of S (for correctness). We proceed in two steps. (i)

For each source W , since we have ρ-correctness for a randomly sampled crs ← ĈRS, there must
exist a large enough “good” set SW that every element of it will enable “correctness” (with a
smaller correctness parameter). (ii) To show

⋂
W SW is still with sufficient size, we can use proof

by contradiction in the sense that if it does not hold, we can define a special source W ∗, its “good”
set SW∗ will be smaller than established in the previous step.

Claim. For any constant ĉ1 ∈ (0, 1), there exists a set S ∈ Supp(ĈRS) satisfying (i) Pr[ĈRS ∈ S] ≥
(1− ĉ1)ρ̂, and (ii) for any crs ∈ S and (n̂, k̂)-distribution W , it holds that

Pr
[
w ←W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1

]
≥ ĉ1ρ̂.

Proof. For convenience, we define the “verified correctly” event w.r.t. W and crs:

VCW,crs := [w ←W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1].

Then define a “good” set S for an (n̂, k̂)-distribution W . Namely,

SW := {crs ∈ Supp(CRS) : Pr[VCW,crs] ≥ ĉ1ρ̂}. (6)
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We now show
Pr[ĈRS ∈ SW ] ≥ (1− ĉ1)ρ̂ (7)

for any (n̂, k̂)-distribution W . If not, for some W , we have the following,

Pr[crs← ĈRS : VCW,crs]

≤Pr[VCW,crs|crs /∈ SW ] Pr[ĈRS /∈ SW ] + Pr[ĈRS ∈ SW ]

≤ĉ1ρ̂+ (1− ĉ1)ρ̂ = ρ̂,

which contradicts the assumption that {CAuth,CVrfy} along with ĈRS satisfies the ρ̂-correctness.
Note that SW is a “locally good” set for W , and we need a “globally good” set S for all (n̂, k̂)-

distributions. By definition, S will be the intersection of all worst-case SW w.r.t. ĈRS, namely,

S =
⋂

∀(n̂,k̂)-distribution W

SW .

Our goal is to show Pr[ĈRS ∈ S] ≥ (1− ĉ1)ρ̂. We proceed with it by contradiction. Specifically,

if not, the complement of S (denoted by SC) will satisfy Pr[ĈRS ∈ SC ] > 1−(1− ĉ1)ρ̂. By definition,
for every crsi ∈ SC , there exists a (n̂, k̂)-distribution Wi, such that

Pr[VCWi,crsi ] < ĉ1ρ̂.

Next, we can define a distribution W ∗ for which the set SW ∗ does not satisfy Eq.7. Specifically,
W ∗ = {W ∗|crsi}crsi∈Supp(ĈRS), where

W ∗|crsi =

{
Wi|crsi , if crsi ∈ SC ,

Un̂, if crsi ∈ S.
(8)

Here Un̂ denotes the uniform distribution over {0, 1}n̂. As everyWi is a worst-case (n̂, k̂)-distribution,
the min-entropy of each Wi|crsi is larger than k̂; Thus W ∗ is also a worst-case (n̂, k̂)-distribution.
However, from the definition of W ∗, it follows that SW ∗

⋂
SC = ∅, and thus Pr[CRS ∈ SW ∗ ] <

(1− ĉ1)ρ̂, which contradicts the result Eq.7. ⊓⊔

For unforgeability, it follows a similar idea but with some more work. In the following claim,
we show a set of CRSs, with sufficient weight, under a CRS in which an adversary’s advantage of
forging an authentication tag is small.

Claim. For any constant ĉ0 ∈ (0, 1), there exists a set S̃ ∈ Supp(ĈRS) such that Pr[ĈRS ∈ S̃] ≥ ĉ0,
and for any worst-case crs ∈ S̃, any (n̂, k̂)-distribution W , and any adversary A, it holds that

Pr
[
w ←W |crs, ς ← CAuth(crs, w), ς∗ ← A(crs, ς) : CVrfy(crs, w, ς∗) = 1

]
< δ̂/ĉ0.

Proof. For convenience, we define the “successfully forge” event w.r.t. W , A and crs:

SFW,A,crs := [w ←W |crs, ς ← CAuth(crs, w), ς∗ ← A(crs, ς) : CVrfy(crs, w, ς∗) = 1].

Similarly, we define a “good” set S̃W,A for W and A. Namely,

S̃W,A := {crs ∈ Supp(ĈRS) : Pr[SFW,A,crs] < δ̂/ĉ0}. (9)
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For any worst-case (n̂, k̂)-distribution W and any unbounded adversary A, it holds that

δ̂ > Pr[crs← ĈRS : SFW,A,crs]

≥ Pr[SFW,A,crs|crs /∈ S̃W,A] Pr[ĈRS /∈ S̃W,A]

≥ (δ̂/ĉ0) Pr[ĈRS /∈ S̃W,A],

(10)

which implies that Pr[ĈRS /∈ S̃W,A] ≤ ĉ0. Thus,

Pr[ĈRS ∈ S̃W,A] > ĉ0. (11)

Then, we use S̃W,A to “find” a “globally good” set. To this end, we define

S̃A :=
⋂

∀(n̂,k̂)-distribution W

S̃W,A

and prove that Pr[ĈRS ∈ S̃A] > ĉ0.

This is similar to the proof for the above claim. Specifically, for every crsi ∈ S̃
C
A, there will be

at least one (n̂, k̂)-source Wi such that

Pr[SFWi,A,crsi ] > δ̂/ĉ0.

Then, we can define a distribution W ∗,

W ∗|crsi =

{
Wi|crsi , if crsi ∈ SCA,

Un̂, if crsi ∈ SA.

By definition, it follows that S̃W ∗,A
⋂
S̃
C
A = ∅. If Pr[ĈRS ∈ S̃

C
A] > 1 − ĉ0, if holds that Pr[ĈRS ∈

S̃W,A] < ĉ0, which contradicts our result specified in Eq.11. Therefore, we have

Pr[ĈRS ∈ S̃A] > ĉ0 (12)

Next, define

S̃ =
⋂
A
S̃A

and prove that Pr[ĈRS ∈∈ S̃] > ĉ0. Similar to above arguments, for any crsi ∈ S̃
C
, there must exist

an adversary Ai such that ∃Wi and

Pr[SFWi,Ai,crsi ] > δ̂/ĉ0.

Then, we can define a “new” adversary A∗ which{
invokes Ai, if on input crsi ∈ S̃;

outputs 0, otherwise.
(13)

By definition, it must hold that S̃A∗ ∩ S̃C = ∅. In this case, if Pr[ĈRS ∈ S̃
C
] > 1− ĉ0, it follows that

Pr[ĈRS ∈ S̃A∗ ] < ĉ0, which contradicts our results specified in Eq.12. Thus, we have Pr[ĈRS ∈ S̃] >
ĉ0. ⊓⊔

Finally, by the parameter condition in Eq.5 that (1 − ĉ1)ρ̂ + ĉ0 > 1, it follows that S ∩ S̃ ̸=
∅. We pick one crs∗ ∈ S ∩ S̃, and define an ensemble of randomized function pairs {Auth =
CAuth(crs∗, ·),Vrfy = CVrfy(crs∗, ·)}. It is easy to verify this {Auth,Vrfy} satisfies ĉ1ρ̂-correctness
and δ̂/ĉ0 for all (n̂, k̂)-distributions. ⊓⊔
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4 Computational Robust Extractors

In this section, we provide a generic framework in the CRS model that compiles any computational
extractor into a robust one. Compared with previous works, our construction is the first that can
work for any CRS dependent source with minimal entropy (ω(log n) instead of n/2 as in the IT
setting).

Intuitions. As briefly discussed in the Introduction, a fairly intuitive idea is to add a MAC tag on
the helper string: with a MAC {Tag,Verify} (for simplicity here we omit the public parameters) and
a strong extractor Ext, the generation procedure produces a helper string formed by (s,Tag(w, s))
along with a randomness r, where s is the seed for Ext and r is the extracted randomness by Ext.
The reproduce procedure first checks the validity of Tag(w, s), and reproduces r = Ext(s, w) if the
tag is valid.

However, it is not hard to see the insufficiency of a normal MAC here. First, the secret w is
non-uniform, and some information about w will be further leaked by (s, r) (for the strong post-
application robustness), while a MAC usually requires a uniform key. Moreover, the tag Tag(w, s)
may also leak partial information about w (e.g., some bits of it), and thus affect the quality of
r. The above issues inspire us to consider a special MAC that can address the aforementioned
concerns simultaneously. At a high level, 1) it should be secure w.r.t. auxiliary information about
the weak secret w, as both the seed iext and the extracted string r generated from w are leaked
to adversaries; and 2) the tag of this MAC should also hide all partial information about w, such
that given the tag the extracted string r remains pseudorandom. We call such a MAC κ-MAC
(Key-Private Auxiliary-input Message Authentication). For constructing a robust extractor, we
only need to ask the one-time security of κ-MAC. 3

In the following, we formally define κ-MAC and present and analyze our framework of robust
extractors from κ-MAC. Then, we show how to construct (one-time) κ-MAC from well-studied
assumptions.

4.1 κ-MAC Definition

We define the syntax of κ-MAC in the CRS model.

Syntax. A κ-MAC scheme Σ consists of a triple of algorithms {Init,Tag,Verify}, with associated
key space K = {Kλ}λ∈N, message spaceMes = {Mesλ}λ∈N, and tag space T = {Tλ}λ∈N.
– Init(1λ). On input a security parameter 1λ, it outputs a crs whose distribution is denoted by

CRSλ and a trapdoor key τ .

