
Faster Key Generation of Supersingular Isogeny
Diffie-Hellman

Kaizhan Lin1, Fangguo Zhang2,3, and Chang-An Zhao1,3

1 School of Mathematics, Sun Yat-Sen university, Guangzhou 510275, P.R. China
zhaochan3@mail.sysu.edu.cn

2 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou
510006, P.R. China

3 Guangdong Key Laboratory of Information Security, Guangzhou 510006, P.R.
China

Abstract. Supersingular isogeny Diffie-Hellman (SIDH) is attractive for
its relatively small public key size, but it is still unsatisfactory due to its
efficiency, compared to other post-quantum proposals. In this paper, we
focus on the performance of SIDH when the starting curve is E6 : y2 =
x3 + 6x2 + x, which is fixed in Round-3 SIKE implementation. Inspired
by the previous work [7, 10], we present several tricks to accelerate key
generation of SIDH and each process of SIKE. Our experimental results
show that the performance of this work is at least 6.09% faster than that
of the current SIKE implementation, and we can further improve the
performance when large storage is available.

Keywords: SIDH · SIKE · isogeny-based cryptography · post-quantum
cryptography · Montgomery ladder

1 Introduction

Supersingular isogeny Diffie-Hellman (SIDH) [12] has been regarded as one of
the most attractive post-quantum protocols during the last decade because of its
small public key size compared to the other proposals at the same security level.
Up to now, supersingular isogeny key encapsulation (SIKE), which is based on
SIDH, still remains active in the NIST post-quantum standardization process [1].
Nonetheless, compared to other post-quantum cryptosystems, isogeny-based pro-
tocols generally seem to be inefficient, and so do SIDH and SIKE, for the reason
why the efficient implementation of SIDH/SIKE has become a hot spot in recent
years.

SIDH consists of the key generation phase and the key agreement phase.
For each of them, the three-point ladder [12] and isogeny computation (includ-
ing isogeny construction and isogeny evaluation at points) are dominant. In the
SIDH implementation, they take 17%∼19% and 81%∼83% of the overall com-
putational cost, respectively [5]. Although the latter one requires more compu-
tational resources, the optimization of the three-point ladder is still meaningful
to improve the performance of SIDH and SIKE.



2 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

Jao and De Feo [12] developed the three-point ladder when SIDH was pre-
sented in 2011. One advantage of the three-point ladder is that the x-coordinate
of the point P + [s]Q can be computed directly by the x-coordinates of P , Q
and P − Q, where s is a secret key. In the original SIDH proposal, the points
P,Q ∈ E0(Fp2), where E0 : y2 = x3 + x. The three-point ladder was first im-
proved by Costello et al. [7] by choosing proper torsion bases to execute base
field operations of computing P +[s]Q as possible. Faz-Hernández et al. [10] pro-
posed a new three-point ladder, offering a saving of one differential addition per
iteration. Furthermore, they claimed that the three-point ladder could be further
improved, but it requires large memory. There is no doubt that setting E0 as
the starting curve brings perfect instantiation of SIDH. Unfortunately, it was
observed in [8] that the distortion map of E0 reduces the entropy of the private
and public keys. As a consequence, the original starting curve was replaced by
E6 : y2 = x3+6x2+x, while this modification restricts the techniques mentioned
above, resulting in a relatively heavy overhead of the three-point ladder.

In this paper, we mainly consider torsion bases used in public-key compres-
sion of SIDH [16]. Our contributions are as follows:

– We present Method 1 for Alice to accelerate the kernel generation in the key
generation phase, requiring few elements to be stored. When the storage is
permitted, the techniques mentioned in [10] can be adapted into the current
SIDH with a modification of the kernel generator, as we present in Method
2. In each iteration of the ladder, Methods 1 and 2 save about 17.8 and 21.4
multiplications in Fp, respectively.

– We show that the method of computing kernel generators proposed in [7]
could be still employed to improve the kernel generation in the key generation
phase of Bob by utilizing several tricks, as we present in Method 3. Besides,
we present Method 4 to further improve the performance, with a modification
of the kernel generator and a previous knowledge of a look-up table. The
performances of Methods 3 and 4 are about 2.2 and 4.7 times faster than
that of the previous work, respectively.

