
1

Architecture Support for Bitslicing
Pantea Kiaei, Student Member, IEEE, Thomas Conroy, and Patrick Schaumont, Senior Member, IEEE

Abstract—The bitsliced programming model has shown to boost the throughput of software programs. However, on a standard
architecture, it exerts a high pressure on register access, causing memory spills and restraining the full potential of bitslicing. In this
work, we present architecture support for bitslicing in a System-on-Chip. Our hardware extensions are of two types; internal to the
processor core, in the form of custom instructions, and external to the processor, in the form of direct memory access module with
support for data transposition. We present a comprehensive performance evaluation of the proposed enhancements in the context of
several RISC-V ISA definitions (RV32I, RV64I, RV32B, RV64B). The proposed 14 new custom instructions use 1.5× fewer registers
compared to the equivalent functionality expressed using RISC-V instructions. The integration of those custom instructions in a 5-stage
pipelined RISC-V RV32I core incurs 10.21% and 12.72% overhead respectively in area and cell count using the SkyWater 130nm
standard cell library. The proposed bitslice transposition unit with DMA provides a further speedup, changing the quadratic increase in
execution time of data transposition to linear. Finally, we demonstrate a comprehensive performance evaluation using a set of
benchmarks of lightweight and masked ciphers.

Index Terms—Bitslicing, instruction set extension, direct memory access, system-on-chip, hardware extension, computer architecture.

F

1 INTRODUCTION

Bitslicing was first introduced as a programming model to
boost the throughput of the software implementation of the
Data Encryption Standard (DES) cryptographic algorithm
[1]. Since then, researchers have explored applications that
can benefit from this model of programming in security [2],
[3], [4], [5] and dynamic word-length computation [6], [7]
among others.

Bitslicing is a software technique, and as such it does not
require any changes to the underlying design of the pro-
cessor. However, bitsliced programs bear significant mem-
ory spills due to their extensive amount of live registers
[8]. Therefore, hardware support for bitslicing can lead to
a significant increase in performance of various bitsliced
applications.

Today, many digital circuits have a System-on-Chip
(SoC) architecture. In such systems, hardware support for
bitslicing can be in the form of instruction extension in the
processor implementation or it can be a hardware module
accessible by the processor through a bus. Our goal in this
work is to integrate both of these types of hardware support
for bitslicing into an SoC. Even though our focus is mostly
on security applications, non-security related applications
of bitslicing can equally benefit from part of our proposed
hardware extensions.

As the open-source RISC-V Instruction Set Architecture
(ISA) is gaining more attention both in research as well
as in industry, domain-specific Instruction Set Extensions

• P. Kiaei and P. Schaumont are with the Department of Electrical and
Computer Engineering, Worcester Polytechnique Institute, Worcester,
MA, 01609.
E-mail: {pkiaei,pschaumont}@wpi.edu

• T. Conroy was with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Polytechnique Institute and State University,
Blacksburg, VA, 24061.
E-mail: tconroy@vt.edu

This research was supported in part by NSF Award 1931639.
Manuscript received -; revised -

(ISEs) are becoming more and more relevant [9], [10], [11].
In our previous work [12], we proposed Skiva, a 32-bit ISE
for the SPARC V8 ISA. Skiva supports protection against
a combination of active and passive physical attacks, i.e.,
power Side-Channel Analysis (SCA), fault injection, and
timing SCA. These protections are in the form of masking
[13], redundant computation, and bitslicing.

In this work, we present the following contributions to
further the level of hardware support for bitslicing.
1) We port the ISE in Skiva to RISC-V and call it Skiva-V1.

Additionally, we propose the 64-bit version of Skiva-V
which supports extra security-related modes and add the
introduced instructions to the RISC-V GCC assembler.

2) We compare the proposed Skiva-V ISE with the newly
proposed bit-manipulation ISA for RISC-V (RV32B,
RV64B)2.

3) To support programming of Skiva-V, we rely on parallel
synchronous programming (PSP) [8]. We port a compiler
for PSP to the newly proposed instructions, and compare
the performance of auto-generated bitsliced codes for
masked implementations of light-weight ciphers with
their corresponding implementations in the literature.

4) Finally, we propose a Direct Memory Access (DMA)
module, called T-DMA, which is capable of transposing
data as part of a memory block transfer. This capabil-
ity of T-DMA in itself shows how an extra-processor
support for bitslicing can be beneficial for any bitsliced
implementation. However, we further tune this module
to add support for our security-related programming
needs, namely on the fly masking and redundancy gen-
eration/checking.
Our focus in this work is on the performance analysis

of the proposed instructions. For the security analysis of
the custom instructions in Skiva, we refer the reader to our

1. We will open-source the design files and the modified GCC com-
piler before the paper’s publication.

2. https://github.com/riscv/riscv-bitmanip

https://github.com/riscv/riscv-bitmanip

2

previous work [12]. Furthermore, we note that several au-
thors have proposed a security analysis for similar bitsliced
masked software [3], [14], [15]. For our implementation-
based evaluations, we focus on the 32-bit version of Skiva-V
instructions as the representative architecture to highlight
the advantage of the proposed instructions in an SoC.

The rest of the paper is as follows: Section 2 gives an
overview of the concepts underlying the proposed system.
Section 3 describes the definition of the custom instruc-
tions in Skiva-V, their ISA-level performance analysis, and
implementation footprint. Section 4 demonstrates how to
generate bitsliced programs for Skiva-V. Section 5 presents
our proposed DMA module with support for transposing,
masking, and duplicating the data. It further describes
its functionality, design, and synthesized implementation
footprint. Section 6 describes the integration of Skiva-V
processor core and T-DMA into an SoC architecture. Sec-
tion 7 demonstrates benchmarks to emphasize the impact of
hardware support in performance of bitsliced and masked
software. Finally, Section 8 concludes the paper.

2 PRELIMINARIES

In this section, we provide preliminaries on the underlying
programming concepts in this work. We describe Bitslicing,
Masking and Redundant Computation, while the reader
already familiar with these techniques can skip ahead to
Section 3

2.1 Bitslicing
Bitslicing, first introduced by Biham [1], is a technique orig-
inally proposed to increase the throughput of a program by
running multiple instances of a code in parallel. In bitslicing,
all the variables are transposed so that each register contains
only one bit of the variable. For example, if a variable is 32
bits wide, in bitsliced program it will reside in 32 different
registers and use one bit of each. Each register of width ω
then will have the capacity to hold one bit of ω different
variables. Consequently, the program needs to be adjusted
to work on one bit of its variables at a time. This implies
that the adjusted (i.e., bitsliced) program can only contain
bit-wise logic operations. Therefore, the bitsliced program
will be capable of ω parallel computations.

A fully-bitsliced program needs to be flattened (no
branches). In a flattened program, the run-time of the pro-
gram is known and data-independent. This property of bit-
slicing benefits the security-sensitive programs as it averts
timing side-channel leakage (i.e., correlation between the
run-time and the internal data of a program). Furthermore,
bitslicing provides a proper base to combine our masking
and redundant computation schemes as described in the
next section.

2.2 Masking
Power-based SCA [16], [17], as a subset of active physical
implementation attacks, has shown vulnerabilities in the
implementation of algorithms which are expected to be
secure at the algorithm level. In power SCA, the correlation
between the power consumption and the internal data is
exploited to find information about the processed data. A

widely-adopted countermeasure against this type of attack
is masking which tries to break this correlation.

In masking, each signal or variable is divided into shares
that are independent from the original data. The number
of shares depends on the masking scheme. In the dth-order
masking scheme, each data bit is divided into d + 1 shares.
Knowing any strict subset of these shares will not disclose
any information about the original data, while knowing all
of the shares can reproduce the original data. A simple way
to generate these shares is by applying Boolean masking.
For instance, in Boolean masking for the 1st-order mask-
ing scheme, a random bit r is generated (from a uniform
distribution) per each original bit b. The shares of the bit
b will be computed as the tuple (b ⊕ r, r) where ⊕ is the
exclusive-or operation. Knowledge about one share (either r
or b⊕r) will not give any information about the original data
b, however, by knowing both of these shares the original
data can be disclosed as the exclusive-or result of the two
shares ((b⊕ r)⊕ r = b).

