
Spreading the Privacy Blanket:

Differentially Oblivious Shuffling for Differential Privacy

Dov Gordon1?, Jonathan Katz2??, Mingyu Liang1, and Jiayu Xu3? ? ?

1 George Mason University
{gordon,mliang5}@gmu.com
2 University of Maryland

jkatz2@gmail.com
3 Algorand

jiayux@uci.edu

Abstract. In the shuffle model for differential privacy, n users locally
randomize their data and submit the results to a trusted “shuffler” who
mixes the results before sending them to a server for analysis. This is
a promising model for real-world applications of differential privacy, as
several recent results have shown that the shuffle model sometimes offers
a strictly better privacy/utility tradeoff than what is possible in a purely
local model.

A downside of the shuffle model is its reliance on a trusted shuffler, and
it is natural to try to replace this with a distributed shuffling protocol
run by the users themselves. While it would of course be possible to
use a fully secure shuffling protocol, one might hope to instead use a
more-efficient protocol having weaker security guarantees.

In this work, we consider a relaxation of secure shuffling called differ-
ential obliviousness that we prove suffices for differential privacy in the
shuffle model. We also propose a differentially oblivious shuffling proto-
col based on onion routing that requires only O(n logn) communication
while tolerating any constant fraction of corrupted users. We show that
for practical settings of the parameters, our protocol outperforms exist-
ing solutions to the problem in some settings.

Keywords: Differential privacy · Onion routing.

1 Introduction

Differential privacy [19] has become a leading approach for privacy-preserving
data analysis. Traditional mechanisms for differential privacy operate in the
curator model , where a trusted server holds all the sensitive data and releases
noisy statistics about that data. To reduce the necessary trust assumptions,
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researchers subsequently proposed the local model of differential privacy. Here,
each user applies a local randomizer R to its sensitive data xi to obtain a noisy
result yi, and then forwards yi to a server who analyzes all the noisy data it
obtains. A drawback of local mechanisms is that, in some cases, they provably
require more noise (and hence offer reduced utility) than mechanisms in the
curator model for a fixed level of privacy. For example, computing a differentially
private mean of n users’ inputs can be done with O(1) noise in the centralized
curator model [19] but requires Ω(

√
n) noise in the local model [5, 13].

A recent line of work has explored an intermediate model that provides a
tradeoff between these extremes. In the shuffle model [8, 16, 36, 4], users locally
add noise to their data as in the local model, but also have access to a trusted
entity S (a “shuffler”) that anonymizes their data before it is forwarded to the
server. That is, whereas in the local model the server obtains the ordered vector
of noisy inputs (y1, . . . , yn), in the shuffle model the server is given only the
multiset {yi} := S(y1, . . . , yn) which hides information about which element was
contributed by which user. (The {yi} can be encrypted with the server’s public
key before being sent to the shuffler so the shuffler does not learn the value
submitted by any user.) Balle et al. [4] analyze the result of composing a local
differentially private mechanism with a shuffler, and show a setting where the
shuffle model offers a strictly better privacy/utility tradeoff than what is possible
in the local model.

Although the shuffle model relies on a weaker trust assumption than the
curator model, it may still be undesirable to rely on a trusted shuffler who is
assumed not to collude with the curator. It is thus natural to consider replacing
the shuffler by a distributed protocol executed by the users themselves. Clearly,
using a fully secure shuffling protocol to instantiate the shuffler preserves the pri-
vacy guarantees of the shuffle model. However, fully secure distributed-shuffling
protocols are inefficient in practice (see Section 1.1).

Our contributions. We consider a relaxation of oblivious shuffling that we
call differential obliviousness. (Prior work has considered the same or similar
notions in other settings; see Section 1.1.) Roughly, for any pair of honest users
and any pair of values y, y′, a differentially oblivious shuffling protocol hides (in
the same sense as differential privacy) whether the first user contributed y and
the second user contributed y′, or vice versa. Generalizing the results of Balle
et al. [4], we analyze the privacy obtained by composing a local differentially
private mechanism with any differentially oblivious shuffling protocol, and show
that such shuffling protocols suffice to replace the trusted shuffler.

With this result in place, we then seek an efficient differentially oblivious
shuffling protocol. In the context of anonymous communication, Ando et al. [1]
show a differentially oblivious shuffling protocol using O(n log n) communica-
tion.1 Their protocol is based on onion routing, in which each user routes its

1 Ando et al. consider a “many-to-many” variant of shuffling, where each of the n users
wants to send a message to a distinct recipient, in contrast to our setting where all
n inputs are sent to a designated receiver. Nevertheless, their results can be applied
to our setting with minor modifications, so we ignore the distinction.
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message to the server via a path of randomly chosen users, with nested encryp-
tion being used to hide from each intermediate user everything about the route
except for the previous and next hops. Ando et al. analyze the privacy of onion
routing against an adversary who corrupts some fraction of the users in the net-
work in addition to the server, and who is also assumed to be able to eavesdrop
on all communication in the network. While such an adversary may be appropri-
ate in the context of using anonymous communication to evade state-sponsored
censorship, we believe it is overkill for most deployments of differential privacy
that could benefit from the shuffle model. Instead, we consider a weaker adver-
sary who can only monitor the communications of corrupted users, and analyze
the differential obliviousness of onion routing in this model. Our analysis uses
very different techniques from those of Ando et al., and results in better con-
crete parameters as well as an asymptotic improvement in the average per-user
communication complexity for a fixed level of privacy.

As in the work of Ando et al., we can adapt our protocol to handle a malicious
adversary by routing dummy messages alongside real ones and checking partway
along the route whether any dummy messages have been dropped. Focusing on
the application to the shuffle model, we observe that the overall privacy degrades
smoothly if only a few (real) messages are dropped—a dropped message is similar
to reducing the number of honest users by one—and thus a secure protocol
only needs to abort when many messages are dropped by the adversary. As
a consequence, we are able to address malicious behavior with lower overhead
(compared to the semi-honest setting) than Ando et al.

1.1 Related Work

Secure shuffling. There is a long line of work studying secure shuffling proto-
cols. We survey some of what is known, restricting attention to protocols secure
against t = Θ(n) corruptions.

Fully secure shuffling can be done via secure computation of a permutation
network [24, 32], or by having t+1 parties sequentially perform a local shuffle [24,
29]. Either approach requires Ω(n2) communication. While the asymptotic com-
munication complexity can be improved to O(n log n) by using Θ(log n)-size
committees (cf. [17, 9, 31]), the concrete efficiency of that approach is unclear.

Movahedi et al. [31] considered a relaxed notion of shuffling where security
may fail with probability O(1/n3); this can be viewed as a form of differential
obliviousness. The communication complexity of their protocol is O(n·polylog n).
Bell et al. [6] proposed a different approach for achieving a relaxed form of
shuffling. Their construction requires O(n2) communication in general, but can
be improved to O(n log n) for constant-size input domains. These protocols and
that of Ando et al. [1] (discussed earlier) are the only practical protocols for
shuffling we know of with sub-quadratic communication complexity.

To the best of our knowledge, the protocol of Bell et al. has the best concrete
efficiency of any prior shuffling protocol. They are also motivated by applications
to the shuffle model, but do not prove that their relaxation provides differential
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privacy when composed with a local differentially private mechanism. Their pro-
tocol also does not provide a smooth tradeoff between privacy and performance
as our approach does. We provide a comparison between our shuffling protocol
and prior work (for the malicious setting) in Section 6.

In concurrent work, Bünz et al. [10] propose a differentially oblivious shuffling
protocol that relies on a very strong form of trusted setup.

Anonymous communication. Sender-anonymous communication can be used
to implement oblivious shuffling. DC-nets [15] and mix networks [14], two clas-
sical approaches for anonymous communication, both require Ω(n2) communi-
cation for security against a constant fraction of corrupted parties.

