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Abstract. A new interpretation of linear cryptanalysis is proposed. This
‘geometric approach’ unifies all common variants of linear cryptanalysis,
reveals links between various properties, and suggests additional gener-
alizations. For example, new insights into invariants corresponding to
non-real eigenvalues of correlation matrices and a generalization of the
link between zero-correlation and integral attacks are obtained. Geomet-
ric intuition leads to a fixed-key motivation for the piling-up principle,
which is illustrated by explaining and generalizing previous results relat-
ing invariants and linear approximations. Rank-one approximations are
proposed to analyze cell-oriented ciphers, and used to resolve an open
problem posed by Beierle, Canteaut and Leander at FSE 2019. In partic-
ular, it is shown how such approximations can be analyzed automatically
using Riemannian optimization.

Keywords: Linear cryptanalysis · Nonlinear cryptanalysis · Piling-up
lemma · Correlation matrices · Block cipher invariants

1 Introduction

At EUROCRYPT 1993, Matsui [31] introduced linear cryptanalysis as a new
known-plaintext attack on the block cipher DES. Linear cryptanalysis is based
on probabilistic linear relations or linear approximations, a concept introduced
by Tardy-Corfdir and Gilbert [36].

The success of Matsui’s attack led to the development of a myriad of exten-
sions and variants of linear approximations, and to more advanced techniques
for their analysis [16, 32]. Despite significant advances, many questions related
to linear cryptanalysis and its theoretical foundations remain unresolved.

Kaliski and Robshaw [25] suggested using multiple linear approximations.
Hermelin, Cho and Nyberg [23] proposed the related multidimensional linear at-
tack. Both extensions are widely used. Generalizations of linear cryptanalysis to
groups other than Fn2 were proposed by Granboulan, Levieil and Piret [20] and
Baignères, Stern and Vaudenay [3]. The use of nonlinear approximations is an-
other natural extension, and has been attempted by Knudsen and Robshaw [26],
Harpes, Kramer and Massey [21] with I/O sums, Harpes and Massey [22] with
partitioning attacks and recently by Beierle, Canteaut and Leander [4].

All of the above techniques rely on heuristic methods to glue together sev-
eral approximations over multiple rounds of a cipher. These methods will be



collectively referred to as the piling-up principle. This principle has tradition-
ally been justified using independence or Markov chain assumptions [2, 31, 42],
which can be related to earlier work on Markov ciphers in the context of dif-
ferential cryptanalysis [28]. However, such assumptions are hard to reconcile
with the key-dependence of approximations and the increased importance of
cryptographic permutations. In fact, key-dependence is one of the fundamen-
tal difficulties of nonlinear cryptanalysis. Alternatively, the correlation matrix
framework of Daemen et al. [16] is more suitable for the fixed-key setting. It
motivates the piling-up principle using the dominant trail hypothesis. Beierle et
al. [4] extend this approach by applying linear cryptanalysis to a nonlinearly
transformed variant of the cipher.

In a different direction, Rijmen and Bogdanov [13] introduced zero-correlation
linear cryptanalysis to exploit unbiased linear approximations. The construction
of zero-correlation approximations relies on the miss-in-the-middle technique as
opposed to the piling-up principle. At ASIACRYPT 2012, Bogdanov et al. [12]
established a link between multidimensional zero-correlation approximations and
integral distinguishers [27].

Finally, several lightweight block ciphers have been found vulnerable to weak-
key attacks based on invariant subspaces [30] and nonlinear invariants [39]. These
attacks have led to renewed interest in linear cryptanalysis and its generaliza-
tions. Abdelraheem et al. [1] found links between invariant subspaces and linear
cryptanalysis. Moreover, nonlinear invariants provide one of the most compelling
examples of nonlinearity in cryptanalysis, with applications including the analy-
sis of SCREAM, iSCREAM, Midori-64 and MANTIS [6,39]. At ASIACRYPT 2018,
it was shown that invariant subspaces and nonlinear invariants can be described
as eigenvectors of correlation matrices [6]. Furthermore, one of the invariants
discovered in [6] corresponds to a perfect linear approximation. These results
established a strong link between nonlinear invariants and linear cryptanalysis,
but a true statistical generalization of the nonlinear invariant attack was left
open. Lastly, Beierle et al. [4] extended the links discovered by Abdelraheem et
al. to some classes of nonlinear invariants.

Contribution. A conceptually new way of thinking about linear cryptanalysis
is introduced. It provides an alternative viewpoint for the foundations of lin-
ear cryptanalysis and has a number of concrete benefits. Firstly, it results in a
systematized and unified description of the above-mentioned variants of linear
cryptanalysis. Secondly, it leads to generalizations of the connections between
these attacks, such as the link between integral and zero-correlation cryptanal-
ysis and the links between invariants and linear approximations. Some of these
results are illustrated in Table 1, and are discussed in more detail below. Thirdly,
it suggests a general form of the piling-up principle. Finally, to illustrate the rel-
evance for the working cryptanalyst, the approach is used to solve a problem
posed by Beierle et al. [4].

Section 3 introduces a correspondence between cryptanalytic properties and
vector spaces of complex-valued functions on the domain of a primitive. This
results in a uniform description of the properties (sets, linear and nonlinear
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Boolean functions, …) that are used in different variants of linear cryptanalysis.
The correspondence generalizes the idea introduced in [6] that invariant sub-
spaces and nonlinear invariants can be represented by complex vectors, which
led to their characterization as eigenvectors of correlation matrices.

Table 1: Approximations for a function F from the geometric viewpoint. Here,
U and V are vector spaces (of dimension d) of functions. The notation follows
Sections 3 to 5.

Zero-correlation Perfect General
CFU ⊥ V CFU ⊆ V 〈V,U〉F

d = 1

Linear zero-
correlation [13]
Nonlinear zero-
correlation (Ex. 4.3)

Invariant subspaces [30]
Nonlinear invariants [39]
Eigenvectors of CF [6]

Linear cryptanalysis [31]
Abelian groups [3]
I/O sums [21]
Beierle et al. [4]
Rank-one (Section 6)

d ≥ 1

Multidimensional zero-
correlation [12]

Integral attacks [27]
General invariants
(Def. 4.3, Ex. 4.2)

Multiple linear [9,25]
Multidim. linear [23]
Partitioning [22]
Projection, χ2 [2, 41,42]

Thm. 4.2 Sect. 5.3

Definition 4.1 characterizes an approximation of a cipher as a pair of vector
spaces (U, V ), corresponding to input and output properties as sketched above.
This results in a systematization of many variants of linear cryptanalysis, as
summarized in Table 1. It will be shown that the type and quality of approxima-
tions is related to the geometric properties of the spaces U and V . Section 4.1
illustrates how this results in new insight into block cipher invariants and gives
a realistic example of invariants related to non-real eigenvalues of correlation
matrices, a problem that was left open at ASIACRYPT 2018 [6]. Theorem 4.2
generalizes the links between zero-correlation and integral attacks discovered by
Bogdanov et al. [12]. For general approximations, principal correlations are in-
troduced as a natural extension of the correlation of a linear approximation and
it is shown how they relate to the complexity of optimal distinguishers discussed
by Baignères, Junod and Vaudenay [2].

A general piling-up principle is given in Theorem 5.1. Its motivation is the re-
sult of geometric intuition. This avoids independence and Markov chain assump-
tions and simplifies working with fixed keys. Furthermore, the result evades the
issues that are encountered when the dominant-trail approach of Daemen et al.
is extended to the nonlinear case. Theorem 5.1 allows for much greater flexibility
than previous formulations of the piling-up principle. In particular, it becomes
possible to build trails that combine diverse cryptanalytic properties. This is
illustrated in Section 5.3 by strengthening the links between linear approxima-
tions and invariants, extending previous work by Abdelraheem et al. [1] and
Beierle et al. [4].

Finally, Section 6 introduces rank-one approximations to analyze cell-oriented
ciphers. A tool to find optimal rank-one trails is introduced, and its application
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to searching for invariants is discussed. Perhaps surprisingly, the tool is based
on numerical optimization on a Riemannian manifold. This is enabled by the
generality of Sections 3 to 5, which relaxes the search space by introducing many
new types of approximations. The tool is provided as supplementary material.
Rank-one approximations and the aforementioned tool are used in Section 7.3
to resolve a problem introduced by Beierle et al. [4], who describe it as “a major
open problem”. It is representative of other concrete problems, and its solution
relies on the general techniques that are introduced in Sections 3 to 5.

2 Functions on Abelian Groups

The goal of this section is to introduce several concepts that will be used to
develop a general theory of linear cryptanalysis in Sections 3 to 5. These concepts
provide the setting for the proposed geometric approach. It is assumed that
the reader is familiar with finite Abelian groups and linear algebra in finite-
dimensional inner product spaces.

It will be shown in Section 3 that many cryptanalytic properties can be de-
scribed by complex-valued functions on the domain of a primitive. Section 2.1
discusses preliminaries related to the set of such functions. Section 2.2 introduces
the Fourier transformation on finite Abelian groups. This will be an important
tool to simplify the effect of constant (including key) additions. Finally, Sec-
tion 2.3 discusses the geometry of subspaces of an inner product space.

2.1 Inner Product Space of Functions

Let G be a finite Abelian group, for example the domain of a block cipher.
In fact, all of the properties in this section are valid for any set G. However,
the results in Section 2.2 will require the assumption that G is a finite Abelian
group. The C-vector space of all functions from G to C, with the usual pointwise
addition and scalar multiplication, will be denoted by CG. The standard inner
product between two functions f, g ∈ CG is defined by

〈f, g〉 =
∑
x∈G

f(x)g(x),

where f(x) denotes the complex-conjugate of f(x). Hence, the vector space CG
is a finite-dimensional inner product space. One also has a norm ‖f‖2 =

√
〈f, f〉,

which carries the geometric interpretation of length. The modulus of the inner
product between two normalized vectors can be interpreted as the cosine of
the smallest angle enclosed by them – although for non-real vectors, several
definitions of angles are plausible. The theory developed in Sections 4 and 5 will
draw on these geometric concepts for intuition.

The functions δx, which are equal to one at x ∈ G and zero everywhere else,
clearly form an orthonormal basis for CG. This basis will be referred to as the
standard basis. It follows that CG is isomorphic to C|G| as an inner product
space.

4



Example 2.1. The indicator function 1S : G → C of a set S ⊆ G is defined by
1S(x) = 1 if x ∈ S and zero elsewhere. The coordinates of 1S in the standard
basis are given by 〈δx, 1S〉 = 1S(x) for x ∈ G. Given a second set T ⊆ G, it
holds that 〈1S ,1T 〉 = |S ∩ T |. One reason to consider indicator functions such
as 1S and 1T as complex-valued rather than real-valued functions is that C
is algebraically closed. This will be convenient in Section 2.2 below, where the
Fourier transformation of such functions is introduced.

Recall that the tensor product of C-vector spaces V1, . . . , Vn is another C-
vector space V1 ⊗ · · · ⊗ Vn of dimension

∏n
i=1 dimVi together with a multilinear

map ⊗ :
∏n
i=1 Vi →

⊗n
i=1 Vi, which has the universal property that it uniquely

linearizes arbitrary multilinear maps. Specifically, for any T :
∏n
i=1 Vi →W lin-

ear in each variable (multilinear), there exists a unique linear map L :
⊗n

i=1 Vi →
W such that T (v1, . . . , vn) = L(v1 ⊗ · · · ⊗ vn).