– We adapt our methods into the current SIKE. The experimental results show
that the performance of our methods is 6.09% ∼ 7.13% faster than that of
the previous work. If large storage is permitted, Method 2 and Method 4
improve the performance by 8.72% ∼ 10.30%.

The remaining of this paper is organized as follows. In Section 2 we review
basic knowledge of isogenies, the Montgomery ladder, the three-point ladder and
the SIDH protocol. In Section 3 we show how to speed up the kernel generation
of the isogeny during the first phase of SIDH. Our implementation results are
presented in Section 4. Section 5 concludes our work.

2 Preliminaries

Throughout the paper, an elliptic curve in Montgomery form y2 = x3 +Ax2 +x
defined over Fp2 = Fp[i]/〈i2+1〉 is denoted by EA, where p = 2e23e3−1 is a prime



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 3

satisfying 2e2 ≈ 3e3 ≈ √
p. We denote rA = 2e2 and rB = 3e3 for simplicity. In

addition, let (xP , yP ), (XP : ZP ) and (XP : YP : ZP ) denote the point P in
affine, Kummer and projective coordinates, respectively.

2.1 Isogeny

Given two elliptic curves E and E′ defined over a finite field Fq, an isogeny
ϕ : E → E′ is a non-constant morphism from E(Fq) to E′(Fq) such that

ϕ(OE) → OE′ ,

where OE is the unique point at infinity of E, and OE′ is defined similarly [20].
Let deg(ϕ) be the degree of ϕ as a rational function and ker(ϕ) the kernel of
ϕ. The isogeny ϕ is called separable if deg(ϕ) = #ker(ϕ) [20, Theorem 4.10]. A
separable isogeny of degree ℓ is abbreviated as ℓ-isogeny.

The curves E and E′ are said to be ℓ-isogenous over Fq if there exists an
ℓ-isogeny ϕ : E → E′ defined over Fq. Deciding whether two curves are ℓ-
isogenous [12, Problem 5.1] is considered to be a difficult problem [2,14], which
mainly guarantees the security of the SIDH/SIKE protocol. See [18] for details
of the structure of isogeny graphs.

2.2 Montgomery ladder

The Montgomery ladder was first proposed by Montgomery [15] in 1987, aiming
to compute multiples of points for a given point. Compared to the double-and-
add algorithm [9], the Montgomery ladder can avoid side-channel attacks [13].
Furthermore, the Montgomery ladder can efficiently compute the x-coordinates
of multiples of points thanks to the following equations [15]:

x[2]P =
(x2P − 1)2

4xP (x2P +AxP + 1)
,

xP−QxP+Q =
(xPxQ − 1)2

(xP − xQ)2
,

(1)

where P and Q are two points of EA. It is easy to se that we can also use the
Montgomery point P = (XP : ZP ) to compute the Montgomery point [k]P =
(X[k]P : Z[k]P ). Typically, Kummer coordinates are preferred for efficiency.

In each iteration, the Montgomery ladder executes one point doubling plus
one differential addition, denoted by dadd [3, Algorithm 5]. It costs six (or
five when ZP−Q = 1) field multiplications and four field squarings. Pseudocode
of dadd is referred to Appendix A, and pseudocode of the Montgomery ladder
is available in Algorithm 1.