Backes et al. [3] proposed a security definition for anonymous routing inspired
by differential privacy, and Kuhn et al. [25] gave a definition of security nearly
identical to our definition of differential obliviousness. Neither of theoe works
show protocols realizing their definitions. Several recent anonymous communi-
cation systems [34, 35, 27] also define security in terms of differential privacy,
but the maximum per-user communication complexity of these systems is Ω(n).
None of these works consider how anonymous-communication protocols compose
with other differentially private mechanisms.

Bellet et al. [7] study “gossip” protocols that provide differential privacy. The
model they consider is quite different from ours, and they focus on one-to-many
communication rather than many-to-one communication as we do here.

The onion routing protocol [21, 33, 1] that we study in this paper is used
as part of the Tor anonymous communication network (though Tor uses paths
with only three intermediate nodes). Although Tor has received a lot of attention
in the security community, most of that work focuses on active attacks and/or
attacks that are specific to Tor. While theoretical analyses of the anonymity
provided by onion routing exist [28, 20, 2, 1, 11, 18, 26], none (other than the work
of Ando et al. [1]) prove differential obliviousness.

Differentially private computation. The idea of relaxing security for dis-
tributed protocols in the context of differential privacy has appeared in a num-
ber of prior works [5, 23, 29, 12, 22, 30]. Beimel et al. [5] first proposed the idea,
and studied how the relaxation impacts efficiency for the problem of secure
summation. He et al. [23] and Groce et al. [22] construct differentially private
set-intersection protocols that are more efficient than fully secure protocols for
the same task. Mazloom and Gordon [29], and Mazloom et al. [30] leverage dif-
ferential privacy to make graph-parallel computations more efficient. Chan et
al. [12] consider a version of differential obliviousness (defined differently from
ours) in the client/server model, studying sorting, merging, and range-query data
structures under that relaxation.

2 Definitions

Differential privacy. We use the standard notion of (approximate) differential
privacy. Two vectors of inputs x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n) are called
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neighboring if they differ at a single index; i.e., if there exists an index i such
that xi 6= x′i but xj = x′j for j 6= i. Let f denote a randomized process mapping
a vector of inputs (x1, . . . , xn) ∈ Dn to an output in some range R. We say that
f satisfies (ε, δ)-approximate differential privacy if for all neighboring vectors
x,x′ ∈ Dn and subsets R′ ⊆ R we have

Pr[f(x) ∈ R′] ≤ eε · Pr[f(x′) ∈ R′] + δ.

If f satisfies (ε, 0)-approximate differential privacy then we simply say that f is
ε-differentially private. For compactness, we abbreviate these as (ε, δ)-DP/ε-DP.

Local differential privacy and the randomized response mechanism. In
the setting of local differential privacy (LDP), each user Ui applies a randomized
function R to their own input xi and then sends the result yi to an untrusted
server. Translating the guarantees of differential privacy to this setting, we say
that R is (ε, δ)-LDP if for all x, x′ ∈ D and R′ ⊆ R we have

Pr[R(x) ∈ R′] ≤ eε · Pr[R(x′) ∈ R′] + δ.

If R is (ε, 0)-LDP then we simply say it is ε-LDP.
Let γ ∈ (0, 1) be a parameter, and let D denote a discrete domain in which

users’ inputs lie. The randomized response mechanism Rγ,D is defined as

Rγ,D(x) =

{
x with probability 1− γ

y ← D with probability γ
;

i.e., with probability γ a user replaces its input with a uniform value in D, and
with the remaining probability leaves its input unchanged. It is not hard to show
that if γ ≥ |D|/(eε + |D| − 1) then Rγ,D is ε-LDP.

The shuffle model. In the shuffle model [8, 16, 36, 4] each user Ui computes
yi ← R(xi) as in the local model, but then sends yi to a trusted “shuffler” S.
After receiving a message from all n users, S outputs the multiset (which can
also be viewed as a histogram) h = {yi}. If we overload notation and let S also
denote the process of mapping a list of elements to the multiset containing those
elements, then R defines the randomized process

S ◦ R⊗n def
= S ◦ (R× · · · × R)(x1, . . . , xn) = S (R(x1), . . . ,R(xn)) .

Balle et al. [4] showed that under certain conditions the shuffle model im-
proves the privacy of an LDP mechanism.2

Theorem 1. Let R be an ε-LDP mechanism. If ε ≤ log(n/ log(1/δ))/2, then
S ◦ R⊗n is (ε′, δ)-DP with ε′ = O(min{1, ε} · eε

√
log(1/δ)/n).

For the particular case of randomized response they show

Theorem 2. Fix values n, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−1)·ε2 , 27·|D|

(n−1)·ε

}
, then

S ◦ R⊗nγ,D is (ε, δ)-DP.

2 For clarity, we state a slightly looser bound than what they prove.
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Differentially private protocols. More generally, we may consider interactive
protocols executed by a server and n users, each of whom initially holds an
input xi. The server has no input, and is the only party to generate an output.
We say that a protocol Π implements a (randomized) function f if the honest
execution of Π when the users hold inputs x1, . . . , xn, respectively, results in the
server generating output distributed according to f(x1, . . . , xn).

In this setting, the server’s view may contain more than just its output. It
is also natural to consider that some of the users executing the protocol may
themselves be corrupted and colluding with the server. (For simplicity, in what
follows we assume semi-honest corruptions; i.e., we assume corrupted parties—
including the server—follow the protocol as directed, but may then try to learn
additional information based on their collective view of the protocol execution.
The definitions can be extended in the obvious way to handle malicious behav-
ior.) Given a set of parties A (that we assume by default always includes the
server), we let viewΠ,A(x1, . . . , xn) be the random variable denoting the joint
view of the parties in A in an execution of protocol Π when the users initially
hold inputs x1, . . . , xn. Let H denote the set of users not in A; let xA denote the
inputs of users in A; and let xH denote the inputs of users outside of A. Then:

Definition 1. Protocol Π is (ε, δ)-DP for t corrupted users if for any set A con-
taining the server and up to t users and any xA, the function mapping xH to
viewΠ,A(xA,xH) is (ε, δ)-DP, i.e., for any neighboring xH ,x

′
H and any set V

of possible (joint) views of the parties in A, we have

Pr[viewΠ,A(xA,xH) ∈ V ] ≤ eε · Pr[viewΠ,A(xA,x
′
H) ∈ V ] + δ.

The above can be relaxed to computational differential privacy as well.
One can also consider protocols operating in a hybrid world. The shuffle

model is a special case of this, where the parties have access to an ideal function-
ality S implementing the shuffler. Concretely, the protocol (Rγ,D × · · · × Rγ,D)

S

corresponding to the randomized response mechanism is the one in which each
user locally computes yi ← Rγ,D(xi) and then sends yi to S, which sends the
result {yi} := S(y1, . . . , yn) to the server. The fact that some of the users them-
selves might be corrupted, however, now needs to be taken into account. For
example, the following is a corollary of Theorem 2:

Corollary 1. Fix n, t, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−t−1)·ε2 , 27·|D|

(n−t−1)·ε

}
, then

(Rγ,D × · · · × Rγ,D)
S

is (ε, δ)-DP for t corrupted users in the S-hybrid model.