– Tag(crs, k,m). The authentication algorithm takes as inputs a CRS crs, a key k ∈ Kλ, and a
message m ∈Mesλ. It outputs a tag ς ∈ Tλ.

– Verify(crs, k,m, ς). The verification algorithm takes as inputs a CRS crs, a key k, a message
m, and an authentication tag ς. It outputs either 1 accepting (m, ς) or 0 rejecting (m, ς).

The correctness states that for every crs ← Init(1λ), every secret k ∈ Kλ, and every message
m ∈ Mesλ, we have Pr[Verify(crs, k,m,Tag(crs, k,m))] = 1. A secure κ-MAC scheme should
satisfy unforgeability which is similar to regular MAC, and key privacy which requires the tag to be

3 The RO-based MAC (where Tag(w,m) = H(w,m) for a random oracle H) employed in Boyen et al.’s robust
(fuzzy) extractor [6] captures all above intuitions, and thus it can be considered as a κ-MAC in the random oracle
model.
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simulatable without using the key. Note that the trapdoor key outputted by Init is for defining the
key-privacy property alone. The main difference (with the conventional definitions) in the security
notions is that they are all under auxiliary input. We first discuss the admissible auxiliary input
and then present the formal definitions.

Admissible auxiliary inputs. Note that the auxiliary information cannot be arbitrary. (1) it must
be hard-to-invert leakage, as defined by Dodis et al. [12] which we recall in Sect. 2.4. (2) to avoid
triviality, the auxiliary information should not contain a valid authentication tag. Note that the
authentication algorithm is indeed “hard-to-invert”, and thus we have to put other restrictions
on the leakage function to exclude the trivial case. Similar issues arise in auxiliary-input secure
digital signatures [16] requiring the admissible function f to be exponentially hard-to-invert. For
our purpose, however, this treatment will impose unnecessary restrictions on the sources being ex-
tracted or the underlying extractor. Instead, we observe and leverage the following asymmetry: the
authentication algorithm is only required to be hard-to-invert for a randomly chosen CRS for which
the adversary does not hold a-priori knowledge; while the auxiliary-input function, particularly,
the Gen of the underlying extractor, can be uninvertible regardless of what knowledge A may have
about CRS. In light of the above, we present the following definition.

Definition 4 (Admissible auxiliary inputs). A function ensemble F is an ϵhv-AI w.r.t. W and
the CRS ensemble CRS, if for any function ensemble G, F is ϵhv-hard-to-invert w.r.t. the conditional
distribution ensemble (W|CRS,G(CRS)).

We may call F an ϵhv-AI without specifying W and CRS if they are obvious in the context.

One-time unforgeability. The unforgeability captures the infeasibility of forging an authentication
tag being accepted by a secret key k drawn from a high-entropy source. Particularly, it considers a
non-uniformly distributed key and allows adversaries to obtain auxiliary information about it.

Definition 5 (One-time unforgeability). Let Σ = {Init,Tag,Verify} be a κ-MAC scheme with
the key space {0, 1}n(λ). We say Σ satisfies (n, ϵunf , ϵhv) one-time unforgeability, if for any polyno-
mial time adversary A, any efficiently-samplable source W (defined over {{0, 1}n(λ)}λ∈N) and any
ϵhv-AI F , it holds that

AdvunfA,W,F (λ) = Pr[ExpunfA,W,F (λ) = 1] ≤ ϵunf(λ).

The experiment ExpunfA,W,F is defined below.

ExpunfA,W,F (λ)

(crs, τ)← Init(1λ); k ←Wλ|crs
(m, st)← A(crs, fλ(crs, k)); ς ← Tag(crs, k,m)

(m∗, ς∗)← A(ς, st)
if (m∗, ς∗) ̸= (m, ς) ∧ Verify(crs, k,m∗, ς∗) = 1 then return 1

return 0

One-time key privacy. This property seeks to capture that an adversary cannot learn anything new
about the secret from an authentication tag.

We follow the simulation paradigm that was developed for defining non-interactive zero knowl-
edge [4]. Namely, with the help of the “trapdoor” information about the CRS, these tags can be
simulated without the secret, and adversaries cannot distinguish simulated tags from real ones.
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Definition 6 (One-time key privacy). Let Σ = {Init,Tag,Verify} be a κ-MAC scheme with
the key space {0, 1}n(λ). We say Σ satisfies (n, ϵkpriv, ϵhv) one-time key privacy, if there is a PPT
algorithm SimTag, and for any polynomial-time adversary A, any efficiently-samplable source W
(defined over {{0, 1}n(λ)}λ∈N) and any ϵhv-AI F , it holds that

AdvkprivA,W,F (λ) = |Pr[Exp
kpriv,0
A,W,F (λ) = 1]− Pr[Expkpriv,1A,W,F (λ) = 1]| ≤ ϵunf(λ).

The experiments Expkpriv,0A,W,F and Expkpriv,1A,W,F are defined below.

Expkpriv,0A,W,F (λ)

(crs, τ)← Init(1λ); k ←Wλ|crs
(m, st)← A(crs, fλ(crs, k))
ς ← SimTag(crs, τ,m); b′ ← A(ς, st)
return b′

Expkpriv,1A,Σ,W,F (λ)

(crs, τ)← Init(1λ); k ←Wλ|crs
(m, st)← A(crs, fλ(crs, k))
ς ← Tag(crs, k,m); b′ ← A(ς, st)
return b′

4.2 Computational Robust Extractor from κ-MAC

We then show how to compile a strong extractor into a robust extractor (for general CRS-dependent
sources) using one-time κ-MAC. Let Ext be a (n, k, ℓ) strong extractor (working on (n, k)-sources,
and output ℓ bits) with the seed length sℓ, and let Σ = {Init,Tag,Verify} be a κ-MAC scheme with
the key space K = {{0, 1}n(λ)}λ∈N and the message spaceMes that contains {{0, 1}ℓ(λ)+sℓ(λ)}λ∈N.
Then, we illustrate our robust extractor construction E = {CRS,Gen,Rep} in Fig.1.

CRS(1λ)

(crs, τ)← Init(1λ)

return crs

Gen(crs, w)

s←$ {0, 1}sℓ(λ), r ← Ext(s, w)

ς ← Tag(crs, w, s)

return R = r, P = (s, ς)

Rep(crs, w, P )

if Verify(crs, w, s, ς) = 1

return R = Ext(s, w)

return ⊥

Fig. 1. Robust extractor rExt from randomness extractor + one time κ-MAC

Analysis. The correctness and security of our construction are fairly straightforward. We only
require the source to have minimal min-entropy to enable a strong extractor. Formally, we have the
following theorem.

Theorem 2. Let Ext be an average-case (n, k, ℓ)-strong extractor with ϵext-privacy and being ϵinv-
hard-to-invert, Σ be a κ-MAC with (n, ϵkpriv, ϵhv) one-time key privacy and (n, ϵunf , ϵhv) one-time
robustness. If ϵhv ≥ ϵinv, then for any ϵpriv,δrob, satisfying ϵpriv ≥ ϵext + 2ϵkpriv, and δrob > ϵunf ,
the construction in Fig.1 is an (n, k, ℓ)-robust extractor with ϵpriv-privacy and δrob-post-application-
robustness.

We prove the privacy and robustness in Lemma 3 and Lemma 4, respectively.

Lemma 3. rExt (in Fig.1) satisfies ϵpriv-privacy, for any ϵpriv > ϵext + 2ϵkpriv.

19



Proof. We prove this lemma by contradiction. Assume we have a polynomial-time adversary B and
an efficiently-samplable (n, k)-source W such that AdvprivB,W(λ) > ϵext + 2ϵkpriv. Then, we leverage B
to construct a polynomial-time adversary Aext for Ext, and two polynomial-time adversaries Amac,0

and Amac,1 for κ-MAC Σ, such that, for the source W, it follows that either

AdvextAext,W(λ) > ϵext, Adv
kpriv
Amac,0,W,F (λ) > ϵkpriv, or Adv

kpriv
Amac,1,W,F (λ) > ϵkpriv. (14)

Here, F is a funtion ensemble implementing Ext. As ϵhv ≥ ϵinv, such F is an admissible auxiliary
inputs. (CRS, T = {Tλ}) denotes the random variable ensemble outputted by Init of κ-MAC; As T
can be computed (even inefficiently) using CRS and coins independent of W, for every λ, we have

H̃∞(Wλ|CRSλ, Tλ) = H̃∞(Wλ|CRSλ) ≥ k(λ).

Therefore, Eq.14 contradcits our assumptions on the underlying tools, and thus AdvprivB,W(λ) ≤
ϵext + 2ϵkpriv for all admissible B and W.

Now, to proceed with the proof, we turn to construct the adversaries Aext, Amac,0 and Amac,1,
using B against rExt. The adversaries’ codes are presented below. In Aext, SimTag is the simulator
of κ-MAC. In Amac,b, r is the extracted randomness from w with the seed iext. Oβ returns a real
tag when β = 1 or returns a simulated tag when β = 0.