For the purposes of this paper, readers who are not familiar with tensor
products may take the following characterization as a definition. Let G = A⊕B
be a direct sum of Abelian groups A and B. That is, the group G consists of
all pairs (a, b) with a ∈ A and b ∈ B. The tensor product of CA and CB can
then be characterized by CA ⊗ CB ∼= CG. Indeed, the linear map defined by
δ(a,b) 7→ δa⊗δb for all a ∈ A and b ∈ B is an isomorphism. In this paper, CG and
CA⊗CB will always be identified through this isomorphism. Hence, for f ∈ CA
and g ∈ CB, it can be said that f ⊗ g ∈ CG with (f ⊗ g)(a, b) = f(a) g(b).

A rank-one vector v ∈
⊗n

i=1 Vi is a vector of the form v = v1⊗· · ·⊗vn. Given
bases for V1, . . . , Vn, the set of all their tensor products is a basis of rank-one
vectors for

⊗n
i=1 Vi. More generally, for any vector v there exists an integer r ≥ 0

such that

v =
r∑
i=1

λi
⊗n

j=1 vi,j ,

for some vectors vi,j ∈ Vj and scalars λi ∈ C. The smallest r for which such a
decomposition exists is called the tensor rank of v.

Example 2.2. Let G = F2
2 = F2⊕F2. The vector δ(0,0) = δ0⊗δ0 in CF2⊗CF2 has

tensor rank one. Furthermore, it is easy to check that the vector δ(0,0) + δ(1,1) =
δ0 ⊗ δ0 + δ1 ⊗ δ1 has rank two. However, the vector δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)
only has rank one because it is equal to (δ0 + δ1)⊗ (δ0 + δ1).

2.2 Fourier Analysis

Given a function f ∈ CG and a constant t ∈ G, one can define a new function
by x 7→ f(x+ t). The effect of translations on the coordinates of functions in the
standard basis of CG is inconvenient: the basis vectors are shuffled around by
the permutation δx 7→ δx+t, which corresponds to multiplication by a Toeplitz
matrix. It would be more convenient if the effect of translation would be a simple
scaling of the coordinates, i.e. multiplication by a diagonal matrix. This can be
achieved by working with respect to a different basis.
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To achieve the goal of diagonalization, the new basis vectors should be eigen-
vectors of the set of translation operations. This is achieved for any homomor-
phism χ : G → C× from G to the multiplicative group of complex numbers
C× = C \ {0}, since χ(x + t) = χ(t)χ(x) for any x, t ∈ G. This leads to the
following definition.

Definition 2.1 (Group characters [37]). Let G be a finite Abelian group. A
(complex) character of G is a group homomorphism G→ C×. The (Pontryagin)
dual of G is the group Ĝ of all characters of G with respect to the pointwise
product.

It is not hard to see that Ĝ is indeed an Abelian group. For example, the
inverse of χ ∈ Ĝ is the character x 7→ χ(−x). That is, χ(−x) = χ(x).

Example 2.3. The dual of the additive group F2 is F̂2 = {x 7→ 1, x 7→ (−1)x}.
Indeed, these are the only two group homomorphisms F2 → C×. .

The functions in the dual group Ĝ form a basis for CG that behaves well
with respect to translation. Further properties of the dual group are given in
Theorem 2.1 below. In particular, property (2) shows that the basis of characters
is orthogonal.

Theorem 2.1 (Properties of dual groups [37]). If G is a finite Abelian
group with dual Ĝ, then
(1) The dual group Ĝ is isomorphic to G.
(2) For all χ, ψ ∈ Ĝ, it holds that 〈χ, ψ〉 = |G| δχ(ψ).
(3) If G = H1 ⊕H2 with ⊕ the internal direct sum, then Ĝ = Ĥ1 ⊕ Ĥ2.

By Theorem 2.1 (1), Ĝ can be identified with G. In general, this identification
is not unique. However, there is a functorial isomorphism between the double
dual of G and G itself, which identifies g ∈ G with the evaluation map χ 7→ χ(g)

in the dual of Ĝ [37]. This result justifies the term ‘dual group’. In order to avoid
arbitrary choices, isomorphisms between Ĝ and G will be avoided throughout
this paper. This makes no difference in specific calculations, but it is theoretically
more elegant.

Example 2.4. Since the additive group Fn2 is the direct sum of n copies of F2, it
follows from Theorem 2.1 (3) that the dual group is essentially the direct sum
of n copies of F̂2. Specifically, F̂n2 = {x 7→

∏n
i=1(−1)uixi = (−1)u

>x | u ∈ Fn2}.
Note that identifying F̂n2 and Fn2 requires choosing a basis for Fn2 . .

The Fourier transformation F is essentially a change of basis from the stan-
dard basis to the character basis. However, in order to avoid identifying Ĝ and
G, we shall define F as a transformation from CG to CĜ. With this definition,
the Fourier transformation maps a character χ ∈ Ĝ ⊂ CG directly to a multiple
of the standard basis vector δχ ∈ CĜ. Since group characters are orthogonal,
Definition 2.2 achieves the desired basis transformation.
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Definition 2.2 (Fourier transformation [37]). Let f : G→ C be a function.
The Fourier transformation of f is the function f̂ : Ĝ→ C defined by

f̂(χ) = 〈χ, f〉 =
∑
x∈G

χ(x)f(x).

The Fourier transformation is the map F : CG→ CĜ such that Ff = f̂ .

The transformation F is a vector space isomorphism. In fact, since CG and
CĜ are algebras with either the pointwise product or convolution, F is an isomor-
phism of algebras which swaps the pointwise product and convolution. This is by
construction, since the set of convolution operators is generated by translations.

The vector space CĜ is also an inner product space. In fact, due to the
orthogonality of characters, the inner product between f1, f2 ∈ CG coincides
with the inner product of their Fourier transforms up to a constant factor:

〈f̂1, f̂2〉 =
∑
χ∈Ĝ

f̂1(χ)f̂2(χ) = |G| 〈f1, f2〉.

In other words, F/
√
|G| is a unitary map and F−1 = F∗/|G| with F∗ the adjoint

(conjugate transpose) of F.
To end this section, consider the caseG = A⊕B. As mentioned above, one has

CG = CA⊗CB (technically up to isomorphism). By Theorem 2.1 (3), the dual
group satisfies Ĝ = Â⊕ B̂. Hence, one also has CĜ = CÂ⊗ CB̂. Consequently,
the Fourier transformation on CG is given by FA⊗FB . Equivalently, the matrix
representation of F in the standard basis is the Kronecker product of the matrix
representations of FA and FB in the standard basis.

2.3 Subspaces of CG and CĜ

Sections 3 and 4 will demonstrate that subspaces of CG and CĜ are often more
interesting for cryptanalysis than individual functions. For this reason, it will
be convenient to extend the inner product notation 〈·, ·〉 to subspaces of CG.
For subspaces U ⊆ CG and V ⊆ CG, define the linear map 〈V,U〉 : U → V by
〈V,U〉 = πV ιU , where ιU : U → CG is the inclusion map and πV : CG → V is
the orthogonal projection on V . A similar definition can be given for subspaces
of CĜ. Note that 〈V,U〉 = 〈U, V 〉∗ since projection and inclusion are adjoint.

Example 2.5. Let U and V be one-dimensional subspaces of CG spanned by
unit-norm vectors u and v respectively. By definition, ιU (λu) = λu and πV (x) =
v〈v, x〉. Consequently, 〈V,U〉 : U → V is the map λu 7→ 〈v, u〉λv. The matrix
representation of this map is thus simply the 1× 1 matrix containing the inner
product 〈v, u〉. .

The transformation 〈V,U〉 comes with a geometric interpretation, which will
be important in Sections 4 and 5. Due to standard properties of orthogonal
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projection, 〈V,U〉 maps any u ∈ U to the nearest vector v ∈ V . In addition,
no other vector in V of the same length makes a smaller angle to u than v.
This suggests that 〈V,U〉 encodes all information about the ‘angles’ between U
and V . This can be made precise using the notion of principal angles between
subspaces, which is due to Jordan [24]. The characterization below follows Björck
and Golub [10].

Definition 2.3 (Principal angles). Let U and V be subspaces of an inner
product space over C of finite dimension and let d = min{dimU,dimV }. The
principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2 between U and V are recursively
defined by (for i = 1, 2, . . . , d)

cos θi =
〈ui, vi〉

‖ui‖2‖vi‖2
= max
u∈Ui\{0}
v∈Vi\{0}

|〈u, v〉|
‖u‖2‖v‖2

,

where ui ∈ Ui and vi ∈ Vi are nonzero vectors for which the maximum on the right
is achieved with 〈ui, vi〉 a non-negative real number, Ui = U ∩ {u1, . . . , ui−1}⊥
and Vi = V ∩ {v1, . . . , vi−1}⊥.

The cosines of the principal angles are precisely the singular values of 〈V,U〉,
and the singular vectors are the directions along which these angles are to be
measured. This follows directly from the variational characterization of singular
values. Further details may be found in [10].

3 Cryptanalytic Properties

Many cryptanalytic techniques rely only on partial information about the inputs
and outputs of a primitive, such as membership of a set or the value taken
by a Boolean function. Below, the structure of the inputs (or outputs) will be
informally referred to as cryptanalytic input (or output) properties.

One of the obstacles to a more general approach to linear cryptanalysis and
its variants, is the fact that different cryptanalytic properties are often described
by disparate mathematical objects (such as sets, linear or nonlinear functions,
...). In a few cases, overcoming this difficulty has resulted in new or generalized
results. Examples include the projection function approach of Wagner [42] and
Baignères et al. [2], which enables unifying the data-complexity analysis of sev-
eral attacks, and the observation that both invariant subspaces and nonlinear
invariants correspond to eigenvectors of correlation matrices [6].

Section 3.1 introduces a general correspondence between cryptanalytic prop-
erties and subspaces of the inner product space CG. It works for all properties
relevant to linear cryptanalysis and its variants, and in particular generalizes
both examples just mentioned above. Section 3.2 describes how properties change
when a function is applied to the state. This leads to a more general perspective
on correlation matrices.
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3.1 Correspondence Between Properties and Subspaces

The purpose of this section is to show that the cryptanalytic properties used in
linear cryptanalysis and its variants are naturally described by functions G→ C,
i.e. functions in the inner product space CG from Section 2.1. This will be
motivated from two viewpoints, which are dual to one another. Specifically, the
following two perspectives will be advanced:
(i) Cryptanalytic properties correspond to functions in CG.
(ii) Cryptanalytic properties corrsepond to linear functions CG→ C.
From viewpoint (i), a cryptanalytic property characterizes the state of a collec-
tion of inputs or outputs. For instance, probability distributions on G can be
represented by functions G → [0, 1] ⊂ C. Similarly, any subset S of G has an
indicator function 1S ∈ CG. It will be shown below that the general idea of as-
sociating not just positive numbers, but also arbitrary complex-valued weights,
to the elements of G is necessary to describe other types of properties.

According to (ii), properties describe a measurement or observation of the
state of a collection of inputs or outputs. Importantly, only linear functions
of the state vector are considered in the present framework. The set of linear
functions CG → C is itself a vector space CG∗, i.e. the dual vector space of
CG. However, the explicit choice of the inner product in Section 2.1 identifies
CG and CG∗. Indeed, f ∈ CG corresponds to the function g 7→ 〈f, g〉 in CG∗.
This correspondence will be used throughout this paper, and both (i) and (ii)
will be represened by elements of CG. For example, for a subset S, the indicator
function 1S is dual to the function f 7→ 〈1S , f〉 =

∑
x∈S f(x).