Shuffle protocols. A protocol Σ run by n users and a server is a shuffle protocol
if it implements S, i.e., if the output generated by the server when running Σ is
the multiset consisting of the users’ inputs. We are interested in shuffle protocols
that ensure differential privacy when used to implement the shuffle model. Note,
however, that we cannot use differential privacy to analyze a shuffle protocol; no
shuffle protocol is differentially private, since two neighboring inputs y,y′ lead
to different outputs. Instead, we use a related definition that we call differential
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obliviousness. Call vectors y,y′ neighboring if they differ by a transposition, i.e.,
there exist i, j such that y′i = yj , y

′
j = yi, and y′k = yk for k 6∈ {i, j} (so y′ and

y are identical except the elements at positions i, j are swapped). Then:

Definition 2. Shuffle protocol Σ is (ε, δ)-differentially oblivious for t corrupted
users if for any set A containing the server and up to t users, any yA, any
neighboring yH ,y

′
H , and any set V of possible (joint) views of the parties in A,

Pr[viewΣ,A(yA,yH) ∈ V ] ≤ eε · Pr[viewΣ,A(yA,y
′
H) ∈ V ] + δ.

3 Distributing the Privacy Blanket

Generalizing the result of Balle et al. [4], we show that a differentially oblivious
shuffle protocol suffices for implementing the shuffle model. Specifically:

Theorem 3. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious for
t corrupted users, and let R be an ε0-LDP mechanism. For any δ′ such that
ε0 ≤ log((n − t)/ log(1/δ′))/2, protocol (R⊗n)Σ is (ε + ε′, δ + δ′)-differentially
private for t corrupted users, where ε′ = O(max{1, ε0} · eε0

√
log(1/δ′)/(n− t)).

We defer the proof to Appendix A. Here, we focus on the important special
case where R is the randomized response mechanism. Specifically, we show:

Theorem 4. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious for

t corrupted users. If (Rγ,D × · · · × Rγ,D)
S

is (ε′, δ′)-differentially private for t

corrupted users, then (Rγ,D × · · · × Rγ,D)
Σ

is (ε+ε′, δ+δ′)-differentially private
for t corrupted users.

Overview of the proof of Theorem 4. Throughout this section, we let Π de-
noteRγ,D×· · ·×Rγ,D; our goal is to prove differential privacy of ΠΣ . We provide
a formal proof starting in the next subsection; here, we provide an overview.

Fix some neighboring inputs x = (xA,xH) and x′ = (xA,x
′
H), and some

set of adversarial views V . (Each view in V includes the views of the server
and t corrupted users in an execution of ΠΣ .) Conceptually, we separate each
view v ∈ V into three components: a component v1 reflecting the adversary’s
view of the input to Σ (in particular, v1 includes the randomized inputs yA of
the corrupted parties); the final multiset h output by the server (which has the
same distribution as the multiset that would be output by the shuffler in ΠS

conditioned on v1); and the view v2 that results from execution of Σ itself.
For some first component v1 and output multiset h, let Y (v1, h) denote the

set of (possibly modified) honest inputs yH to Σ that are consistent with v1, h,
and x, and let Y ′(v1, h) denote the set of yH consistent with v1, h, and x′. Using
Corollary 1 and letting m = n− t, we show (cf. Lemma 1):∑

(v1,h) : (v1,h,v2)∈V

Pr[v1 | x] · Pr
[
R⊗mγ,D(x) ∈ Y (v1, h) | v1

]
≤ eε

′
·

∑
(v1,h) : (v1,h,v2)∈V

Pr[v1 | x′] · Pr
[
R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1

]
+ δ′. (1)
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(Note that Pr[v1 | x′] = Pr[v1 | x] since v1 only depends on the true inputs of the
corrupted parties.) For v1, h as above, let V2(v1, h) = {v2 | (v1, h, v2) ∈ V }. In
what is the most technical part of the proof, we then use differential obliviousness
of Σ to show (cf. Lemma 5) that for any v1, h we have

Pr
yH←Y (v1,h)

[v2 ∈ V2(v1, h)] ≤ eε · Pr
y′H←Y ′(v1,h)

[v2 ∈ V2(v1, h)] + δ. (2)

The proof of the above follows from a combinatorial analysis of the two sets Y
and Y ′. Recall that an element in Y and an element in Y ′ are neighboring if they
differ by a single transposition. Differential obliviousness of Σ guarantees that
neighboring vectors give rise to (roughly) the same view. If we can establish
a bijection between Y and Y ′, mapping each element of Y to a neighboring
element in Y ′, Equation (2) would follow immediately. Unfortunately, Y and Y ′

do not necessarily have the same size, and so such a bijection may not exist.
Nevertheless, we show how to extend Y and Y ′ to multisets [Y ] and [Y ′] (by
duplicating certain elements) having the same size, and so that the resulting
multisets preserve the probabilities of each vector (so sampling uniform yH ∈ Y
gives the same distribution as sampling uniform yH ∈ [Y ], and similarly for Y ′

and [Y ′]). We then show that there is a bijection φ : [Y ] → [Y ′] such that yH
and φ(yH) are neighboring. This allows us to prove that Equation (2) holds.

Since

Pr[(v1, h, v2) ∈ V | x] =
∑

(v1,h,v2)∈V

Pr[(v1, h, v2) | x]

=
∑

(v1,h) : (v1,h,v2)∈V

Pr[v1 | x] · Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1]

· Pr
yH←Y (v1,h)

[v2 ∈ V2(v1, h)],

combining Equations (1) and (2) allows us to prove Theorem 4.

3.1 Notation and Preliminaries

We now formalize the preceding intuition. We assume t users are corrupted and
let m = n− t be the number of uncorrupted users. Fix some neighboring inputs
x = (xA,xH) and x′ = (xA,x

′
H), and for i ∈ [m] let xH,i be the input of the

ith honest user. Without loss of generality, we assume xH and x′H differ on the
input of the mth user, and further assume that xH,m = 1 and x′H,m = 2.

The adversary’s view. We now make explicit the components of the adver-
sary’s view in an execution of ΠΣ on input x. The first component of the view,
which we denote by v1, includes yA = (Rγ,D × · · · ×Rγ,D)(xA), i.e., the adver-
sary’s inputs to Σ. Following Balle et al. [4], we also include in v1 the vector
b = (b1, . . . , bm) indicating which of the honest users’ inputs are replaced by a
random value, i.e., if bi = 0 then yH,i = xH,i and if bi = 1 then yH,i ← D. The
second component of the adversary’s view is the multiset h = S(yA,yH) output
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by Σ, in which y = (yA,yH) denotes the vector of inputs the parties provide
to Σ; note that parts of yH (corresponding to inputs that have not been random-
ized) can be deduced from v1. The third component v2 of the adversary’s view
consists of the entire view of the adversary in the execution of Σ on inputs y.
(Although v2 determines h, we find it useful to treat h separately.)

For the rest of the proof, fix some set of views V = {(v1, h, v2)}. Note that
views for which bm = 1 are equiprobable regardless of whether the honest inputs
are xH or x′H ; therefore, we assume without loss of generality that all views
in V have bm = 0. We let V ′ = {(v1, h) | ∃v2 : (v1, h, v2) ∈ V } and, for any
(v1, h) ∈ V ′, we let V2(v1, h) = {v2 | (v1, h, v2) ∈ V }.

For some fixed v1, h, let Y (v1, h) denote the set of honest inputs yH consistent
with v1, h, and x. That is, Y (v1, h) contains all yH ∈ Dm such that (1) for all
i with bi = 0, we have yH,i = xH,i (so, in particular, yH,m = xH,m = 1), and
(2) S(yA,yH) = h (where yA is fixed by v1). Similarly, we let Y ′(v1, h) denote
the set of yH consistent with v1, h, and x′.

3.2 Step 1: Using Local Differential Privacy of Rγ,D

A proof of the following is straightforward:

Lemma 1. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set of views V
and any pair of neighboring inputs x,x′, we have:∑

(v1,h)∈V ′
Pr[v1 | x] · Pr

[
R⊗mγ,D(x) ∈ Y (v1, h) | v1

]
≤ eε

′
·
∑

(v1,h)∈V ′
Pr[v1 | x′] · Pr

[
R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1

]
+ δ′.

