
An Isogeny-Based ID Protocol Using
Structured Public Keys

Karim Baghery, Daniele Cozzo, and Robi Pedersen

imec-COSIC, KU Leuven, Leuven, Belgium.
karim.baghery@kuleuven.be, daniele.cozzo@kuleuven.be,

robi.pedersen@kuleuven.be

Abstract. Isogeny-based cryptography is known as one of the promis-
ing approaches to the emerging post-quantum public key cryptography.
In cryptography, an IDentification (ID) protocol is a primitive that allows
someone’s identity to be confirmed. We present an efficient variation of
the isogeny-based interactive ID scheme used in the base form of the CSI-
FiSh signature [BKV19], which was initially proposed by Couveignes-
Rostovtsev-Stolbunov [Cou06,RS06], to support a larger challenge space,
and consequently achieve a better soundness error rate in each execution.
To this end, we prolong the public key of the basic ID protocol with some
well-formed elements that are generated by particular factors of the se-
cret key. Due to the need for a well-formed (or structured) public key,
the (secret and public) keys are generated by a trusted authority. Our
analysis shows that, for a particular security parameter, by extending a
public key of size 64 B to 2.1 MB, the prover and verifier of our ID proto-
col can be more than 14× faster than the basic ID protocol which has a
binary challenge space, and moreover, the proof in our case will be about
13.5× shorter. Using standard techniques, we also turn the presented ID
protocol into a signature scheme that is as efficient as the state-of-the-art
CSI-FiSh signature, and is existentially unforgeable under chosen mes-
sage attacks in the (quantum) random oracle model. However, in our
signature scheme, a verifier should get the public key of a signer from
a trusted authority, which is standard in a wide range of current uses
of signatures. Finally, we show how to eliminate the need for a trusted
authority in our proposed ID protocol.

Keywords: Isogeny-based Cryptography · Identification Protocols · Digital Sig-
natures · Quantum Random Oracle Model

1 Introduction

An IDentification (ID) protocol is an interactive cryptographic protocol between
two parties called Prover and Verifier, that allows to prove the identity of the
former to the latter [Sch89]. At the end of a successful execution of an ID pro-
tocol, the Verifier is convinced that it is interacting with the Prover that knows
the secret key sk corresponding to a particular public key pk. ID protocols are



deployed in a wide range of cryptographic protocols and practical applications,
and above all, they can be used to build digital signatures. Constructions like
Schnorr’s ID protocol and its corresponding signature [Sch89] are known for their
simplicity and efficiency, but rely on the intractability of the discrete logarithm
problem, which is known to be insecure against sufficiently powerful quantum
computers [Sho94].

There are various research areas that are exploring post-quantum crypto-
graphic techniques to design primitives and protocols that can remain secure in
the presence of quantum computers. One of these is isogeny-based cryptography,
which was independently proposed by Couveignes [Cou06] and by Rostovtsev
and Stolbunov [RS06, Sto10]. The security of these isogeny-based constructions
mainly relies on the difficulty of finding an explicit isogeny connecting two isoge-
nous ordinary elliptic curves over a finite field, while the construction of such
isogenies can be efficiently computed as the action of elements of the ideal-class
group of the endomorphism ring of these elliptic curves. In these original works,
the authors also independently proposed an isogeny-based interactive ID proto-
col. In his Ph.D. thesis, Stolbunov [Sto12] further mentioned how to convert the
ID protocol to the first isogeny-based signature scheme using the Fiat–Shamir
transform. However, these constructions have many drawbacks. First, they work
with a binary challenge space, and therefore need to be repeated many times
to achieve a reasonable soundness rate. Second, in order to allow the uniform
sampling and efficiently computable canonical representations of elements in
the class group needed in these protocols, the class group structure has to be
known, which is a difficult problem for quadratic imaginary fieds [HM89]. Finally,
a quantum attack by Childs, Jao, and Soukharev [CJS14] pushed the security
parameter sizes of these schemes to an impractical scale. Even with current
optimizations [DFKS18], these schemes are inefficient in practice.

Later works have tried to mitigate these shortcomings. In 2018, Castryck
et al. [CLM+18] proposed CSIDH (Commutative Supersingular Isogeny Diffie-
Hellman) and showed that using supersingular curves over Fp instead of ordinary
ones, combined with the action by Fp-rational ideals, greatly increases the effi-
ciency of isogeny computations and thus makes these schemes again usable in
practice. De Feo and Galbraith [DFG19] used the tools of CSIDH to construct
a signature scheme that does not need the knowledge of the class group, but
rather uses rejection sampling. With later improvements by Decru, Panny, and
Vercauteren [DPV19], Seasign signatures could be performed in a few minutes.
Later that same year Beullens, Kleinjung and Vercauteren [BKV19] performed a
record class-group computation for the CSIDH-512 parameter set (a class group
of size ≈ 2257) that finally allowed class group elements to be uniformly sam-
pled and efficiently represented, leading to a practical signature scheme, called
CSI-FiSh. In its simplest version, using a binary challenge space, a CSI-FiSh
signature takes slightly less than 3 seconds. Then, with further improvements,
the authors managed to decrease it to a few hundred milliseconds by increasing
the public-key size and using a different Σ-protocol which is an ID protocol for
a different language, but supports a larger challenge space.
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A very different approach to isogeny-based ID protocols and signatures was
taken based on the SIDH scheme proposed by Jao and De Feo [JDF11], which
uses supersingular elliptic curves over Fp2 , where the endomorphism ring is iso-
morphic to an order in a quaternion algebra, rather than a quadratic imaginary
field. The original paper also proposes an ID protocol, based on which later sig-
nature schemes have been proposed [YAJ+17, GPS17], although not very prac-
tical. The work of Galbraith et. al [GPS17] however also introduced a signature
scheme based on the KLPT algorithm [KLPT14], which uses the knowledge of
the endomorphism ring of two supersingular elliptic curves over Fp2 to compute
an isogeny connecting them. In 2020, De Feo et al. [DFKL+20] showed that
with further assumptions, this scheme can be made practical and proposed the
signature scheme SQI-Sign. At the NIST security level 1, SQI-Sign runs in a
few seconds and has public-key sizes a magnitude smaller than any other post-
quantum secure signature scheme.