In the SIDH protocol, a Montgomery point of the form S = P + [s]Q on EA

is required to be computed. The Montgomery ladder can be used to compute
the x-coordinates of [s]Q and [s + 1]Q (Note that the Montgomery ladder also



4 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

Algorithm 1 Montgomery ladder [15]
Input: P = (XP : ZP ) ∈ EA, s = (sℓ−1 · · · s1s0)2 and A24 = (A+ 2)/4
Output: [s]P .
1: (X1 : Z1) = [2]P , (X2 : Z2) = P , (X3 : Z3) = P
2: for j = ℓ− 2 down to 0 do
3: if si = 0 then
4: (X2, Z2, X1, Z1) = dadd(X2, Z2, X1, Z1, X3, Z3, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2

computes the latter). Afterwards, one can recover the y-coordinate of [s]Q by
the Okeya-Sakurai formula [17]:

y[s]Q =

(
x[s]QxQ + 1

) (
x[s]Q + xQ + 2A

)
− 2A−

(
x[s]Q − xQ

)2
x[s+1]Q

2yQ
. (2)

Thus, we can get P + [s]Q by one differential addition.
We present Algorithm 4 in Appendix B to recover [s]Q, while Algorithms 6

and 7 in Appendix C aim to perform differential addition.

2.3 Three-point ladder algorithm

Instead of the Montgomery ladder, Jao, De Feo and Plût [12] proposed a three-
point ladder to compute P + [s]Q. The superiority of the three-point ladder is
that one can compute P+[s]Q directly. That is to say, there is no need recovering
the y-coordinate of any point. The three-point ladder was later improved in [10,
Algorithm 2].

Algorithm 2 Three-point ladder [10]
Input: P = (XP : ZP ), Q = (XQ : ZQ), Q−P = (XQ−P : ZQ−P ), s = (sℓ−1 · · · s1s0)2
and A24 = (A+ 2)/4
Output: P + [k]Q

1: (X1 : Z1) = Q, (X2 : Z2) = P , (X3 : Z3) = Q− P
2: for j = 0 to ℓ− 1 do
3: if si = 0 then
4: (X1, Z1, X3, Z3) = dadd(X1, Z1, X3, Z3, X2, Z2, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 5

As we can see in Algorithm 2, in each iteration the point doubling does not
depend on the secret key s. The authors of [10] pointed out that a look-up table
can be precomputed to reduce the computational cost:

T (Q) =

(
x[2]Q + 1

x[2]Q − 1
,
x[4]Q + 1

x[4]Q − 1
, . . . ,

x[2ℓ]Q + 1

x[2ℓ]Q − 1

)
, (3)

where i = 1, · · · , ℓ = e2−3 or dlog rBe. In this case it costs only three field mul-
tiplications and two squarings per iteration, but requires relative large memory.

Remark 1. Similar to the Montgomery ladder, one can recover the y-coordinate
of P + [k]Q. See Algorithm 5 in Appendix B for more details.

2.4 SIDH protocol

In this subsection, we introduce the classical SIDH protocol briefly. Let E6 :
y2 = x3 + 6x2 + x be a supersingular elliptic curve over Fp2 . For two subgroups
E[rA] and E[rB ], there are two pairs of torsion points {PA, QA} and {PB , QB}
such that 〈PA, QA〉 = E6[rA] and 〈PB , QB〉 = E6[rB ]. All mentioned above are
considered as public domain parameters.

Alice chooses a random integer sA ∈ [0, rA − 1] as her secret to begin the
key generation phase. To prevent simple side-channel attacks, she adapts the
three-point ladder to compute SA = PA + [sA]QA of order rA. Thereafter, Alice
constructs the rA-isogeny with kernel 〈SA〉 by Vélu’s formula [21] with the help
of the smoothness of rA. Finally, Alice transmits ϕA(PB), ϕA(QB) and the image
curve EA to Bob. Similarly, Bob selects his secret key sB ∈ [0, rB−1] to compute
SB = PB + [sB ]QB , and then finds the rB-isogeny ϕB with kernel 〈SB〉 to
calculate ϕB(PA), ϕB(QA). Finally, he sends ϕB(PA), ϕB(QA) as well as the
image curve EB to Alice.

Once Alice receives the public key from Bob, she begins her key agreement
phase. In the first place she computes S′

A = ϕB(PA) + [sA]ϕB(QA). Next, she
constructs the isogeny ϕ′A with kernel 〈S′

A〉 and finds out the image curve EBA of
ϕ′A. Similar to Alice, Bob evaluates S′

B = ϕA(PB) + [sB ]ϕA(QB) and constructs
the corresponding isogeny ϕ′B with kernel 〈S′

B〉. Note that only the image curve
parameter is needed. To end the key agreement phase, each of them evaluates
the j-invariant of their respective image curve as their shared secret.