We also state a useful corollary. Define

∆(v1, h)
def
=

max
{

Pr[R⊗mγ,D(x) ∈ Y (v1, h) | v1]− eε
′
· Pr[R⊗mγ,D(x′) ∈ Y ′(v1, h) | v1], 0

}
.

Using the fact that Pr[v1 | x] = Pr[v1 | x′], we then have:

Corollary 2. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set of
views V and any pair of neighboring inputs x,x′, it holds that:∑

(v1,h)∈V ′
Pr[v1 | x] ·∆(v1, h) ≤ δ′.

3.3 Step 2: Using Differential Obliviousness of Σ

In this section we fix some (v1, h) ∈ V ′, and write Y , Y ′, and V2 for Y (v1, h),
Y ′(v1, h), and V2(v1, h), respectively. For simplicity, we assume both Y and Y ′
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are non-empty; the case where one or both are empty can be addressed by
Lemma 1. Recall that if yH ∈ Y then yH,m = 1, and if y′H ∈ Y ′ then y′H,m = 2.

Let h̄ denote the multiset that remains after removing from h the multiset
given by the elements of yA and the multiset {xH,i | bi = 0, i 6= m} (both of
which are determined by v1). Let c1 be the number of 1’s in h̄, and let c2 be
the number of 2’s in h̄; note that c1, c2 6= 0 since Y and Y ′ are non-empty. The
following characterizes the relative sizes of Y and Y ′ in terms of c1 and c2:

Lemma 2. |Y ||Y ′| = c1
c2

.

Proof. Let C be the number of ways of distributing all the elements of h̄ that
are not equal to 1 or 2 among the honest users who have changed their inputs.
A vector yH is consistent with v1, h, and x only if a 1 is associated with the last
user, and the remaining c1 + c2 − 1 elements of h̄ that are 1 or 2 are distributed
among the c1 + c2 − 1 users who remain from those who have changed their
inputs. Thus,

|Y | = C ·
(
c1 + c2 − 1

c1 − 1

)
.

Siilarly,

|Y ′| = C ·
(
c1 + c2 − 1

c2 − 1

)
.

The lemma follows. ut

Lemma 3. For every yH ∈ Y , there are c2 vectors in Y ′ that result from trans-
posing the final entry of yH with some other entry of yH . Similarly, for every
y′H ∈ Y ′, there are c1 vectors in Y that result from transposing the final entry
of y′H with some other entry of y′H .

Proof. We prove the first statement; the second follows symmetrically. Fix some
yH ∈ Y . The final entry of yH is 1, and there are c2 other entries of yH that
are equal to 2 and that correspond to users who have changed their inputs.
Transposing the final entry of yH with the entries at any of those locations gives
a vector in Y ′. ut

Mapping between Y and Y ′. Ideally, we would like to construct a bijection
between Y and Y ′ such that a vector in Y is mapped to a vector in Y ′ iff they
are transpositions of each other. Then for each pair of such vectors yH and y′H ,
we could argue that viewΣ,A(yA,yH) and viewΣ,A(yA,y

′
H) must be “close”

by differential obliviousness of Σ. Unfortunately, as shown in Lemma 2, the
cardinalities of Y and Y ′ might be different, so such a bijection might not exist.

To resolve this issue, we “duplicate” vectors in Y and Y ′ so that the resulting
multisets [Y ] and [Y ′] have the same cardinality. Concretely, we let [Y ] be a
multiset consisting of c2 copies of each element yH ∈ Y . Similarly, we let [Y ′] be
a multiset consisting of c1 copies of each element y′H ∈ Y ′. Note that sampling
uniformly from [Y ] (resp., [Y ′]) is equivalent to sampling uniformly from Y
(resp., Y ′). Moreover, by Lemma 2, [Y ] and [Y ′] have the same size. We show:
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Lemma 4. There is a bijection φ : [Y ]→ [Y ′] such that for every yH ∈ [Y ], the
vector φ(yH) ∈ [Y ′] is a transposition of yH .

Proof. Consider the bipartite graph G with vertex sets [Y ] and [Y ′], where there
is an edge between yH ∈ [Y ] and y′H ∈ [Y ]′ iff y′H results from transposing the
final entry of yH with some other entry of yH . Using Lemma 3 and the fact that
every vector in Y ′ is included c1 times in [Y ′], we see that each yH ∈ [Y ] has
exactly c1 · c2 edges. Reasoning analogously, each y′H ∈ [Y ′] has c1 · c2 edges.
Hall’s marriage theorem implies that G has a complete matching, which is also
a perfect matching since [Y ] and [Y ′] have the same size. Any such matching
constitutes a bijection φ as claimed by the lemma. ut

Recall that the third component of the adversary’s view, v2, is equal to
viewΣ,A(yA,yH). We may now prove the main result of this section.

Lemma 5. If Σ is (ε, δ)-differentially oblivious for t corrupted users:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.

Proof. Let φ : [Y ]→ [Y ′] be a bijection as guaranteed by Lemma 4. Differential
obliviousness of Σ implies that for any yH ∈ [Y ]:

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
≤ eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ.

Recalling that [Y ] and [Y ′] have the same size, we thus have

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] = Pr
yH←[Y ]

[
viewΣ,A(yA,yH) ∈ V2

]
=

∑
yH∈[Y ]

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
|[Y ]|

≤
∑

yH∈[Y ]

eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ

|[Y ]|

=
∑

y′H∈[Y ′]

eε · Pr[viewΣ,A(yA,y
′
H) ∈ V2] + δ

|[Y ′]|

= eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ,

as required. ut

Combining Corollary 2 and Lemma 5 proves Theorem 4.

4 A Differentially Oblivious Shuffle Protocol

In this section, we describe a construction of a differentially oblivious shuffler
for semi-honest adversaries. We present the protocol in Section 4.1 and analyze
its obliviousness in Sections 4.2 and 4.3. In Section 5 we discuss how to adapt
the protocol for malicious adversaries.
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Inputs: Each user i has input yi.

Round 1: Each user chooses r− 1 users i1, . . . , ir−1 ← [n] uniformly
and independently, and then forms the onion encryption Cr as
described in the text. It sends Cr to user i1.

Rounds ` = 2, . . . , r − 1: For each ciphertext Cr−`+2 received in the
previous round, compute (i`, Cr−`+1) := Decski`−1

(Cr−`+2) and

forward Cr−`+1 to user i`.
Round r: For each ciphertext C2 received in the previous round,

compute (S,C1) := Decskir−1
(C2) and forward C1 to the server S.

Output: S initializes h := ∅. Then, for each ciphertext C received in
the previous round, compute y := DecskS (C) and add y to h.

Fig. 1. A differentially oblivious shuffling protocol, parameterized by r.

4.1 A Shuffling Protocol

Recall that in our setting we have n users holding inputs y1, . . . , yn, respec-
tively, who would like a server (that we treat as distinct from the n users) to
learn the multiset h = {yi}. We assume the parties have public/private keys
(pk1, sk1), . . . , (pkn, skn), respectively, and that the server has keys (pkS , skS).
Our protocol, which is based on onion routing [21, 33], works as follows. Let r be
a parameter that we fix later. Each user U chooses r− 1 users i1, . . . , ir−1 ← [n]
uniformly and independently (it may be that U chooses itself), and then forms
a nested (“onion”) encryption of the form

Cr = Encpki1 (i2,Encpki2 (i3, · · · (ir−1,Encpkir−1
(S,EncpkS (y))) · · · )),

such that at each “layer” the identity of the next receiver is encrypted with an
onion encryption whose outer layer can be removed by that receiver. In the first
round, U sends Cr to the first receiver i1, who decrypts to remove the outer
layer and thus obtains i2 and an onion encryption Cr−1 that it forwards to i2 in
the next round. This process continues for r − 1 rounds, until in the rth round
all parties send the ciphertext EncpkS (y) they obtain to the server. See Figure 1.