More generally, consider a subspace V of CG. Any function in V can then
be interpreted according to either (i) or (ii). The assumption that the property
must correspond to a subspace of CG implies that it is possible to make arbitrary
linear combinations of these functions.

Representing properties as subspaces of CG comes with a geometric inter-
pretation. Specifically, the inner product yields the observed outcome when pair
of properties with interpretations (i) and (ii) are combined. This aspect will be
discussed in detail in Section 4. The remainder of this section is intended as a dic-
tionary between conventional cryptanalytic properties and their corresponding
subspaces.

A short summary for G = Fn2 is given in Table 2. The table includes both
the subspaces of CG and their Fourier transforms, which are subspaces of CĜ.
Importantly, there are other useful subspaces which do not correspond to any of
the constructions discussed below. One example will be discussed in Section 6.

Probability distributions. Several properties correspond to subspaces spanned
by one or more probability distributions. Subspaces and sets are one example,
since any set corresponds to the uniform distribution on that set (equivalently,
its indicator function). Affine spaces are an important example and are used in
the invariant subspace attack of Leander et al. [30].
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Table 2: Commonly used cryptanalytic properties and their corresponding sub-
spaces. The characters of Fn2 are denoted by χu(x) = (−1)u

>x, where u ∈ Fn2 .

Property
Basis for subspace

Applications
V ⊆ CG F(V ) ⊆ CĜ

Affine space
a+ U ⊆ Fn

2

{1a+U} {χa 1U⊥} Invariant subspaces

Affine spaces
a1 + U1, . . . ⊆ Fn

2

{1a1+U1 , . . .} {χa1 1U⊥
1
, . . .} Integral cryptanalysis

Probability distribution
p : Fn

2 → [0, 1]
{p} { p̂ } Statistical saturation

Linear
Mask u ∈ Fn

2

{χu} {δχu} Linear approximations

Multidimensional linear
Subspace U ⊆ Fn

2

{χu | u ∈ U} {δχu | u ∈ U} Multidimensional linear
approximations

Multiple linear
Subset U ⊆ Fn

2

{χu | u ∈ U} {δχu | u ∈ U} Multiple linear approxi-
mations

Nonlinear
Function F : Fn

2 → F2

{(−1)F} {F[(−1)F]} Nonlinear invariants
I/O sums

Projection
Function F : Fn

2 → X
{δx ◦ F | x ∈ X} {δ̂x ◦ F | x ∈ X} Partitioning attacks

χ2 distinguishers

Integral and division properties [17,38] are also examples1, but their analysis
is not the main focus of this paper. In this case, the corresponding vector space
could be spanned by the indicator function of a set which is balanced on certain
bits. However, the intermediate and output properties typically correspond to
higher-dimensional vector spaces because they express several possible sets in
which the state could be contained. Equivalently, following (ii), one observes the
marginal (but not necessarily joint) distribution of several state bits.

Not many variants of linear cryptanalysis are directly based on non-uniform
probability distributions. The statistical saturation attack of Collard and Stan-
daert [15], in its original form, may be considered an example. In this attack,
one estimates the key-dependent probability distribution of the state of a block
cipher when some of the plaintext bits are constant and the others are uni-
form random. However, depending on how the estimated distribution is used, it
may be more appropriate to approach this attack using the projection functions
discussed below.

Projection functions. Let F : G → H be a function between finite Abelian
groups G and H, with H typically much smaller than G. In fact, H need not be a
group for the construction below to work, but this will be assumed for simplicity.
Such functions play an important role in Wagner’s framework of ‘commutative
diagram cryptanalysis’, where they are called projections [42]. Baignères et al. [2]
analyze the statistical properties of distinguishers based on balanced projections,
1 The present framework only describes zero-sum properties.
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such as χ2-attacks [41], partitioning cryptanalysis [22] and multidimensional
linear attacks [23].

From the viewpoint of (ii), a projection property gives access to the evalu-
ation of F on the state. Equivalently, the property allows observing any linear
combination of the functions δh ◦ F, where {δh | h ∈ H} is the standard basis of
CH. More generally, any function on H can be ‘pulled back’ to G along the pro-
jection function F and the projection property corresponds to the vector space
of all such functions. This leads to Definition 3.1 below.

Definition 3.1 (Pullback). Let F : G → H be a function. The pullback
operator along F is the linear operator T F∗ : CH → CG defined by f 7→ f ◦ F.
The pullback space of CH along F is the image of T F∗:

imT F∗ = {f ◦ F | f ∈ CH} ⊆ CG .

Similarly, the Fourier transformation F(imT F∗) of imT F∗ will be called the
pullback of CH to CĜ along F.

Let V be the vector space corresponding to the projection property defined
by F, i.e. the pullback of CH along F. It was already mentioned above that
{δh ◦ F | h ∈ H} is a basis for V . However, it is often more convenient to use
the basis of functions χ ◦ F where χ ∈ Ĥ. This choice behaves particularly well
for homomorphisms F : G → H when working with the Fourier transformation
of V , since χ̂ ◦ F = δχ◦F in that case.

The following example describes the vector space corresponding to a Boolean
projection function in more detail. Such properties are closely related to classi-
cal linear cryptanalysis, and more generally the I/O-sums of Harpes et al. [21]
and the nonlinear approximations considered by Beierle et al. [4]. However, as
discussed below, there is subtle difference.

Example 3.1. Let F : Fn2 → F2 be a Boolean function. Denote the characters of
Fn2 by χu(x) = (−1)u

>x. The pullback space V of CF2 along F is equal to

V = span{δ0 ◦ F, δ1 ◦ F} = span{1, (−1)F} ,

with 1 = χ0 the trivial character of Fn2 . Hence, the Fourier transformation of V
is given by

F(V ) = span{δ1,F[(−1)F]} .

The function F[(−1)F] is often called the Walsh-Hadamard transform of F. If F
is a linear function, then F(x) = u>x for some u ∈ Fn2 . Hence, (−1)F = χu and
consequently F(V ) = span{δ1, δχu}. .

Example 3.1 suggests that ordinary linear properties correspond to a vector
space V = span{δ1, δχ}, where χ is a character of the additive group Fn2 . Ta-
ble 2 instead lists the one-dimensional space span{δχ} ⊂ V . For the analysis of
permutations, there is no significant difference since δ1 corresponds to a trivial
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invariant for any permutation (its domain). However, for general functions, the
vector space V represents a strictly stronger property.

In general, many commonly used cryptographic properties correspond to sub-
spaces of pullback spaces. This difference is not easily expressed in the formalism
of Baignères et al. [2] and Wagner [42]. The next paragraph discusses several im-
portant examples.

Subspaces of pullbacks. Example 3.1 generalizes to other finite Abelian
groups. Let F : G → H be a homomorphism. Since χ ◦ F ∈ Ĝ for any char-
acter χ of H, the pullback V of CH to CĜ is spanned by the functions δχ◦F
with χ ∈ Ĥ. Hence, dimV = |H|. However, the dimension could be reduced by
one for permutations. This is essentially the generalization of linear cryptanalysis
proposed by Granboulan et al. [20, §3]. However, it is also reasonable to consider
only one of the functions δχ◦F. Since this results in one-dimensional subspaces
and is closer to the spirit of ordinary linear cryptanalysis. This is essentially the
generalization of linear cryptanalysis proposed by Baignères et al. [3]. The ap-
proaces of Baignères et al. and its multidimensional generalization were recently
used in the cryptanalysis of FF3.1 [8].

The difference between multiple and multidimensional linear cryptanalysis is
of the same nature. For multiple linear properties, one uses a subspace spanned
by one or more standard basis vectors δχ. In multidimensional linear crypt-
analysis, the considered characters form a subgroup of Ĝ and consequently the
subspace is the pullback of a homomorphism to some subgroup of G.

3.2 Transformations on CG and CĜ

This section investigates how properties, i.e. subspaces of CG, change when a
function F : G→ H is applied to the state of the primitive under analysis.

Definition 3.2 (Transition matrix). Let F : G → H be a function. Define
T F : CG→ CH as the unique linear operator defined by δx 7→ δF(x) for all x ∈ G.
The transition matrix of F is the coordinate representation of T F with respect to
the standard bases of CG and CH.

Definition 3.2 only specifies the action of T F on the standard basis of CG, but
this uniquely defines T F on all of CG. The choice of the notations T F∗ and T F for
pullback (Definition 3.1) and transition (Definition 3.2) operators respectively
is not arbitrary: these operators are indeed represented by conjugate-transposed
matrices. In fact, T F could also be called the pushforward operator.

Note that the notation T F will be overloaded, referring to both the operator
and its standard matrix representation. The coordinates of the matrix T F will
be indexed by elements of G and H rather than by integers, since this avoids
choosing an arbitrary ordering of the standard basis. In particular,

T F
y,x = 〈δy, T Fδx〉 = 〈δy, δF(x)〉 = δy(F(x)).

12



An analog of Definition 3.2 for CĜ is given in Definition 3.3. It generalizes the
definition of correlation matrices given in [6] to arbitrary finite Abelian groups.
The term correlation matrix is due to Daemen et al. [16], who defined these
matrices in terms of their coordinates.

Definition 3.3 (Correlation matrix). Let F : G → H be a function be-
tween finite Abelian groups G and H. Define CF : CĜ→ CĤ as the Fourier
transformation of T F. That is, CF = FH T

F F−1
G , with FH and FG the Fourier

transformation on CH and CG respectively. The correlation matrix of F is the
coordinate representation of CF with respect to the standard bases of CĜ and
CĤ.

CG CH

CĜ CĤ

FG FH

T F

CF

The notation CF will refer to both the linear operator and its standard matrix
representation. Contrary to [6, 16], the coordinates will be indexed by elements
of Ĝ in order to avoid arbitrary choices. Since T F

y,x = δy(F(x)), the coordinates
are given by

CF
χ,ψ = 〈δχ, CFδψ〉 =

1

|G|
〈χ, T Fψ〉 = 1

|G|
∑
x∈G

χ(F(x))ψ(x).

For G = Fn2 and H = Fm2 , and after identifying these groups with their dual, the
expression above coincides with the original definition of correlation matrices
given by Daemen et al. [16].

The following two theorems list the main properties of transition and corre-
lation matrices that will be used throughout this paper. The last two properties
in Theorem 3.1 also apply to correlation matrices. For (2), this follows from the
fact that FG1⊕G2

is essentially the same as FG1
⊗ FG2

.

Theorem 3.1 (Properties of transition matrices). Let F : G → H be a
function. The transition matrix of T F of F has the following properties:
(1) If F is a bijection, then T F is a permutation matrix.
(2) If F = (F1, . . . ,Fn) with Fi : Gi → Hi, then T F =

⊗n
i=1 T

Fi .
(3) If F = F2 ◦ F1, then T F = T F2T F1 .

Proof. The first two claims directly follow from T F
y,x = δy(F(x)). The third prop-

erty is an immediate consequence of Definition 3.2.

Theorem 3.2 (Properties of correlation matrices). Let F : G → H be a
function between finite Abelian groups G and H. The correlation matrix CF of
F has the following properties:
(1) If F is a bijection, then CF is a unitary matrix.
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(2) If F is a group homomorphism, then CF
χ,ψ = δχ◦F(ψ).

(3) If G = H and F(x) = x− t for some constant t ∈ G, then CF is a diagonal
matrix with CF

χ,χ = χ(t).