Once each data is broken into independently-distributed
shares, the algorithm should be modified to work on the
shares of the inputs and the intermediate data to generate
the shares of the outputs. The operations in the algorithm
are categorized into linear and non-linear operations. An
operation is linear if a uniform distribution of its inputs
results in a uniform distribution for its outputs. Masking
is then applied to each operation according to its linearity.
In a linear operation, each share of the output can be
implemented as a function of at most one share of each
input. This property, however, does not hold for non-linear
operations and there exists a vast body of research on how
a non-linear operation can be masked [18], [19], [20].

In this work, we break every algorithm into a combi-
nation of operations from the set {XOR, XNOR, AND, NOT}.
Since this set of operations is functionally complete, every
operation in the algorithm can be written as a combination
of these operations. The AND operation is therefore the only
non-linear operation that can appear in the adjusted algo-
rithm. We follow the parallel masked multiplication method
proposed by Barthe et al. [18] for our AND operation and a
normal masked implementation for our linear operations.

2.3 Redundant Computation
Fault injection [21] is another type of implementation attack.
Redundant computation is a technique to detect whether a
fault has been injected in a circuit. In this technique, every
computation is done multiple times and the results are com-
pared. A mismatch between the results shows that a fault
has happened. For n number of redundant computations,
the occurrence of up to n− 1 faults can be detected.

In Skiva-V, our goal is to combine countermeasures
against both fault injection and power SCA attacks. As
shown in our previous work [12], when the redundant
copies of the data are in complementary format, the inten-
sity of power side-channel leakage is decreased. Therefore
we support redundancy of two types: direct and comple-
mentary. In direct redundancy, the redundant data is a direct
(uninverted) copy of the original data, whereas, in the com-
plementary redundancy, half of the redundant copies will
be in the inverted format to balance the power consumption
of the direct copies.

3

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

RS = 1

RS = 2

RS = 4

RS = 1

RS = 2

RS = 4

RS = 1
RS = 2

RS = 4

{
D = 2{
D = 4{

Fig. 1. Bitsliced data representation on 32-bit registers. bji represents jth share of data bi. Shares of the same variable have the same color.

b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b481b491b501b511b521b531b541b551b561b571b581b591b601b611b621b631 b321b331b341b351b361b371b381b391b401b411b421b431b441b451b461b471 b161b171b181b191b201b211b221b231b241b251b261b271b281b291b301b311 b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151

b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151b01b11b21b31b41b51b61b71b81b91b101b111b121b131b141b151
D = 1

b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71b01b11b21b31b41b51b61b71

b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14 b01b02b03b04b11b12b13b14

b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08 b01b02b03b04b05b06b07b08

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b241b242b251b252b261b262b271b272b281b282b291b292b301b302b311b312 b161b162b171b172b181b182b191b192b201b202b211b212b221b222b231b232

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34b121b122b123b124b131b132b133b134b141b142b143b144b151b152b153b154 b81b82b83b84b91b92b93b94b101b102b103b104b111b112b113b114

D = 4

D = 8

b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b81b82b91b92b101b102b111b112b121b122b131b132b141b142b151b152 b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72b01b02b11b12b21b22b31b32b41b42b51b52b61b62b71b72

b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

D = 2

b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32b01b02b11b12b21b22b31b32

b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34 b41b42b43b44b51b52b53b54b61b62b63b64b71b72b73b74 b01b02b03b04b11b12b13b14b21b22b23b24b31b32b33b34

b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18 b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18

RS = 2

RS = 1

RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

RS = 1

RS = 2
RS = 4

RS = 8

RS = 1

RS = 2

RS = 4

RS = 8

{
{

{
{ b21b22b23b24b25b26b27b28b31b32b33b34b35b36b37b38 b01b02b03b04b05b06b07b08b11b12b13b14b15b16b17b18b61b62b63b64b65b66b67b68b71b72b73b74b75b76b77b78 b41b42b43b44b45b46b47b48b51b52b53b54b55b56b57b58

32-bit

Fig. 2. Bitsliced data representation on 64-bit registers. bji represents jth share of data bi. Shares of the same variable have the same color. Parts
enclosed in dashed lines show the nine possible configurations in the 32-bit architecture proposed in Skiva [12] also shown separately in Fig. 1.

3 PROCESSOR SUPPORT

We present an instruction set extension (ISE) for both the
32-bit and the 64-bit RISC-V ISAs called Skiva-V. The un-
derlying data representations of Skiva-V are based on the
masking order (D) and the spatial redundancy (Rs). In
our 32-bit ISE, we support nine different configurations
chosen from the sets D = {1, 2, 4} and Rs = {1, 2, 4}.
For our 64-bit ISE, we extend the 32-bit representations to
add additional masking and redundancy modes. In this new
configuration, Skiva-V supports sixteen different configu-
rations from D = {1, 2, 4, 8} and Rs = {1, 2, 4, 8}. In all
of these configurations, the D shares of the same variable
reside in the adjacent bits of a register. Next to the shares
of one variable, will sit the shares of the next variable
for parallel computation. This pattern repeats in the same
register Rs times for redundant computation. Thus in each
(D,Rs) configuration for the N -bit architecture, Skiva-V
supports p = N

D×Rs
parallel computations. Fig. 1 and Fig. 2

show all the possible configurations in the 32-bit and 64-
bit ISEs respectively. In these figures, the i subscripts in bi
data bits show different variables in parallel computation.
To support both direct and complementary redundancy, the
even-numbered redundant copies can be either inverted or
direct.

In the rest of this section, we describe the instructions
in Skiva-V, their implementation details and footprint, and
how programmers can employ them in their codes.

3.1 Instruction Definitions

Our proposed instruction set extension for RISC-V is di-
vided into three groups: instructions for bitsliced trans-
position, instructions for masked implementation, and in-
structions for redundant computation. In the following sub-
sections, we describe each instruction. Table 1 shows the
assigned opcodes and formats of the instructions in Skiva-V.
The instructions’ encodings in Skiva-V follow the RV32I
base r-type and i-type instruction formats mentioned in
RISC-V ISA manual [22]. Each of the i-type instructions
in Skiva-V has its own immediate encoding that clarifies
the masking order (required for subrot instruction) or the
redundancy scheme (required for redl/h and ftchk). We
describe the immediate assignment of each instruction with
their definition in the rest of this section.

Bitsliced transposition
We propose two instructions, i.e. tr2l rd, rs1, rs2
and tr2h rd, rs1, rs2, which, if applied iteratively in
the butterfly pattern, can transpose the data from normal
representation to its bitsliced format. These instructions take
two source registers and reorder their bits in the destina-
tion register interchangeably. Instruction tr2l reorders the
lower half of the source registers while instruction tr2h
reorders the upper half. To transpose the bitsliced data back
to its normal representation, we proposed the inverse of
the above instructions, i.e. invtr2l rd, rs1, rs2 and
invtr2h rd, rs1, rs2. Fig. 3 shows how these instruc-
tions work. As an example, Fig. 4 shows how four 4-bit

4

TABLE 1
Opcode assignments in Skiva-V

Instruction Type funct7 (instr 31-25) funct3 (instr 14-12) opcode (instr 6-0)

subrot i-type —- 0x0 0x0b (custom-0)
redl i-type —- 0x1 0x0b (custom-0)
redh i-type —- 0x2 0x0b (custom-0)
ftchk i-type —- 0x3 0x0b (custom-0)
andc32 (only in 64-bit ISA) r-type, logic 0x20 0x4 0x0b (custom-0)
andc16 r-type, logic 0x10 0x4 0x0b (custom-0)
andc8 r-type, logic 0x00 0x4 0x0b (custom-0)
xorc32 (only in 64-bit ISA) r-type, logic 0x21 0x4 0x0b (custom-0)
xorc16 r-type, logic 0x11 0x4 0x0b (custom-0)
xorc8 r-type, logic 0x01 0x4 0x0b (custom-0)
xnorc32 (only in 64-bit ISA) r-type, logic 0x22 0x4 0x0b (custom-0)
xnorc16 r-type, logic 0x12 0x4 0x0b (custom-0)
xnorc8 r-type, logic 0x02 0x4 0x0b (custom-0)
tr2l r-type, transposition 0x00 0x5 0x0b (custom-0)
tr2h r-type, transposition 0x10 0x5 0x0b (custom-0)
invtr2l r-type, transposition 0x01 0x5 0x0b (custom-0)
invtr2h r-type, transposition 0x11 0x5 0x0b (custom-0)