Algorithm Aext(iext, r, crs, τ)

ς ← SimTag(crs, τ, iext)

b′ ← B(crs, (iext, ς), r)
return b′

Algorithm AOβ

mac,b(crs, (iext, r))

Query Oβ with iext, and obtain ς

R0 ←$ {0, 1}ℓ(λ), R1 = r

β′ ← B(crs, (iext, ς), Rb)

return β′

Recall the privacy definition of a robust extractor (cf. Def.2). The adanvantage of B against
rExt’s privay w.r.t.W is defined by AdvprivB,W(λ) = |Pr[Exppriv,0B,W (λ) = 1]−Pr[Exppriv,1B,W (λ) = 1]|. Recall
the definition of the strong extractor in Sect.2, and assume that

p0 = Pr

[
(crs, τ)← (CRSλ, Tλ), w ←Wλ|crs, iext ←$ {0, 1}si(λ)

r ←$ {0, 1}ℓ(λ) : 1← Aext(iext, r, crs, τ)

]
,

p1 = Pr

[
(crs, τ)← (CRSλ, Tλ), w ←Wλ|crs, iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) : 1← Aext(iext, r, crs, τ)

]
.

Then, the advanatage of Aext against Ext is AdvextAext,W,(CRS,T )(λ) = |p0 − p1|. For b ∈ {0, 1}, we
denote Pr[Exppriv,bB,W (λ) = 1]− pb = ∆b. By standard arguments, we have

AdvprivB,W(λ) = AdvextAext,W(λ) + |∆0|+ |∆1| (15)

It is easy to verify that, at the point of B’s view, the experiment Exppriv,bB,W is identical to

Expkpriv,1Amac,b,W,F (cf. Def.6), and thus Pr[Exppriv,bB,W (λ) = 1] = Pr[Expkpriv,1Amac,b,W,F (λ) = 1]. Similarly, we

have pb = Pr[Expkpriv,0Amac,b,W,F = 1].
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Notice that AdvkprivAmac,b,W,F (λ) = |Pr[Exp
kpriv,0
Amac,b,W,F (λ) = 1] − Pr[Expkpriv,1Amac,b,W,F (λ) = 1]|, we have

AdvkprivAmac,b,W,F (λ) = ∆b. Therefore, we have

AdvprivB,W(λ) = AdvextAext,W,(CRS,T )(λ) + AdvkprivAmac,0,W,F (λ) + AdvkprivAmac,1,W,F (λ).

If AdvprivB,W(λ) > ϵext + 2ϵkpriv, Eq.14 immediately follows. ⊓⊔

Lemma 4. rExt (in Fig.1) satisfies δrob-post-application-robustness, for any δrob ≥ ϵunf .

Proof. We prove this lemma by contradiction. Assume there is δ0 > ϵunf , and we have a polynomial-
time adversary B who has an advantage greater than δ0 w.r.t. some efficiently-samplable (n, k)-
sourceW. Then, we leverage B to construct a polynomial adversary Amac against the unforgeability
of κ-MAC Σ w.r.t.W, with advantage AdvunfAmac,W,F (λ) > δ0 > ϵunf . Here F is the function ensemble
implementing Ext.
Amac can be easilly constructed. Given crs ofΣ and (iext, r) which are the seed and the extracted

randomness respectively from w (treated as auxiliary input), Amac asks an authentication tag ς
on iext, and invokes B by giving (crs, (iext, ς), r). When B breaks the robustness, i.e., it outputs
P ∗ = (i∗ext, ς

∗) ̸= (iext, ς) such that Verify(crs, w, i∗ext, ς
∗) = 1, Aam can output (i∗ext, ς

∗) as a forgery.
It is easy to see that Aam is polynomial time. ⊓⊔

4.3 Constructing one-time κ-MAC.

Now we discuss how to construct a κ-MAC. It is natural to view κ-MAC as a special leakage-resilient
MAC, then upgrade it to add “key privacy”. Given state of the art, the only known approach to
MACs tolerating hard-to-invert leakage is using auxiliary-input secure signatures [16,29]. However,
it turns out to be more involved when considering weak keys and key privacy. We have to revisit
the design framework of auxiliary-input secure signatures, adapt it to the symmetric setting, and
address the subsequent challenges for realizing the new framework. To illustrate the challenges
and ideas towards κ-MAC we first briefly recall Katz-Vaikuntanathan’s leakage-resilient signature
scheme [22] which was later shown by Faust et al. [16] to be secure against hard-to-invert leakage
(with minor modifications). For clarification, we follow Dodis et al.’s [11] insightful abstraction,
which bases KV signature upon the following building blocks.

– A leakage-resilient hard relation RLR with its sampling algorithm GenLR. R is an NP relation,
and GenLR is a PPT algorithm which always outputs (y, k) ∈ RLR. We say RLR is leakage-reslient,
if for any efficient adversary A and any admissible leakage function f , it holds that

Pr[(y, k)← GenLR(1
λ), k∗ ← A(y, f(y, k)) : (y, k∗) ∈ RLR] ≤ negl(λ).

– A true-simulation-extractable NIZK (tSE-NIZK) ( [11], and definition recalled in the prelimi-
nary) Π for the relation R̄LR := {(y, k,m) : (y, k) ∈ RLR}.

Informally, Katz-Vaikuntanathan signature proceeds as follows: To sign a message m, the signer
with sk proves the knowledge of k for a statement (y, k,m) ∈ R̄LR and returns the proof π
as the signature σ, where (y, k) ∈ RLR is part of the verification key. Given that Π is a tSE-
NIZK, a successful forgery will violate that RLR is a leakage-resilient hard relation. Specifically,
the zero-knowledgness guarantees the signature will not leak new information about k, and the
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true-simulation-extractability ensures that an adversary who successfully generated a forgery must
have k∗ s.t. (y, k∗) ∈ RLR. It follows that this adversary could produce k∗ only given the verification
key y and the leakage f(y, k), which contradicts our assumption that RLR is leakage-resilient hard.

Towards κ-MAC. While we can trivially use a signature scheme as a MAC by taking both vk and
sk as the authentication key, this approach will require the key to be structural. However, κ-MAC
needs to work for weak keys. The central question is how to safely generate and share (vk, sk)
between the sender and the receiver (verifier), while they initially only have a weak key in common
that relates to the CRS.

It is safe to treat the CRS of tSE-NIZK (contained in the verification key vk) as a part of
CRS in our κ-MAC construction. We then deal with (y, k) ∈ RLR. A natural approach is to take
the shared weak key as k and efficiently generate y according to k. However, while signatures can
assume a bulletin board for posting verification keys, in κ-MAC, y has to be sent to the verifier
via an unauthenticated channel (namely, being a part of the authentication tag). Consequently,
adversaries might alter y to y′, as the verifier will not notice this change if (y′, k) ∈ RLR. To prevent
those attacks, we take the following steps.

– Observe that there might be a part of y (denoted by pp) that could be generated without k and
reused across statements. We let pp be a part of CRS, so adversaries cannot modify it.

– We strengthen the definition of leakage-resilient hard relation against adversaries who alter the
other part of y (denoted by yk). Namely, given (pp, yk) and leakage about k, adversaries cannot
generate (yk′, k′) such that ((pp, yk′), k′) ∈ RLR and ((pp, yk′), k) ∈ RLR. We call such a relation
a strengthened leakage-resilient hard relation (sLRH relation).

Next, for key privacy, yk (as a statement) should be indistinguishable with another ỹk (simulated
without k). Note that this requirement cannot be bypassed, even when yk is uniquely determined by
(pp, k) and is not contained in the authentication tag explicitly, since a NIZK proof is not supposed
to hide the statement being proved. We therefore require the generator of κ-MAC to be a private
generator.

We formalize all notions and intuitions in the following definition.

Definition 7. Let RLR be an NP relation defined over {Yλ × {0, 1}n(λ)}λ∈N,

– Generator. A pair of PPT algorithms (PGen, SGen) is a generator of RLR, if for every λ ∈ N
and k ∈ {0, 1}n(λ), it follows that

Pr[pp← PGen(1λ), yk ← SGen(pp, k) : ((pp, yk), k) ∈ RLR] = 1.

– sLRH relation. RLR along with (PGen, SGen) is an (n, ϵlr, ϵhv)-sLRH relation, if for any
efficiently-samplable source W (over {{0, 1}n(λ)}λ∈N and dependent of PGen) and any ϵhv-AI F
w.r.t. W and PGen, for any P.P.T adversary A, it holds that AdvslrhA,W,F (λ) = Pr[ExplrA,W,F (λ) =

1] ≤ ϵlr(λ). ExplrA,W,F is defined below.

ExplrA,W,F (λ)

pp← PGen(1λ), k ←Wλ|pp, yk ← SGen(pp, k)

(yk′, k′)← A(pp, yk, fλ(pp, k))
if (pp, yk′, k′), (pp, yk′, k) ∈ RLR then return 1

return 0
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– Private generator. (PGen, SGen) satisfies (n, ϵpr, ϵhv)-privacy, if for (A,W,F) above,
AdvprA,W,F (λ) = |Pr[Exppr,0A,W,F (λ) = 1] − Pr[Exppr,1A,W,F (λ) = 1]| ≤ ϵpr(λ). The experiments are
defined below.

Exppr,0A,W,F (λ)

pp← PGen(1λ)

k ←Wλ|pp, k′ ←$ {0, 1}n(λ)

yk ← SGen(pp, k′)

b′ ← A(pp, yk, fλ(pp, k))
return b′

Exppr,1A,W,F (λ)

pp← PGen(1λ)

k ←Wλ|pp
yk ← SGen(pp, k)

b′ ← A(pp, yk, fλ(pp, k))
return b′

Remark 2. The auxiliary-input function f does not take as input yk, because yk is generated by the
authentication algorithm, and the auxiliary input is supposed to be leaked before authenticating.
The source W and the leakage are dependent on pp since it is a part of the CRS. Other parts of
CRS are not considered explicitly since the generator SGen does not use them.