Our Contributions. Our main contribution is to extend the ID protocol
used in the base form of CSI-FiSh signature [BKV19], which was initially pro-
posed by Couveignes-Rostovtsev-Stolbunov [Cou06,RS06], to work with a larger
challenge space rather than a binary space. By extending the challenge space,
the proposed ID protocol achieves an arbitrarily small soundness error rate in
each execution. To this end, we modify the ID protocol with binary challenge
space [Cou06,RS06,BKV19] and prolong its public key with some new structured
elements. Particularly, each new element in the public key is built from a distinct
specific multiple of the secret key, where the coefficients are taken from a public
exceptional set [BCPS18, DLSV20]. The latter is a crucial requirement in the
security proof for special soundness. We call such public keys well-formed. The
security of well-formed public-keys against secret key recovery attacks relies on
a new hardness assumption called the (c0, c1, · · · , ck−1)-Vectorization Problem
with Auxiliary Inputs, as the isogeny-based analogue of the (c0, c1, · · · , ck−1)-
Discrete Logarithm Problem with Auxiliary Inputs [Kim15,Che10], which we also
introduce in this paper (Definition 3.2). Then, we show that using a well-formed
public key, we can build an ID protocol that works with a larger challenge space,
and consequently achieves a bigger soundness error rate in each run. In order
to ensure that public keys are indeed well-formed, we assume that the (secret
and public) keys are generated by a trusted authority and shared with parties.
Our performance analysis shows that, in practice, for a particular security pa-
rameter, with an honestly generated public key of size 2.1 MB, the prover and
verifier of our ID protocol can be more than 14× faster than using repetitions
of the basic ID protocol with a binary challenge space and also the proof will be
about 13.5× shorter. In order to apply further optimizations to the soundness
security, we define superexceptional sets (in Definition 3.3) as a particular form
of exceptional sets, which can be of independent interest.

As our second contribution, we use standard techniques to turn the proposed
ID protocol into a signature scheme that has the same efficiency as the state-of-
the-art isogeny-based signature scheme CSI-FiSh [BKV19], constructed to work
in the CSIDH setting. In our signature scheme, the verifier needs to get the
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public key of the signer from a trusted authority rather than from the signer
itself, which is standard in applications like public key certificates. Similar to
CSI-FiSh, our signature scheme would allow to generate and verify a signature
of size less than 400 bytes in less than 0.5 seconds.

In our basic ID protocol, to guarantee the well-formedness of the public
keys, we assume that these are generated by a trusted authority. As the next
contribution of the paper, we show how this trust can be eliminated by letting
the prover generate the key pair themselves, while appending a proof of well-
formedness to the public key. We also show that in order to increase the efficiency,
this proof can be incrementally generated, i.e. that the correctness of the i-th
public key element can be proven more efficiently by using the fact that elements
1, . . . , i− 1 have already been proven.

Organization. Section 2 presents some preliminaries used in the paper. In
Section 3, we present our ID protocol in the setting where a trusted authority has
generated the keys. In Section 4, we detail the corresponding signature scheme. In
Section 5, we propose two protocols to eliminate the trust on the key generation
and also discuss some applications. We present some benchmarks in Section 6.
Finally, we conclude the paper in Section 7.

2 Preliminaries

We denote by ZN = Z/NZ the integers modulo N , where we assume that N is
a composite number of known prime factorisation N =

∏m
i=1 q

ri
i with q1 < · · · <

qm primes and all ri ∈ N. We further say that a function µ(x) is a negligible
function of x, if for any constant c, there exists x0, such that for all x > x0, we
have µ(x) < 1

xc .

2.1 ID protocols

Sigma-Protocols. Let λ be a security parameter and let X = X(λ) and
W = W (λ) be sets. Let R be a relation on X × W that defines a language
L = {x ∈ X : ∃w ∈ W,R(x,w) = 1}. Given x ∈ L, an element w ∈ W such
that R(x,w) = 1 is called a witness. Let R be a PPT algorithm such that R(1λ)
outputs pairs (x,w) such that R(x,w) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V. P holds a
witness w for x ∈ L and V is given x. P first sends a value a to V, and then V
answers with a challenge c , and finally P answers with z. V accepts or rejects
the proof. The triple trans = (a, c, z) is called a transcript of the Σ-protocol. A
Σ-protocol is supposed to satisfy Completeness, Honest Verifier Zero-Knowledge
(HVZK), and Special Soundness defined below.

Definition 2.1 (Completeness). A Σ-protocol Π with parties (P,V) is com-
plete for R, if for all (x,w) ∈ R, the honest V will always accept the honest P.
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Definition 2.2 (HVZK). A Σ-protocol satisfies HVZK for R, if there exists
a PPT algorithm Sim that given x ∈ X, can simulate the trans of the scheme,
s.t. for all x ∈ L, (x,w) ∈ R,

trans(P(R, x,w)↔ V(R, x)) ≈ trans(Sim(R, x)↔ V(R, x))

where trans(P(·)↔ V(·)) indicates the transcript of Π with (P,V), and ≈ denotes
the indistinguishability of transcripts.

Definition 2.3 (Special Soundness). The Σ-protocol Π with parties (P,V)
is special sound for R, if there exists a PPT extractor Ext, such that for any
x ∈ L, given two valid transcripts (a, c, z) and (a, c′, z′) for the same message a
but c 6= c′, then Ext(a, c, z, c′, z′) outputs a witness w for the relation R.