αβγδε

ε

ζηθ

θ

ικλμ

αδ ιμ

ν

ν

ξρφ

φ

tr2l invtr2l tr2h

w⁄2 w⁄2

w w

rs1

rs1

rs2
rs1
rs2

rs2
invtr2h

Fig. 3. (inv)tr2h and (inv)tr2l instructions. W represents the length
of the registers which can be either 32 or 64 bits. All four instructions
take two input registers and store the results in the destination register.

a ab bc

c

d

d

e ef fg

g

h

h

i

i

j

j

l l

m

m

n

n

o op p

k k

a

b

c

d

e

f

g

h

i

j

l

m

n

o

p

k

: tr2h : tr2llegend

Fig. 4. Applying tr2l and tr2h instructions to four 4-bit registers
iteratively in a butterfly pattern to transpose the bits for bitsliced imple-
mentation. To transpose the bits back to their initial positions, we can
apply invtr2l and invtr2h from right to left.

registers can be transposed to their bitsliced positions in
two iterations of applying these instructions. In general, for
N N -bit registers, it takes log2(N) iterations of applying the
transposition instructions to completely transpose the bits.

Masked implementation

In our masked data manipulations, we follow the parallel
masked multiplication gadget by Barthe et al. [18]. In this
gadget, the shares of a variable are adjacent in a register
and during the calculations, we need to rotate the adjacent
shares. Rotating parts of a register independently is not part
of the RISC-V ISA, however, in our masking schemes will
be executed quite often. Hence we add this instruction to
Skiva-V. In our 32-bit (resp. 64-bit) representation, Skiva-V
supports masked implementation with 2 and 4 (resp. 2, 4,
and 8) shares. Therefore we need to be able to rotate 2 and
4 (resp. 2, 4, and 8) consecutive bits in a 32-bit (resp. 64-
bit) register. Therefore, we add an instruction (subrot rd,
rs1, imm) which takes a source register and an immediate
value. If the immediate value is 2/4(/8 in 64-bit ISA) respec-

d d d d

. . .

Fig. 5. subrot instruction. This instruction rotates d adjacent bits in a
register where d is decided from the immediate input and follows the
masking scheme (d ∈ {2, 4} for 32-bit ISA, d ∈ {2, 4, 8} for 64-bit ISA).

tively 2/4(/8 in 64-bit ISA) consecutive bits will be rotated.
Fig. 5 shows how this instruction works.

Note. When using the subrot instruction, one must be
careful not to use the same register for both the input and
the result (i.e. rs1 6= rd) since this will result in overwriting
the shares of the same variable and transiently reducing the
intended order of masking scheme. Fortunately, compilers
support this type of criteria in their code generation process
and we can ensure this property will be held by adding it to
the back-end of the compiler (code generator) as a criteria
specific to the subrot instruction.

Redundant computation
As mentioned in Section 2, Skiva-V supports both direct
and complementary redundant computations. Direct redun-
dancy enables fault detection while complementary redun-
dancy also reduces the intensity of power side-channel leak-
age. To prepare data for redundant representation, we in-
troduce instructions redl rd, rs1, imm and redh rd,
rs1, imm to copy data (both directly and in inverted
manner) in the same register. The immediate field in these
instructions decides which part of the input register has to
be copied and whether it should follow direct redundancy
or complementary redundancy. Table 2 shows the immedi-
ate value assignment for each redundancy mode.

To demonstrate in more detail how the bits are dupli-
cated in the destination register, Fig. 6 demonstrates the
result of redh and redl instructions when their immediate
value is 7. According to Table 2, this means the bits in the
range [W-1:W/2] (W=32 for 32-bit ISA and W=64 for 64-bit
ISA) should be duplicated in a complementary format.

In cases where our data is in complementary redundancy
format, we need a logic operation f(.) to calculate f(.) on
the direct copies and the inverse (f(.)) on the complemented
copies to result in complemented outputs according to
DeMorgan’s theorem. Fig. 7 shows the structure of com-
plementary logic operations. Therefore, Skiva-V has logic

5

TABLE 2
Immediate value assignment for redh/redl instructions. W represents
the word length (32 for the 32-bit and 64 for the 64-bit ISA). Source bits

signifies which bits in the source register are being replicated.

Redundancy (Rs) Source bits redh/redl imm.

2 direct W-1:0 2
2 compl. W-1:0 3
4 direct W/2-1:0 4
4 compl. W/2-1:0 5
4 direct W-1:W/2 6
4 compl. W-1:W/2 7
8 direct (only in 64-bit ISA) 15-0 8
8 compl. (only in 64-bit ISA) 15-0 9
8 direct (only in 64-bit ISA) 31-15 10
8 compl. (only in 64-bit ISA) 31-15 11
8 direct (only in 64-bit ISA) 47-32 12
8 compl. (only in 64-bit ISA) 47-32 13
8 direct (only in 64-bit ISA) 63-48 14
8 compl. (only in 64-bit ISA) 63-48 15

D C B A

C C C C

imm = 7

D D D D

redl

redh

source

dest {
Fig. 6. Example for redl/redh instructions with immediate value of 7.
In both 32-bit and the 64-bit ISA, immediate=7 means duplicating the
upper half-word (16 bits and 32 bits respectively for the 32-bit and 64-
bit architectures) in the complemented format. redh/redl copies the
upper/lower half of the source’s selected bits in its destination register.

instructions andcn, xorcn, and xnorcn that calculate the
logic operation and its inverse on part of the data in their
source registers. In the 32-bit (resp. 64-bit) instruction set, n
can have the value of 8 and 16 (resp. 8, 16, and 32) to operate
in direct/complementary format on n consecutive bits.

Finally, we propose an instruction in Skiva-V to check
if the redundant copies of the data agree. The ftchk rd,
rs1, imm instruction will check the redundant copies in
the source register based on the immediate value and set
the corresponding bit in the destination register to one if the
copies of data do not agree (i.e. a fault is detected). To have
continuity in the direct and complementary redundancy,
the result of ftchk operation can be in the complementary
format where the comparison result is copied both directly
and inversely in the destination register.

Table 3 shows the immediate value encodings for the
ftchk instruction. For example, if Rs = 4 and direct
redundancy in the 32-bit ISA, i.e., immediate value is either
4 or 12, the comparison flags are calculated and stored in the
destination register (rd) based on the source register (rs) as
follows for the least significant 8 bits:

rd[i] = (rs[i]⊕ rs[i+ 8])||
(rs[i]⊕ rs[i+ 16])||
(rs[i]⊕ rs[i+ 24]);

∀i ∈ [0, 7]

The same calculated results will be duplicated directly
(when immediate value is 4) or in inverse format (when
immediate value is 12) to fill the remaining 16 bits of the
destination register (rd).

TABLE 3
Immediate value assignment for ftchk instruction.

Redundancy (Rs) ftchk immediate

32-bit 32-bit (compl. result) 64-bit 64-bit (compl. result)

2 direct 2 10 2 3
2 compl. 3 11 18 19
4 direct 4 12 4 5
4 compl. 5 13 20 21
8 direct (only in 64-bit ISA) NA NA 8 9
8 compl. (only in 64-bit ISA) NA NA 24 25

. . .f(.) f(.) f(.)f(.)

. . . 2Rs-1Rs 1

: inverted copy
: direct copy

legend

Fig. 7. Complementary logic operations on complementary redundant
data.

3.2 ISA-level Performance Analysis

We evaluate our instruction set extension on RISC-V for its
performance. For each proposed instruction, we write a C
code defining the functionality of the instruction. On an
implementation of Skiva-V, this C code corresponds to only
one instruction. We cross compile the C code with GCC once
for RV32 and RV64 instruction sets and once for the RISC-
V with bit-manipulation extension (RV32B and RV64B) 3.
While GCC with B-extension currently only supports 31 out
of 95 proposed instructions in the bit-manipulation draft, it
is the only tool available for automatic use of the instruc-
tions in the B-extension. Furthermore, a visual inspection of
the instructions in this extension confirms that there is no
exact match for the instructions in Skiva-V.