The final κ-MAC construction. Using an sLRH relation RLR along with its private generator
(PGen,SGen) and a one-time tSE-NIZK Π = {Szk,Pzk,Vzk} for the relation R̄LR := {(pp, yk, k,m) :
((pp, yk), k) ∈ RLR}, we construct an one-time κ-MAC scheme in Fig.2. 4

Init(1λ)

(crszk, tk, ek)← Szk(1
λ)

pp← PGen(1λ)

return

crs = (crszk, pp), τ = tk

Tag(crs, k,m)

yk ← SGen(pp, k)

π ← Pzk(crszk,

(pp, yk,m), k)

return ς = (yk, π)

Verify(crs, k,m, ς)

return 1 iff

(pp, yk, k) ∈ RLR

Vzk(crszk, (pp,

yk,m), π) = 1

Fig. 2. One-time κ-MAC from tSE-NIZK + sLRH relation

Analysis. Correctness is easy to see. Regarding security: from the privacy of the generator SGen and
the zero-knowledgeness of Π, efficient adversaries cannot learn new information about k from the
tag (y, π), and the key privacy follows. The tSE-NIZK ensures an adversary who successfully forges
an authentication tag can also output a pair (y′, k′) ∈ RLR s.t. (y′, k) ∈ RLR, which contradicts the
sLRH relation, and thus the unforgeability follows.

Theorem 3. Let (PGen,SGen) be an (n, ϵpr, ϵhv)-private generator for an NP relation RLR, and RLR

along with (PGen,SGen) be an (n, ϵlr, ϵhv)-sLRH relation. Let Π = {Szk,Pzk,Vzk} be a NIZK for the
relation R̄LR satisfying ϵzk-ZK and ϵtse-tSE. Then, the construction in Fig.2 satisfies (n, ϵkpriv, ϵhv)
one-time key privacy and (n, ϵunf , ϵhv) one-time unforgeability, for any ϵkpriv ≥ ϵpr + ϵzk, and any
ϵunf ≥ ϵzk + ϵtse + ϵlr.

We prove the one-time key-privacy and the one-time unforgeability in Lemma 5 and Lemma 6,
respectively.

4 The one-time κ-MAC is enough for our purpose; we may generalize our construction to get a full-fledged κ-MAC
using multi-message secure DPKE [7], which will require concrete entropy bound on the source though.
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Lemma 5. The κ-MAC Σ satisfies (n, ϵkpriv, ϵhv) one-time key privacy, for any ϵkpriv > ϵpr + ϵzk.

Proof. We first present the simulator SimTag below.

– SimTag(crs, τ,m). Sample k′ ←$ {0, 1}n(λ), invoke yk ← SGen(pp, k′),
run π ← SPzk(crszk, tkzk, (pp, yk)), and return ς = (π, yk).

Suppose, for contradiction, that there exists a polynomial-time adversary B, an efficiently-
samplable source W and an ϵhv-AI F , such that AdvkprivB,W,F (λ) > ϵpr + ϵzk. We show there exist
either

– a polynomial-time adversary Apr, an efficiently-samplable sourceW ′ and an ϵhv-AI F ′ w.r.t.W ′
and PGen, against the privacy of (PGen, SGen) with the advantage AdvprApr,W ′,F ′(λ) > ϵpr; Or,

– a polynomial-time adversary Azk against ZK with the advantage AdvzkAzk
(λ) > ϵzk.

To facilitate the analysis, we define the following hybrid experiment.

Exp
kpriv,1/2
B,W,F (λ)

(crs, τ)← Init(1λ); k ←Wλ|crs
(m, st)← B(crs, fλ(crs, k))
yk ← SGen(pp, k), πzk ← SPzk(crszk, tkzk, (pp, yk,m))

b′ ← B((yk, πzk), st)

return b′

It is worth noting that, for any (B,W,F),

AdvkprivB,W,F (λ) ≤ |Pr[Exp
kpriv,0
B,W,F (λ) = 1]− Pr[Exp

kpriv,1/2
B,W,F (λ) = 1]|+

|Pr[Expkpriv,1/2B,W,F (λ) = 1]− Pr[Expkpriv,1B,W,F (λ) = 1]|.
(16)

We construct (Apr,W ′,F ′) below 5.

Global Setup:

(crszk, tk, zk)← Szk(1
λ)

F ′ = {f ′λ} and W ′ = {W ′λ}
f ′
λ(pp, k) = fλ(crszk, pp, k)

W ′
λ = Wλ|crszk

Algorithm Apr(pp, yk, f
′
λ(pp, k))

(m, st)← B(crszk, pp, f ′
λ(pp, k))

πzk ← SPzk(crszk, tk, (pp, yk,m))

b← B((yk, πzk), st)

return b

At the point of B’s view, when k′ ←$ {0, 1}n(λ) and yk ← SGen(pp, k′), the environment provided

by Apr (together with W ′ and F ′) is identical to that of Expkrpiv,0B,W,F ; when k ← W ′λ|pp and yk ←
SGen(pp, k), the environment provided by Apr (together with W ′ and F ′) is identical to that of

Exp
krpiv,1/2
B,W,F . Thus,

AdvprApr,W ′,F ′(λ) = |Pr[Expkpriv,0B,W,F (λ) = 1]− Pr[Exp
kpriv,1/2
B,W,F (λ) = 1]|. (17)

5 As every Wλ can be sampled using a polynomial-size circuit G on input (crszk, pp), Wλ|crszk can be sampled using
G hard-coding crszk, namely, G(crszk, ·)
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Next, we describle the adversary Azk against ZK below, where Oβ returns the real proof if β = 1
or the simulated proof if β = 0;

Algorithm Azk(crszk)

pp← PGen(1λ), k ←Wλ|crszk,pp, (m, st)← B((crszk, pp), fλ(crs, pp, k))
yk ← SGen(pp, k), πzk ← Oβ(pp, yk, k), b

′ ← B((yk, πzk), st)

return b′

At the point of B’s view, when β = 1, the environment provided by Azk is identical to that

of Expkpriv,1B,W,F ; when β = 0, the environment provided by Azk is identical to that of Exp
kpriv,1/2
B,W,F .

Therefore,

AdvzkAzk
(λ) = |Pr[Expkpriv,1/2B,W,F (λ) = 1]− Pr[Expkpriv,1B,W,F (λ) = 1]|. (18)

Combining Eq.16, 17, 18, we have

AdvkprivB,W,F (λ) ≤ AdvprApr,W ′,F ′(λ) + AdvzkAzk
(λ).

If ϵpr + ϵzk < AdvkprivA,W,F(λ), it follows either Adv
pr
Apr,W ′,F ′(λ) > ϵpr or Adv

zk
Azk

(λ) > ϵzk. ⊓⊔

Lemma 6. The κ-MAC satisfies (n, ϵunf , ϵhv) one-time unforgeability, for any ϵunf > ϵzk+ ϵtse+ ϵlr.

Proof. We establish the following hybrid experiments.

Expunf,1A,W,F . It is almost identical to ExpunfA,W,F (in Def.5), except that Tag is replaced with T̃ag.

– T̃ag. Compared with Tag, it generates πzk by using the simulator prover algorithm SPzk instead
of the real prover Pzk.

For any (A,W,F), we denote

ϵ0 = |Pr[ExpunfA,W,F (λ) = 1]− Pr[Expunf,1A,W,F (λ) = 1]|

It is easy to see there exists a polynomial-time adversary Azk breaking the ZK property of Πzk with
advantage ϵ0. Thus, ϵ0 ≤ ϵzk.
Expunf,2A,W,F . It is almost identical to Expunf,1A,W,F , except the Verify is replaced with V̂erify.

– V̂erify. Compared with Verify, it adds an additional checking step. For an authentication tag
(yk, πzk) for m under crs, it runs the knowledge extractor KExt to obtain k∗ from πzk. If
(pp, yk, k∗) /∈ RLR, it returns ⊥.

For any (A,W,F), we denote

ϵ1 = |Pr[Expunf,1A,W,F (λ) = 1]− Pr[Expunf,2A,W,F (λ) = 1]|

At the point of A’s view, Expunf,1A,W,F and Expunf,2A,W,F will be identical, unless that A makes V̂erify
abort, breaking the one-time tSE of Πzk. Thus, ϵ1 ≤ ϵtse.

Finally, denoting Pr[Expunf,2A,W,F (λ) = 1] by ϵ2, we show ϵ2 ≤ ϵlr for any admissible (A,W,F).
Indeed, for any admissible (A,W,F), there exist an adimissible tuple of (Alr,W ′,F ′) such that
AdvslrhAlr,W ′,F ′(λ) = ϵ2. We describe (Alr,W ′,F ′) below.
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Global Setup:

(crszk, tk, zk)← Szk(1
λ)

F ′ = {f ′λ} and W ′ = {W ′λ}
f ′
λ(pp, k) = fλ(crszk, pp, k)

W ′
λ = Wλ|crszk

Algorithm Alr(pp, yk, f
′
λ(pp, k))

(m, st)← B(crszk, pp)
πzk ← SPzk(crszk, tk, (pp, yk,m))

(m∗, (yk∗, π∗
zk))← B((yk, πzk), st)

k∗ ← KExtzk(crszk, ek, (pp, yk
∗,m∗), π∗

zk)

return (yk∗, k∗)

Combining all above results, for any polynomial-time B, any efficiently-samplable W and F
satisfying F is ϵhv w.r.t. W, it holds that

AdvunfB,W,F (λ) ≤ ϵzk + ϵtse + ϵlr.