As mentioned in Section 2.3, Alice can make full use of the x-coordinates
of PA, QA, RA = PA − QA to compute the x-coordinate of SA using the three-
point ladder. Instead of {ϕA(PB), ϕA(QB), A}, she could utilize xSA

to evaluate
{xϕA(PB), xϕA(QB), xϕA(RB)} and transmits it to Bob. The same case is also avail-
able for Bob. Similarly, the key agreement phase can be optimized in the same
way as well. Besides, the public keys of Alice and Bob can be further compressed.
For detailed techniques used in public-key compression of SIDH/SIKE, we refer
to [3, 6, 11,16,19,22].



6 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

3 Optimization of Kernel Generator Computation

In this section, we show how to improve the kernel generation of the isogeny in
key generation of SIDH. We consider the torsion bases selected in [16], which
can be utilized to speed up key generation of the compressed version of SIDH as
well.

When counting field operations, we use M and S to denote the respective
costs of a multiplication and a squaring in the field Fp2 . Besides, the notations
m and s are used to represent the costs of a multiplication and a squaring in
Fp, respectively. To measure the performance of the algorithms, we estimate
M ≈ 3m, S ≈ 2m and s ≈ 0.8m [10, 22].

3.1 Case of Alice

Naehrig and Renes [16] chose a rA-torsion basis {PA, QA} such that

[2]PA = (x, iy), [2]QA ∈ E6(Fp), (4)

where x, y ∈ Fp, to speed up public-key compression. In fact, the features of this
basis could be used to accelerate the three-point ladder as well.

Remark 2. Since E6(Fp)[rA] is isomorphic to Z/2e2−1Z× Z/2Z [7], it is impos-
sible to find a rA-torsion basis such that one of the torsion points belongs to
E6(Fp).

When implementing the three-point ladder (Algorithm 2) to compute the point
SA = PA + [sA]QA, all the operations are in Fp2 , for the reason that both PA

and QA are defined on E6(Fp2)\E6(Fp). However, note that

[2i]QA ∈ E6(Fp), i = 1, 2, · · · , e2 − 1.

Therefore, instead of the three-point ladder used to compute PA+[sA]QA directly
in Fp2 , Alice could execute the Montgomery ladder to compute [sA − 1]QA or
[sA]QA in the base field if she precomputes [2]QA in affine coordinate, and then
obtain PA + [sA]QA with several operations in Fp2 . Our idea to accelerate the
kernel generation for Alice comes mostly from Method 1.

Method 1:
– Use the Montgomery ladder to compute the points R0 = [b sA

2 c]([2]QA) and
R1 = [b sA

2 c+ 1]([2]QA) in Kummer coordinates;
– Utilize the Okeya-Sakurai formula (2) to recover R0 in projective coordinate;
– If (sA mod 2) ≡ 1, compute (PA+QA)+R0 in Kummer coordinate, otherwise

compute PA +R0 in Kummer coordinate.

Lemma 1. One can compute the point SA = PA+[sA]QA in Kummer coordinate
by applying Method 1.



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 7

Proof. Note that

R0 = [bsA
2
c]([2]QA) =

{
[sA − 1]QA,when sA is odd,
[sA]QA, else.

Therefore, by performing the Montogomery ladder, we have [sA − 1]QA and
[sA + 1]QA in Kummer coordinates when sA is odd, or [sA]QA and [sA + 2]QA

in Kummer coordinates when sA is even.
Now consider i = (sA mod 2). If i = 1, then the point that we recover is

[sA−1]QA. In this case, one should compute the point PA+[sA]QA = (PA+QA)+
[sA − 1]QA = (PA +QA)+R0 in Kummer coordinate. When i is equal to 0, i.e.,
sA is even, we directly compute PA + [sA]QA = PA + [bsA