As an example, Listing 2 and Listing 3 show the assem-
bly codes for ftchk instruction with immediate value of
2 (Rs = 2 with direct redundancy) for RV32I and RV32B
respectively. These assembly codes are generated by compil-
ing the C code in Listing 1 with RISC-V’s open-source GCC
compiler and flags -march=rv32g and -march=rv32gb
respectively. As the assembly codes show, the pack instruc-
tion in B-extension can replace the first two instructions in
Listing 2 therefore reducing the total number of instructions
by one.

Listing 1. C equivalent for 32bit ftchk with immediate value of 2
u i n t 3 2 t f t chk2 (u i n t 3 2 t rs1) {

u i n t 3 2 t rd ;
u i n t 3 2 t compare ;

compare = (rs1 & 0 x 0 0 0 0 f f f f) ˆ
((r s1 & 0 x f f f f 0 0 0 0) >> 1 6) ;

rd = compare | (compare << 1 6) ;

return rd ;
}

As another example, the C equivalent for 64bit ftchk
instruction with immediate value of 18 (complementary re-
dundancy Rs = 2 with direct output) is shown in Listing 4.
The compiled assembly codes for RV32I and RV32B are
shown in Listing 5 and Listing 6 respectively. Similar to
the previous example, the first two instructions for RV64I

3. C equivalent codes and compiled assemblies for RV32/64I/B are
accessible at https://github.com/Secure-Embedded-Systems/Skiva-V

https://github.com/Secure-Embedded-Systems/Skiva-V

6

Listing 2. Assembly code of the
Skiva-V ftchk instruction with
immediate value of 2 mapped to
RV32I ISA

s l l i a5 , a0 , 1 6
s r l i a5 , a5 , 1 6
s r l i a0 , a0 , 1 6
xor a0 , a5 , a0
s l l i a5 , a0 , 1 6
or a0 , a5 , a0

Listing 3. Assembly code of the
Skiva-V ftchk instruction with
immediate value of 2 mapped to
RV32B ISA

s r l i a5 , a0 , 1 6
pack a0 , a0 , x0
xor a0 , a0 , a5
s l l i a5 , a0 , 1 6
or a0 , a5 , a0

Listing 4. C equivalent for 64bit ftchk with immediate value of 18
u i n t 6 4 t f tchk18 64 (u i n t 6 4 t rs1) {

u i n t 6 4 t rd ;
u i n t 6 4 t compare ;

compare = ˜ (rs1 & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f) ˆ
((r s1 & 0 x f f f f f f f f 0 0 0 0 0 0 0 0) >> 3 2) ;

rd = compare | (compare << 3 2) ;

return rd ;
}

Listing 5. Assembly code of the
Skiva-V ftchk instruction with
immediate value of 18 mapped
to RV64I ISA

s l l i a5 , a0 , 3 2
s r l i a5 , a5 , 3 2
s r l i a0 , a0 , 3 2
xor a5 , a5 , a0
not a5 , a5
s l l i a0 , a5 , 3 2
or a0 , a0 , a5

Listing 6. Assembly code of the
Skiva-V ftchk instruction with
immediate value of 18 mapped
to RV64B ISA

s r l i a5 , a0 , 3 2
pack a0 , a0 , x0
xnor a0 , a0 , a5
s l l i a5 , a0 , 3 2
or a0 , a5 , a0

are replaced by one pack instruction from RV64B. Addi-
tionally, xor and not instructions are replaced by the xnor
instruction in the B-extension.

Table 4 and Table 5 show the number of instructions
from RISC-V ISA to implement the Skiva-V instructions.
Based on our calculations, each of the 32-bit/64-bit Skiva-V
operation replaces on average 22.34/29.98 instructions from
the RV32/RV64 ISA and 21.84/29.59 instructions from the
RV32B/RV64B ISA. All the proposed instructions pass the
criteria of replacing a minimum of three instructions. The
general reason for this poor behavior of RV32/64I/B is the
required fine-grained operations at bit-level.

Although the reported numbers for RV32B and RV64B
are not significantly different from RV32I and RV64I, the
real advantage of the RISC-V’s bit-manipulation exten-
sion can be much bigger but not yet supported by the
GCC code generator. For instance, rev.p rd, rs, 1 in
RV32B/RV64B is functionally equivalent to subrot rd,
rs, 2 in Skiva-V 32/64-bit. However, this was the only
instance we found in the bit-manipulation extension that
was obviously equivalent to the instructions in Skiva-V.

Furthermore, we calculate the number of registers each
instruction-equivalent code snippet uses on RV32I/RV32B
and RV64I/RV64B as a measure of register pressure. We
calculate the register use of each code snippet and compare
it to that of its corresponding custom instruction. We make
the worst case scenario assumption on the register usage
in Skiva-V custom instruction that each r-type instruction
(namely andcn, xorcn, xnorcn, (inv)tr2l/h) uses 3 dis-
tinct registers and each i-type instruction (namely subort,
redl/h, ftchk) uses 2 distinct registers. As shown in Ta-

TABLE 4
ISA-level performance evaluation of Skiva-V 32-bit instructions

Skiva-V 32 RV32I RV32B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 115 2× 115 2×
tr2l rd, rs1, rs2 115 2× 115 2×
invtr2h rd, rs1, rs2 115 2× 114 2×
invtr2l rd, rs1, rs2 115 2× 115 2×
subrot rd, rs, 2 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 2 4 1.5× 4 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 3 5 1.5× 4 1.5×
redl rd, rs, 4 7 1.5× 7 1.5×
redh rd, rs, 4 8 1.5× 8 1.5×
redl rd, rs, 5 9 1.5× 9 1.5×
redh rd, rs, 5 11 1.5× 11 1.5×
redl rd, rs, 6 8 1.5× 8 1.5×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 7 11 1.5× 11 1.5×
redh rd, rs, 7 10 2× 10 2×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 6 1× 5 1.5×
ftchk rd, rs, 4 16 1.5× 16 1.5×
ftchk rd, rs, 5 17 2× 16 2.5×
ftchk rd, rs, 10 7 1× 6 1.5×
ftchk rd, rs, 11 8 1.5× 8 1.5×
ftchk rd, rs, 12 17 1.5× 17 1.5×
ftchk rd, rs, 13 19 2× 16 2.5×
andc16 rd, rs1, rs2 7 1× 6 1.67×
xorc16 rd, rs1, rs2 3 1× 3 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 13 1.33× 13 1.33×
xorc8 rd, rs1, rs2 13 1.33× 11 1.33×
xnorc8 rd, rs1, rs2 11 1.33× 9 1.33×

ble 4 and Table 5, even under our pessimistic assumption,
on average, Skiva-V custom instructions use 1.47×/1.65×
fewer registers compared to RV32I/RV64I and 1.58×/1.75×
fewer registers compared to RV32B/RV64B ISA.

3.3 Implementation

We integrate the 32-bit Skiva-V instructions into an in-
order, five-stage pipeline implementation of the RISC-V
RV32I ISA. For this implementation, we use the open-source
BRISC-V [23] core. This core consists of five pipeline stages,
namely fetch, decode, execute, memory, and write-back. The
simplicity of the Skiva-V ISE architecture, enables the easy
integration of the instructions which only affect the decode
stage, the ALU unit in the execute stage, and the control
unit of the processor. The changes applied to the processor
are to decode the added instructions (in the decode stage
according to the assigned opcodes in Table 1), execute them
in the ALU (in execute stage), and bypass their outputs to
the next instructions in case of dependency (from write back
stage to decode stage) to reduce the number of inserted
bubbles in the pipeline.

Furthermore, to evaluate the area footprint of these in-
structions, we synthesize the Skiva-V implementation using
the open SkyWater 130nm standard cell library4. The im-
plementation of the five-stage RV32I ISA without Skiva-V
extension has an area of 88356.25um2 and a cell count of
5006. After adding the Skiva-V instructions, the area and cell
count increase to 97381.07um2 and 5643 showing a 10.21%
and 12.72% increase in area and cell count respectively.