Identification Protocols. An ID protocol is a special case of a Σ-protocol
between two parties (P,V), with respect to a hard relation defined by a key
generator KGen, as (pk, sk)← KGen(1λ), where one thinks of sk as a witness for
the public key pk.

2.2 Building NIZK ID Protocols and Signatures.

An HVZK Σ-protocol Π can be transformed to a Non-Interactive Zero-
Knowledge (NIZK) argument ΠNIZK in the Random Oracle Model (ROM) via
the Fiat–Shamir (FS) transformation [FS87]. The transformation also allows
to build signatures from an ID protocol [AABN02]; we describe this procedure
in Appendix A. Next we define strong existential unforgeability under chosen
message attacks, the primary security notion for signatures.

Definition 2.4 (Strong Existential Unforgeability under Chosen Mes-
sage Attacks). A signature scheme ΠSign = (KGen,Sign,Vf) is said to be strong
Existentially Unforgeable under adaptive Chosen-Message Attacks (sEU-CMA)
if for all PPT adversaries A,∣∣∣∣∣Pr

[
(pk, sk)← KGen(1λ), σi ← Sign(sk,mi) for 1 ≤ i ≤ k;

(m,σ)← ASign(.)(pk, (mi, σi)
k
i=1) : Vf(m,σ, pk) = 1 ∧ (m,σ) 6∈ Q

]∣∣∣∣∣
is negligible in the security parameter λ, where Q := {(m1, σ1) · · · , (mk, σk)}
is the set of the messages requested by A and the signatures returned from the
signing oracle.

2.3 CSI-FiSh

The digital signature scheme CSI-FiSh [BKV19] is based on the ID proto-
col with binary challenge space initially proposed by Couveignes-Rostovtsev-
Stolbunov [Cou06, RS06], that closely follows the lines of the Schnorr identifi-
cation protocol as introduced in [Sch89]. We will introduce it in the notation
of hard homogeneous spaces, a notion introduced by Couveignes [Cou06], which
generalizes group actions that contain hard computational problems.
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Definition 2.5 (Hard homogeneous space [Cou06]). A Hard Homoge-
neous Space (HHS) is a pair of a finite Abelian group G acting on a finite set E
with a free and transitive map ? : G × E → E, that is efficiently computable.
Furthermore, operations, sampling and membership checks in G, as well as mem-
bership and equality checks in E are efficiently computable. Given an element of
G, one can also efficiently compute a unique representation. The following are
hard algorithmic problems:

- Vectorization: Given E1, E2 ∈ E, find a ∈ G, such that a ? E1 = E2.
- Parallelization: Given E1, E2, F1 ∈ E with E2 = a?E1, compute F2 = a?F1.

When G is cyclic of order N and g is a given generator of G, we can also define
the group action [ ] : ZN × E → E as [a]E = ga ? E for a ∈ ZN , E ∈ E . It holds
[a][b]E = [a+ b]E.

The ID protocol underlying CSI-FiSh allows to prove knowledge of a secret
group action [a] connecting two given set elements (E0, E1 = [a]E0), where
E0 ∈ E is a public starting element. Similar to the Schnorr protocol, the prover
first commits to a random b ∈ ZN via Eb = [b]E0, then after receiving a random
bit c from the verifier, sends the response r = b − ca mod N . The verifier
checks whether [r]Ec = Eb. While in Schnorr protocols, the soundness error
can be increased by choosing challenges as bit-strings of length k, computing
[r]Ec = [r][ca]E0 for non-binary c is not directly possible in the more restrictive
HHS setting, since there is no way for the verifier to compute the action of ca
without knowing a.

In order to decrease the soundness error of their ID protocol, the authors
rather increase the challenge space by using larger keys: the secret key is a set
a1, . . . , aS−1 which defines the corresponding public key E1, . . . , ES−1. Then the
prover proves knowledge of any isogeny connecting two elements of its public
key, which results in a Σ-protocol with soundness error rate 1

S . We note at this
point, that this protocol cannot be used as an identification protocol for the
knowledge of the secret key, in that an extractor can only extract a difference
ai − aj of secret keys. The purpose of the next sections is to construct such an
identification protocol.

The authors of [BKV19] instantiate the HHS by identifying E with the set
of supersingular elliptic curves defined over a prime field Fp with log2 p ≈ 512.
The class group Cl(O) of the Fp-rational endomorphism ring O acts freely and
transitively on these elements by isogenies, which allows the identification G with
Cl(O). The full class group structure has also been determined in [BKV19]. It
has size

#Cl(O) = 3 · 37 · 1407181 · 51593604295295867744293584889

· 31599414504681995853008278745587832204909

and is cyclic with generator g = (3, π−1). The starting element E0 : y2 = x3 +x
enjoys the special symmetry, that the twist of [a]E0 is [−a]E0. Since twisting can
be performed efficiently, the authors implicitly include twists in the public key
and thus double the challenge space, reducing the soundness error rate to 1

2S−1 .
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For the sake of generality, we also describe this concept for HHS by introducing
the following notion of a symmetric HHS. In this setting, we generally use the
index notation to identify the “twists”, i.e. we write Ea = [a]E0 and E−a =
[−a]E0 for the twists.

Definition 2.6 (Symmetric hard homogeneous space). We call a hard
homogeneous space symmetric around E0 ∈ E, if, given an element a ? E0, one
can efficently compute a−1 ? E0 without any extra information.

3 An Efficient ID Protocol

Next, we generalize the ID scheme with binary challenge space used in the basic
version of CSI-FiSh [BKV19] to support a larger challenge space. Their protocol
allows to prove the knowledge of secret key x for the public key E1 = [x]E0, but
works with a binary challenge space. As a consequence, this construction requires
a large number of parallel executions and large communication to achieve a
reasonable soundness error rate. In order to extend the ID protocol to support
a larger challenge space, we assume that there exists a trusted authority in the
protocol that generates the pair of secret and (structured) public keys. The
trusted authority sends both keys to the prover, while only the public key to the
verifier. We later discuss how to eliminate the need for a trusted authority.