2
c]([2]QA) = PA +R0

in Kummer coordinate.
Hence, in both cases Method 1 correctly computes the point PA + [sA]QA in

Kummer coordinate. ■
One can precompute a lookup table to speed up the kernel generation of the

isogeny when the storage is available. This technique is also adapted in [10]. Find
a point P ′

A ∈ E(Fp) of order 3, and then precompute Q′
A = [2]QA − P ′

A and the
lookup table

T ([2]QA) =

(
x[2]QA

+ 1

x[2]QA
− 1

,
x[4]QA

+ 1

x[4]QA
− 1

, · · · ,
x[2ℓ+1]QA

+ 1

x[2ℓ+1]QA
− 1

)
,

where ℓ = e2 − 4. After that, Alice can improve the performance of the three-
point ladder and compute the kernel generator of the isogeny by the following:

Method 2:
– Use the three-point ladder to compute R0 = P ′

A + [b sA
2 c mod 2e2−3]([2]QA)

and R1 = [2e2−3 − b sA
2 c mod 2e2−3)]([2]QA) − P ′

A in Kummer coordinates
with the help of the lookup table T ([2]QA) and Q′

A;
– Set [2e2−1]QA = (0 : 0), then perform one differential addition;
– Use Algorithm 5 to recover R0 in projective coordinate;
– Set

R2 =



R0, if b
sA

2e2−2
c = 0,

R0 + [2e2−2]QA, if b
sA

2e2−2
c = 1,

R0 + [2e2−1]QA, if b
sA

2e2−2
c = 2,

R0 − [2e2−2]QA, if b
sA

2e2−2
c = 3;

(5)

– If (sA mod 2) = 1, compute R3 = (PA +QA) + R2 in Kummer coordinate,
otherwise R3 = PA +R2 in Kummer coordinate;

– Compute [3]R3 in Kummer coordinate.

Lemma 2. One can compute the point [3]PA + [3sA]QA in Kummer coordinate
and regard it as the kernel generator of a rA-isogeny by applying Method 2. This
modification of the kernel generator does not change the key space size.



8 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

Proof. Note that the t-th iteration, the three-point ladder computes the points
P ′
A+[b sA

2 c mod 2t]([2]QA) and [2t− (b sA
2 c mod 2t)]([2]QA)−P ′

A. Hence, we can
utilize T ([2]QA) to efficiently compute R0 and R1.

Step 4 computes R2 = R0 + [b sA
2e2−2 c]([2]QA), i.e.,

R2 =

{
P ′
A + [sA − 1]QA,when sA is odd,
P ′
A + [sA]QA, else.

When sA is odd, we get R2 = P ′
A + [sA − 1]QA. In this case, the point

R3 = PA + QA + R2 = PA + P ′
A + [sA]QA. When sA is even, compute R3 =

PA +R2 = PA + P ′
A + [sA]QA.

The last step is to eliminate P ′
A by tripling R3:

[3]R3 = [3]PA + [3]P ′
A + [3sA]QA = [3]PA + [3sA]QA.

Since gcd(3, rA) = 1, the order of [3]R3 is rA. Hence, the point [3]R3 could be
regarded as the kernel generator of a rA-isogeny. Besides, the group endomor-
phism

η3 : (ZrA ,+) → (ZrA ,+),
x 7→ 3x,

is an isomorphism. Therefore, the key space size is not changed. This completes
the proof. ■

One may ask how to run in constant time when computing R2 in Equa-
tion (5). It is natural to compute three point additions directly and output the
right point with respect to b sA

2e2−2
c. Here we give another approach to compute

R2 efficiently by utilizing the property [2e2−1]QA = (0, 0).
We first compute R′

2 = R0+[2e2−2]QA. Thereafter, according to the addition
law on elliptic curves, we have

R0 + (0, 0) =

(
1

xR0

,− yR0

x2R0

)
=
(
XR0

ZR0
: −YR0

ZR0
: X2

R0

)
,

R0 − [2e2−2]QA =

(
1

xR′
2

,−
yR′

2

x2R′
2

)
=
(
XR′

2
ZR′

2
: −YR′

2
ZR′

2
: X2

R′
2

)
.