4. https://github.com/google/skywater-pdk

7

Custom
library
.lib

PSPCG Flow

.v

Synchronous
program Synthesis

tool

Boolean
operation

graph
Leveler

Boolean
program

C
generator

Target
ISA
.c

.c

Parallel sync
core

1

2 3

Software
program

Synchronous
model

Fwd transpose
Parallel sync

core
Bwd transpose

Bitsliced C program

.c

Fig. 8. High-level description of PSPCG steps.

TABLE 5
ISA-level performance evaluation of Skiva-V 64-bit instructions

Skiva-V 64 RV64I RV64B

of instr reg. use # of instr reg. use

tr2h rd, rs1, rs2 244 2.33× 243 2.33×
tr2l rd, rs1, rs2 243 2.33× 244 2.33×
invtr2h rd, rs1, rs2 244 2.33× 243 2.33×
invtr2l rd, rs1, rs2 246 2.67× 247 2.33×
subrot rd, rs, 8 9 1.5× 9 1.5×
subrot rd, rs, 4 9 1.5× 9 1.5×
subrot rd, rs, 2 9 1.5× 9 1.5×
redh rd, rs, 10 15 1.5× 15 1.5×
redl rd, rs, 10 16 1.5× 16 1.5×
redh rd, rs, 11 17 2× 17 2×
redl rd, rs, 11 19 2× 19 2×
redh rd, rs, 12 16 1.5× 16 1.5×
redl rd, rs, 12 16 1.5× 16 1.5×
redh rd, rs, 13 19 2× 19 2×
redl rd, rs, 13 19 2× 19 2×
redh rd, rs, 14 16 1.5× 16 1.5×
redl rd, rs, 14 16 1.5× 16 1.5×
redh rd, rs, 15 18 2.5× 18 2.5×
redl rd, rs, 15 19 2× 19 2×
redh rd, rs, 2 4 1× 4 1×
redl rd, rs, 2 4 1× 3 1×
redh rd, rs, 3 5 1× 5 1.5×
redl rd, rs, 3 5 1× 4 1.5×
redh rd, rs, 4 7 1.5× 7 1.5×
redl rd, rs, 4 8 1.5× 7 2×
redh rd, rs, 5 13 2× 13 2×
redl rd, rs, 5 11 1.5× 10 2×
redh rd, rs, 6 8 1.5× 8 1.5×
redl rd, rs, 6 9 1.5× 8 2×
redh rd, rs, 7 10 2× 10 2×
redl rd, rs, 7 13 2× 13 2×
redh rd, rs, 8 16 1.5× 16 1.5×
redl rd, rs, 8 15 1.5× 15 1.5×
redh rd, rs, 9 19 2× 19 2×
redl rd, rs, 9 17 2× 17 2×
ftchk rd, rs, 18 7 1× 5 1.5×
ftchk rd, rs, 19 8 1.5× 7 2×
ftchk rd, rs, 20 20 2.5× 18 2.5×
ftchk rd, rs, 21 21 2.5× 19 2.5×
ftchk rd, rs, 24 39 2.5× 36 3×
ftchk rd, rs, 25 39 2.5× 36 3×
ftchk rd, rs, 2 6 1× 5 1.5×
ftchk rd, rs, 3 7 1× 6 1.5×
ftchk rd, rs, 4 18 2× 18 2×
ftchk rd, rs, 5 19 2× 19 2×
ftchk rd, rs, 8 36 2× 36 2×
ftchk rd, rs, 9 36 2× 36 2×
andc32 rd, rs1, rs2 7 1× 6 1.33×
xorc32 rd, rs1, rs2 4 1× 4 1×
xnorc32 rd, rs1, rs2 4 1× 3 1.33×
andc16 rd, rs1, rs2 9 1.33× 9 1.33×
xorc16 rd, rs1, rs2 4 1× 4 1×
xnorc16 rd, rs1, rs2 4 1× 4 1×
andc8 rd, rs1, rs2 9 1.33× 9 1.33×
xorc8 rd, rs1, rs2 4 1× 4 1×
xnorc8 rd, rs1, rs2 4 1× 4 1×

4 CODING SUPPORT

One of the challenges for bitsliced programming is its code
generation. For SKIVA programming, we adopt Parallel
Synchronous Programming (PSP), a model that directly
maps into bitsliced programs [8]. Examples of parallel syn-
chronous programs have since been shown in software
implementation of light-weight encryption ciphers [24] and
variable-precision multiplication used in neural networks
[7]. In this section, we demonstrate how bitsliced programs
are a subset of the parallel synchronous programs and
therefore the automated code generator for PSP (i.e. PSPCG)
can be used to automate the generation of bitsliced code.

PSP is semantically similar to a synchronous finite state
machine with datapath (FSMD). Parallel synchronous pro-
grams consist of a core function with a status output that
shows when the results are ready. This core function will be
called iteratively until the status output shows the execution
is done, while each iteration corresponds to a synchronous
evaluation of the PSP design [8].

while (! s tat done) {
c o r e f (inputs , &outputs , &stat done) ;

}

Bitslicing becomes a subset of PSP by unfolding the loop
and adding it into the logic of the core function. This results
in a flattened function containing only logic operations in
bitsliced format. Hence we can use the same automatic PSP
code generation methodology (PSPCG) for bitsliced codes.

As Fig. 8 shows, to generate the bitsliced code of a soft-
ware program using PSPCG, first a synchronous model of
the program is needed. This synchronous model in PSPCG
flow is encoded as a Verilog file. Once ready, we feed the
synchronous model of the program (1) as well as the
description of the instructions in our target ISA to PSPCG.
These target instructions should be provided in two formats,
one following liberty file (used for describing logic libraries)
(2) and the other as inline assembly in C (3). Given these
inputs, PSPCG internally synthesizes the given synchronous
model to construct a Boolean operation graph and levels the
graph to generate a Boolean program. In its last stage, the
parallel synchronous core of the given model is generated
as a C function. By prepending the forward transposition of
the input data and appending the backward transposition
of the results to the generated C function we will have the
complete bitsliced C code.

Coding for Skiva-V
To generate bitsliced code for Skiva-V, we follow the PSPCG
method as mentioned previously. In our custom library
for the synthesis step, we use general logic cells AND, OR,

8

Listing 7. First-order masked im-
plementation of AND operation.
Inputs are at a1,a5, random
numbers are at a0,a4, the out-
put is written in a6.
xor t0 , a1 , a0
subrot s0 , a0 , 2
xor t2 , t0 , s0
xor s0 , s0 , s0
and a7 , a5 , t2
subrot t5 , t2 , 2
and t1 , t5 , a5
xor t5 , t5 , t 5
xor t3 , a4 , a7
xor t4 , t3 , t 1
subrot t6 , a4 , 2
xor a6 , t6 , t 4

Listing 8. Third-order masked
implementation of AND opera-
tion. Inputs are at a2,a4, ran-
dom numbers are at a3,a5, the
output is written in a1.
xor s2 , a3 , a2
subrot s4 , a2 , 4
xor s3 , s2 , s4
xor s4 , s4 , s4
and a0 , s3 , a5
subrot t0 , s3 , 4
and a6 , t0 , a5
subrot s0 , a5 , 4
and a7 , s0 , s3
subrot t2 , t0 , 4
and t1 , t2 , a5
xor t0 , t0 , t 0
xor s0 , s0 , s0
xor t2 , t2 , t 2
xor t3 , a4 , a0
xor t4 , t3 , a6
xor t5 , t4 , a7
subrot s1 , a4 , 4
xor t6 , t5 , s1
xor a1 , t6 , t 1

XOR, and NOT. In our C code, we expand each of these
general instructions as a sequence consisting of Skiva-V
instructions in the form of inline assembly depending on the
desired redundancy and masking scheme. The expanded
instructions will implement the secure gadgets used for
masking and redundant computation. For instance, in the
32-bit architecture, for the first- (resp. third-) order masking
with no redundancy, each AND operation will be replaced
by the sequence of assembly instructions shown in Listing 7
(resp. Listing 8).