The protocol requires r rounds of communication, and the total number of
ciphertexts transmitted is exactly rn. Since ciphertexts have length O(r log n),
the total communication complexity is O(r2n log n).

4.2 Analysis of Obliviousness (ε = 0)

We assume a semi-honest adversary who corrupts up to t users as well as the
server S. The attacker has access to the state of any corrupted user, and can
also determine which user sent any message that it receives. However, we assume
the attacker cannot eavesdrop on the communication between honest users, so
in particular it cannot tell whether some honest user i sent a message to some
other honest user j in some round. We treat encryption as ideal in our analysis
of obliviousness in order to simplify our treatment.
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Assume without loss of generality that users U1, U2 are honest and hold
different inputs, and fix input vectors y and y′ that are identical except the
inputs of U1 and U2 are swapped. Let i1` denote the `th intermediate user chosen
by U1 for 1 ≤ ` ≤ r − 1, and set i10 = 1; define i20, . . . , i

2
r−1 similarly. (We let

round 0 refer to the beginning of the algorithm when U1 and U2 each hold their
own input.) Say that U1 and U2 can swap at round j (with 0 ≤ j < r − 1)
if the routing paths of U1 and U2 both have an honest user in rounds j and
j+ 1 (i.e., for which users i1j , i

1
j+1, i

2
j , and i2j+1 are all honest). A key observation

is that if there exists some j such that U1 and U2 can swap at round j then
the distributions on the attacker’s views are identical regardless of whether the
input vector is y or y′. The reason for this is that it is equally likely that the
onion encryption of U1 was routed from i1j to i1j+1 and that of U2 went from i2j
to i2j+1, or that the communication was “swapped” (in which case we say the

swap happened) so that the onion encryption of U1 was routed from i1j to i2j+1

and that of U2 went from i2j to i1j+1. In other words, if there exists some j such
that U1 and U2 can swap at round j, then perfect obliviousness is achieved. If
we let xt,r denote the probability of this event in an execution of the protocol
with parameter r when up to t users are corrupted, we have:

Theorem 5. The protocol in Figure 1 is (0, 1− xt,r)-differentially oblivious for
t corrupted users.

Our problem is now reduced to lower bounding xt,r. Let pt = (1 − t/n)2 be
the probability that U1 and U2 both choose an honest user in some fixed round
j ≥ 1 when t users are corrupted. By definition, we have xt,1 = 0, and xt,2 = pt
since both U1 and U2 are honest in round 0. By conditioning on the outcomes of
the final two rounds, we can derive the following recurrence relation for r > 2:

xt,r = p2t + (1− pt) · xt,r−1 + pt · (1− pt) · xt,r−2.

Although it is possible to solve this recurrence, it is cleaner to simply bound xt,r
for any desired t, r. The following can be proved by induction on r:

Theorem 6. For r > 1, it holds that xn/3,r ≥ 1 − 0.85r. Thus, for r > 1 the
protocol of Figure 1 is (0, 0.85r)-differentially oblivious for n/3 corrupted users.

For r > 1, it holds that xn/2,r ≥ 1 − 0.95r. Thus, for r > 1 the protocol of
Figure 1 is (0, 0.95r)-differentially oblivious for n/2 corrupted users.

4.3 Analysis of Obliviousness (ε > 0)

We show here an alternate analysis that allows us to prove (ε, δ)-differential
obliviousness for ε > 0. (This analysis is incomparable to the analysis of the
previous section since, for fixed r, we may obtain larger ε but smaller δ.)

We focus again on the case where we have input vectors y and y′ that are
identical except that the inputs of honest users U1 and U2 are swapped. The
observation we rely on here is that even if there is no round j where U1 and U2

can swap at round j, it is still possible to achieve some privacy if their inputs



14 D. Gordon et al.

can be swapped via some other honest users. For example, say there is an honest
user U3 and 0 ≤ j < j′ < j′′ < r − 1 such that (1) U1 and U3 can swap at
round j, (2) U2 and U3 can swap at round j′, and (3) U1 and U3 can swap at
round j′′. Then the following events lead to the same view for the adversary: the
input vector was y and none of the swaps happens; the input vector was y and
(only) swaps #1 and #3 happen; or the input vector was y′ and all three swaps
happen. This gives some privacy (given a view consistent with these events, the
adversary cannot determine with certainty whether the input was y or y′), but
the privacy is not perfect: since each swap is equally likely to happen or not,
conditioned on the adversary’s view being consistent with the above input y is
twice as likely as input y′. In this particular example the level of privacy obtained
is relatively low, but privacy improves as more honest users can potentially be
involved in the swaps.

In the full version we give a more detailed analysis of the ε, δ parameters
obtained by considering swaps between multiple honest users; here we simply
describe the qualitative conclusions of the analysis. Say U1 and U2 are swap-
compatible if there are 0 ≤ j < j′ < j′′ < r − 1 such that (1) the routing
path of U1 has an honest user in rounds j and j + 1 as well as rounds j′′ and
j′′+ 1, and (2) the routing path of U2 has an honest user in rounds j′ and j′+ 1
(or the similar event with the roles of U1 and U2 interchanged). If U1, U2 are
swap-compatible then U1 can potentially swap with some other honest users at
round j, other honest users can potentially swap with U2 at round j′, and then
U1 can again potentially swap with other honest users at round j′′. For that
to occur requires other honest users who can potentially swap with U1, U2 at
the appropriate rounds; roughly speaking, the more honest users can swap with
U1, U2, the higher privacy will be achieved for U1, U2 .

Let δ1 denote the probability that U1, U2 are not swap-compatible. Next, fix
some desired value for ε > 0. When U1, U2 are swap-compatible, we can derive
a lower bound m on the number of other honest users that need to be able to
swap with U1, U2 (we do not define this event more formally here) to ensure
privacy bound ε. Letting δ2 be the probability that there are fewer than m other
honest users who can swap with U1, U2, we can then conclude that our protocol
achieves (ε, δ1 + δ2)-differential obliviousness. Note that δ1 depends only on the
corruption threshold and the number of rounds r, and decreases exponentially
with r as in the ε = 0 case. On the other hand, δ2 also depends on the total
number of parties n as well as the privacy parameter ε (since decreasing ε requires
increasing m, which in turn increases the probability δ2 of failing to have m other
honest users who can swap with U1, U2).

5 Malicious Security

Here we describe how to adapt our protocol to address malicious attacks affecting
privacy; denial-of-service attacks and other attacks that only affect correctness
are out of scope. If the encryption scheme used in the protocol is non-malleable,
and timestamps are included in each layer of the onion to prevent replay attacks
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(cf. [11]), then the only attack an adversary can carry out on the protocol is to
drop messages to reduce the effective number of honest users contributing to the
output histogram and thereby degrade privacy (cf. Corollary 1).

As in the work of Ando et al. [1], we can address such an attack by having hon-
est users (1) route dummy messages alongside their real messages, (2) check part-
way through the shuffling that their dummy messages have not been dropped,
and (3) abort the protocol if malicious behavior is detected. Compared to the
work of Ando et al., however, we can achieve security against malicious behavior
with much lower overhead, both because we assume the adversary cannot eaves-
drop on communication between honest users and also because we focus on the
eventual application of our protocol to differential privacy in the shuffle model.
With regard to the latter point, note that although dropping even a single user’s
message can be catastrophic in the context of anonymous communication (e.g., if
the adversary knows that either user 1 or user 2 is sending some message m, and
drops the message sent by user 1, then the set of output messages reveals which
of those two users was sending that message), dropping a few users’ inputs has
only a small effect on end-to-end differential privacy when the shuffle protocol
is used to instantiate the shuffle model, as we explain further below.