3.1 Construction and Security Proofs

To efficiently prove the knowledge of x in E1 = [x]E0, our key idea is to ask
a trusted authority to generate k − 2 new curves E2, E3, · · · , Ek−1 using other
multiples of x, say Ei = [cix]E0 for i = 2, · · · , k−1, where ci are public integers.

The issue with composite N . In order to achieve special soundness and build
an efficient extraction algorithm that can extract the witness from two acceptable
transcripts of our construction, we need to assume that the difference of any two
challenge values is always invertible. Since N can be composite, we need to define
the challenge set to only contain elements, whose pairwise difference is invertible.
To this end we use exceptional sets [BCPS18,DLSV20].

Definition 3.1 (Exceptional set). An exceptional set (modulo N) is a set
C = {c0, . . . , ck−1} ⊆ ZN , where the pairwise difference ci − cj of all elements
ci 6= cj is invertible modulo N .

Given k and particular N with smallest prime factor q1 ≥ k, there exists an
efficient algorithm XSGen that outputs an exceptional set of size k with integer
elements, C = {c0 = 0, c1 = 1, c2, · · · , ck−1}.1 In order for the exceptional set
to have a specific target size k ≥ q1, we need to work in a subgroup ZN ′ , where
N ′ | N has smallest prime factor q′1 ≥ k. To do this we factor out the smaller
primes. The only restriction this puts on N is that it is not k-smooth, which is
a reasonable assumption for arbitrary composite numbers and k � N .

1 An easy approach is just to generate k − 2 distinct elements from {2, . . . , q1}. In its
simplest form, we have C = {0, 1, 2, · · · , k − 1}.
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The ID-protocol. We now describe the steps of our ID-protocol. Given a secu-
rity parameter and the system parameters, the trusted authority samples a secret
key x ← ZN , generates an exceptional set C = {c0 = 0, c1 = 1, c2, · · · , ck−1}
using XSGen and then generates the public key (E0, E1, . . . , Ek−1), where Ei =
[cix]E0 for i = 1 . . . , k − 1. Note that we see E0 as part of the public-key for
simplicity and that [0] denotes the neutral element of the group action. The
trusted authority then sends the secret key to the prover, and the public key to
both the prover and the verifier. Then, the prover can use the Σ-protocol in the
figure below to convince the verifier about its knowledge of the secret key x.

We will base the security proofs of our ID protocol on the following problem,
which we believe to be hard for cryptographically sized N and for k � N :2

Definition 3.2 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary
Inputs). Let (G, E , ?) be an HHS. Given an element E ∈ E and the pairs
(ci, [cix]E)i=1,...,k−1, where C = {c0 = 0, c1 = 1, c2 . . . , ck−1} is an exceptional
set, find x ∈ ZN .

The Main ID Protocol Under a Trusted Setup with an Arbitrary N

Trusted Authority

Use XSGen to obtain C, where

C = {c0 = 0, c1 = 1, c2, · · · , ck−1}

x← ZN , set {Ei = [cix]E0}k−1
i=1

(x, (E0, E1, · · · , Ek−1)) (E0, E1, · · · , Ek−1)

Prover: Verifier:

b← ZN , Eb ← [b]E0
Eb

d d← {0, . . . , k − 1}

r ← b− cd · x mod N r return Eb
?
= [r]Ed

The following theorem proves the security of the proposed ID protocol.

Theorem 3.1. Assuming the existence of an exceptional set C = {c0 = 0, c1 =
1, c2, c3, · · · , ck−1}, the described ID-protocol is complete, HVZK, and special
sound with soundness error rate 1

k .

2 It is the isogeny-based analogue of the (c0, c1, · · · , ck−1)-Discrete Logarithm Problem
with Auxiliary Inputs [Kim15], but we are not aware of any existing work formu-
lating this as a hard problem on isogenies. On the other hand, we were not able to
reduce this problem to any of those introduced in Section 2. One may observe that
since the elements c1, . . . , ck−1 are coprime to N by our definition of an exceptional
set, the gi := gci are also generators of G. Therefore, the problem can be reformu-
lated as follows: Given an element E ∈ E and the pairs (gi, g

x
i ? E)i=1,...,k−1, where

g1, . . . , gk−1 are different generators of G, find x.
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Proof. For the completeness, the honest prover follows the protocol and addi-
tionally knows a secret x such that Ei = [cix]E0 for i = 1, . . . , k− 1. The honest
verifier checks whether Eb = [r]Ed = [b − cdx]Ed = [b − cdx][cdx]E0 = [b]E0

which holds given the assumptions on the prover.
For the HVZK, we construct a simulator that given the honestly generated

challenge d, samples r randomly from ZN , then sets Eb = [r]Ed and returns the
transcript (Eb, d, r). In both the real and the simulated transcripts, r and Eb are
sampled uniformly at random, yielding indistinguishable distributions.

For special soundness, given two valid transcripts of the protocol, we build
an efficient extraction algorithm that extracts the witness x. Let (Eb, d, r) and
(Eb, d

′, r′) be two acceptable transcripts of the protocol, where d 6= d′, conse-
quently r 6= r′ (for non-zero x). From the verification equation, one can conclude
that [r]Ed = [r′]Ed′ , and from the (trusted) key generation we know that Ei =
[cix]E0 for i = 1, . . . , k − 1. These imply that we have [r][cdx]E0 = [r′][cd′x]E0,
which implies that r− r′ ≡ x(cd′ − cd) (mod N). Considering the fact that both
cd and cd′ are sampled from the exceptional set C, cd′ − cd is invertible modulo
N , this allows the extraction of x as x = r−r′

cd′−cd
mod N. ut

Soundness error rate. In its current form, our protocol has soundness error rate
1/k. To achieve a target soundness error of 2−λ for a given security parameter
λ, we therefore have to repeat our protocol at least dλ logk 2e times.