Finally, we add the proposed instructions to the RISC-
V GCC assembler. This way, the mnemonics of the new
instructions are recognized by the assembler and will be au-
tomatically mapped to the correct opcodes in the executable
file5.

5 DIRECT MEMORY ACCESS WITH TRANSPOSE
SUPPORT

In this section, we describe the Transpose DMA (T-DMA)
functionality, design, and the area footprint of the syn-
thesized circuit. T-DMA is capable of performing the
same operations as Skiva-V’s instructions (inv)tr2l,
(inv)tr2h, redl, redh, ftchk on the fly on up to 32
consecutive memory locations at once.

5.1 T-DMA Functionality
The proposed T-DMA module is capable of the following:

• Transposing/Reverse transposing an arbitrary number
of memory locations (up to thirty-two) starting from a
source address and storing the result in given addresses
starting from an arbitrary destination address.

• Generating/Removing the masking shares of data in
the source address according to the given Skiva-V
working mode.

5. We will open-source the modified GCC for Skiva-V before paper’s
publication.

Controller

Datapath

Transposer

32

32

register
file

R
em

ov
e

R
ed

un
da

nc
y

R
ed

un
da

nc
y

U
nm

as
k

M
as

k

PRNG

FIFO

redundancy
error

config

R
A

M

R
A

M
pr

oc
es

so
r T-DMA

Fig. 9. Block diagram of the T-DMA module.

• Generating/Removing the redundancy for the data
stored in given source address according to the given
Skiva-V working mode.

• Checking for consistency between the redundant copies
of the data stored in a given memory address.

5.2 T-DMA Design

Fig. 9 shows the design of our proposed T-DMA module.
The T-DMA module consists of a controller and a datapath.
The system’s processor will program the T-DMA by writing
to the controller. Programming the DMA includes telling the
controller the D, Rs, direct/complementary redundancy,
source memory address, destination memory address, num-
ber of memory locations, number of valid bits in each
location, and whether we need to {mask and duplicate} the
data or {unmask, and check and remove the redundancy}.

The controller, then, sets the signals for the datapath to
perform the transformations. At the core of the T-DMA’s
datapath design, is the transposer with a register file of thirty-
two 32-bit registers (128 bytes) tuned for a 32-bit micro-
architecture. Once the T-DMA starts the memory transfer,
it will load the data residing in a programmable number
of locations starting from a source address into the register
file. While transferring the data from the system’s RAM,
the existing redundancy and masking will be removed for
backward transposition. In case of a forward transposition,
the removal of redundancy and masking are turned off and
the masking shares for each bit of the data are generated
based on the programmed number of shares (D ∈ {1, 2, 4}).
We use the Cellular Automata-based PRNG6 to generate the
randomness required for masking the data.

Once the masking shares are generated, the data is for-
matted according to the programmed redundancy scheme
(Rs ∈ {1, 2, 4} and direct/complementary copy configura-
tion) and stored in the destination memory locations.

To perform the reverse transposition, the transposer first
checks for the correctness of the redundant data. Once
the correctness is ensured, it removes the redundancy and
unmasks the data. Finally, the dis-transposed data will be
saved to the destination addresses.

The output of the datapath is stored in a First In, First
Out (FIFO) memory. This memory stores the address and
data of each output to be sent to the system’s RAM. In our
implementation, the FIFO is 256 bytes with 32 entries of 64
bits wide (to store the concatenated 32-bit address and 32-bit
data). Once the transposition is done, T-DMA starts writing
each entry of the FIFO to the system’s RAM.

6. https://github.com/secworks/ca prng

https://github.com/secworks/ca_prng

9

Word addr: 0

n

2n

.

.

.

31n

1

n+1

2n+1

.

.

.

31n+1

n-1

2n-1

3n-1

.

.

.

32n-1

…

Offset: 0 1 n-1
Distinct data 32b

Distinct data 32b+1

Distinct data 32b+2

Distinct data 32b+31

.

.

.

Block: b

Fig. 10. Stride algorithm used in T-DMA. n = dWL
32
e

Despite only having a 32×32 register file in its trans-
poser, T-DMA is capable of transposing up to < 216 distinct
data each of length < 212 bits by being programmed only
once. This feature is enabled by the stride algorithm (Fig. 10).
Following the stride algorithm, the data is divided into
blocks, each containing a maximum of 32 distinct data. Each
data is of a programmable word length WL < 212. Each
block is divided into offsets containing up to 32 bits of up
to 32 distinct data. Fig. 10 shows this structure. T-DMA
iterates over all the offsets in a block. It takes the first offset
containing the least significant bits of each data in a block
to load the transposer’s register file. Subsequently, T-DMA
offloads the transposed data to the memory. The hexagons
in Fig. 10 represent this offloading. It then moves to the next
offset containing the next 32 significant bits of the data in
the block. Once all the bits of the data in the current block
are transposed and stored in the destination addresses, it
moves to the next block. In our implementation, 32-bit parts
of the same data are at consecutive addresses therefore the
distinct data in each offset are not in consecutive addresses,
rather they are n = dWL

32 e words apart. In each configu-
ration of the T-DMA there are dWC

32 e blocks to transpose.
The same structure applies to both forward and backward
transposition.

5.3 Employing T-DMA

To use the T-DMA, first, the source address should be writ-
ten in the controller through the processor. In our implemen-
tation, a little-endian architecture is assumed therefore the
source address is considered to hold the least significant 32
bits of the data. In addition, masking order (D), redundancy
order (Rs), word length (WL), and word count (WC) are
written to a 32-bit configuration register containing 2 bits
for holding D (0 for D = 1, 1 for D = 2, and 2 for
D = 3), similarly 2 bits for holding Rs, 16 bits for WC, and
12 bits for WL. Through writing to another configuration
register, it is specified whether the redundancy scheme
is direct or complementary and whether we are running
forward or backward transposition. Lastly, the seed for the
on-chip PRNG is also provided to the controller. Once this
configuration is complete, the T-DMA will start operating
by receiving the destination register in a specific addressable
register inside the controller.

As mentioned previously, the controller is capable of
checking the correctness of the redundant data. The result of
this check is written to a read-only (by the processor) status
register. After the completion of T-DMA’s job, the processor
can read the status register to confirm the correctness of the
redundant data. Furthermore, while the T-DMA is running,

Offset Register
0x00 Source Address
0x04 Config 1
0x08 Config 2
0x0C PRNG Seed
0x10 Destination Address
0x14 Error Status
0x18 Busy Status

31 29 27 15

Config 1 D Rs WL WC

1 0

Config 2 Unused Cmpl Bwd

Fig. 11. Address-accessible 32bit registers for communicating with and
programming the T-DMA. Grey cells are unused. Backward transposi-
tion when Bwd=1, forward otherwise. Complemented redundancy when
Cmpl=1, direct redundancy otherwise.

a busy flag will be held high in another status register. Using
this status register, the processor will know when the T-
DMA is ready for the next data transfer. Fig. 11 shows the
control and status registers in T-DMA.

5.4 Implementation
To evaluate the size of T-DMA, we synthesize the circuit
for SkyWater 130nm standard cell library. The T-DMA im-
plementation shows a total area of 161524.07um2 and a cell
count of 9017 with the FIFO being the biggest contributor
occupying more than 50% of the total area.

6 SYSTEM INTEGRATION

To integrate Skiva-V processor and the T-DMA, we make the
T-DMA implementation programmable from the processor
by making all the aforementioned configuration and status
registers in the controller address-accessible. Fig. 11 shows
these registers.

Every memory access from the memory stage of the
pipeline goes through the memory interface. Fig. 12 shows
the connection between the modules in the integrated sys-
tem. The memory interface detects whether the address is
within the range of T-DMA or data memory.

In case of addressing the T-DMA, memory interface
starts the transmission with the T-DMA which can include
programming the T-DMA (write) or accessing its status bits
(read). When the processor is trying to access the data mem-
ory, the interface module communicates with the memory
arbiter.