Proof. By Theorem 3.1 (1), if F is a permutation, then T F is a permutation
matrix and thus unitary. Furthermore, since |G| = |H|, both F∗

H/
√

|G| and
FG/

√
|G| are unitary matrices. Property (1) follows since the product of unitary

matrices is unitary and CF = FHT
FF−1

G .
For (2), note that if F is a group homomorphism, then so is χ ◦ F : G→ C×.

Hence, by the orthogonality of group characters, CF
χ,ψ = δχ◦F(ψ). As discussed

in Section 2.2, property (3) holds by construction of the Fourier transformation.
Indeed, note that the action of F corresponds to a translation by t.

4 Approximations

An approximation of a function F : G → H is essentially a pair consisting of
an input and an output property. By the correspondence in Section 3, these
properties can be represented by subspaces U and V . As discussed in Section 3,
u ∈ U represents a state and v ∈ V corresponds to a linear measurement func-
tion or observation. The inner product 〈v, T Fu〉 gives the outcome of such an
observation. This leads to Definition 4.1 below, where the approximation map
represents all such inner products without relying on the choice of a specific ba-
sis. Given orthonormal bases u1, u2, . . . and v1, v2, . . . for U and V respectively,
the coordinates of the matrix representing the approximation map are given by
the inner products 〈vi, T Fui〉.

Definition 4.1 (Approximation). Let G and H be finite Abelian groups. An
approximation of a function F : G → H is a pair (U, V ) of subspaces U ⊆ CĜ
and V ⊆ CĤ. The approximation map of (U, V ) is a linear transformation
〈V,U〉F : U → V defined by 〈V,U〉F = πV C

F ιU , with ιU : U → CĜ the inclusion
map and πV : CĤ → V the orthogonal projection on V .

CĜ CĤ

U V

ιU πV

CF

〈V,U〉F

Definition 4.1 refers to subspaces of CĜ and CĤ. An equivalent definition
could be given for the subspaces F∗

G(U) ⊆ CG and F∗
H(V ) ⊆ CH, taking into

account that CF should be replaced by T F. The same remark applies to all
definitions in this section and Section 5.

Note that the notation 〈V,U〉F is intentionally similar to the ‘inner product
of subspaces’ notation 〈V,U〉 from Section 2.3. It will be shown in Theorem 4.1
that the maps 〈V,U〉F and 〈V,CFU〉 are indeed closely related and encode the
same geometric information.
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Example 4.1. Consider a linear approximation for a function F : Fn2 → Fm2 .
As listed in Table 2, linear properties correspond to one-dimensional spaces
U = span{δχu} and V = span{δχv} with masks u ∈ Fn2 and v ∈ Fm2 . As in
Example 2.5, one has the inclusion map ιU (x) = x and the orthogonal projection
πV (x) = 〈δχv , x〉δχv . Hence, 〈V,U〉F is given by λδχu 7→ 〈δχv , CFδχu〉λδχv =
CF
χv,χuλδχv . The same result holds for any pair of finite Abelian groups. .

The main purpose of this section is to show that Definition 4.1 indeed en-
compasses all variants of linear cryptanalysis mentioned in Section 1, and leads
to new insights for several of them.

As illustrated in Figure 1, two geometrically intuitive edge cases of Defini-
tion 4.1 can be identified: parallel or orthogonal spaces V and CFU . Approxima-
tions in the former category will be called ‘perfect’. This includes the important
case of invariants. The latter case corresponds to a broad generalization of zero-
correlation linear approximations. In the remaining cases, the vector spaces V
and CFU are neither completely parallel nor fully orthogonal. All three cases are
discussed in detail in Sections 4.1 to 4.3.

VCFU

(a) Perfect.

V
CFU

(b) Zero-correlation.

V

CFU

(c) General case.

Fig. 1: Geometric interpretation of Definition 4.1.

The geometric intuitions illustrated in Figure 1 can be quantified using the
concept of principal angles that was introduced in Section 2.3. This leads to
the following definition of ‘principal correlations’. For linear approximations, the
unique principal correlation coincides with the ordinary absolute correlation.
Further aspects of principal correlations, such as their relation to the ‘capacity’
in multiple linear cryptanalysis, are discussed in Section 4.3.

Definition 4.2 (Principal correlations). Let (U, V ) be an approximation
for a function F : G → H between finite Abelian groups G and H. Let d =
min{dimU,dimV }. The principal correlations of the approximation (U, V ) are
the d largest singular values of the approximation map 〈V,U〉F.

The geometric interpretation of the principal correlations is due to the fol-
lowing result, which relates them to the principal angles between the subspaces
CFU and V .

Theorem 4.1. Let (U, V ) be an approximation for a function F : G → H
between finite Abelian groups G and H. Let d = min{dimU,dimV }. If F is
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injective, then the principal correlations of the approximation (U, V ) are equal
to the cosines of the d smallest principal angles between the subspaces CFU and
V .

Proof. By Theorem 3.2 (1), CF is a unitary matrix if F is a permutation. More
generally, [CF]∗CF is a nonzero multiple of the identity map if F is an injection.
That is, CF preserves the inner product up to multiplication by a constant. To
prove this, show that the result holds for T F (by direct calculation) and then
apply the same argument as in the proof of Theorem 3.2 (1).

If CF preserves the inner product up to multiplication by a nonzero constant,
then ui+1 ⊥ ui implies CFui+1 ⊥ CFui. Hence, the result follows from the fact
that the variational characterization of singular values is then equivalent to the
definition of principal angles (Definition 2.3).

4.1 Invariants and Perfect Approximations

If the subspaces U and V are aligned as in Figure 1a, the approximation (U, V )
will be called perfect. More formally, (U, V ) is perfect if CFU ⊆ V . Alternatively,
an approximation over a permutation F is perfect if its principal correlations are
equal to one.

Integral and division properties are of this type, but these traditionally ‘alge-
braic’ properties are not the main focus of this work. However, the case U = V is
of particular interest since it leads to a class of approximations that will be called
invariants, and which includes the invariant subspaces of Leander et al. [30] and
the nonlinear invariants of Todo et al. [39].

Definition 4.3 (Invariant). Let F : G→ G be a function. An approximation
(V, V ) such that CFV ⊆ V will be called an invariant for F.

If F is a permutation, all principal correlations of an invariant (V, V ) are equal
to one. For general functions, this is not necessarily true. For example, if two
distinct input distributions result in the same output distribution, it is natural
to consider the difference of their probability mass functions as invariant.

Since transition matrices and correlation matrices of permutations have fi-
nite multiplicative order, they are diagonalizable. Consequently, by a standard
linear algebra result for algebraically closed fields, any invariant V splits into
one-dimensional invariant subspaces spanned by the eigenvectors of CF. Hence,
Definition 4.3 reduces to the characterization of invariants introduced in [6, Def-
inition 2]

Despite the fact that the eigenvectors of CF determine all possible invari-
ants, the more general characterization of invariants in Definition 4.3 sometimes
leads to additional insight. This will be illustrated using the following exam-
ple, which involves eigenvectors whose corresponding eigenvalue is imaginary –
thereby addressing a problem left as future work by [6].

Example 4.2. Consider the following 4-bit S-box, defined in cycle notation:

S = (0 7 b 3 d 5 9 6 8 2 1 e a f c 4).
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Further details about this S-box, including a lookup table representation, are
given as supplementary material in Appendix A. From a cryptanalytic perspec-
tive, the properties of S are seemingly excellent: the linear and differential prop-
erties are optimal, and it does not have any fixed points since it is a cyclic permu-
tation. The last property implies that all eigenspaces of CS are one-dimensional,
see for instance [6, §4.2]. An immediate consequence of this is that S does not
have any nontrivial invariant subspaces.

Denote the ring of integers modulo four by Z4 and let f : F4
2 → Z4 be the

function defined by

f({0, d, 8, a}) = 0, f({b, 9, 1, c}) = 2,

f({7, 5, 2, f}) = 1, f({3, 6, e, 4}) = 3.

By inspection of the cycle structure of S, one can see that f(S(x)) = f(x) + 1
for all x ∈ F4

2. This property is reminiscent of nonlinear invariants, and in fact
yields a nonlinear invariant for S when reduced modulo two. Nevertheless, the
property is more powerful than a nonlinear invariant since its defining function
takes values in Z4 rather than F2. In fact, the use of Z4-approximations has
been previously suggested by Parker and Raddum [33]. Properties such as f
are to nonlinear invariants as nonlinear invariants are to invariant sets: just as
a nonlinear invariant can be interpreted as a pair of sets that are potentially
swapped by S, f can be interpreted as a pair of nonlinear invariants that are
swapped by S.

To obtain a subspace V of CF̂4
2 from f , the pullback construction from Sec-

tion 3.1 can be applied. Since Z4 is cyclic of order four, one can deduce from
Theorem 2.1 that Ẑ4 = {x 7→ ζkx4 k ∈ Z4} with ζ4 a primitive fourth root of
unity such as

√
−1. Hence, using the basis of functions χ̂ ◦ f where χ ∈ Ẑ4,

yields

V = span
{
ζ̂04 , ζ̂f4 , ζ̂

2f
4 , ζ̂3f4

}
= span

{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)>,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)>/
√
8,

(0, 0, 1, 0, 1, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0)>/2,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)>/
√
8
}
.

The choice of χ̂ ◦ f (up to a scalar multiple) as a basis is not arbitrary: since
χ(f(S(x))) = χ(1)χ(f(x)), it ensures that each basis vector is an eigenvector of
CS. Consequently, it is immediately clear that V is indeed an invariant. Note that
the first vector listed above is the trivial eigenvector with eigenvalue one. The
second and fourth vectors are complex-conjugate eigenvectors corresponding to
the conjugate eigenvalues ζ4 and ζ4. Finally, the third vector is an eigenvector
with eigenvalue ζ24 = −1. It corresponds to the nonlinear invariant obtained by
reduction modulo two that was mentioned above.

For the purpose of obtaining an interesting example, the S-box S was care-
fully chosen. In particular, by taking appropriate linear combinations of the two
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complex-conjugate eigenvectors above, one can see that V is spanned by four
real vectors v1, . . . , v4 such that v⊗16

1 , . . . , v⊗16
4 are all eigenvectors of CL, where

L is the linear layer of Midori-64. Furthermore, these vectors are invariant under
the round-constant and key-additions for 232 weak keys. In fact, v⊗16

3 is itself a
nonlinear invariant for the same number of weak keys, but it has been shown
that there exists a stronger four-dimensional invariant.

Moreover, there is a larger set of 296 weak keys for which v⊗16
1 and v⊗16

2

are still invariants for the whole cipher. This is due to the fact that Midori-
64 alternates round keys, and because CSv2 = −v4 and CSv4 = v2. However,
neither v2 nor v4 corresponds to a nonlinear invariant for S. One can think of the
invariant obtained here as a ‘remnant’ of the stronger – yet valid for fewer keys
– invariant described above. Appendix A contains additional details regarding
the preceding claims. .

The invariant obtained at the end of the previous example could also have
been identified by searching for nonlinear invariants for two rounds which are
not necessarily an invariant for the S-box layer, as in [6, Algorithm 1]. How-
ever, there is a subtle difference. The examples given in [6, §5.3] correspond to
eigenvectors of [CS]2 with eigenvalue +1, whereas the example above is based
on an eigenvector of [CS]2 with eigenvalue −1. This manifests itself when com-
paring the behaviour for an all-zero key: in the former case, an invariant set for
two rounds of Midori-64 is obtained; in the above example this is only achieved
for four rounds. However, both examples result in a nonlinear invariant for two
rounds of Midori-64.