Making the construction non-interactive. The described ID protocol is a
public-coin Σ-protocol, therefore can be turned into a non-interactive ID proto-
col using the Fiat–Shamir transform [FS87]. To do so, let t = t(k) = dλ logk 2e.
The prover generates t distinct elements b1, . . . , bt ← ZN and commits to t el-
liptic curves Ebi = [bi]E0 for i = 1, . . . , t. Then the challenge is determined by
hashing the commitments and the statements using a hash function H : {0, 1}∗ →
{0, 1}tdlog2 ke, modeled as a random oracle, and parsing it into t challenges:

d = d1|| . . . ||dt = H(E0, . . . , Ek−1||Eb1 , . . . , Ebt) .

The response is given as r = (r1, . . . , rt) ≡ (b1 − cd1x, . . . , bt − cdtx) (mod N).
The prover publishes (d, r) as its proof. The verifier then checks, whether

H(E0, . . . , Ek−1||[r1]Ed1 , . . . , [rt]Edt)
?
= d .

Lemma 3.1. The non-interactive version of our ID-protocol is a NIZK quan-
tum proof of knowledge in the quantum random oracle model.

Proof. The freeness of the group action implies that, if [b]E0 = [b′]E0, then b =
b′. This immediately implies that our scheme has unique responses. Furthermore,
the freeness of the group action also implies superlogarithmic collision-entropy
of the commitments, since commitments will only collide if they are generated
using the same b, which is a negligible function of the security parameter. Finally,
the challenge space is of size 2tdlog2 ke ≥ 2λ, thus superpolynomial in λ. Using our
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results for completeness, special soundness and HVZK from Theorem 3.1 this
implies that our protocol is a quantum proof of knowledge using [DFMS19, Th.
25] and zero-knowledge against quantum adversaries [Unr17]. ut

3.2 Optimizations and Efficiency

Similar to the proposal used in CSI-FiSh [BKV19], we can double our challenge
space using twists. To this end, we assume that the underlying HHS is symmetric
as by Definition 2.6. Defining E−i = [c−ix]E0 = [−cix]E0 allows challenges to be
sampled from the set d← {−(k−1), . . . , k−1} of size 2k−1, while the response
and verification steps proceed in exactly the same way as in the ID-protocol:
In the case d < 0, the response is simply r = b − c−dx = b + cdx and for the
verification step, the verifier needs to compute E−d = [−cdx]E0 via the efficient
map from Ed, and check if Eb = [r]E−d = [b+ cdx][−cdx]E0.

By this extension, our protocol achieves soundness error rate 1
2k−1 , and thus

has to be repeated t(2k− 1) = dλ log2k−1 2e times to achieve a target soundness
error of at least 2−λ. Note that in the non-interactive case, the hash function
needs to be redefined to have the output domain {0, 1}t(2k−1)dlog2(2k−1)e.

However, there is another problem. To guarantee special soundness as proven
in Theorem 3.1, we used exceptional sets (Definition 3.1), that guarantee that
any pair of challenges allows the extraction of the secret x by an extractor. Since
we are implicitly extending our challenge space to also include negative values
of the factors ci, we have to guarantee that their pairwise sums are invertible
too. We therefore define the notion of superexceptional sets.

Definition 3.3 (Superexceptional set). A superexceptional set (modulo
N) is a set C = {c0, . . . , ck−1}, where the pairwise difference ci−cj of all distinct
elements ci 6= cj and the pairwise sum ci + cj of all elements ci, cj (including
ci = cj) is invertible modulo N .

Similarly to exceptional sets, we can define an efficient algorithm SXSGen for
generating superexceptional sets modulo N of size k ≤ 1

2 (q1 + 1). By letting the
trusted authority in our ID-protocol generate a superexceptional set instead of
an exceptional one, and by assuming the underlying hard homogeneous space is
symmetric around E0, we have the following lemma.

Lemma 3.2. Assuming the existence of a superexceptional set C = {c0 =
0, c1 = 1, c2, . . . , ck−1}, the described ID-protocol is complete, HVZK, and special
sound with soundness error rate 1

2k−1 .

Proof. We have already shown completeness. HVZK and special soundness
closely follow the proof in Theorem 3.1. Note that because we also allow nega-
tive challenges, we can end up with three different scenarios for challenges d, d′:
They can either be both positive, both negative or one positive and one negative.
In the first two cases, the extractor will need to invert an element of the form
±(c|d′|− c|d|) mod N , which is guaranteed to be possible in exceptional sets. In
the third case, the extractor will end up with needing to invert an element of the
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form ±(c|d′| + c|d|) mod N , which is only guaranteed to be possible by using a
superexceptional set C. ut

Computational cost. We establish the computational costs in terms of Group
Actions (GAs) of our proposed protocol in the standard and in the symmetric
case. We assume that we want to reach a target soundness error of 2−λ. Given a
soundness error rate of 1/s per round, we need to repeat the underlying protocol
t(s) = dλ logs 2e times. In both protocols, the prover and the verifier only need
to compute a single GA per step thus, for both, the total cost in GAs is also
expressed by t(s). We find the following total costs:

- Standard ID-protocol: t(k) = dλ/ log2 ke GAs,
- Symmetric ID-protocol: t(2k − 1) = dλ/ log2(2k − 1)e GAs.

Assuming k = 2κ, this implies t(2) ≈ κt(k) ≈ (κ+ 1)t(2k − 1).

Public key size. Instead of a single set element, the public key now consists of
k − 1 set elements, generated using the secret key x and elements of the excep-
tional set C.

Proof size. We further establish the proof size of the non-interactive version
of the ID-protocol in the standard and symmetric cases. To that end, we real-
ize that the prover publishes the challenge-response pair (d, r). The total chal-
lenge size is simply the size of the output domain of the hash function, which is
t(s)dlog2 se bits. The responses are t(s) elements in ZN , thus have total size at
most t(s)dlog2Ne. This gives the total proof size of

- Standard ID-protocol: dλ/ log2 ke(dlog2 ke+ dlog2Ne) bits,
- Symmetric ID-protocol: dλ/ log2(2k − 1)e(dlog2(2k − 1)e+ dlog2Ne) bits.