Memory arbiter takes care of prioritizing memory ac-
cesses from the processor core and T-DMA. When T-DMA

Mem Interface

Skiva-V

T-DMA

Mem
Arbiter

Data
Mem

Instr.
Mem

Integrated System

Fig. 12. Integration of Skiva-V and T-DMA.

10

is programmed to access the data memory, memory arbiter
prioritizes T-DMA’s memory access over the memory access
requests from the processor core. Therefore, the processor
core will insert bubbles into its pipeline while waiting for
the result of its memory access.

Implementation
We synthesize the integrated system (Fig. 12) for the SkyWa-
ter 130nm standard cell library and measure the total area
of 270,152.09um2 and a total cell count of 14204. Subtracting
the synthesized area of the Skiva-V and T-DMA (reported in
the previous sections) from the integrated system, consisting
of the memory arbiter module and the added logic to
the memory interface module, the integration adds around
11,246.95um2 (4.16% overhead) to the overall area.

7 BENCHMARK

In the following, we run all the experiments on our in-
tegrated system. We demonstrate the advantage of hard-
ware support for data transposition, the performance cost
of redundant computation, and the benefit of instruction-
support for performance of masked implementations.

7.1 Cost of Transposition
To characterize the overhead of transposition more thor-
oughly, we evaluate the cost of transposition in our imple-
mented system in terms of the required number of clock
cycles. We write a program in which K (2 ≤ K ≤ 32) adja-
cent bits in a 32-bit register need to be transposed to reside
in 1 bit of K registers. We run the same program in three
different settings: using only standard RV32I instructions,
using Skiva-V’s transpose instructions, i.e., tr2l and tr2h,
and using the T-DMA. We compare the first two cases in
terms of number of required instructions and all three cases
in terms of number of clock cycles.

Using the instructions in Skiva-V provides between 3×
to 10× decrease in the number of instructions depending
on the value of K . Furthermore, as Fig. 13 shows, for each
K , the number of clock cycles required to transpose K
adjacent bits in a 32-bit register is reduced between 3×
to 6× using the Skiva-V instructions. T-DMA and Skiva-V
perform closely in this scenario with T-DMA having a better
performance for K ≥ 19.

These results confirm the benefits of the transpose in-
structions in Skiva-V. However, to demonstrate the benefits
of having the T-DMA, we run another experiment in which
K ∈ {2, 4, 8, 16, 32} bits in K registers need to be trans-
posed. Fig. 14 shows that as K increases, the run-time of this
transposition increases linearly (14k+19, R2 = 1) using the
T-DMA but quadratically using the instructions in Skiva-V
(1.54k2−4.3k+64.9, R2 = 1) and RV32I (55.1k2+125k−469,
R2 = 1).

7.2 Cost of Redundant Computation
The redundant computation schemes affect the throughput
of an execution as they reduce the number of parallel runs
of a bitsliced software. For instance, when Rs = 2 each
bit of data is copied twice in the same register therefore

Number of bits to transpose (K)

N
um

be
r o

f c
lo

ck
 c

yc
le

s

0

100

200

300

400

500

600

700

800

900

0 4 8 12 16 20 24 28 32

RV32I Skiva-V T-DMA

Fig. 13. Number of clock cycles to transpose K adjacent bits of one
register.

Fig. 14. Number of clock cycles required to transpose K adjacent bits in
K registers.

reduces the number of parallel runs by half. In general, in
an Rs redundant scheme, the number of parallel runs will
be divided by Rs therefore the throughput of the bitsliced
software will also be divided by Rs.

7.3 Masked Implementations of LWC Ciphers
We take the finalists of the NIST’s Light-Weight Cryptogra-
phy (LWC) competition that mention masking as their de-
sign options; ASCON [25] and GIFT-COFB [26]. We generate
the masked implementation of their permutations (shown in
Listing 9 and Listing 10) for D ∈ {1, 2, 4} number of shares
using the discussed code-generation method (Section 4). In
the D=1, D=2, and D=4 settings, we support 32, 16, and
8 parallel executions respectively. We run the generated
programs on Skiva-V system and calculate the number of
cycles.

To supply the required randomness, we assume that the
system has access to a pseudo-random number generator
(PRNG) with a high throughput so that accessing a ran-
dom number is equivalent to reading a register. Listing 7
and Listing 8 show the assembly code for masked 2-input
AND instruction with D=2 and D=4 masked shares which
follow the scheme described by Barthe et al. [18] and use
the subrot instruction available in Skiva-V for rotation of
shares sitting adjacently in the registers. Note that in this
section, we do not perform any redundant computation, i.e.,
Rs = 1. In case of using complementary redundancy, the
corresponding complementary logic instructions (described
in Section 3.1) would replace the and and xor operations in
Listing 7 and Listing 8.

Table 6 reports the number of cycles per byte calculated
as c

s×p where c is the number of clock cycles, s is the size of
the state of the cipher in bytes (3208 for ASCON and 128

8 for
GIFT-COFB), and p is the number of parallel runs.

11

TABLE 6
Reciprocal of performance (cycles/byte).

The PRNG is assumed to have a high enough throughput to not cause any reading delay.
Tornado results are for ARM Cortex-M4; Skiva-V results are for RISC-V RV32I with extensions.

Cipher D=1 (no masking) D=2 (first-order masking) D=4 (third-order masking)

Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up Tornado Skiva-V Speed-up

ASCON 101 159.677 0.633 - 717.495 - 3070 1988.903 1.544
GIFT 358 441.941 0.810 - 1378.141 - 11080 3435.656 3.225

Listing 9. ASCON permutation
void ascon perm (i n t * s t a t e , i n t * round const) {

for (i = 0 ; i <12; i ++) {
add constant (s t a t e , round const [i]) ;
s u b s t i t u t i o n (s t a t e) ;
l i n e a r d i f f u s i o n (s t a t e) ;

}
}

Listing 10. GIFT permutation
void gift perm (i n t * s t a t e , i n t * key) {

for (i = 0 ; i <40; i ++) {
s u b c e l l s (s t a t e) ;
perm bits (s t a t e) ;
add roundkey (s t a t e , key) ;
key update (key) ;

}
}

We compare our results with a similar work, Tornado
[27], which reports the same cycles/byte metric for the
masked implementations (with the same fast assumption
on the PRNG) of the same permutations of the LWC candi-
dates but on Cortex-M4. Table 6 highlights the advantage
of having hardware support for bitslicing. First, for an
unmasked implementation (D=1), Tornado reports higher
performance. Note that we assume the data is already in
bitsliced (and masked if D 6= 1) format hence the trans-
position is not included in our measurements. Therefore,
for unmasked implementations, the Skiva-V instructions
are not used and the comparison is between the RISC-V
RV32I and Cortex-M4 ISAs and the code generation process.
Thus, the higher performance reported by Tornado can be
attributed to the more advanced nature of Cortex-M4 ISA
compared to the RISC-V ISA and to the code generation tool.
Second, for a third-order masked implementation (D=4), we
observe that Skiva-V can result in 1.5× and 3.2× speedup
for ASCON and GIFT-COFB respectively. Since Tornado
does not report first-order masking results, we were not able
to compare with Skiva-V for the D=2 setting.

We further analyze this data in terms of added number
of clock cycles per unit increase in the masking order. This
criterion depends on the cipher algorithm and the imple-
mentation of the algorithm. Since our goal is to compare
the implementations, and not the cipher algorithms, we
compare this criterion for ASCON and GIFT separately. For
this purpose, we make a linear regression of the cycles/byte
vs. number of shares (D) as reported in Table 6.

The trend-line of the linear regression for ASCON’s
perfomance is 613D − 476 for Skiva-V and 990D − 889 for
Tornado. This means increasing the order of masking by
one, will cause 613 extra clock cycles for Skiva-V and 990
for Tornado (1.6× increase compared to Skiva-V).

The same experiment for GIFT’s performance shows a

trend-line of 1002D − 587 for Skiva-V and 3574D − 3216
for Tornado. For this cipher, the increase of clock cycles is
more significant than ASCON which can be attributed to the
multiplicative complexity of its algorithm. Furthermore, for
an increase of one in the masking order, Tornado is affected
by a 3.6× higher increase in the required clock cycles than
Skiva-V.