Therefore, there is no need to compute three differential additions. Instead,
we compute two field multiplications and one field squaring with respect to
b sA
2e2−2

c mod 2. Finally, output the right point with respect to b sA
2e2−1

c. Further,
to defend the attacker who performs one fault injection, we can simply compute
the above points twice and check whether the two results are the same. This
countermeasure is also adapted in the CSIDH with dummy-operations against
fault injection attacks [4].

Remark 3. In the key agreement phase, Alice could compute the kernel generator
SA′ = ϕB(PA) + [sA]ϕB(QA) as usual, since S′

A and [3]S′
A generate the same

kernel.



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 9

To sum up, the estimates given in Table 1 show the computational cost for
each iteration of the ladder. The table shows that Methods 1 and 2 can improve
the three-point ladder, and the implementation of the latter method performs
better when large storage is available.

Table 1. Cost estimates for each iteration of the three-point ladder during the key
generation phase of Alice.

Method Cost estimates
Current SIDH [3] 6M+4S ≈ (6×3 + 4×2) m = 26m

Method 1 5m+4s ≈ (5 + 4×0.8) m = 8.2m
Method 2 3m+2s ≈ (3 + 2×0.8) m = 4.6m

3.2 Case of Bob

To compress public keys faster, Naehrig and Renes [16] selected the rB-torsion
basis {P3, Q3} on E0 such that

P3 = (x, y), Q3 = ψ(P3) = (−x, iy),

where x, y ∈ Fp. Then they set {ϕ2(P3), ϕ2(Q3)} as the rB-torsion basis of E6,
where ϕ2 is the 2-isogeny with kernel 〈(i, 0)〉:

ϕ2 : E0 → E6,

(x, y) 7→
(
ix2 − x

x− i
, y
ix2 + 2x+ i

(x− i)2

)
.

Instead of PB + [sB ]QB , we consider [sB ]PB +QB as the kernel generator of
the isogeny. Similar to the ideas proposed in [7], Bob can use his secret key sB
to compute [sB ]PB +QB as follows:

Method 3:
– Use the Montgomery ladder to compute [sB ]P3 and [sB + 1]P3 in Kummer

coordinates;
– Utilize the Okeya-Sakurai formula (2) to recover [sB ]P3 in projective coor-

dinate;
– Compute [sB ]P3 +Q3 in Kummer coordinate;
– Complete the evaluation of the isogeny ϕ2 at [sB ]P3 +Q3.

Lemma 3. One can compute the point [sB ]PB+QB in Kummer coordinate and
regard it as the kernel generator of a 3e3-isogeny by applying Method 3. This
modification of the kernel generator does not change the key space size.



10 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

Proof. It is easy to check that one can correctly compute [sB ]P3 +Q3. The rest
is to prove SB = ϕ2([sB ]P3 +Q3) is a point of order rB . Note that

SB = ϕ2([sB ]P3 +Q3) = [sB ]ϕ2(P3) + ϕ2(Q3) = [sB ]PB +QB .

Since the order of Q3 is rB and gcd(2, rB) = 1, the order of the point QB is rB .
This implies that SB is a point of order rB , and it could be regarded as the kernel
generator of a rB-isogeny. Obviously, this modification of the kernel generator
does not change the key space size because there are exactly rB choices of sB to
compute the kernel generators and any two of them do not generate the same
group of order rB . ■

Since Q3 ∈ E0(Fp), all the operations of the Montgomery ladder are imple-
mented in the base field. Therefore, Bob could compute the point SB much more
efficient than before. In this case, only the point P3 in affine coordinate should
be stored (Q3 could be recovered by ψ(P3)).