In general, a one-dimensional periodically repeating perfect approximation
for a function F must be an eigenvector of [CF]l with eigenvalue one for some
positive integer l. These eigenvectors are linear combinations of the eigenvectors
of CF with eigenvalues of order divisible by l.

4.2 Zero-Correlation Approximations

Zero-correlation linear approximations were introduced by Bogdanov and Rij-
men [13]. They correspond to linear approximations (span{δψ}, span{δχ}) such
that CF

χ,ψ = 0. That is, δχ is orthogonal to CFδψ. This corresponds to the geo-
metric situation sketched in Figure 1b, motivating the following definition.

Definition 4.4 (Zero-correlation approximation). Let F : G → H be a
function. An approximation (U, V ) such that V ⊥ CFU will be called a zero-
correlation approximation for F. Equivalently, all principal correlations of a
zero-correlation approximation (U, V ) are zero.

Zero-correlation and perfect approximations are closely related, despite being
opposite extremes. In fact, this is clear from a geometrical point of view, see for
instance Figures 1a and 1b.

Theorem 4.2. If (U, V ) is a zero-correlation approximation, then (U, V ⊥) is a
perfect approximation and conversely.
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Proof. Since (U, V ) is a zero-correlation approximation, any v ∈ CFU is orthog-
onal to V . Hence, CFU ⊆ V ⊥. The proof of the converse result is analogous.

The statement and proof of Theorem 4.2 are deceptively simple, but the
result is powerful. Indeed, it generalizes the well-known correspondence between
multidimensional linear zero-correlation approximations and integral properties,
first noted by Bogdanov et al. at ASIACRYPT 2012 [12]2 and discussed futher
by Sun et al. [35].

Definition 4.4 leads to a useful generalization of the miss-in-the-middle ap-
proach that is commonly used to find zero-correlation linear approximations.
Suppose F = F2 ◦ F1. Let (U1, V1) and (U2, V2) be approximations such that

CF1U1 ⊆ V1 ⊥ V2 ⊇ [CF2 ]∗U2.

It then follows that (U1, U2) is a zero-correlation approximation for F2◦F1. Recall
from Theorem 3.2 (1) that if F2 is invertible, then [CF2 ]∗ = CF−1

2 .

Example 4.3. The key-recovery attacks on Midori-64 and MANTIS from ASI-
ACRYPT 2018 [6] are based on a one-dimensional nonlinear zero-correlation
approximation, and this property was obtained by connecting an ordinary inte-
gral property with a nonlinear invariant using the miss-in-the-middle approach
discussed above. For completeness, a fully worked out version of this approxi-
mation is provided as supplementary material in Appendix B. .

The zero-correlation approximation in Example 4.3 can still be explained by
mismatching activity patterns in the middle. The benefit of the geometric ap-
proach here is mainly that it clarifies that the combination of integral properties
with invariants is a natural example of a more general principle, rather than
just a ‘trick’. However, in some cases, a more refined and possibly key-dependent
analysis is necessary to establish the orthogonality of the subspaces V1 and V2.
Such an example will be encountered in Section 7.3.

4.3 General Approximations

It follows from Example 4.1 that the unique principal correlation for an ordinary
linear approximation equals the absolute value of the (conventional) correlation
of the linear approximation. For a fixed advantage, the data-complexity of a
linear distinguisher is inversely proportional to the square of the correlation.

More generally, Baignères et al. [2] discuss the optimal data-complexity of
distinguishers for a permutation F : G1 → G2 based on balanced projections
P1 : G1 → H1 and P2 : G2 → H2. As discussed in Section 3.1, these projections
correspond to subspaces U = span{δx ◦ P1 | x ∈ H1} ⊆ CG1 and V = span{δx ◦

2 For the case of multidimensional zero-correlation approximations with ‘coupled
masks’, apply Theorem 4.2 to the function x 7→ (x,F(x)) to obtain their result.
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P2 | x ∈ H2} ⊆ CG2 by the pullback construction. The approximation map
〈V,U〉F can be represented by a matrix M with coordinates

My,x =
〈δy ◦ P2, T

F[δx ◦ P1]〉
‖δy ◦ P2‖2 ‖δx ◦ P1‖2

=

√
|G1|
|G2|

Pr [P1(z1) = x]

Pr [P2(z2) = y]
Pr [P2(F(z1)) = y |P1(z1) = x],

where z1 is uniform random on G1 and z2 is uniform random on G2. Since the
approximations considered by Baignères et al. are balanced, Pr [P1(z1) = x] =
|H1|/|G1| and Pr [P2(z2) = y] = |H2|/|G2|, so the prefactor simplifies to

√
|H1|/√

|H2|. Recall that the Frobenius norm ‖ · ‖F of a linear operator is the square
root of the sum of its squared singular values. Equivalently, its square equals
the sum of all squared coordinates of an arbitrary matrix representation with
respect to an orthonormal basis. It follows that the Frobenius norm of 〈V,U〉F
is given by

‖〈U, V 〉F‖2F =
|H1|
|H2|

∑
x∈H1
y∈H2

Pr [P2(F(z1)) = y |P1(z1) = x]
2
.

In particular, ‖〈U, V 〉F‖2F − 1 is equal to the squared Euclidean imbalance as
defined by Baignères et al. [2, Definition 7]. The term −1 is due to the trivial in-
variant corresponding to the uniform distribution. If this is omitted, one obtains
that the data-complexity of an optimal distinguisher is inversely proportional to
the sum of the squared principal correlations. This generalizes to multiple linear
distinguishers (which are not necessarily of projection type), in which case the
squared Frobenius norm corresponds to the fixed-key capacity.

5 Trails

Most cryptographic primitives F do not allow for a direct computation of the
approximation map 〈V,U〉F, even when U and V are low-dimensional. Indeed, if
F is devoid of structure, one is forced to estimate the approximation map empir-
ically. Consequently, finding good approximations of the general type discussed
in Section 4.3 is nontrivial.

However, cryptographic primitives are often a composition of highly struc-
tured round functions. That is, F = Fr ◦ Fr−1 ◦ · · · ◦ F1. By exploiting the struc-
ture of the functions Fi, one can often find approximations (Vi, Vi+1) such that
〈Vi+1, Vi〉Fi can be efficiently computed. This is for instance the case for linear
cryptanalysis, and Section 6 will introduce rank-one approximations as another
example for cell-oriented ciphers. The remaining task is to combine or ‘pile-up’
the individual approximations (Vi, Vi+1) for Fi in order to obtain an approxi-
mation (V1, Vr+1) for F. The purpose of the piling-up principle, which will be
discussed in Section 5.1, is to obtain an estimate of the approximation map
〈Vr+1, V1〉F.

20



Definition 5.1 (Trail). Let G1, G2, . . . , Gr+1 be finite Abelian groups. A trail
of vector spaces for a function F = Fr ◦ · · · ◦ F1 with Fi : Gi → Gi+1 is a tuple
(V1, V2, . . . , Vr+1) of subspaces V1 ⊆ CĜ1, . . . , Vr+1 ⊆ CĜr+1.

Similarly to ordinary linear trails, Definition 5.1 defines a sequence of com-
patible intermediate approximations. In particular, if all vector spaces Vi are
spanned by a standard basis vector δχi ∈ CĜi, one obtains ordinary linear trails
as defined by Matsui [31] and generalized to other groups by Baignères et al. [3].
Note that the compatibility requirement does not exclude taking one or more of
the functions Fi as the identity map.

5.1 Piling-up Principle

As discussed in Section 1, methods for piling-up the approximations within a
trail are often motivated by Markov chain assumptions, or a dominant trail
hypothesis. Unfortunately, when the former assumption fails, it is often hard to
understand why or how to resolve the problem. The latter approach has been
mostly limited to the case of simple linear cryptanalysis.

Theorem 5.1 below provides an alternative motivation for the piling-up prin-
ciple. The premise is that each approximation in a trail corresponds to a trans-
formation of its input space, followed by an orthogonal projection on the input
space of the next approximation. Each of these successive projections introduces
an error, but orthogonal projection is optimal in the sense that it keeps the inner
product between the state and its approximation maximal and the norm of the
error minimal (see Section 2.3).

Theorem 5.1 (Piling-up principle). Let (V1, V2, . . . , Vr+1) be a trail for a
function F = Fr◦· · ·◦F1. The approximation map of the approximation (Vr+1, V1)
for F can be written as

〈Vr+1, V1〉F = 〈Vr+1, Vr〉Fr · · · 〈V2, V1〉F1 + E ,

where the error term E is the transformation given by

E =

r−1∑
i=1

〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥
i+1, Vi〉Fi · · · 〈V2, V1〉F1 .

Proof. The proof follows the above intuition of successive orthogonal projection,
but keeps track of the error term. Recall from Definition 4.1 that 〈V,U〉F =
πV C

FιU where πV is the orthogonal projector on V and ιU the inclusion map.
Since πV +πV ⊥ is equal to the identity map, one has the following decomposition
for i = 1, . . . , r − 1:

〈Vr+1, Vi〉Fr◦···◦Fi
= πVr+1C

Fr◦···◦Fi+1(πVi+1 + πV ⊥
i+1

)CFiιVi

= 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈Vi+1, Vi〉Fi + 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥
i+1, Vi〉Fi .
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The result follows by successively decomposing the factor 〈Vr+1, Vi+1〉Fr◦···◦Fi+1

using the same expression.

Theorem 5.1 generalizes the piling-up principle as used in many variants
of linear cryptanalysis. This will be demonstrated in Section 5.2. Furthermore,
allowing arbitrary subspaces Vi increases flexibility. Even if the spaces V1 and
Vr+1 correspond to a specific type of property, the intermediate vector spaces can
represent seemingly unrelated properties. This will be illustrated in Section 5.3,
and again in Section 6. In addition, since the formulation of Theorem 5.1 is
basis-free, the choice of basis for these spaces can be arbitrary3. This may have
computational benefits.

5.2 Discussion of Theorem 5.1

In the one-dimensional case with Vi spanned by δχi , Theorem 5.1 reduces to

CF
χr+1,χ1

=
∏r
i=1 C

Fi
χi+1,χi + e,

where the error term e can be written as a sum over all other linear trails. This
is the fixed-key piling-up principle as stated in [16, §6.1] for Fn2 . It also implies
the piling-up lemma as stated by Matsui [31] and generalized by Baignères et
al. [3] to other groups (after taking the variance with respect to independent
round keys). The composition result of Beierle et al. [4, Theorem 3] for one-
dimensional nonlinear approximations is another special case.