4 Signatures from the Proposed ID Protocol

The ID protocol in Section 3 can be turned into a signature scheme using the
Fiat–Shamir transform [FS87]. Let again t = t(s) = dλ logs 2e, then the chal-
lenges are obtained by hashing the commitments Eb1 , . . . , Ebt and the message m

to sign using a hash function H : {0, 1}∗ → {0, 1}tdlog2 se , modeled as a random
oracle. The challenge is obtained as d = d1 ‖ · · · ‖ dt = H(Eb1 , . . . , Ebt ‖ m).

The signature on m consists of (m; (r1, d1), . . . , (rt, dt)). The verifier recom-
putes the E′bi = [ri]Ei and checks that indeed d = H(E′b1 , . . . , E

′
bt
‖ m). The

description of the trusted key generation, signing and verification of the signa-
ture scheme is presented in Figure 1.

Theorem 4.1. When the hash function H is modelled as a (quantum) random
oracle, then the signature scheme in Figure 1 is sEUF-CMA secure.

Proof. In Lemma 3.1, we proved that the ID-protocol from Section 3 has special
soundness and unique responses. Then by Theorem 25 of [DFMS19] the protocol
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The signature scheme based on our standard (resp. symmetric) ID protocol

KGen(1λ): To generate the keys, a trusted authority acts as follows,
1. Sample x← Z/NZ.
2. Run algorithm XSGen (resp. SXSGen) and obtain an exceptional (resp.

superexceptional) set C = {0, c1 = 1, c2, · · · , ck−1}
3. For each ci ∈ C set Ei = [cix]E0.
4. Return sk = x, pk = (E0, E1, . . . , Ek−1).

Sign(sk,m): To sign a message m, the signer performs
1. For i = 1, 2, . . . , t:

(a) bi ← Z/NZ.
(b) Ebi = [bi]E0.

2. Set (d1, . . . , dt) = H(Eb1 , . . . , Ebt ‖ m).
3. For i = 1, 2, . . . , t:

(a) set ri = bi − cdi · x (mod N).
4. Return {(ri, di)}ti=1.

Vf({(ri, di)}ti=1,m, pk): To verify a signature {(ri, di)}ti=1 on m, one performs:
1. For i = 1, 2, . . . , t: compute E′bi = [ri]Ei.
2. (d′1, d

′
2, . . . , d

′
t) = H(E′b1 , . . . , E

′
bt‖m).

3. If (d1, d2, . . . , dt) = (d′1, d
′
2, · · · , d′t) then return valid, else output invalid.

Figure 1. The signature scheme based on our standard (resp. symmetric) ID protocol

enjoys the Quantum Proof of Knowledge property. This along with the fact that
the protocol has λ bits of min entropy (Lemma 3.1) impies by Theorem 22
of [DFMS19] that the resuting signature scheme obtained via Fiat–Shamir is
sEUF-CMA in the QROM. ut

Computational cost and signature size. We notice that the number of group
actions to be performed in the signature and verification process are the same
as in the proof and verification of the non-interactive ID protocol, respectively.
Similarly, the size of the signature on m is given by the size of the output domain
of the hash function, which depends on inverse the soundness error rate s and is
therefore also equal to the proof size of the non-interactive ID protocol.

5 Eliminating the Trusted Setup

In the presented ID protocol (in Section 3), the need for a trusted authority
mainly was for ensuring the well-formedness of the public key pk. We call a
public key pk := (E0, E1, . . . , Ek−1) well-formed, if for a secret key x ∈ ZN and
a set C = {c0, . . . , ck−1} it holds that Ei = [cix]E0 for i = 1, . . . , k − 1 and that
C is a (super-)exceptional set for the case of a (symmetric) HHS.

The proof of special soundness in the main protocol relies on the fact that
the elements of pk are well-formed and each one contains a particular multiple of
sk. In practice, this trust can be eliminated if the prover generates the keys and
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proves their well-formedness. This proof3 needs to be generated only once, and
a verifier can eliminate the need for a trusted party by verifying it and checking
that C is a (super-)exceptional set (which can be done in polynomial time).

We present two Σ-protocols for a well-formedness proof. The first protocol
is more general and proves that a given pk has the correct structure simply
by showing that a single commitment-response pair applies to all elements of it.
The second protocol, on the other hand, uses an incremental approach, where the
correctness of an element Ei of the pk is proven by using elements E0, . . . , Ei−1.
By starting from (E0, E1), which is well-formed by definition, we can then prove
the well-formedness of the entire key incrementally. This approach will turn
out to be much more efficient, but only works for exceptional sets of the form
{0, 1, 2, . . . , k − 1}. This protocol also allows for a pk to be upgraded, i.e. to add
a new element to a pk with a short proof, that the element is also well-formed.

Both protocols can be made non-interactive using the Fiat–Shamir transform.

5.1 First Approach: General well-formedness proof

We present a Σ-protocol of the following well-formedness (WF) relation for a
given E0 and a particular k.

LWF
k−1 := {((E0, E1, . . . , Ek−1), x,C = {c1, . . . , ck−1}) :

k−1∧
i=1

Ei = [cix]E0}.

Namely, P needs to prove in zero-knowledge that all the elements of the pk
are computed using the same secret key x but with different public coefficients
c1, . . . , ck−1. This can be achieved in a straightforward fashion by sampling b←
ZN and commiting to Êi = [cib]E0 for i = 1, . . . , k − 1. The challenge d is
binary, or ternary if we assume a symmetric HHS, and the prover can respond

with r = b− dx mod N . Finally, the verifier checks if all Êi
?
= [cir]Edi.