Set Q′
3 = (1,

√
2) ∈ E0(Fp) (Note that 2 is a square in Fp because p ≡

7(mod 8)). It is easy to check Q′
3 is a point of order 4. Analogous to Method 2,

Bob could store the table

T (P3) =

(
x[2]P3

+ 1

x[2]P3
− 1

,
x[4]P3

+ 1

x[4]P3
− 1

, · · · ,
x[2ℓ]P3

+ 1

x[2ℓ]P3
− 1

)
,

where ℓ = dlog rBe and P ′
3 = P3−Q′

3 ∈ E0(Fp), to speed up the implementation
of the three-point ladder. The main procedure is as follows:

Method 4:
– Use the three-point ladder to compute R0 = [sB ]P3+Q

′
3 and R1 = [2⌈log rB⌉−

sB ]P3 −Q′
3 in Kummer coordinates;

– Compute the points R2 = [4]R0 and R3 = [4]R1 in Kummer coordinates;
– Utilize Algorithm 5 to recover R2 in projective coordinate;
– Compute R4 = R2 +Q3;
– Complete the evaluation of the isogeny ϕ2 at R4.

Lemma 4. One can compute the point [4sB ]PB + QB in Kummer coordinate
and regard it as the kernel generator of a rB-isogeny by applying Method 4. This
modification of the kernel generator does not change the key space size.

Proof. In the t-th iteration, the three-point ladder computes [sB mod 2t]P3+Q
′
3

and [2t−(sB mod 2t)]P3−Q′
3. Hence, we can utilize T (P3) to efficiently compute

R0 and R1.
Step 2 aims to eliminate Q′

3, which is a point of order 4. We simply quadruple
R0 and R1, or, alternatively, double them twice. Then,

R2 = [4]([sB ]P3 +Q′
3) = [4sB ]P3,

R3 = [4]([2⌈log rB⌉ − sB ]P3 −Q′
3) = [2⌈log rB⌉+2 − 4sB ]P3.

After recovering the projective coordinates of the point R2, we compute

R4 = R2 +Q3 = [4sB ]P3 +Q3.



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 11

The rest is to evaluate ϕ2 to R4. Note that P3, Q3 are points of order rB and
gcd(2, rB) = 1. The point

ϕ2(R4) = [4sB ]ϕ2(P3) + ϕ2(Q3) = [4sB ]PB +QB

has order rB on E6 as well. Consequently, Bob could use [4sB ]PB + QB to
determine a rB-isogeny. This modification of the kernel generator does not reduce
the key space size as gcd(rB , 4) = 1. ■

We estimate the cost of each iteration of the ladder by utilizing the methods
mentioned above, and draw a comparison between the cost of the methods and
that of the previous, as shown in Table 2. We can predict that Method 3 improves
the performance obviously, and so does Method 4.

Table 2. Cost estimates for each iteration of the ladder during the key generation
phase of Bob.

Method Cost estimates
Current SIDH [3] 6M+4S ≈ (6×3 + 4×2) m = 26m

Method 3 5m+4s ≈ (5 + 4×0.8) m = 8.2m
Method 4 3m+2s ≈ (3 + 2×0.8) m = 4.6m

4 Implementation

In this section we present the implementation of key generation of SIDH and
SIKE by utilizing our techniques, and then give a comparison in efficiency.

In Tables 1 and 2 we give cost estimates for each iteration of the ladder.
Indeed, the cost of the ladder dominates the cost of the kernel generation of iso-
genies, so its performance mainly depends on the implementation of the ladder.

Our implementation makes use of the SIDH C library [3]. The following ex-
perimental results have been obtained by using an 11th Gen Intel(R) Core(TM)
i7-1185G7 @ 3.00GHz on 64-bit Linux. We benchmarked our code and observed
the performance of key generation of SIDH and SIKE by using different methods
in comparison with the current SIDH/SIKE. The results are reported in Table 3.



12 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

Table 3. Performance comparison of key generation of SIDH (including the ladder and
isogeny computation) by using different methods. All timings are presented in millions
of clock cycles. We use M1, M2, M3 and M4 to denote the situation when using Method
1, Method 2, Method 3 and Method 4, respectively.