A few examples of the higher-dimensional case can be found in the litera-
ture. Consider the case where all spaces Vi are pullbacks of CHi along balanced
projection functions Pi : Gi → Hi, as in Baignères et al. [2] and Wagner [42].
Like all results in this paper, Theorem 5.1 is basis-free and also applies to the
spaces Ui = F−1(Vi) ⊆ CG provided that one replaces CFi by T Fi . As shown
in Section 4.3, relative to the bases {δx ◦Pi/‖δx ◦Pi‖2 | x ∈ Hi} for Ui, the map
〈Ui+1, Ui〉Fi can be represented by a matrix M with coordinates

My,x =

√
|Hi |
|Hi+1|

Pr [Pi+1(F(z)) = y |Pi(z) = x],

where z is uniform random on |Gi|. That is, there exist diagonal matrices Di and
Di+1 such that Di+1MD−1

i is the transition matrix considered in [2, 42]. These
works follow the Markov chain assumption, which leads to using the product of
round transition matrices as an approximation for the true transition matrix.
The factors Di and Di+1 indeed cancel out, so that Theorem 5.1 yields the same
result up to initial and final multiplication by Dr+1 and D−1

1 respectively.
In the case of multiple linear cryptanalysis [9, 25], it is common practice to

combine many individual linear trails by adding their correlations. Alternatively,
3 If Bi is a matrix whose columns form a basis for Vi, then the matrix-representation of
〈Vi+1, Vi〉Fi with respect to these bases is (B∗

i+1Bi+1)
−1B∗

i+1C
FiBi(B

∗
i Bi)

−1. Note
the normalization factors for non-orthonormal bases.
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the squared correlations are added in order to estimate the variance of the cor-
relation under the assumption of independent round keys. However, in general,
strong approximations can often be found by taking into account the correla-
tions between all pairs of approximations. Theorem 5.1 reflects this because, for
multiple linear approximations, the coordinate representation of 〈Vi+1, Vi〉Fi in
the standard basis is a submatrix of the correlation matrix CFi . This approach
has been (sometimes implicitly) used in several works, notably in analyses of
Present [14], Puffin [29] and Spongent [11]. Note that this is often combined
with key-averaging, but a careful analysis of the key-dependency would be both
feasible and preferable in many cases.

5.3 Clustering and Linear Approximations from Invariants

A minimal condition for the applicability of the piling-up approximation is that
one chooses the best trail from within a predetermined class of candidates, where
the principal correlations can be used as a measure of quality. Indeed, by decom-
posing the error term in Theorem 5.1, one can see that it can be large if other
trails result in better or comparable approximations.

However, it is also possible that the class of candidate trails is too limited
to obtain a good estimate for 〈Vr+1, V1〉F. In the context of linear cryptanal-
ysis, this phenomenon has been called clustering by Daemen and Rijmen [18].
In some cases, clustering can be explained by broadening the set of candidate
trails. At ASIACRYPT 2018, an example of a perfect linear approximation over
full Midori-64 (with modified round constants) was presented [6]. However, full-
round Midori-64 does not admit any high-correlation linear trails. This obser-
vation can be thought of as an extreme case of a more general phenomenon.
At CRYPTO 2012, Abdelraheem et al. [1] showed that invariant subspaces
give rise to linear approximations with higher-than-expected correlation. The
same observation was later generalized to plateaued nonlinear invariants by
Beierle et al. [4]. Plateaued nonlinear invariants are characterized by a flat Walsh-
Hadamard transform, taking only two values up to sign. The results of Beierle et
al. [4] can be summarized and generalized as follows.

Theorem 5.2. Let F : G → G be a function on a finite Abelian group G. Let
v ∈ CĜ be any function such that |v(χ)| = 1/

√
|supp v| for all χ ∈ supp v and

zero elsewhere. If span{v} is an invariant of F in the sense of Definition 4.3,
then there exist characters χ, ψ ∈ supp v such that |CF

χ,ψ| ≥ 1/|supp v|.

Proof. By Definition 4.3, it holds that (the sum is over χ, ψ ∈ supp v)

1 = |〈v, CFv〉| =
∣∣∣∑
χ,ψ

v(χ)v(ψ)CF
χ,ψ

∣∣∣ ≤ |supp v|max
χ,ψ

|CF
χ,ψ|.

It follows that |CF
χ,ψ| ≥ 1/|supp v| for at least one pair (χ, ψ).

Note that the same result is spread over two theorems in previous work [4,
Theorem 4 and 5]: one for invariant subspaces, and one for plateaued nonlinear

23



invariants. This illustrates the convenience of the general definitions in Section 4.
To apply the results to the case of invariant subspaces, one only needs to know
that the Fourier transformation of the indicator function of a subgroup H ⊆
G is flat with support size |G|/|H|. This follows from the Poisson-summation
formula [37, Theorem 1]. See also the first entry of Table 2 for G = Fn2 .

Theorem 5.2 and the results above illustrate that a strong approximation
using one kind of property tends to result in unexpectedly good approximations
using other properties. This can be understood using Theorem 5.1. For example,
let span{v} with ‖v‖2 = 1 be any one-dimensional invariant for CF. Consider
an ordinary linear approximation, i.e. a pair (span{δψ}, span{δχ}) where ψ, χ
are characters. Assuming δψ 6⊥ v and δχ 6⊥ v, the correlation of the linear
approximation over F can be estimated using the following trail:

δψ
I−−−−→

〈v,δψ〉
v
CF

−−→
1

v
I−−−−→

〈δχ,v〉
δχ.

Theorem 5.1 yields the estimate |〈v, δψ〉〈δχ, v〉| = |v(ψ)v(χ)| for the absolute
correlation. If v is flat as in Theorem 5.2, then the piling-up approximation
suggests that all approximations with ψ, χ ∈ supp v will have a correlation of
roughly 1/|supp v|. In fact, this resolves a problem of Beierle et al., who note that
“our arguments are non-constructive and therefore, we are not able to identify
those highly-biased linear approximations” [4, §1]. In fact, it is easy to identify
the highly-biased approximations in practice: generically, any approximation
with ψ, χ ∈ supp v will do.

6 Rank-One Approximations

It is often convenient to represent the domain of a cipher as an array of m cells
of n-bit vectors, because most of the operations in the cipher act on the cells in
an independent way. In fact, in ciphers such as the AES, only the linear layer
results in diffusion between cells. That is, let G = (Fn2 )m. Recall from Section 2
that C(Fn2 )m ∼= [CFn2 ]⊗m and similarly for the dual group. For example, the
probability distribution of a state with independent cells having distributions
p1, . . . , pm, is represented by the rank-one tensor p1 ⊗ · · · ⊗ pm ∈ [CFn2 ]⊗m (see
Section 2.1 for definitions).

A rank-one approximation (U, V ) is any approximation such that U and V
are spanned by a rank-one tensor. No further conditions are imposed on U and
V . An important class of rank-one approximations is obtained from balanced
Boolean functions f : (Fn2 )m → F2 such that f(x1, . . . , xm) =

∑m
i=1 fi(xi). As

shown in Table 2, the corresponding vector space for such a property is spanned
by the function (−1)f =

⊗m
i=1 (−1)fi . Equivalently, the Fourier transformation

of the corresponding vector space is spanned by

F[(−1)f ] =
⊗m

i=1 F[(−1)fi ],

where F[(−1)fi ] is precisely the Walsh-Hadamard transform of fi. The invariants
discussed in [6] and the nonlinear approximations considered by Beierle et al. [4]
are of this type.
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6.1 Theoretical Analysis of Rank-One Trails

By Theorem 3.1 (2), the correlation matrix of a layer of m identical S-boxes
S is equal to (CS)⊗m. Indeed, correlation matrices are themselves tensors and
the tensor rank (not to be confused with matrix rank) of (CS)⊗m is one. This
expresses the fact that the S-box layer preserves independence of cells. A similar
result holds for the key-addition step. Whereas the S-box layer preserves the
rank-one structure of approximations, the linear layer tends to increase the rank.
In fact, it is reasonable to interpret the rank as a measure of diffusion between
the state cells. The correlation matrix of any function F : (Fn2 )m → (Fn2 )m is
itself a tensor and can be decomposed as

CF =

r∑
i=1

λi
⊗m

j=1 Ci,j ,

where Ci,j are 2n × 2n matrices and r is the tensor rank of CF.

Lemma 6.1. Let F : (Fn2 )m → (Fn2 )m be a function such that F = (G,G, . . . ,G)
for some G : Fn2 → Fn2 . If CG =

∑r
i=1 λi

⊗n
j=1 Ci,j, then

CF =
∑

i1,...,im∈[r]

(
∏m
k=1 λik)

⊗m
k=1

⊗n
j=1 Cik,j ,

where [r] = {1, . . . , r}. In particular, the tensor rank of CF is at most rm.

Proof. By Theorem 3.1 (2), it holds that CF = (CG)⊗m. The result follows by
expanding this expression using the multilinearity of tensor products.

Lemma 6.1 can be used to obtain a decomposition of the correlation matrix
of the MixColumn map of Midori-64 and MANTIS into 28 rank-one terms. This
map M : (F4

2)
4 → (F4

2)
4 can be represented by the following matrix over F24 :

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Up to a reordering of the input bits, one can think of M as a map M̃ = (L, L, L, L)

where L corresponds to the same matrix as above, but over F2. Specifically, M̃ =
σMσ where σ : (F4

2)
4 → (F4

2)
4 is the bit permutation defined by σi(x1, . . . , x4) =

(x1,i, . . . , x4,i). Since CL is a 16× 16 matrix, one can check that

CL =
1

2

[(
1 0
0 1

)⊗4

+

(
0 1
1 0

)⊗4

+

(
1 0
0 -1

)⊗4

−
(

0 1
-1 0

)⊗4
]
.

To see this, it is helpful to observe that CL is symmetric as a tensor. Since
M̃ = σMσ where σ is a linear map corresponding to a reordering of bits, it
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follows from Theorem 3.2 (2) and Lemma 6.1 that

CM = 2−4
∑

i1,i2,i3,i4∈[4]4

(
∏4
j=1 λij )

[⊗4
j=1 Cij

]⊗4
.

with λ1 = λ2 = λ3 = 1 and λ4 = −1 and

C1 =

(
1 0
0 1

)
, C2 =

(
0 1
1 0

)
, C3 =

(
1 0
0 -1

)
, C4 =

(
0 1
-1 0

)
.

Hence, the tensor rank of CM is at most 28. This is significantly lower than the
worst-case of 216. Practically speaking, this enables a detailed analysis of rank-
one approximations for Midori-64 in Section 7.3. In fact, one can show that this
decomposition is minimal i.e. the rank of CM is equal to 28.

Lemma 6.2 (Lemma 3.5 in [19]). Let V1, . . . , Vd be finite-dimensional vector
spaces over C. If xi,1, . . . , xi,r ∈ Vi are linearly independent for i = 1, . . . , d, then
the vector

∑r
i=1 x1,i ⊗ x2,i ⊗ · · · ⊗ xd,i in

⊗r
i=1 Vi has tensor rank r.

To see why Lemma 6.2 implies the result, let Vi be the vector space of 16×
16 matrices over C. This is an inner product space under the Frobenius inner
product Tr (A∗B) between matrices A and B. It is easy to check that the matrices
Ci defined above are mutually orthogonal with respect to this inner product.
This implies the mutual orthogonality of the matrices

[⊗4
j=1 Cij

]⊗4. The result
follows by the linear independence of orthogonal vectors.

6.2 Automated Analysis of Rank-One Trails

Let F = Fr ◦ · · · ◦ F1 be a permutation on (Fn2 )m. By Theorem 5.1, an optimal
rank-one trail for F can be found by solving the following optimization problem:

maximize
r∑
i=1

log2
∣∣〈⊗m

j=1vi+1,j , C
Fi
⊗m

j=1 vi,j
〉∣∣

subject to ‖vi,j‖2 = 1 for i = 1, . . . , r + 1, j = 1, . . . ,m

vi,j(1) = 0 for (i, j) ∈ A and vi,j = δ1 otherwise,

where the last condition ensures that the vectors vi,j are active and balanced,
i.e. orthogonal to δ1, on a predetermined pattern of cells A. Clearly, at least one
cell must be active to obtain a nontrivial result. In practice, it is better to take
the logarithm of the objective function in order to avoid vanishing gradients.