⊓⊔

As shown by Dodis et al. [11], a tSE-NIZK could be constructed using CPA-secure PKE and
standard NIZK, or CCA-secure PKE and simulation-sound NIZK. Both approaches can be based
on standard assumptions. However, while a leakage-resilient hard relation can be instantiated with
a second-preimage-resistant hash function H, the statement y = H(k) will leak some information
about k. For key privacy, we need new constructions for strengthened LRH relations.

sLRH relation from deterministic public-key encryption. Note that the privacy of the
generator is not an orthogonal property of sLRH relation; it prevents adversaries from finding the
exact k from (pp, yk) and the leakage. If it is further ensured that adversaries cannot find a distinct
k′ along with yk′ such that both (pp, yk′, k) and (pp, yk′, k′) belong to RLR, RLR with a private
generator will be a sLRH relation. We therefore abstract a useful property of RLR called “collision
resistance” below.

Definition 8. RLR is (n, ϵcr)-collision-resistant w.r.t. PGen, if for any polynomial-time A, it holds
that AdvcrA(λ) ≤ ϵcr(λ), where AdvcrA(λ) is defined as

Pr[pp← PGen(1λ), (yk, k, k′)← A(pp) : k ̸= k′ ∧ (pp, yk, k) ∈ RLR ∧ (pp, yk, k′) ∈ RLR].

A collision-resistant relation with a private generator will be a sLRH relation.

Lemma 7. Let (PGen, SGen) be an (n, ϵpr, ϵhv)-private generator for RLR. If RLR satisfies (n, ϵcr)-
collision-resistance w.r.t. PGen, RLR with (PGen,SGen) is an (n, ϵlr,

1
2ϵhv)-sLRH relation, for any

ϵlr ≥ 2ϵpr + ϵcr +
1
2ϵhv.

Proof. Suppose, for contradiction, that there exists a polynomial-time adversary B, an efficiently-
samplable source W and a 1

2ϵhv-AI F , such that AdvlrB,W,F (λ) > 2ϵpr + ϵcr +
1
2ϵhv. We show there

exist either

– a polynomial-time adversary Apr and a ϵhv-AI F ′ against the privacy of (PGen,SGen) with the
advantage AdvprApr,W,F ′(λ) > ϵpr; Or,

– a polynomial-time adversary Acr against the collision-resistance of RLR with the advantage
AdvcrAcr

(λ) > ϵcr.
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To proceed with this proof, we now describe (Apr,F ′) and Acr. F ′ = {f ′λ} is defined as

f ′λ(pp, k) = (r, ⟨r, k⟩, fλ(pp, k)),

where r ←$ {0, 1}n(λ). As any adversary having fλ(pp, k) can simulate f ′λ(pp, k) with at least
probability of 1

2 , it follows F
′ is at least ϵhv-hard-to-invert w.r.t. W. The codes of Apr and Acr are

presented below.

Algorithm Apr(pp, yk, f
′
λ(pp, k))

Parse f ′
λ(pp, k) = (r, β, fλ(pp, k))

(yk′, k′)← B(pp, yk, fλ(pp, k))
if ⟨r, k′⟩ = β then return 1

return 0

Algorithm Acr(pp)

k ←Wλ|pp, yk ← SGen(pp, k)

(yk′, k′)← B(pp, yk, fλ(pp, k))
return (yk′, k, k′)

First, we analyze the advantage of Apr. For notational convenience, we define the following
events. (1) Evk=k′ : B outputs k′ = k; (2) Evk ̸=k′ : B outputs k′ s.t. k′ ̸= k; (3) Ev0k ̸=k′ : Evk ̸=k′∩⟨r, k′⟩ ≠
β; (4) Ev1k ̸=k′ : Evk ̸=k′ ∩ ⟨r, k′⟩ = β; (5) Ev1Apr

: Apr returns 1.

By the description of Apr, observe that in Evk=k′ and Ev1k ̸=k′ , Apr always outputs 1, and that in

Ev0k′ ̸=k, Apr always outputs 0. Moreover, as r is independent of the view of B,

Pr[Ev0k ̸=k′ ] = Pr[Ev1k ̸=k′ ] =
1

2
Pr[Evk ̸=k′ ].

Therefore, regardless the distribution of Apr’s input, the following equation holds.

Pr[Ev1Apr
] =Pr[Ev1Apr

|Evk=k′ ] Pr[Evk=k′ ] + Pr[Ev1Apr
|Evk ̸=k′ ] Pr[Evk ̸=k′ ]

=Pr[Evk=k′ ] + Pr[Ev1Apr
|Ev1k ̸=k′ ] Pr[Ev

1
k ̸=k′ ]

=Pr[Evk=k′ ] +
1

2
Pr[Evk ̸=k′ ] =

1

2
+

Pr[Evk=k′ ]

2
.

(19)

Recall Definition 7, in Exppr,0Apr,W,F ′ and Exppr,1Apr,W,F ′ , the input of Apr are two different distribu-
tions which we here denote by D0 and D1, respectively. Now, we can reformulate the advantage of
Apr as

AdvprApr,W,F ′(λ) = |Pr[Ev1,D0

Apr
]− Pr[Ev1,D1

Apr
]| = 1

2
|Pr[EvD0

k=k′ ]− Pr[EvD1
k=k′ ]|, (20)

where EvDb denotes the event Ev conditioned on that Apr’s input distribution is Db, for b ∈ {0, 1}.
When Apr’s input distribution is D1, at the point of B’s view, the environment provided by Apr

is identical to that of ExplrB,W,F . In this case, EvD1
k=k′ implies B breaks the sLRH relation. Thus,

Pr[EvD1
k=k′ ] = Pr[ExplrB,W,F (λ) = 1 ∩ EvD1

k=k′ ] = Pr[EvD1
k=k′ |Exp

lr
B,W,F (λ) = 1]AdvlrB,W,F (λ). (21)

When Apr’s input distribution is D0, as yk provided to B is independent of k, EvD0
k=k′ means

that B find the exact pre-image k from pp and fλ(pp, k). It follows that

Pr[EvD0
k=k′ ] ≤

ϵhv(λ)

2
. (22)
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Combining Eq.20, 21 and 22, we have

AdvprApr,W,F ′(λ) ≥
Pr[EvD1

k=k′ |Exp
lr
B,W,F (λ) = 1]AdvlrB,W,F (λ)

2
− ϵhv(λ)

4
. (23)

Next, we analyze the advantage of Acr. At the point of B’s view, the environment provided by
Acr is identical to that of ExplrB,W,F . Moreover, as analyzed before, the enviroment provided by Apr

with input from D1 is also identical to that of ExplrB,W,F ; thus, we can use the notation EvD1
k ̸=k′ to

denote the event that, in the environment provided by Acr, B outputs k′ ̸= k. Notice that Acr wins
iff B wins and k′ ̸= k, we have

AdvcrAcr
(λ) = Pr[ExplrB,W,F (λ) = 1 ∩ EvD1

k ̸=k′ ] = Pr[EvD1
k ̸=k′ |Exp

lr
B,W,F (λ) = 1]AdvlrB,W,F (λ). (24)

Combining Eq.23 and 24, it follows that

AdvcrAcr
(λ) + 2AdvprApr,W,F ′(λ) ≥ AdvlrB,W,F (λ)−

ϵhv(λ)

2
> ϵcr + 2ϵpr. (25)

Thus, it follows either AdvcrAcr
(λ) > ϵcr or AdvprApr,W,F ′(λ) > ϵpr. We obtain the contradiction and

complete the proof. ⊓⊔

We now construct a collision-resistant relation with a private generator. An auxiliary-input
secure deterministic public-key encryption (DPKE) scheme is a natural tool for realizing an NP
relation with a private generator. Since no randomness is used, it is easy to check whether a
ciphertext cde encrypts a message mde under a public key pkde. We can define an NP relation

Rde = {(pkde, cde,mde) : cde=Ede(pkde,mde)} (26)

From the auxiliary-input security of DPKE, the key generation algorithm and the encryption algo-
rithm will give a private generator for Rde.

The relation Rde is almost collision-resistant. Under a valid public key pkde (namely, there is a
secret key skde to decrypt all ciphertexts under pkde), the (perfect) correctness of DPKE ensures
that for any ciphertext cde there is at most one message mde such that cde=Ede(pkde,mde). While it
seems straightforward to ensure the validity of pkde by putting it into the CRS, however, it violates
security. The problem inherits from that DPKE only applies to message distributions independent
of public key, but our goal is to have a construction for CRS-dependent sources.

We enforce the validity of public key as follows: note that all valid pairs of (pkde, skde) define
an NP relation Rpk, and pkde can be guaranteed valid (with overwhelming probability) using a
NIZK proof demonstrating the knowledge of skde s.t. (pkde, skde) ∈ Rpk (the key relation). Now,
pkde (with its validity proof) can be outputted by SGen, and PGen is only used to establish a CRS
of NIZK. Though CRS is still in need, adaptively secure NIZK does allow CRS-dependent sources.
The relation Rde needs to be extended for verifying the proof. Formally, let Σde = {Kde,Ede,Dde}
be an auxiliary-input secure DPKE scheme with message space {{0, 1}n(λ)}λ∈N and the key relation
Rpk, and Πpk = {Spk,Ppk,Vpk} be a NIZK for Rpk. We define an NP relation Rde

LR and construct its
generator (PGende,SGende) below.