Theorem 5.1. The above Σ-protocol is correct, HVZK, and special sound with
soundness error rate 1

3 .

Proof. For completeness, we simply realize that [cir]Edi = [cib−dcix][dcix]E0 =
[cib]E0 = Êi, which shows that the honest verifier will return accept.

For special soundness, given two transcripts ((Ê1, . . . , Êk−1), d, r) and
((Ê1, . . . , Êk−1), d′, r′) where d 6= d′, and consequently r 6= r′ (for non-zero
x), we have [cir]Edi = [cir

′]Ed′i for all i = 1, . . . , k − 1. Thus an extractor can

extract the secret by computing x = r−r′
d′−d mod N .

For the HVZK, given d, a simulator samples r ← ZN , then for i = 1, . . . , k−1
sets Êi = [cir]Edi. In both the real and the simulated transcripts, r and Êi are
sampled uniformly at random, leading to indistinguishable distributions. ut
3 Note that the proof does not need to be a proof of knowledge, rather a sound proof.

Our presented protocol achieves special soundness, which is stronger than what
we need. We consider constructing a sound proof system based on isogenies as an
interesting future research direction.
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5.2 Second Approach: Incremental well-formedness proof

We present our second approach as an algorithm for upgrading a well-formed
public key: To this end, assume a prover holds a well-formed public-key
PKk−1 = (E0, E1, . . . , Ek−1) of size k, where Ec = [cx]E0 for c = 1, . . . , k − 1.4

Now, assume the prover wants to add a new element Ek = [kx]E0 to upgrade
its public-key to PKk = (E0, E1, . . . , Ek−1, Ek). Instead of repeating the full
well-formedness proof of Section 5 for PKk, the prover can create the following
proof increment to show, that indeed Ek = [kx]E0. Throughout this section, we
denote Ck = {0, . . . , k}. We define the language of correct public-key increments

LIncr.k = {(PKk−1, Ek) : the new set {PKk−1 ∪ Ek} is well-formed} .

A Σ-protocol for LIncr.k

PKk−1 = (E0, E1, · · · , Ek−1), Ek

Prover, x Verifier

b← Z/NZ,

Ê0 ← [−b]E0, Êk ← [b]Ek Ê0, Êk

d d← Ck

r ← b + (k − d) · x mod N r return: [−r]Êk
?
= Ed

∧ [r]Ê0
?
= Ek−d

Theorem 5.2. The above Σ-protocol is correct, HVZK, and special sound with
soundness error rate 1

k .

Proof. For completeness, we have that [−r]Êk = [−b− (k − d)x+ b+ kx]E0 =
[dx]E0 = Ed and [r]Ê0 = [b+ (k − d)x− b] = [(k − d)x]E0 = Ek−d.

For special soundness, given two accepting transcripts ((Ê0, Êk), d, r) and
((Ê0, Êk), d′, r′) with d 6= d′, and consequently r 6= r′, we have [r]Ed = [r′]Ed′

and [−r]Ek−d = [−r′]Ek−d′ , which implies that we can extract x = r−r′
d′−d mod N

from either equation.
Finally, for the HVZK, given a honestly generated d ← Ck, the simulator

samples r ← ZN , then computes Êk = [r]Ed and Ê0 = [−r]Ek−d. Finally, it
outputs ((Ê0, Êk), d, r) as a simulated transcript. ut

5.3 Efficiency and Applications

In order to reach a soundness error of ≤ 2−λ, a protocol with soundness error
1/s needs to be repeated at least t(s) = dλ logs 2e times.

4 Note that this protocol does not work for general exceptional sets, only for sets of
the form {0, 1, . . . , k}.
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- The first protocol has soundness error 1/3. For a public key PKk, at each
step, both the prover and verifier compute k group actions, so that the full
protocol results in Cb(k, λ) = kt(3) group actions per party.

- The second protocol has soundness error 1/(k + 1). At every step, the
prover and verifier have to compute 2 group actions, yielding the total cost
cI(k, λ) = 2t(k + 1) for the proof of the increment PKk−1 → PKk. If we
want to create the well-formedness proof using only incremented public keys,
we find the total cost CI(k, λ) =

∑k
j=2 cI(j, λ) .

It is easy to see, that cI(2, λ) = Cb(2, λ) and that cI(k, λ) < Cb(k, λ) for k > 2.
Numerically, we also find, that CI(k, λ) < Cb(k, λ) for k > 16, independent of λ.
Finally, we can optimize well-formedness proofs by combining the two approaches
and finding l < k, such that a combination of the full well-formedness proof and
the incremental proof has minimal cost C(k, l, λ) := Cb(l, λ) +

∑k
j=l+1 cI(j, λ) .

Numerically, we find l = 7, 8 to be optimal. Note that this is independent of λ.
For k < 7, l = k is optimal and equal to Cb(k, λ). Asymptotically for k → ∞,
we have C(k, l = 7, λ) ≈ CI(k, λ).

Applications. We realize that the cost of the well-formedness proofs estab-
lished in the previous section are quite high for large public keys, which would
allow a more efficient ID protocol as presented in Section 3.1. Note that the the
well-formedness proofs are not meant to be added to the ID-protocol at every in-
vocation, since this would completely defeat the purpose of having a large public
key to increase the efficiency in the first place.

Rather, the idea is to reduce the trust in comparison to our initial proposal in
Section 3.1. There are many applications, where having a third party generating
your private key is not an option. In such a case, a prover could simply gener-
ate its own key pair and send a proof of well-formedness to the trusted party.
The trusted party verifies it and can then publish, that the well-formedness is
accepted for that particular public key, by e.g. signing it. Thus, the expensive
proof and verification have to be performed only once. An example of such an
application could for instance be in TLS, where a certificate authority could
verify the well-formedness of the public key, before issuing a certificate.