Restricting to real-valued vi,j , the above is an optimization problem over the
product of several copies of the (2n−1)-dimensional unit sphere. This domain is a
Riemannian manifold, and common iterative numerical optimization techniques
such as steepest descent and conjugate gradient have been generalized to this
setting [34]. This is the basic approach behind the automated method proposed
in this section. The source code of the tool is provided as supplementary material
and relies on the Pymanopt library [40].
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The power of this method lies in the fact that it enables iterative conver-
gence to an optimal trail. This is made possible because the general nature of
rank-one approximations results in a relaxed, continuous optimization problem
rather than a discrete one. Although it is sometimes necessary to ensure that the
outermost vectors of the trail correspond to (for example) a Boolean function,
there is no reason to impose the same condition on vectors which are internal to
the trail.

Example 6.1. The tool can be applied to find rank-one invariants of arbitrary
functions with a limited number of input and output bits, which is a difficult
problem in general [6]. For example, Figure 2 shows the iterative convergence
towards an invariant of the Midori-64 linear layer. This process takes about a
second on an ordinary computer. By optimizing over the ellipsoid of unit-norm
vectors in the eigenspaces Eλ(CS) of the correlation matrix CS, joint invariants
for the linear and S-box layer can be found. Instructions to reproduce this ex-
ample are included as supplementary material in Appendix D. The tool also
implements a barrier method to find all rank-one invariants for a given linear
layer. .

0 2 4 6 8 10
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1

2
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4

Step (j)

−
lo
g
2
|c

j
|

vi ∈ CF̂16
2

vi ∈ E+1(C
S)

vi ∈ E−1(C
S)

Fig. 2: Correlation cj at each step of the optimization process for finding in-
variants of the form v1 ⊗ v2 ⊗ v3 ⊗ v4 with vi(1) = 0 for the Midori-64 linear
layer.

A number of challenges remain for larger problems. These include addressing
key-dependence, which is simplified due to the use of the Fourier transform, and
convergence issues. For completeness, Appendix D summarizes the (somewhat
technical) steps that were taken to address these challenges.

7 Open Problem of Beierle et al.

This section explains observations of Beierle et al. [4] regarding a nonlinear
approximation for two rounds of Midori-64. More broadly, the results in this
section lead to a deeper understanding of many nonlinear approximations of the
Midori-64 round function.
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7.1 Problem Statement

Beierle et al. [4, Section 4.4] consider a nonlinear approximation over two rounds
of Midori-64, restricted to a single column of the state. Denote this function by
F. Its correlation matrix is equal to

CF = CM[CS]⊗4CK2CM[CS]⊗4CK1 ,

where K1 and K2 are key-addition maps, S is the S-box and M the matrix defined
in Section 6.1. Recall from Section 1 that Beierle et al. [4] describe nonlinear
approximations using linear properties of a nonlinearly transformed representa-
tion of the cipher. The details of their approach will not be discussed here; the
geometric framework developed in Sections 4 and 5 will be used instead. The
nonlinear functions considered by Beierle et al. are of the form

∑4
i=1 fi(x) with

fi : F4
2 → F2 and consequently, as discussed in Section 6 on page 24, correspond

to approximations spanned by rank-one vectors. Specifically, the pair of non-
linear functions considered in [4, Section 4.4] corresponds to a one-dimensional
approximation (span{u⊗ v⊗3}, span{u⊗ v⊗3}) for F with

u = 1/4 · (0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0, 1, 0,−1, 0,−3)>

v = 1/2 · (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1)>.

The coordinates above are given for the character basis δχw with lexicographic
ordering of w. Note that v is an eigenvector of CS. Beierle et al. estimate the
correlation of the above approximation by (from the perspective of this paper)
the following one-round trail, which has absolute correlation at least 9/32:

u⊗ v ⊗ v ⊗ v
[CS]⊗4CKi

−−−−−−−→
±1 or±1/2

u⊗ v ⊗ v ⊗ v
CM

−−−→
9/16

u⊗ v ⊗ v ⊗ v. (1)

The computation of the correlation over CM was done by a direct evaluation of
the inner product 〈u⊗v⊗3, CM u⊗v⊗3〉. This trail was believed to hold whenever
Ki ∈ F4

2×K3 for i = 1, 2, with K = {(0, 0, x, y) | x, y ∈ F2}. The weak key set K
ensures the invariance of the tensor product factor v under key addition. Based
on the above, one estimates an absolute correlation of at least (9/32)2 over F.
However, Beierle et al. experimentally observe that this estimate is not accurate:

(i) When K2 ∈ (F4
2 \ K)×K3, the correlation is found to equal zero.

(ii) For other keys, the correlation takes on various values, but is always sig-
nificantly larger than the estimated minimum of 81/1024. Specifically, for
K1,K2 ∈ K4, the correlation ranges from 35/64 to 40/64 = 5/8. For other
keys, it lies between 39/256 and 65/256.

In their conclusion, the authors remark that understanding this phenomenon
is “a major open problem”. Sections 7.2 and 7.3 completely explains the above
observations using the methods developed in Sections 4 and 5.
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7.2 Optimal Rank-One Trail

As shown in Section 6.1, the effect of the linear layer is nontrivial and this
makes finding an optimal rank-one trail difficult. Hence, a simple explanation
for observation (ii) could be that the trail (1) proposed by Beierle et al. is not a
good guess. Using the tool from Section 6.2, it is easy to find the optimal rank-
one trail – ignoring the effect of key-addition for now. Running the tool (the
configuration is given in Appendix C) yields the following trail with absolute
correlation at most 9/16:

u⊗ v⊗3 [CS]⊗4CK1

−−−−−−−−→
±3/4 or±1/4

v⊗4 CM

−−→
1

v⊗4 [CS]⊗4CK2

−−−−−−−→
±1

v⊗4 CM

−−→
3/4

u⊗ v⊗3.

A short calculation shows that the third step requires K2 ∈ K, otherwise the trail
has correlation zero. Furthermore, the correlation 3/4 in the first step occurs if
and only if K1 ∈ K4. In hindsight, one might have guessed the above trail
without detailed analysis: the choice of v⊗4 as an intermediate step is natural,
since v⊗4 is an invariant for the round function. This is an instance of the general
phenomenon discussed in the last paragraph of Section 5.3.

7.3 Theoretical Analysis of the Problem

The correlations predicted by the rank-one trail obtained in Section 7.2 are
within 10 to 30% of the observed correlations reported by Beierle et al. [4, Tables
1–4]. However, the trail does not yet explain the zero-correlation approximation.
In this section, the results from Section 6.1 will be used to find a minimal and
complete set of rank-one trails for the approximation.

The propagation of u ⊗ v⊗3 under the Midori-64 round function will first
be analyzed. For the zero-correlation case, the miss-in-the-middle strategy from
Section 4.2 will be used. It will then be shown that a relatively short formula
for the exact key-dependent correlation of the approximation can be computed.

Let K1 = (k1, k2, . . . , k16) ∈ F16
2 and K2 = (k′1, k

′
2, . . . , k

′
16) ∈ F16

2 . The results
in Section 6.1 can be used to compute the image of u⊗ v⊗3 under one round:

CM[CS]⊗4CK1 u⊗ v⊗3 = −ν CM(CSCk1‖···‖k4u)⊗ v⊗3 = ν v ⊗
(∑16

i=1ci v
⊗3
i

)
,

where ν = −
∏4
i=2(−1)k4i−1+k4i . The coefficients ci and the vectors vi are listed

in Table 4 in Appendix C. Note that, because CM has rank 28, one initially
obtains 28 terms. However, this can be reduced to 16 by grouping terms ap-
propriately. This can be done manually by exploiting the structure of the rank-
decomposition, but Sage code to automate this is also provided as supplemen-
tary material. Since the vectors vi are mutually orthogonal and this is preserved
when multiplied with (the same) orthogonal matrices, Lemma 6.2 implies that
the above decomposition is minimal. Interestingly, not all of the vectors vi cor-
respond to Boolean functions or probability distributions.

A similar computation can be performed for the inverse of the second round.
Specifically, recalling that S and M are involutions,

CK2 [CS]⊗4CM u⊗ v⊗3 = ν′ Ck
′
1‖···‖k

′
4v ⊗

(∑8
i=1c

′
i

⊗3
j=1(C

k′4j‖···‖k
′
4j+4v′i)

)
.
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The coefficients c′i and the vectors v′i are listed in Table 5 in Appendix C and
ν′ = (−1)k

′
3+k

′
4+1. The minimality of the above decomposition can again be

established using Lemma 6.2.

Zero-correlation approximation. Let U = span{v} ⊗ (CF̂4
2)

⊗3 and V =

span{Ck′1‖···‖k′4 v} ⊗ (CF̂4
2)

⊗3. The decompositions above clearly imply the fol-
lowing inclusions:

CM[CS]⊗4CK1 u⊗ v⊗3 ∈ U and CK2 [CS]⊗4CM u⊗ v⊗3 ∈ V.

Consequently, if U ⊥ V , the general miss-in-the-middle principle discussed in
Section 4.2 implies that the approximation has correlation zero. This happens
whenever 〈v, Ck′1‖···‖k′4 v〉 = 0. That is,〈

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)>,

(0, 0, 0, 1, 0, 0, 0, (−1)k
′
2 , 0, 0, 0, (−1)1+k

′
1 , 0, 0, 0, (−1)k

′
1+k

′
2)>

〉
= 1 + (−1)k

′
1 + (−1)k

′
2 + (−1)k

′
1+k

′
2 ,

which equals zero unless k′1 = k′2 = 0. This explains the condition K2 ∈ (F4
2 \

K)×K3 observed by Beierle et al. [4].

Refining the correlation estimate. Now assume K2 ∈ K4, so that the cor-
relation is nonzero. A closer inspection of the vectors vi and v′j reveals that
|〈vi, Ck

′
4j‖···‖k

′
4j+4v′j〉| ≤ 1/2 unless i = 3 and j = 1. That is, when the inner

product 〈CK2 [CS]⊗4CM u ⊗ v⊗3, CK2 [CS]⊗4CM u ⊗ v⊗3〉 is expanded using the
decomposition above, the term corresponding to c3c′1 has a weight of one whereas
all other terms have weight at most 2−3. Since v3 = v′1 = v, this term corresponds
to the trail from Section 7.2.

The correlation estimate can be improved by including additional trails. In
principle, all 128 terms in the expanded inner product between the forward and
backward expressions can be computed. The supplementary material contains a
Sage script that computes a short formula for the exact key-dependent correla-
tion of the approximation, which is also listed in Appendix C.

In fact, due to the low rank of CM, the same technique can be used to analyze
any rank-one approximation of F. This includes all linear approximations. In
general, the minimal number of rank-one trails can be higher or lower than
16× 8 (depending on the choice of the input and output property).

8 Conclusion

A conceptually new ‘geometric’ approach to linear cryptanalysis has been devel-
oped, thereby addressing several of the issues that were discussed in the intro-
duction.
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Linear approximations were generalized to pairs of subspaces of inner prod-
uct spaces. These subspaces can be related to sets, probability distributions,
Boolean functions, pullbacks of projections and their subspaces, and many other
unexplored properties. This viewpoint helps to clarify the links between differ-
ent variants of linear cryptanalysis, such as integral and zero-correlation ap-
proximations and invariants and ordinary linear approximations. The geometric
properties of approximations determine their type and quality. A piling-up prin-
ciple for general approximations was derived from geometric principles, giving a
more transparent motivation for commonly used heuristics in the fixed-key set-
ting. Rank-one approximations were introduced and used to resolve a concrete
open problem posed by Beierle et al. [4]. In addition, it was shown how such
approximations can be found using iterative optimization methods.