Summarizing the above, we have the following result.
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PGende(1
λ)

(crspk, tkpk)← Spk(1
λ)

return pp = crspk

SGende(pp, k = mde)

(pkde, skde)← Kde(1
λ)

πde ← Ppk(crspk, pkde, skde)

cde ← Ede(pkde,mde)

return yk = (cde, pkde, πde)

Relation Rde
LR

(pp, yk, k) ∈ Rde
LR iff

cde = Ede(pkde,mde)

∧ Vpk(crspk, pkde, πpk) = 1

Fig. 3. sLRH relation from DPKE + NIZK

Lemma 8. Let Σde be (n, ϵhv, ϵind)-PRIV-IND secure DPKE with message space {{0, 1}n(λ)}λ∈N,
Rpk be its key relation. Let Πpk be a NIZK for Rpk with ϵzk-ZK and ϵsnd-adpative-soundness.
(PGende, SGende) (in Fig.3) is a (n, ϵpr, ϵhv)-private generator of Rde

LR for any ϵpr ≥ ϵind + 2ϵzk,
and Rde

LR is (n, ϵcr)-collision resistant w.r.t. PGende, for any ϵcr ≥ ϵsnd.

Proof. Let us analyze the collision resistance. If Acr breaks the collision-resistance w.r.t. PGen,
then under an honestly generated pp = crspk, it produces (πpk, pkde, cde, k

′) such that πpk is a
valid proof showing pkde is a valid public key, i.e., there exists skde s.t. (pkde, skde) ∈ Rpk, and
c = Ede(pkde, k) = Ede(pkde, k

′) for different k ̸= k′. However, if pkde is valid, (cde, pkde) determines
k. Therefore, if finding k′ ̸= k, πpk must be valid proof for a false statement. It follows that
AdvcrAcr

(λ) ≤ ϵsnd for any polynomial-time Acr.
We now analyze the key privacy. Recall Definition 7,

AdvprA,W,F (λ) = |Pr[Exp
pr,0
A,W,F (λ) = 1]− Pr[Exppr,1A,W,F (λ) = 1]|.

Besides Exppr,0A,W,F and Exppr,1A,W,F , we define the following hybrid experiments to facilitate our proof.

Exp
pr, 1

3
A,W,F . It is almost identical to Exppr,0A,W,F , except that πde in yk is a simulated proof, i.e.,

πde ← SPpk(crspk, tkpk, pkde).

Exp
pr, 2

3
A,W,F . It is almost identical to Exp

pr, 1
3

A,W,F , except that cde encypts of a uniformly chosen ran-

domness k′.
It is easy to see for any polynomial-time A,

|Pr[Exppr,0A,W,F (λ) = 1]− Pr[Exp
pr, 1

3
A,W,F (λ) = 1]| ≤ ϵzk,

|Pr[Exppr,
1
3

A,W,F (λ) = 1]− Pr[Exp
pr, 2

3
A,W,F (λ) = 1]| ≤ ϵind,

and

|Pr[Exppr,
2
3

A,W,F (λ) = 1]− Pr[Exppr,1A,W,F (λ) = 1]| ≤ ϵzk.

It follows that for any polynomial-time A, any efficiently-sampable W and any ϵhv-AI F ,
AdvprA,W,F (λ) ≤ ϵind + 2ϵzk. ⊓⊔

Under the exponentially-hard DDH assumption [30], it is known to exist a DPKE which is perfectly
correct and secure against any ϵ-hard-to-invert leakage (as long as ϵ is a negligible function ).
Following Theorem 3 and Lemma 8, we have a κ-MAC against any ϵ-hard-to-invert leakage and
thus can compile any secure randomness extractor.
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5 Extension to Robust Fuzzy Extractors

In this section, we construct robust fuzzy extractors.

Intuition. Similar to the non-fuzzy case, we use a κ-MAC scheme to authenticate the helper string
of the underlying fuzzy extractor. However, correctness and security will not directly inherit from
the non-fuzzy case. Correcteness can be fixed easily. We can use secure sketches to construct the
underlying fuzzy extractor; thus one can recover the original secret w from the helper string using
a close secret w′.

We now discuss the obstacles to security. While the helper string has to contain a secure sketch,
the adversary may manipulate the secure sketch such that the recovered secret w′′ is not identical
to the original secret w, and she may forge an authentication tag being accepted by w′′ to break the
robustness. We can simply reject all w′′ that are not t-close to w′ (in this case w′′ must be incorrect),
and an allowed w′′ will be 2t-close to w. The challenge is to ensure that adversaries cannot forge
an authentication tag being accepted by this 2t-close secret. In the following, we introduce fuzzy
unforgeability of κ-MAC, and show that the construction given in the last section already satisfies
this property. Then, we construct a robust fuzzy extractor for CRS-dependent sources by using
fuzzy-unforgeable κ-MAC.

κ-MAC with fuzzy unforgeability. A κ-MAC scheme Σ = {Init,Tag,Verify} satisfies q-fuzzy
unforgeability, if given an authentication tag ς from k along with an auxiliary input about k, one
cannot forge a new authentication tag being accepted by any target secret k′ which is q-close to
k. We allow the adversary to shift the original secret k any way she likes. I.e., the adversary can
specify an arbitrary efficient function shift such that k′ = shift(k, z) 6, where z denotes arbitrary
auxiliary information stored in the verifier’s machine.

Definition 9 (One-time fuzzy-unforgeability). Let Σ = {Init,Tag,Verify} be a κ-MAC scheme
with the key space {0, 1}n(λ). We say Σ satisfies (n, q, ϵunf) one-time fuzzy-unforgeability w.r.t.
(W,F), if for any polynomial-time adversary A, any W ∈W, any F ∈ F, and any Z, it holds that

Advf−unfA,W,F (λ) = Pr[Expf−unfA,W,F (λ) = 1] ≤ ϵunf(λ).

The experiment Expf−unfA,W,F is defined below, where shift is an arbitrary efficient function.

Expf−unfA,W,F (λ)

(crs, τ)← Init(1λ); (k, z)← (Wλ|crs, Zλ|crs)
(m, st)← A(crs, fλ(crs, k)); ς ← Tag(crs, k,m)

(m∗, ς∗, shift)← A(ς, st)
if (m∗, ς∗) ̸= (m, ς) ∧ k′ = shift(k, z) ∈ Bq(k)

∧ Verify(crs, k′,m∗, ς∗) = 1 then return 1

return 0

Construction from fuzzy sLRH relation. Recall our κ-MAC construction in Fig.2. If an adversary
who is given yk and leakage about k outputs a forgery being accepted by a secret k∗, then, by

6 In the conference version [17], it was required that the forged authentication tag should not be accepted by any
q-close secret, rather than a target secret specified by the adversary. That definition is unnecessarily strong and
cannot be achieved by our construction.

30



tSE-NIZK, the adversary is able to output (yk′, k′) such that both (pp, yk′, k′) and (pp, yk′, k∗)
belong to the relation RLR. For one-time standard unforgeability, k and k∗ are equal, and such
an adversary contradicts the definition of sLRH relation. For one-time q-fuzzy unforgeability, k∗

will just be q-close to w, and we therefore strengthen the sLRH relation into its fuzzy version
accordingly.

Definition 10 (Fuzzy-sLRH relation). Let RLR be an NP relation with a generator (PGen,SGen).
We say RLR is an (n, q, ϵlr)-fuzzy-sLRH relation, if for any adversary A ∈ Cs(·), any W ∈ W and

any F ∈ F, it holds that AdvflrA,W,F (λ) = Pr[ExpflrA,W,F (λ) = 1] ≤ ϵlr(λ).

The experiment ExpflrA,W,F is defined below, where shift is an arbitrary efficient function, and Zλ

denotes an arbitrary distribution of auxiliary information.

ExpflrA,W,F
pp← PGen(1λ), (k, z)← (Wλ|pp, Zλ|pp), yk ← SGen(pp, k)

(yk∗, k∗, shift)← A(pp, yk, fλ(pp, k))
if k′ = shift(k, z) ∈ Bq(k) ∧ (pp, yk∗, k∗) ∈ RLR ∧ (pp, yk∗, k′) ∈ RLR

then return 1

return 0

We show the κ-MAC construction in Fig.2 will be a q-fuzzy unforgeable, if the underlying sLRH
relation is a q-fuzzy sLRH relation.

Lemma 9. Let RLR along with (PGen,SGen) be an (n, ϵlr)-q-fuzzy sLRH relation w.r.t. W and
F. Let Π = {Szk,Pzk,Vzk} be a NIZK for the relation R̄LR satisfying ϵzk-ZK and ϵtse-tSE. Then,
the construction in Fig.2 satisfies (n, q, ϵunf) one-time fuzzy-unforgeability w.r.t. W and F, for any
ϵunf > ϵzk + ϵtse + ϵlr.

Proof. This proof is very similar to the proof of Lemma 6. We have the following hybrid experiments.

Expf−unf,1A,W,F . It is almost identical to Expf−unfA,W,F , except that Tag is replaced with T̃ag that is defined

in the proof of Lemma 6.

Expf−unf,2A,W,F . It is almost identical to Expf−unf,1A,W,F , except that Verify is replaced with V̂erify defined in

the proof of Lemma 6.

Following the same arguments in Lemma 6, we have that for any (A,W,F),

|Pr[Expf−unf,2A,W,F (λ) = 1]− Pr[Expf−unfA,W,F (λ) = 1]| ≤ ϵzk + ϵtse.