Concretely, let Ŝd represent an ideal shuffler that is identical to S except
that the adversary can select d honest users whose messages are dropped. The
following is a natural extension of Corollary 1:

Lemma 6. Fix n, t, d, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−d−t−1)·ε2 ,

27·|D|
(n−d−t−1)·ε

}
, then

(Rγ,D × · · · ×Rγ,D)Ŝd is (ε, δ)-DP for t corrupted users in the Ŝd-hybrid model.

Our goal is thus to design a protocol approximating the effect of Ŝd (for some
small d). Let r, s be two parameters. Our modified protocol has four stages:

1. Each user Ui runs the onion-routing protocol from Section 4 twice, in parallel,
using parameter r + s + 1. In one execution it uses its real input yi and in
the other it uses a default dummy value ⊥. We let Ri—called the “checker”
for Ui—denote the rth user chosen by Ui for its dummy onion encryption.

2. At round r, each user Ui asks its checker Ri to respond with (sufficiently
many bits of) the ciphertext corresponding to Ui’s dummy onion encryption.
Ui sets cheati := 0 if Ri responds correctly, and sets cheati := 1 otherwise.

3. The users run a protocol to determine whether any user set cheat = 1. (We
discuss below how this can be implemented efficiently.) If so, they all abort
and do not run the next stage.

4. The users run the onion-routing protocol on the remaining ciphertexts for
the remaining s+ 1 rounds.

Informally, the argument for why this suffices to instantiate the shuffle model
in the context of differential privacy is as follows. For concreteness, assume the
attacker knows all users’ inputs except that of user U1. Note first that drop-
ping U1’s onion encryptions does not help the attacker at all. As for the onion
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encryptions of other honest users, prior to round r the adversary cannot distin-
guish the real onion encryption of some user from the dummy onion encryption
of that same user as long as the paths of both onion encryptions each have at
least one honest user in their final s hops. By setting parameters appropriately,
we can ensure that if the adversary drops too many of the honest users’ onion
encryptions before round r, then with high probability at least one of those will
correspond to a dummy message; in that case, cheating will be detected and all
honest users will abort. When that occurs, the adversary does not learn anything
about the (real) input of U1 unless the final s intermediate users chosen by U1

for the onion routing of its real message are all corrupted; the probability that
this occurs is at most (t/n)s. We can thus claim privacy at round r, with the
number of honest messages being at least n− t− d, just as we did in Section 4.
The adversary can drop as many messages as it likes after round r, but doing so
cannot degrade the privacy already achieved by round r.

We now make the above more precise. Fix d1, d2 with d1 ≥ (n − t) · (t/n)s.
From now on we only consider onion encryptions generated by honest users. We
consider different types of onion encryptions that the attacker could potentially
drop by round r:

– The adversary might drop an onion encryption at some round k ≤ r, when
the intermediate hops k, . . . , r used by that onion encryption are all cor-
rupted. (Note that in this case, even if the onion encryption turns out to be
a dummy onion encryption, the [corrupted] checker will still be able to re-
spond correctly and so such cheating will not be caught.) Dropping such an
onion encryption, however, does not degrade privacy beyond what is achieved
by the r-round semi-honest protocol.

– The adversary might drop an onion encryption of a user U when the final s
intermediate hops of U ’s dummy onion encryption are all corrupted. (In such
a case it is possible that the attacker also does not risk being caught, assum-
ing it knows which two onion encryptions are associated with U , and can
definitively determine which is the dummy onion encryption.) Per Lemma 6,
this may reduce privacy for U1. However, the expected number of dummy
onion encryptions whose final s hops are all corrupted is µ = (n− t) · (t/n)s,
and (using Hoeffding’s inequality) one can show that except with probability

e−2·(d1−µ)
2/(n−t) the number of such onion encryptions is at most d1.

– The remaining case is that in some round k < r the attacker drops an onion
encryption associated with a user U , for which not all of the intermediate
hops k, . . . , r are corrupted, and the final s intermediate hops of U ’s dummy
encryption are not all corrupted. In that case the attacker (1) cannot distin-
guish U ’s dummy and real onion encryptions, and (2) will be caught if the
dropped onion encryption turns out to be a dummy onion encryption. So the
probability that the attacker can drop more than d2 (real) onion encryptions
of this type without being caught is 2−(d2+1).

In summary, except with probability at most δd = e−2·(d1−µ)
2/(n−t) + 2−(d2+1),

the attacker drops at most d message or is caught. If the attacker drops at most d
messages, then privacy is given by the analysis from Section 4.3 with the number
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Fig. 2. Round complexity and per-user communication complexity for achieving ε = 0
and different δ for various corruption thresholds.

of honest users reduced to n− t− d. If the attacker is caught, then privacy fails
only if the final s hops of U1’s real onion encryption are all corrupted, which
occurs with probability at most δs = (t/n)s.

Efficient implementation of stage 3. In stage 3 we need a distributed pro-
tocol with the property that if any honest user holds cheat = 1 then all honest
users output 1. While this can be achieved using n executions of secure broad-
cast, doing so would be inefficient, and is overkill; in particular, it is acceptable
for us if the adversary causes some honest users to output 1 even when no hon-
est users hold cheat = 1. Instead, we can use the following lightweight protocol
based on any multisignature scheme. Every user who holds cheat = 0 sends a
signature on a designated message ok to the server. The server then combines
these signatures into a single, constant-size signature, and sends it to every user.
Each user locally verifies the signature it receives from the server with respect
to every users’ public key, and outputs 1 if verification fails (or if it does not
receive any signature from the server). Note that even if all-but-one of the users
are corrupted, an adversary cannot forge a valid multisignature on ok unless
every honest user holds cheat = 0.

6 Performance Analysis

To analyze the performance of our malicious protocol and compare it with prior
work in the malicious setting, we assume encryption is done using the KEM-
DEM paradigm, with the KEM portion having a length of 256 bits. We allocate
20 bits for user identities, which suffices for up to n = 220 users,3 and we assume
users’ inputs are 128 bits long. The innermost ciphertext thus requires 256 +
128 = 384 bits, and in each of the other layers we add 256 bits for the next
key encapsulation, 20 bits for the user ID, and 20 bits counter to prevent replay
attacks. An `-layer onion encryption thus requires 384 + 296 · (`− 1) bits.

3 In fact, these identifiers are the only part of our construction that contribute to the
O(logn) multiplicative factor in the overhead.
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Fig. 3. (a) Round complexity and per-user communication complexity for achieving
different δ̂1 for various corruption thresholds. (b) Plot of ε vs. δ2 for various corruption
thresholds and different n.

The ε = 0 case. In Figure 2, we fix the number of users n = 12, 000 and plot the
number of rounds and per-user communication complexity for achieving (0, δ)-
differential obliviousness for several values of δ and various corruption thresholds.
For all our results, we set d = 50 so that (except with some small probability
that we add to the δ term) the attacker can drop at most 50 messages without
being caught. For simplicity, the communication complexity reflects only the two
onion encryptions sent by each user, and we do not count the communication in
stages 2 and 3 which is anyway dominated by the onion routing.

The ε > 0 case. In Figure 3, we show how δ = δ̂1 + δ2 relates to n, r, s, t,
d, and ε, where δ̂1 = δ1 + δd + δs. (Terms δ1 and δ2 come from the analysis
of the semi-honest protocol in Section 4.3, and δd, δs come from the analysis of
malicious behavior in the previous section.) Specifically, in Figure 3(a) we show

how the round/communication complexity depends on δ̂1, and in Figure 3(b) we
show how ε varies with δ2.

We can use these figures to determine how to set parameters. For example,
say we have n = 12, 000 users and up to t = n/3 corruptions, and want to
determine the δ achievable for ε = 1. From Figure 3(b) we see that δ2 ≈ 2−23.

Using Figure 3(a), we see that 68 rounds suffice for δ̂1 ≈ 2−23. This corresponds
to per-user communication of 171 KB.