The focus of this paper has been on developing general tools, rather than their
application to specific situations. Most potential applications are consequently
left as future work. In addition, the algorithmic and statistical aspects of using
general approximations to set up distinguishers and key-recovery attacks were
not discussed in this work.
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A Supplementary Material for Example 4.2

A lookup table representation of the S-box in shown in Table 3.

Table 3: An S-box with optimal linear and differential properties.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 7 e 1 d 0 9 8 b 2 6 f 3 4 5 a c

A real basis for the invariant subspace V for S from Example 4.2 is given by

V = span
{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)>,

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)>,

(0, 0, 1, 0, 1, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0)>/2,

(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,−1, 0, 0)>/2
}
.

In Example 4.2, the four vectors above are denoted by v1, . . . , v4. It follows from
[6, Theorem 9] that v⊗16

1 , . . . , v⊗16
4 are all eigenvectors of CL, where L is the linear

layer of Midori-64. Supporting source code can be found at https://github.
com/TimBeyne/Geometric-approach in the script ‘invariant_example’.

B Supplementary Material for Example 4.3

It was mentioned in Example 4.3 that the attacks on MANTIS and Midori-64 from
[6] are based on nonlinear zero-correlation approximations, which are constructed
by connecting a nonlinear invariant and an integral property using the miss-
in-the-middle technique that was described in Section 4.2. Below, this is fully
worked out for the case of MANTIS. The Midori-64 example is similar, but it uses
a more advanced integral property.

Recall that the MANTIS [5] state can be represented as an array of 16 four-bit
cells. Hence, it is natural to represent the ambient space by

⊗16
i=1 CF̂4

2.
Let F1 denote the first two rounds of the cipher, and F2 the remaining rounds.

The invariant for F2 is one-dimensional and is extended to a perfect approxima-
tion (span{u}, span{v}) with CF2v = λu. More specifically, the vectors v and u
have tensor rank one. That is,

v =

16⊗
i=1

vi ,

u =

16⊗
i=1

ui .

Let V2 be the subspace spanned by all
⊗16

i=1 δχwi where χwi(x) = (−1)w
>
i x such

that wi 6= 0 for i = 1, . . . 16. Since 〈δχ0
, vi〉 = 0 for i = 1, . . . 16, it follows that
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v ∈ V2. Hence, if U2 = span{u}, then

V2 ⊃ [CF2 ]∗U2 .

Since v is known, it is technically not necessary to use the above inclusion in
the large space V2. However, the inclusion corresponds to the intuitive property
that every cell in the middle state must be active.

Let U1 be the subspace span{δ1⊗f} for f =
⊗15

i=1 δ̂ci with ci ∈ F4
2 arbitrary.

The function δ1⊗f represents a state with one uniform random cell, and all other
cells constants. By standard methods of integral cryptanalysis, it is easy to show
that F1 maps such this state to a state in which several cell are individually
uniform random after two rounds. This is just the 2-round integral property
shown in [6, Figure 9]. Hence, CF1U1 is contained in the subspace V1 spanned
by all

⊗16
i=1 δχwi with wi = 0 for at least one i:

V1 ⊃ CF1U1 .

It is clear that V1 ⊥ V2. By the miss-in-the-middle approach, it can be con-
cluded that (U1, U2) is a zero-correlation approximation for MANTIS-4. This is
the property used to set up a key-recovery attack in [6]. Note, however, that
(U1, U2) is not a standard linear zero-correlation approximation: the input space
U1 corresponds to a specific set and U2 corresponds to a nonlinear Boolean
function.

By Theorem 4.2, the above also implies that (U1, U
⊥
2 ) is a perfect approxima-

tion – in this case it can be interpreted as a nonlinear integral property. Indeed,
U1 corresponds to the uniform distribution on the first cell and U⊥

2 is the span
of all distributions which are balanced on the nonlinear function with Walsh-
Hadamard transformation u. The individual integral properties corresponding
to one-dimensional subspaces of U⊥

2 spanned by set indicators, are rather weak
for the simple reason that they are large.

C Supplementary Material for Section 7.3

For K1,K2 ∈ K4, the exact absolute correlation of the approximation is given
by the following expression:∣∣303/1024 (−1)k1+k2+k3+s3+s4 + 189/2048 [1 + (−1)k1 ](−1)k3+s3+s4

+ 47/512 (−1)k2+k3+s3+s4 + 69/2048 (−1)k1+k2+k3+s4 + 17/2048 (−1)k1+k2+s4

− 1/128 (−1)k3+s4 + 7/1024 (−1)k2+s3+s4 + 5/1024 (−1)s4

+ 9/2048 [1− (−1)k3 ] (−1)k1+k2+k3+s3

+ 7/2048 [1 + (−1)s3 + (−1)k1 − (−1)s3+s4 ] (−1)k1+s3+s4

− 3/1024 (−1)k2+k3+s3 + 3/2048 [1 + (−1)k3 ] (−1)k3+s3
∣∣,

with s3 =
∑4
i=2 k

′
4i−1 and s4 =

∑4
i=2 k

′
4i. This can be verified using the Sage

script midori_rankone.sage available at
https://github.com/TimBeyne/Geometric-approach.
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Table 4: Vectors vi and corresponding coefficients in the forward decomposition.
The notation κi = (−1)ki is used.
i 2 v>i κ4 ci

1 (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1) 1/32 (3κ1κ2κ3 + κ1κ2 − κ1κ3 − κ1 + 2κ2)
2 (0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1) −1/32 (κ1κ3 − 2κ2κ3 + κ1 + 2κ2 + κ3 + 1)
3 (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1) −1/16κ3 (3κ1κ2 + κ1 + κ2 + 1)
4 (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1) 1/32 (3κ1κ2κ3 − κ1κ2 + 2κ1 − κ3 + 1)
5 (0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0) 1/32 (2κ1κ2 + κ1κ3 − κ1 − κ3 − 1)
6 (0, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0) −1/32 (3κ1κ2κ3 − κ1κ2 + κ1κ3 − 2κ2κ3 − κ1)
7 (0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0) −1/32 (3κ1κ2κ3 + κ1κ2 − 2κ2κ3 − 2κ2 + κ3 − 1)
8 (0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0) −1/16 (κ2 − 1)
9 (0, 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0) 1/32κ1 (3κ2κ3 + κ2 − κ3 + 1)

10 (0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0) −1/32 (2κ1κ2 + κ1κ3 + κ1 − κ3 + 1)
11 (0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0) 1/16κ3 (3κ1κ2 − 1)
12 (0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0) 1/32 (3κ1κ2κ3 + κ1κ2 − 2κ1κ3 + κ3 + 1)
13 ( 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) −1/32 (κ1κ3 − κ1 − κ3 + 1)
14 ( 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0) −1/32κ1 (3κ2κ3 − κ2 − κ3 − 1)
15 (−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0) −1/32 (3κ1κ2κ3 − κ1κ2 − κ3 − 1)
16 (−1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0) 1/16 (κ1 − 1)

Table 5: Vectors v′i and corresponding coefficients in the backward decomposi-
tion. The notation κi = (−1)k

′
4j+i is used.

i 4 (Ck
′
4j‖···‖k

′
4j+4v′i)

> c′i

1 2(0, 0, 0, −1, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, −1) −3/8κ3κ4

2 2(0, 0,−κ3,−κ2κ3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−κ3, κ3κ4) 1/8
3 (0, 0, 2κ3, 0,−2, 0, 0, 0,−1, κ4, κ3, κ3κ4, 1, κ4,−κ3, κ3κ4) 1/8
4 (0, 0, 0, 0, 0,−2κ4, 2κ3, 0, 1,−κ4,−κ3, κ3κ4, 1, κ4, κ3, κ3κ4) 1/8
5 (0, κ4, 0,−κ3κ4,−1, 2κ4, κ3, 2κ3κ4, 0,−κ4, 0, κ3κ4,−1, 0, κ4, 0) −1/8
6 (0,−κ4, 0,−κ3κ4, 1, 0, κ3, 0,−1, 2κ4, κ3, 0, 0, −κ4, 2κ3, κ3κ4) 1/8
7 (0,−κ4, 0, κ3κ4, 1, 0,−κ3, 0, 1, 0, κ3, 2κ3κ4,−2, κ4, 0, κ3κ4) 1/8
8 (0, κ4, 0, κ3κ4, 1, 0, κ3, 0, 0,−κ4, 2κ3, κ3κ4, 1,−2κ4,−κ3, 0) −1/8
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D Supplementary Material for Section 6.2

In all of the examples in this paper, the optimization method used is the standard
Riemannian variant of the conjugate gradient algorithm. For further details such
as the line search method, the reader is referred to the Pymanopt source code
(no custom optimizations were introduced).

A first issue mentioned in Section 6.2 is the potential key-dependence of
the correlation. In many cases, it is possible to fix the key and analyze the
key-dependence afterwards (using the Fourier transformation simplifies this pro-
cess). The disadvantage of this approach is that it does not ensure that the
approximation will hold for many keys. This can be resolved by optimizing over
ellipsoids B S2n where B is a matrix whose columns are an orthonormal basis
for an invariant subspace of several key-addition correlation matrices.

Another issue is that the optimization problem may have many local optima.
Lack of global convergence is mainly an issue when the number of variables in
the problem is large – for the examples discussed in this paper, this issue was
not encountered. For large problems, several restarts may be necessary to find a
globally optimal solution. The tool automates this process, but restarting nec-
essarily slows down convergence. For this reason, it is advisable to predetermine
the activity pattern and to enforce symmetries wherever possible.

The source code of the tool be accessed at https://github.com/TimBeyne/
Geometric-approach. To run it, the following steps are required (on a Linux or
Unix-type system):

– Install Pymanopt using sage -pip install pymanopt.
– Install Adept for automatic differentiation from http://www.met.reading.

ac.uk/clouds/adept/.
– Compile the file cost.cpp into a shared object. Use g++ -O3 -fPIC -shared

cost.cpp -ladept -o cost.so for gcc.
– Use Sage to execute find_invariants.sage or trail_midori.sage.

D.1 Recovering the Rank-One Trail from Section 7.2

The supplementary file ‘trail_midori.sage’ contains a script that uses the
Riemannian optimization tool to automatically recover the rank-one trail from
Section 7.3. Except for balancedness, no constraints were placed on the approx-
imation.

Figure 3 illustrates that the tool quickly converges to the optimal trail. The
starting point was random, and the curve corresponds to a single run. The
run-time for this experiment was negligible (one to two seconds on a personal
computer). The initial guess had a correlation of around 2−16, as expected for a
random 2-round trail. The figure illustrates that the tool iteratively steps to an
optimal solution. In fact, the correlation increases exponentially with each step.
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Convergence to the rank-one trail from Section 7.2.

Fig. 3: Correlation at each step of the optimization process for the rank-one trail
from Section 7.3. Note that the final correlation equals 9/16 ≈ 2−0.83.

D.2 Finding Invariants

The file ‘find_invariants.sage’ provides a generic tool for finding rank-one
invariants (and more generally high-correlation approximations) over a linear
layer. It can be used to find a single invariant, or any number of them (if they
exist). The latter functionality is implemented using a barrier method, but this
is not necessarily the best way.

Figure 2 illustrates the convergence behaviour for finding one nontrivial in-
variant v1 ⊗ v2 ⊗ v3 ⊗ v4 of the Midori-64 linear layer CM. Three scenarios for
vi ⊥ δ1 are shown: vi arbitrary, vi an eigenvector of CS with eigenvalue +1, and
vi an eigenvector of CS with eigenvalue −1. In all three cases, fast convergence
to an invariant is observed.
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