Now we analysis the probability ϵ = Pr[Expf−unf,2A,W,F (λ) = 1]. In this event, the adversary A produces
(m∗, ς∗ = (yk∗, π∗zk), shift) such that (pp, yk∗, k′) ∈ RLR for k′ = shift(k, z), and the verifier

algorithm V̂erify could extract k∗ from π∗zk such that (pp, yk, k∗) ∈ RLR. With this (A,W,F), we
can construct an adversary Alr against the (n, q, ϵlr)-fuzzy-sLRH relation, with probability ϵ. Thus,
ϵ ≤ ϵlr, and it follows that

Pr[Expf−unfA,W,F (λ) = 1] ≤ ϵzk + ϵtse + ϵlr

for any polynomial-time A, any W ∈W, and any F ∈ F . ⊓⊔
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Fuzzy sLRH relation from collision-resistant relation with private generator. For a “collision resis-
tant” sLRH relation, the adversary can “frame” some k′ only when she finds k′. If given (pp, yk)
finding k′ ∈ Bt

q is hard, then the relation will be a q-fuzzy sLRH relation. We argue when we can
have the latter property from the privacy of the generator.

Note that the privacy of the generator cannot ensure that (pp, yk) hides all partial information
about k, as (pp, yk) itself must be non-trivial about k. Actually, the privacy ensures that adversaries
cannot learn anything which is useful for deciding that yk is either generated by using the leaked
key k or using an independent key. Then, for small q such that Bq(k) only contains polynomial
points, k′ ∈ Bq(k) is surely hard-to-find from (pp, yk). However, for large q such that Bq(k) could
contain super-polynomial points, this argument does not apply.

We overcome this challenge by observing the task of recovering k from k′ can be done with
the help of 2t-secure sketch. More specifically, assume an adversary can recover k′ from (pp, yk).
Then, the distinguisher specifies the leakage as a 2t-secure sketch, invokes the adversary to have
this k′ ∈ B2t(k), and converts k′ to k with the help of the secure sketch. Formally, we have the
following theorem.

Theorem 4. Let (PGen,SGen) be a (n, ϵpr, ϵhv)-private generator for an NP relation RLR, and let
RLR be (n, ϵcr)-collision-resistant w.r.t. PGen. Then RLR along with (PGen, SGen) will be a (n, q, ϵlr)-
fuzzy sLRH relation, for any ϵlr > 2ϵpr + ϵcr +

ϵhv
2 , w.r.t. W and F which satisfy the following

conditions. (1) There is a q-secure sketch {SS,Rec} for each W ∈ W. (2)For every F ∈ F, define
F̃ = {f̃λ} where

f̃λ(pp, w) = (r, ⟨r, w⟩,SS(w), fλ(pp, w)), r ←$ {0, 1}n(λ);

then, F̃ should be an ϵhv-AI w.r.t. every W and PGen.

Proof. The proof is similar to the proof of Lemma.7.
Suppose, for contradiction, that there exist a polynomial-time adversary B, W ∈ W, F ∈ F,

and some Z, such that AdvslrB,W,F (λ) > ϵlr > 2ϵpr + ϵcr +
ϵhv
2 . We show there exist either

– a polynomial-time adversary Apr against the privacy of (PGen, SGen) with the advantage
AdvprApr,W,F ′(λ) > ϵpr, where F ′ is defined according to F as specified in this Theorem and thus
is an ϵhv-AI w.r.t W and PGen; Or,

– a polynomial-time adversary Acr against the collision-resistance of RLR with the advantage
AdvcrAcr

(λ) > ϵcr.

To proceed the proof, we present the codes of Apr and Acr below.

Algorithm Apr(pp, yk, f
′
λ(pp, k))

Parse f ′
λ(pp, k) = (r, β, ss, fλ(pp, k))

(yk∗, k∗, shift)← B(pp, yk, fλ(pp, k))
k′ = Rec(ss, k∗)

if ⟨r, k′⟩ = β then return 1

return 0

Algorithm Acr(pp)

(k, z)← (Wλ|pp, Zλ|pp),
yk ← SGen(pp, k)

(yk∗, k∗, shift)← B(pp, yk, fλ(pp, k))
return (yk∗, k∗, shift(k, z))

First, we analyze the advantage of Apr. For notational convenience, we define the following
events. (1) Ev/∈B2t(k): B outputs k∗ /∈ B2t(k); (2)Ev∈B2t(k): B outputs k∗ ∈ B2t(k); (3) Ev0/∈B2t(k)

:
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Ev/∈B2t(k) ∩ ⟨r, k′⟩ ≠ β; (4) Ev1/∈B2t(k)
: Ev/∈B2t(k) ∩ ⟨r, k′⟩ = β; (5) Ev1Apr

: Apr returns 1. (6) Evk=k′ :

the recovered k′ = k; (7) Evk ̸=k′ : the recovered k′ ̸= k.
Without loss of generality, we assume Rec(ss, k∗) always output k′ ∈ B2t(k

∗). By the correctness
of {SS,Rec}, it follows that

Ev/∈B2t(k) and Evk ̸=k′ are equivalent; Ev∈B2t(k) and Evk=k′ are equivalent.

Then, by the description of Apr, in Ev∈B2t(k) and Ev1/∈B2t(k)
, Apr always outputs 1, and that in

Ev0/∈B2t(k)
, Apr always outputs 0. Moreover, as r is independent of the generation of k′,

Pr[Ev0/∈B2t(k)
] = Pr[Ev1/∈B2t(k)

] =
1

2
Pr[Ev/∈B2t(k)].

Therefore, the following equation holds regardless of the distribution of Apr’s input.

Pr[Ev1Apr
] =Pr[Ev1Apr

|Ev∈B2t(k)] Pr[Ev∈B2t(k)] + Pr[Ev1Apr
|Ev/∈B2t(k)] Pr[Ev/∈B2t(k)]

=Pr[Ev∈B2t(k)] + Pr[Ev1Apr
|Ev1/∈B2t(k)

] Pr[Ev1/∈B2t(k)
]

=Pr[Ev∈B2t(k)] +
1

2
Pr[Ev/∈B2t(k)] =

1

2
+

Pr[Ev∈B2t(k)]

2
.

(27)

Recall Definition 7, in Exppr,0Apr,W,F ′ and Exppr,1Apr,W,F ′ , the input of Apr are two different distribu-
tions which we here denote by D0 and D1, respectively. Now, we can reformulate the advantage of
Apr as

AdvprApr,W,F ′(λ) = |Pr[Ev1,D0

Apr
]− Pr[Ev1,D1

Apr
]| = 1

2
|Pr[EvD1

∈B2t(k)
]− Pr[EvD0

∈B2t(k)
]|, (28)

where EvDb denotes the event Ev conditioned on that Apr’s input distribution is Db, for b ∈ {0, 1}.
When Apr’s input distribution is D1, at the point of B’s view, the environment provided by Apr

is identical to that of ExplrB,W,F . We argue that, in this case, EvD1

∈B2t(k)
can imply that B breaks the

sLRH relation without loss of generality. Indeed, if B outputs k∗ ∈ B2t(k), she can win by setting
shift to be a constant function outputting k∗. Therefore,

Pr[EvD1

∈B2t(k)
] = Pr[ExplrB,W,F (λ) = 1 ∩ EvD1

∈B2t(k)
] = Pr[EvD1

∈B2t(k)
|ExplrB,W,F (λ) = 1]AdvlrB,W,F (λ).

(29)
When Apr’s input distribution is D0, as yk provided to B is independent of k, EvD0

k=k′ means
that we can find the exact pre-image k from pp, fλ(pp, k) and ss. It follows that

Pr[EvD0

∈B2t(k)
] ≤ ϵhv(λ)

2
. (30)

Combining Eq.28, 29 and 30, we have

AdvprApr,W,F ′(λ) ≥
Pr[EvD1

∈B2t(k)
|ExplrB,W,F (λ) = 1]AdvlrB,W,F (λ)

2
− ϵhv(λ)

4
. (31)

Next, we analyze the advantage of Acr. At the point of B’s view, the environment provided by
Acr is identical to that of ExplrB,W,F . Moreover, as analyzed before, the environment provided by Apr
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with input from D1 is also identical to that of ExplrB,W,F . Thus, we can use the notation EvD1

/∈B2t(k)

to denote the event that, in the environment provided by Acr, B outputs k∗ /∈ B2t(k). Notice that
if B wins, shift(k, z) ∈ B2t(k); if k

∗ /∈ B2t, k
∗ and shift(k, z) form a collision w.r.t. pp and yk∗.

Therefore,

AdvcrAcr
(λ) ≥ Pr[ExplrB,W,F (λ) = 1 ∩ EvD1

/∈B2t(k)
] = Pr[EvD1

/∈B2t(k)
|ExplrB,W,F (λ) = 1]AdvlrB,W,F (λ). (32)

Combining Eq.31 and 32, it follows that

AdvcrAcr
(λ) + 2AdvprApr,W,F ′(λ) ≥ AdvlrB,W,F (λ)−

ϵhv(λ)

2
> ϵcr + 2ϵpr. (33)

Thus, it follows either AdvcrAcr
(λ) > ϵcr or AdvprApr,W,F ′(λ) > ϵpr. We obtain the contradiction and

complete the proof. ⊓⊔

Constructing robust fuzzy extractors. For a robust fuzzy extractor with t-error tolerance, we
use a 2t-fuzzy unforgeable κ-MAC to authenticate the helper string of a fuzzy extractor with t-error
tolerance. Note that the helper string, along with the extracted randomness, forms the auxiliary
input f(w) of the κ-MAC, our 2t-fuzzy unforgeable κ-MAC construction allows an auxiliary input
function f when f together with a 2t-secure sketch forms a hard-to-invert leakage. Therefore,
although a t-secure sketch is sufficient for constructing a fuzzy extractor with t-error tolerance, we
will use a 2t-secure sketch instead, such that f(w) along with a 2t-secure sketch must be hard-to-
invert.