Comparison to prior work. We compare to the solutions of Movahedi et
al. [31] and Bell et al. [6], both of which achieve ε = 0. Our results compare
favorably to the work of Movahedi et al., especially when the number of parties
is large. In particular, for a corruption threshold of t ≈ n/3 their protocol uses
500 rounds and per-user communication of 128 MB when n = 33, 000, and per-
user communication of approximately 0.5–1 GB over 1,000 rounds when n = 106.
For the same corruption threshold, ε = 0, and4 δ ≤ 2−13, our protocol requires
70–103 rounds with per-user communication of 182–390 KB for any n ≤ 220.
Additionally, if we set ε = 1, our protocol requires 44–60 rounds with per-user
communication of 73–134 KB for n ≤ 220.

4 We choose δ ≤ 2−13 ≈ 10−4 to match what is often done in the differential privacy
literature. Mohavedi et al. claim δ = O(1/n3), but the constant term is unclear.
Note also that they cannot set δ independently of n.
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Our solution outperforms Bell et al. in the large-domain setting (i.e., when
|D| = Ω(n)). This is due to the fact that our per-user communication grows
logarithmically in both the size of the domain and n, while theirs grows either
linearly in the domain size and logarithmically in n, or super-linearly in n.
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Mariana Raykova. Secure single-server aggregation with (poly)logarithmic over-
head. In ACM CCS, page 1253–1269. ACM Press, 2020.
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A Proof of Theorem 3

We start by introducing the generalized privacy blanket method for analyzing
arbitrary ε0-local differentially private mechanism in the original paper [4].

Privacy blanket decomposition. LetR : D → R be a local randomizer, where
R denotes a continuous space. For input x ∈ D, let µx denote the distribution
of R(x); we also abuse the notation a bit and use µx(·) to denote its probability
density function. For the collection of all output distributions {µx}x∈D, we define
their total variation similarity as:

γR =

∫ ∞
−∞

inf
x
{µx(y)}dy;

let ωR be the blanket distribution with its probability density function ωR(y) =
infx µx(y)/γR for y ∈ R. In the rest of this section, we simply write them as γ
and ω. Finally, define νx = (µx−γω)/(1−γ) as an input-dependent distribution.
For every randomizer R and its collection of output distributions {µx}x∈D, we
can decompose each output distribution µx into an input-dependent part and
an input-independent part:

µx = (1− γ)νx + γω

One can understand it as any party with some input x samples from an input-
independent distribution ω with probability γ, and from an input-dependent
distribution νx with probability 1− γ. We first claim the following lemma:

Lemma 7. If R is ε0-local differentially private for some ε0 ≥ 0, then the blan-
ket distribution ω and all output distributions in {µx}x∈D share full support of
domain R.

Proof. We first show that for any x, x′ ∈ D, µx and µx′ must have the same
support. Otherwise without loss of generality, assume µx(y) 6= 0 and µx′(y) = 0;
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then we have µx(y) > eε0µx′(y) for any ε0 ≥ 0, thus R cannot be ε0-LDP.
From the definition of ω, it follows that ω must share this same support with all
distributions in {µx}x∈D.

Similar to the proof of Theorem 1, we assume a stronger adversary that can
identify the contribution of any user among the first m− 1 users that does not
sample from the blanket distribution. This is also the assumption made in Sec-
tion 3; however, notice that for the generalized LDP mechanism, as opposed to
the randomized response mechanism, a party not sampling from blanket distribu-
tion ω could still enjoy some randomness by sampling from its input-dependent
distribution νx. Thus, we need to explicitly provide these “partially” random-
ized values to the adversary and reflect this in our notation. Concretely, we
modify the adversary’s view v1 defined earlier by including an additional vector
ŷH = (ŷ1, . . . , ŷm−1), where

ŷi =

{
yH,i if bi = 0

⊥ otherwise

The high-level intuition and structure of the proof of Theorem 3 are similar
to those of Theorem 4. However, we need to re-introduce a generalized way to
form a bijection.

We start by fixing v1, h for which Y (v1, h) and Y ′(v1, h) are both non-empty.
For simplicity, we write Y for Y (v1, h) and Y ′ for Y ′(v1, h). Also recall that h̄
denotes the resulting multiset after removing from h the multiset given by the
elements of yA and the multiset {ŷi | bi = 0} (both of which are determined
by v1). To align our assumption with the assumption made in [4], we also loosen
the earlier restriction that the mth honest party always submits its true input.
Instead, this party, which either holds input xH,m or x′H,m in the two neighboring
cases, samples from µxH,m

or µx′H,m
, respectively. Thus, both yH,m and y′H,m can

correspond to any element in h̄ based on Lemma 7. And it immediately follows
that Y = Y ′ and both sets include all possible permutations of elements in h̄. We
keep the redundant notations Y and Y ′ throughout our proof (and later do the
same for [Y ] and [Y ′]), as it allows us to draw analogy to our previous analysis
given in Section 3.

Similar to the proof in Section 3.3, we apply a vector duplicating approach
to generate [Y ] and [Y ′] while claiming a specific bijection φ between [Y ] and
[Y ′]. Roughly speaking, for ever pair of mapped vectors yH and φ(yH), their
probability densities have the same fraction with their respective sets [Y ] and
[Y ′]’s probability densities. (This fraction may vary for different pairs of mapped
vectors in this bijection.)

For simplicity, we start by assuming there are no duplicate values in h̄, and
later show how to address the case with duplicate values. Concretely, let h̄ =
{ai}li=1 where all ai are distinct. We abuse the notation ω and let ω(h̄) denote

the probability density
∏l
j=1 ω(aj).

We partition Y into subsets Y1, . . . , Yl with Yi = {yH ∈ Y | yH,m = ai}.
Notice that for all i, |Yi| = (l − 1)!. Furthermore, all vectors within each set Yi
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have the same probability density. In particular, for every vector yH ∈ Yi, its
probability density (conditioned on v1) is given as:

f(yH | v1) =
µxH,m

(ai)

ω(ai)
· ω(h̄)

Hence,

f(Yi | v1) =
∑

yH∈Yi

f(yH | v1) = (l − 1)! ·
µxH,m

(ai)

ω(ai)
· ω(h̄)

Likewise, we can partition Y ′ into subsets Y ′1 , . . . , Y
′
l in the same way (recall

that they are identical sets). Similarly, for every vector y′H ∈ Y ′, its probability
density conditioned on v1 is:

f ′(y′H | v1) =
µx′H,m

(ai)

ω(ai)
· ω(h̄)

Hence,

f ′(Y ′i | v1) =
∑

y′H∈Y ′i

f ′(yH | v1) = (l − 1)! ·
µx′H,m

(ai)

ω(ai)
· ω(h̄)

Relationship between vectors in Y and Y ′. We start by examining the
transposition relationship between vectors in Y1, . . . , Yl and vectors in Y ′1 , . . . , Y

′
l .

For all Yi, every vector yH ∈ Yi has an identical vector in Y ′i , and for all j 6=
i, yH has exactly one vector with transposition distance 1 in each of the Y ′j .
Collectively, we refer to these l vectors as yH ’s “connected” vector and denote
them as a set C(yH). Likewise, we denote y′H ’s “connected” vector as C(y′H).

Similar to what we did in Section 3, we “duplicate” vectors in Y and Y ′ to
form multisets [Y ] and [Y ′]. Concretely, we let [Y ] be a multiset consisting of l
copies of each element yH ∈ Y and [Y ′] be a multiset consisting of l copies of
each element y′H ∈ Y ′. Given some yH ∈ Yi and its connected vector y′H ∈ Y ′j , we

map yH ’s jth duplicate y
(j)
H to y′H ’s ith duplicate y

′(i)
H and we use φ(y

(j)
H ) = y

′(i)
H

to denote such mappings.