8 CONCLUSION

In this contribution, we demonstrated how selected hard-
ware techniques can significantly enhance the performance
of bitslice software programs. By creating custom hardware
to speed up frequent bit-level manipulation instructions, we
illustrated a reduction on the register pressure for software
bitslicing, and a performance boost over two state of the
art bitsliced lightweight cipher designs. We demonstrated
hardware support in the form of ISE as well as a stand-
alone T-DMA peripheral. We presented synthesis results for
the complete design in 130nm standard cells, and estimate
the area overhead of the proposed extensions to be less than
5% at SoC level.

REFERENCES

[1] E. Biham, “A fast new DES implementation in software,” in
International Workshop on Fast Software Encryption. Springer, 1997,
pp. 260–272.

[2] C. Rebeiro, D. Selvakumar, and A. Devi, “Bitslice implementation
of aes,” in International Conference on Cryptology and Network Secu-
rity. Springer, 2006, pp. 203–212.

[3] W. de Groot, K. Papagiannopoulos, A. de La Piedra, E. Schneider,
and L. Batina, “Bitsliced masking and arm: Friends or foes?” in
International Workshop on Lightweight Cryptography for Security and
Privacy. Springer, 2016, pp. 91–109.

[4] J. Daemen, M. Peeters, and G. Van Assche, “Bitslice ciphers and
power analysis attacks,” in International Workshop on Fast Software
Encryption. Springer, 2000, pp. 134–149.

[5] S. Matsuda and S. Moriai, “Lightweight cryptography for the
cloud: exploit the power of bitslice implementation,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2012, pp. 408–425.

[6] S. Xu and D. Gregg, “Bitslice vectors: A software approach to
customizable data precision on processors with simd extensions,”
in 2017 46th International Conference on Parallel Processing (ICPP).
IEEE, 2017, pp. 442–451.

[7] R. Singh, T. Conroy, and P. Schaumont, “Variable precision multi-
plication for software-based neural networks,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–7.

[8] P. Kiaei and P. Schaumont, “Synthesis of parallel synchronous
software,” IEEE Embedded Systems Letters, pp. 1–1, 2020.

[9] A. Zeh, A. Glew, B. Spinney, B. Marshall, D. Page, D. Atkins,
K. Dockser, M.-J. O. Saarinen, N. Menhorn, and R. Newell, “Risc-v
cryptographic extension proposals.”

[10] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini,
“Design and evaluation of smallfloat simd extensions to the risc-v
isa,” in 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, pp. 654–657.

12

[11] P. Kiaei and P. Schaumont, “Domain-oriented masked instruction
set architecture for risc-v.” IACR Cryptol. ePrint Arch., vol. 2020, p.
465, 2020.

[12] P. Kiaei, D. Mercadier, P.-E. Dagand, K. Heydemann, and P. Schau-
mont, “Custom instruction support for modular defense against
side-channel and fault attacks,” in Constructive Side-Channel Anal-
ysis and Secure Design, G. M. Bertoni and F. Regazzoni, Eds. Cham:
Springer International Publishing, 2021, pp. 221–253.

[13] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Reveal-
ing the secrets of smart cards. Springer Science & Business Media,
2008, vol. 31.

[14] D. Goudarzi, A. Journault, M. Rivain, and F. Standaert, “Secure
multiplication for bitslice higher-order masking: Optimisation
and comparison,” in Constructive Side-Channel Analysis and Secure
Design - 9th International Workshop, COSADE 2018, Singapore, April
23-24, 2018, Proceedings, ser. Lecture Notes in Computer Science,
J. Fan and B. Gierlichs, Eds., vol. 10815. Springer, 2018, pp. 3–22.
[Online]. Available: https://doi.org/10.1007/978-3-319-89641-0 1

[15] S. Dhooghe and S. Nikova, “My gadget just cares for me - how
nina can prove security against combined attacks,” in Topics in
Cryptology – CT-RSA 2020, S. Jarecki, Ed. Cham: Springer Inter-
national Publishing, 2020, pp. 35–55.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999, pp. 388–
397.

[17] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in International workshop on cryptographic
hardware and embedded systems. Springer, 2004, pp. 16–29.

[18] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert,
and P.-Y. Strub, “Parallel implementations of masking schemes
and the bounded moment leakage model,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2017, pp. 535–566.

[19] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun, “Horizontal
side-channel attacks and countermeasures on the ISW masking
scheme,” in International Conference on Cryptographic Hardware and
Embedded Systems. Springer, 2016, pp. 23–39.

[20] S. Belaı̈d, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard,
and D. Vergnaud, “Randomness complexity of private circuits for
multiplication,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2016, pp. 616–
648.

[21] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in International
conference on the theory and applications of cryptographic techniques.
Springer, 1997, pp. 37–51.

[22] K. Asanovic and A. Waterman, “The risc-v instruction set man-
ual,” in Privileged Architecture, Document Version 20190608-Priv-
MSU-Ratified. RISC-V Foundation, 2019, vol. 2.

[23] S. Bandara, A. Ehret, D. Kava, and M. A. Kinsy, “Brisc-v: An
open-source architecture design space exploration toolbox,” arXiv
preprint arXiv:1908.09992, 2019.

[24] P. Kiaei, A. S. Krishnan, and P. Schaumont, “Parallel synchronous
code generation for second round light weight candidates.” Pro-
ceedings of the NIST Lightweight Cryptography Workshop, 2020.

[25] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon
v1. 2,” Submission to the CAESAR Competition, 2016.

[26] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“Gift: a small present,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2017, pp. 321–345.

[27] S. Belaı̈d, P.-E. Dagand, D. Mercadier, M. Rivain, and R. Winters-
dorff, “Tornado: Automatic generation of probing-secure masked
bitsliced implementations,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2020, pp. 311–341.

Pantea Kiaei (Student Member, IEEE) Pantea Kiaei is a Ph.D. student in
Electrical and Computer Engineering at Worcester Polytechnic Institute.
She received her MS degree in Computer Engineering from Virginia
Tech in 2019 and prior to that received her BS degree in Electrical
Engineering from Sharif University of Technology, Iran, in 2017. She has
reviewed papers for ACM TECS, ACM JETC, and IEEE TVLSI journals.
Her research interests include secure hardware design, computer archi-
tecture, and trustworthy secure systems.

Tom Conroy was an MS student in Electrical and Computer Engineer-
ing at Virginia Tech. He received his MS degree in Computer Engineer-
ing in 2021 and his BS in Computer Engineering in 2019, both from
Virginia Tech. He has since joined The Johns Hopkins University Applied
Physics Laboratory as an Electronic Systems Engineer. His research
interests include secure hardware design, efficient cryptographic imple-
mentation on embedded systems, and embedded system security.

Patrick Schaumont (Senior Member, IEEE) is a Professor in Computer
Engineering at WPI. He received the Ph.D. degree in Electrical Engi-
neering from UCLA in 2004 and the MS degree in Computer Science
from Ghent University in 1990. He was a staff researcher at IMEC,
Belgium from 1992 to 2000. He was a faculty member with Virginia Tech
from 2005 to 2019. He joined WPI in 2020. He was a visiting researcher
at the National Institute of Information and Telecommunications Technol-
ogy (NICT), Japan in 2014. He was a visiting researcher at Laboratoire
d’Informatique de Paris 6 in Paris, France in 2018. He is a Radboud Ex-
cellence Initiative Visiting Faculty with Radboud University, Netherlands
from 2020. His research interests are in design and design methods of
secure, efficient and real-time embedded computing systems.

https://doi.org/10.1007/978-3-319-89641-0_1

	Introduction
	Preliminaries
	Bitslicing
	Masking
	Redundant Computation

	Processor Support
	Instruction Definitions
	ISA-level Performance Analysis
	Implementation

	Coding Support
	Direct Memory Access with Transpose Support
	T-DMA Functionality
	T-DMA Design
	Employing T-DMA
	Implementation

	System Integration
	Benchmark
	Cost of Transposition
	Cost of Redundant Computation
	Masked Implementations of LWC Ciphers

	Conclusion
	References
	Biographies
	Pantea Kiaei
	Tom Conroy
	Patrick Schaumont