Let {SS,Rec} be a 2t-secure sketch, Σ = {Init,Tag,Verify} be a κ-MAC with 2t-fuzzy unforge-
ability, and Ext be a strong extractor. We present the detailed construction of robust fuzzy extractor
in Fig.4 and the analysis in Theorem 5.

CRS(1λ)

(crs, τ)← Init(1λ)

return crs

Gen(crs, w)

ss← SS(w)

i←$ {0, 1}s, r ← Ext(i, w)

ς ← Tag(crs, w, (ss, i))

return R = r, P = (ss, i, ς)

Rep(crs, w̃, P )

w′ ← Rec(ss, w̃)

return R← Ext(i, w′), if

dist(w′, w̃) ≤ t

Verify(crs, w′, (ss, i), ς) = 1

return ⊥

Fig. 4. Robust fuzzy extractor rfExt from randomness extractor + secure sketch+ κ-MAC

Theorem 5. Assume {SS,Rec} is an (M, k, k′, 2t)-secure sketch scheme, Ext is an (n, k′, ℓ)-strong
extractor with ϵext-privacy and being ϵinv-hard-to-invert, and Σ is a κ-MAC with (n, 2t, ϵunf)-fuzzy
unforgeability w.r.t. W and F and (n, ϵkpriv, ϵhv). Then, if W is all (n, k)-sources, F contains function
ensembles implementing SS, and ϵinv < ϵhv, the construction rfExt in Fig.4 is an (M, k, ℓ, t)-robust
fuzzy extractor with perfect correctness, ϵ-privacy and δ-robustness, for any ϵ > ϵext + 2ϵkpriv and
δ > ϵunf .

This proof is similar to the proof of Theorem 2. We prove the privacy and the robustness in Lemma
10 and Lemma 11, respectively.
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Lemma 10. rExt (in Fig.4) satisfies ϵpriv-privacy, for any ϵpriv > ϵext + 2ϵkpriv.

Proof. We prove this lemma by contradiction. Assume we have a polynomial-time adversary B and
an efficiently-samplable (n, k)-source W such that AdvprivB,W(λ) > ϵext + 2ϵkpriv. Then, we leverage B
to construct a polynomial-time adversary Aext for Ext, and two polynomial-time adversaries Amac,0

and Amac,1 for κ-MAC Σ, such that, for the source W, it follows that either

AdvextAext,W(λ) > ϵext, Adv
kpriv
Amac,0,W,F (λ) > ϵkpriv, or Adv

kpriv
Amac,1,W,F (λ) > ϵkpriv. (34)

where F = {fλ} implements the secure sketch SS and the extractor Ext, namely,

fλ(w) = (SS(w),Ext(w,Us), Us)

where Us is a uniform random variable over {0, 1}s. Note that such F is an admissible auxiliary
inputs, as ϵhv ≥ ϵinv. (CRS, T = {Tλ}) denotes the random variable ensemble outputted by Init of
κ-MAC; As T can be computed (even inefficiently) using CRS and coins independent of W, for
every λ, we have

H̃∞(Wλ|CRSλ, Tλ) = H̃∞(Wλ|CRSλ) ≥ k(λ).

As {SS,Rec} is an (M, k, k′, 2t)-secure sketch, it follows that

H̃∞(Wλ|CRSλ, Tλ,SS(Wλ)) ≥ k′(λ).

Therefore, Eq.34 contradcits our assumptions on the underlying tools, and thus AdvprivB,W(λ) ≤
ϵext + 2ϵkpriv for all admissible B and W.

Now, to proceed with the proof, we turn to construct the adversaries Aext, Amac,0 and Amac,1,
using B against rExt. The adversaries’ codes are presented below. In Aext, SimTag is the simulator
of κ-MAC. In Amac,b, r is the extracted randomness from w with the seed iext. Oβ returns a real
tag when β = 1 or returns a simulated tag when β = 0.

Algorithm Aext(iext, r, crs, τ, ss)

ς ← SimTag(crs, τ, (iext, ss))

b′ ← B(crs, (iext, ss, ς), r)
return b′

Algorithm AOβ

mac,b(crs, (iext, r))

Query Oβ with iext, and obtain ς

R0 ←$ {0, 1}ℓ(λ), R1 = r

β′ ← B(crs, (iext, ς), Rb)

return β′

Recall the privacy definition of a robust extractor (cf. Def.3). The adanvantage of B against
rExt’s privay w.r.t.W is defined by AdvprivB,W(λ) = |Pr[Exppriv,0B,W (λ) = 1]−Pr[Exppriv,1B,W (λ) = 1]|. Recall
the definition of the strong extractor in Sect.2, and assume that

p0 = Pr

[
(crs, τ)← (CRSλ, Tλ), w ←Wλ|crs, iext ←$ {0, 1}si(λ)

ss← SS(w), r ←$ {0, 1}ℓ(λ) : 1← Aext(iext, r, crs, τ, ss)

]
,

p1 = Pr

[
(crs, τ)← (CRSλ, Tλ), w ←Wλ|crs, iext ←$ {0, 1}si(λ)

ss← SS(w), r ← Ext(iext, w) : 1← Aext(iext, r, crs, τ, ss)

]
.
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Then, the advanatage of Aext against Ext is AdvextAext,W,(CRS,T )(λ) = |p0 − p1|. For b ∈ {0, 1}, we
denote Pr[Exppriv,bB,W (λ) = 1]− pb = ∆b. By standard arguments, we have

AdvprivB,W(λ) = AdvextAext,W(λ) + |∆0|+ |∆1| (35)

It is easy to verify that, at the point of B’s view, the experiment Exppriv,bB,W is identical to

Expkpriv,1Amac,b,W,F (cf. Def.6), and thus Pr[Exppriv,bB,W (λ) = 1] = Pr[Expkpriv,1Amac,b,W,F (λ) = 1]. Similarly, we

have pb = Pr[Expkpriv,0Amac,b,W,F = 1].

Notice that AdvkprivAmac,b,W,F (λ) = |Pr[Exp
kpriv,0
Amac,b,W,F (λ) = 1] − Pr[Expkpriv,1Amac,b,W,F (λ) = 1]|, we have

AdvkprivAmac,b,W,F (λ) = ∆b. Therefore, we have

AdvprivB,W(λ) = AdvextAext,W,(CRS,T )(λ) + AdvkprivAmac,0,W,F (λ) + AdvkprivAmac,1,W,F (λ).

If AdvprivB,W(λ) > ϵext + 2ϵkpriv, Eq.34 immediately follows. ⊓⊔

Lemma 11. rExt (in Fig.4) satisfies δrob-post-application-robustness, for any δrob ≥ ϵunf .

Proof. We prove this lemma by contradiction. Assume there is δ0 > ϵunf , and we have a polynomial-
time adversary B who has an advantage greater than δ0 w.r.t. some efficiently-samplable (n, k)-
sourceW. Then, we leverage B to construct a polynomial adversary Amac against the unforgeability
of κ-MAC Σ w.r.t.W, with advantage AdvunfAmac,W,F (λ) > δ0 > ϵunf . Here F is the function ensemble
implementing Ext and SS.

Recall the fuzzy-unforgeability definition, in which the adversary Amac could specify the target
secret by issuing an efficient function shift that takes as inputs the original secret w and some
auxiliary information z the verifier has. In the proof, we let the auxiliary information be the close
secret w̃, which is sampled from W̃ and held by the verifier. The code of Amac and the function
shift are presented below, where O on the query m returns ς ← Tag(crs, w,m).

Amac(crs, (iext, r, ss))

Query O with (iext, ss), and obtain ς

P ∗ = (ss∗, i∗ext, ς
∗)← B(crs, (ss, iext, ς), r)

return (m∗ = (ss∗, i∗ext), ς
∗, shiftss∗)

shiftss∗(w, w̃)

return Rec(w̃, ss∗)

At the point of B’s view, the environment provided by Amac is identical to that of ExpB,W,W̃
(cf. Def.3). Thus, with the probability AdvfrobB,W,W̃(λ), it holds that

(ss∗, i∗ext, ς
∗) ̸= (ss, iext, ς), w

′ = Rec(w̃, ss∗) ∈ B2t(w̃), and Verify(crs, w′, (ss∗, i∗ext), ς
∗) = 1.

In this case, Amac breaks the fuzzy unforgeability of Σ. Therefore, AdvrobB,W,W̃(λ) ≤ ϵunf . ⊓⊔
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6 Conclusions

Robust (fuzzy) extractors imply and thus usually rely on weak-secret-based MAC schemes. Random
oracle is a perfect MAC, only requiring super-logarithmic min-entropy of the source. In contrast,
an optimal information-theoretical MAC in the plain model still requires sources with a more-
than-half entropy rate. A common reference string (CRS) can empower MAC schemes to work
with low-entropy sources; However, all known constructions in this model put another stringent
requirement that sources must be CRS-independent.

In the information-theoretical setting, we prove the “equivalence” between a CRS-model MAC
for CRS-dependent sources and a plain-model MAC, showing that the former will be subject to
the same lower bound. It thus becomes necessary to study computational MACs for general low-
entropy sources. Along the direction, we formulate a new cryptographic primitive κ-MAC capturing
the standard-model properties of the random oracle as a MAC and present constructions for CRS-
dependent sources. They naturally lead to the first CRS-dependent computational (fuzzy) robust
extractors with a minimal min-entropy requirement, closing the gap left by the state-of-the-art
standard-model robust extractors. Our new tool of κ-MAC could have broader applications and
deserve an in-depth study for, e.g., achieving full security rather than the one-time security as our
work ensures. Also, it is always interesting to ask if we can have κ-MAC or robust extractors in
the plain model from well-founded assumptions. We leave them as interesting open problems.
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