Lemma 8. The mapping φ : [Y ]→ [Y ′] is a bijection such that for every yH ∈
[Y ], the vector φ(yH) ∈ [Y ′] is either a transposition of yH , or identical to yH .

Proof. The second part of statement is trivial as we only map a vector yH ’s
duplicate to the duplicates of vectors in C(yH) and vice versa. For the first
part, notice that |[Y ]| = |[Y ′]|, as |Y | = |Y ′| and both [Y ] and [Y ′] contain l
duplicates for each vector. According to our description of φ, each yH ∈ [Y ] is
mapped to exactly one vector y′H ∈ [Y ′]. Due to symmetry, each y′H ∈ [Y ′] is
mapped exactly once. Hence, φ is a bijection between [Y ] and [Y ′].

Assigning probability density for duplicates. For every yH ∈ Y , rather

than evenly distributing the probability density to each of its duplicates y
(1)
H , . . . ,y

(l)
H
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(as done in the proof of Theorem 3.1), we assign the probability density propor-
tionally to the probability density of its connected vectors C(yH). Concretely,
we have:

f(y
(i)
H | v1)

=
µx′H,m

(ai)/ω(ai)∑l
j=1 µx′H,m

(aj)/ω(aj)
· f(yH | v1)

=
µx′H,m

(ai)/ω(ai)∑l
j=1 µx′H,m

(aj)/ω(aj)
·

µxH,m
(ai)/ω(ai)

(l − 1!) ·
∑l
j=1 µxH,m

(aj)/ω(aj)
· f(Y | v1)

Similarly, for every y′H ∈ Y ′, we assign the probability density to its duplicates

y′
(1)
H , . . . ,y′

(l)
H :

f ′(y′
(i)
H | v1)

=
µxH,m

(ai)/ω(ai)∑l
j=1 µxH,m

(aj)/ω(aj)
· f ′(y′H | v1)

=
µxH,m

(ai)/ω(ai)∑l
j=1 µxH,m

(aj)/ω(aj)
·

µx′H,m
(ai)/ω(ai)

(l − 1!) ·
∑l
j=1 µx′H,m

(aj)/ω(aj)
· f ′(Y | v1)

Lemma 9. For every pair of yH ∈ [Y ] and φ(yH) ∈ [Y ′],

f(yH | v1)

f([Y ] | v1)
=
f ′(φ(yH) | v1)

f([Y ′] | v1)

We omit the proof as it is straightforward from the probability density defined
above and Lemma 8.

We are now ready to prove the following lemma, which is a generalized version
of Lemma 5:

Lemma 10. If Σ is (ε, δ)-differentially oblivious for t corrupted users, then for
any set of views V2 from an execution of Σ, we have:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ,

where the notation yH ← Y denotes sampling a vector yH from set Y ac-
cording to the distribution described above (similar for y′H ← Y ′).

Proof. Let φ : [Y ] → [Y ′] be the bijection defined in Lemma 8. Recall that Y
is shorthand for Y (v1, h). Differential obliviousness of Σ implies that for any
yH ∈ [Y ]:

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
≤ eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ.

We have:

Pr
yH←Y

[
viewΣ,A(yA,yH) ∈ V2

]
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= Pr
yH←[Y ]

[
viewΣ,A(yA,yH) ∈ V2

]
=

∑
yH∈[Y ]

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
· f(yH | v1)

f([Y ] | v1)

≤
∑

yH∈[Y ]

(eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ) · f(yH | v1)

f([Y ] | v1)

=
∑

y′H∈[Y ′]

(eε · Pr[viewΣ,A(yA,y
′
H) ∈ V2] + δ) · f(y′H | v1)

f([Y ′] | v1)

= eε · Pr
y′H←[Y ′]

[viewΣ,A(yA,y
′
H) ∈ V2] + δ

= eε · Pr
y′H←Y ′

[viewΣ,A(yA,y
′
H) ∈ V2] + δ.

Handling duplicates. In the case that h̄ = {ai}li=1 contains only d < l dis-
tinct values, we essentially treat each element of h̄ as distinct and adjust the
probability density properly. Concretely, let the respective number of these d
values be c1, . . . , cd. For all yH ∈ Y , we create

∏d
i=1 ci! duplicates and assign

each duplicate with an evenly divided probability density f(yH | v1)/
∏d
i=1 ci!.

We do the same for all y′H ∈ Y ′. As each duplicate is treated as a distinct vector,
we can just proceed as what we did earlier with no duplicate values.

Finally, we handle the remaining changes of notations and relevant lemma
due to our use of probability density. We first define the continuous counter-
part of Pr[v1 | x] and Pr[v1 | x]: let g(v1) and g′(v1) denote the corresponding
probability density at point v1, notice that g = g′. We also adjust the notation
∆(v1, h). In particular, for any v1, h, let

∆(v1, h)
def
= max

{
f(Y (v1, h) | v1)− eε

′
· f ′(Y ′(v1, h) | v1), 0

}
.

Using the above notations, we give the following continuous counterpart of
Lemma 2. We skip the proof as it is analogous:

Lemma 11. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set V ′ =
{(v1, h)} and any pair of neighboring inputs x,x′, we have:∫

(v1,h)∈V ′
g(v1) ·∆(v1, h) ≤ δ′.

Proof of Theorem 3. It suffices to prove that for arbitrary v1, h and set of Σ’s
view V2 consistent with v1, h, the following inequality holds:

g(v1) · f(Y | v1) · Pr
yH←Y

[view(yH) ∈ V2]

≤eε+ε
′
· g′(v1) · f ′(Y ′ | v1) Pr

y′H←Y ′
[view(y′H) ∈ V2] + g(v1) ·∆(v1, h) + g(v1) · f(Y | v1) · δ
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where view(yH) is shorthand for viewΣ,A(yA,yH). Notice that for the last two
terms on the RHS of the inequality, for any set V ′ = {(v1, h)}:∫

(v1,h)∈V ′
g(v1) ·∆(v1, h) +

∫
(v1,h)∈V ′

g(v1) · f(Y | v1) · δ ≤ δ′ + δ.

This is due to Lemma 11 and g(v1) · f(Y (v1, h) | v1) integrated over all possible
views is 1. Moreover, the ratio bound between the integral of the first terms on
both sides preserves:∫

(v1,h)∈V ′
g(v1) · f(Y | v1) · Pr

yH←Y
[view(yH) ∈ V2]

/

∫
(v1,h)∈V ′

g′(v1) · f ′(Y ′ | v1) Pr
y′H←Y ′

[view(y′H) ∈ V2]

≤ eε+ε
′
.

Hence, it suffices to focusing on a single pair of v1, h here.
By Lemma 10, we have that for all v1, h:

Pr
yH←Y

[view(yH) ∈ V2] ≤ min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ,

It follows that

g(v1) · f(Y | v1) · Pr
yH←Y

[view(yH) ∈ V2]

≤ g(v1) · f(Y | v1) ·
(

min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ δ

)
≤ g(v1) · f(Y | v1) ·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+ g(v1) · f(Y | v1) · δ

≤ g(v1) ·
(
eε
′
· f ′(Y ′ | v1) +∆(v1, h)

)
·min

{
eε · Pr

y′H←Y ′
[view(y′H) ∈ V2], 1

}
+g(v1) · f(Y | v1) · δ

≤ g(v1) ·
(
eε+ε

′
· f ′(Y ′ | v1) · Pr

y′H←Y ′
[view(y′H) ∈ V2] +∆(v1, h)

)
+g(v1) · f(Y | v1) · δ

= eε+ε
′
g′(v1) · f ′(Y ′ | v1) · Pr

y′H←Y ′
[view(y′H) ∈ V2] + g(v1)∆(v1, h)

+g(v1) · f(Y | v1) · δ.

This concludes our proof.