6 Instantiation with CSIDH-512

We instantiate our protocol using the known class-group and relation lattice of
the CSIDH-512 parameter set, established in [BKV19]. In order to allow public-
keys with more than 36 elements (k ≥ 37), we work in the subgroup generated
by g111 and identify N = #Cl(O)/111, which has smallest prime divisor q1 =
1407181 (cf. Section 2.3). We note that, log2(q1) ≈ 220.4, which allows our public
key sizes to have that same size in case we work with exceptional sets, or up to
≈ 219.4, if we work with superexceptional sets. Since the CSIDH-512 parameters
set provides an instantiation of a symmetric HHS, we can choose the latter.

Table 1 summarizes different computational and communication costs related
to our ID protocol. We use the complexity results established in Section 3.2. In
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our instantiation, we have the parameters dlog2Ne = 251, dlog2 pe = 511 and
choose λ = 128. For simplicity, we bound the elements in C by q1 and can express
the public-key size as (k − 1)dlog2 pe + (k − 2)dlog2 q1e = 532k − 553. In order
to give more descriptive examples for the runtime of our protocol, we further
use the estimate of 35 ms per GA from [BDPV20], which uses the optimizations
from [MR18].

Table 1. Public-key size, computational cost and estimated time of proof generation
and verification, non-interactive proof size (or signature size), and computational cost
of the optimal well-formedness proof established in Section 5 for various values of k for
standard HHS and symmetric HHS (SHHS). The row with k = 2, shows the efficiency
of the basic ID protocol which has a binary challenge space. Runtimes are expressed
in Group Actions (GA) and also using the estimate that each GA takes 35 ms for
demonstration purposes.

Computational Cost and Run
Time of Prover and Verifier

Proof
Size

Well-formedness
Proof

k
Public-key

Size HHS SHHS HHS SHHS Cost (GA) Time

21 64 B 128 GA 4480 ms 81 GA 2835 ms 4032 B 2552 B — —
22 197 B 64 GA 2240 ms 46 GA 1610 ms 2024 B 1455 B 566 19.8 sec
25 2.0 KB 26 GA 910 ms 22 GA 770 ms 832 B 704 B 2082 72.8 sec
28 16.6 KB 16 GA 560 ms 15 GA 525 ms 518 B 486 B 10377 6.1 min
210 66.4 KB 13 GA 455 ms 12 GA 420 ms 424 B 392 B 31761 18.5 min
212 265.9 KB 11 GA 385 ms 10 GA 350 ms 362 B 329 B 101996 59.5 min
215 2.1 MB 9 GA 315 ms 9 GA 315 ms 299 B 299 B 628528 6.1 h
218 16.6 MB 8 GA 280 ms 7 GA 245 ms 269 B 235 B 4093141 1.7 days

7 Conclusion

The ID protocol underlying CSI-FiSh [BKV19] allows one to prove knowledge of
a secret isogeny, but suffers from a low constant soundness error rate. We were
able to arbitrarily decrease the soundness error per round by sampling challenges
from exceptional sets, namely sets having certain algebraic properties needed
for the extraction. At the same time, this came at the cost of introducing new
(structured) public keys that are indexed by the elements of the exceptional set.
In the basic form of the protocol, we assumed that both the (structured) public
key and the exceptional set were honestly generated by e.g. a trusted authority.
We showed that with a 2.1MB public key, this ID protocol generates proofs of
size 299 bytes, and its prover and verifier can generate and verify a proof both in
315 milliseconds. Our ID protocol would allow to prove knowledge of the secret
key sk of any CSIDH-based primitive with public-key pk := (E0, E1), where
E1 := [sk]E0.

We also showed how to get rid of the need for a trusted authority by present-
ing a protocol that allows the prover to convince the verifier that the keys have
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the required form. This proof takes a combined approach, by first proving the
well-formedness of a small subset of the public key, and then iteratively using
this to more efficiently prove the well-formedness of further elements.

We also presented the NIZK version of our ID protocol along with the re-
sulting signature scheme obtained by the Fiat–Shamir transform [FS87]. We
devote future work to improve the efficiency of the proof of well-formedness of
the public keys, as this is the main bottleneck of the trustless version of our
protocol. A possible improvement might come from designing sound-only proofs
as this would not impose strong algebraic conditions on the challenge space for
extraction.
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A Building Signatures from ID protocols

In order to build a signature scheme from a secure ID protocol, the Fiat–Shamir
transformation [FS87] acts as follows. In nutshell, it makes an interactive ID
protocol Π = (KGen,P,V) with c-bit challenges for some integer c ≥ 1, non-
interactive using an RO to generate the challenges. Assume the ID protocol
must be run in parallel t times to achieve the soundness error rate 1

2tc . Let H be
an RO that outputs a bit string of length c. Then, the resulting signature can
be expressed as follows,

- (pk, sk) ← KGen(1λ): as in the setup phase of the ID protocol, given the
security parameter, the key generation algorithm KGen returns the public
key and secret key.

- σ ← Sign(sk,m): given the secret key sk and a message m to be signed, the
signing algorithm Sign first computes the commitments ai ← P(sk, ri) for
1 ≤ i ≤ t. Then computes h = H(m, a1, · · · , at). Parses h as the t values
ci ∈ {0, 1}c. Computes zi ← P(sk, ri, ai, ci) for 1 ≤ i ≤ t. Outputs the
signature σ = (a1, · · · , a2, z1, · · · , zt).
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- {1, 0} ← Vf(m,σ, pk): Given a signature, a message and the public key, it
compute h = H(m, a1, · · · , at). Parse h as the t values ci ∈ {0, 1}c. Using the
verifier of the ID protocol, checks that V(pk, ai, ci, zi) = 1 for all 1 ≤ i ≤ t.
If V returns 1 for all i then outputs 1, else outputs 0.

It is proven that, starting from a secure ID protocol, the above signature
scheme derived by the Fiat–Shamir transform, is unforgeable against chosen-
message attacks in the ROM [AABN02].
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