Setting
Alice’s key generation Bob’s key generation

Current Ours Speedup Current Ours Speedup
SIDH [3] M1 M2 M1 M2 SIDH [3] M3 M4 M3 M4

SIKEp434 3.20 2.82 2.72 11.88% 15.00% 3.55 3.15 3.07 11.27% 13.52%
SIKEp503 4.50 3.92 3.76 12.89% 16.44% 4.98 4.34 4.22 12.85% 15.26%
SIKEp610 9.00 8.05 7.85 10.56% 12.78% 8.97 8.03 7.82 10.48% 12.82%
SIKEp751 13.75 12.25 11.60 10.91% 15.64% 15.50 13.84 13.30 10.71% 14.19%

As can be seen in Table 3, when the storage is constrained, the performance
of ours is 10.56%∼ 12.89% faster than key generation of the current SIDH for
the case of Alice, and 10.48%∼ 12.85% faster for the case of Bob. When the
storage is permitted, it performs better with a previous knowledge of a look-up
table.

Note that in SIKE, each process (KeyGen, Encaps and Decaps) calls the
ladder in key generation of SIDH once. Hence, we improve each process with
the help of our methods. Table 4 reports the experimental results by using our
techniques and the comparison with that of the current SIKE.

Table 4. Performance comparison of SIKE by using different methods. All timings
are presented in millions of clock cycles. We use M1, M2, M3 and M4 to denote the
situation when using Method 1, Method 2, Method 3 and Method 4, respectively.

Setting M1&M3 M2&M4 Current SIKE [3] Speedup
M1&M3 M2&M4

SIKEp434

Keygen 3.21 3.11 3.56 9.83% 12.64%
Encaps 5.52 5,36 5.82 5.15% 7.90%
Decaps 5.91 5.76 6.21 4.83% 7.25%
Total 14.64 14.23 15.59 6.09% 8.72%

SIKEp503

Keygen 4.55 4.37 5.09 10.61% 14.15%
Encaps 7.81 7.62 8.34 6.35% 8.63%
Decaps 8.35 8.16 8.87 5.86% 8.12%
Total 20.71 20.15 22.30 7.13% 9.64%

SIKEp610

Keygen 8.05 7.79 9.06 11.15% 14.02%
Encaps 15.60 15.36 16.71 6.64% 8.08%
Decaps 15.81 15.40 16.72 5.44% 7.89%
Total 39.46 38.55 42.49 7.13% 9.27%

SIKEp751

Keygen 13.75 13.19 15.34 10.37% 14.02%
Encaps 23.39 22.42 24.87 5.95% 9.85%
Decaps 25.22 24.38 26.67 5.44% 8.59%
Total 62.36 59.99 66.88 6.76% 10.30%



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 13

In Table 5 we report the additive memory requirements for Methods 2 and
4 that require to store a precomputed table in the SIDH settings. It shows that
large memory is necessary for applying the methods. Hence, Methods 1 and 3
would be preferred for memory constrained environments.

Table 5. Additive memory requirements (in KiB) for Method 2 and Method 4

Setting SIKEp434 SIKEp503 SIKEp610 SIKEp751
Alice 12.2 16.1 24.5 35.6
Bob 12.2 16.1 24.2 36.0
Total 24.4 32.2 48.7 71.6

5 Conclusion

In this paper, we proposed several tricks to utilize these techniques to the key
generation phase of the current SIDH. Some of our methods change the generator
form of the isogeny, but the key space size is not reduced. When large storage is
permitted, we could improve the ladder performance further. Our new idea may
make SIDH/SIKE more attractive in post-quantum cryptography.

Acknowledgements

We thank the anonymous reviewers for helpful comments and suggestions. This
work is supported by Guangdong Major Project of Basic and Applied Basic
Research (No. 2019B030302008), the National Natural Science Foundation of
China (No.s 61972429 and 61972428).

References

1. The National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization (2017–2018), https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

2. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the Cost of Computing Isogenies Between Supersingular Elliptic
Curves. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography –
SAC 2018. pp. 322–343. Springer International Publishing, Cham (2019)

3. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

4. Campos, F., Kannwischer, M.J., Meyer, M., Onuki, H., Stöttinger, M.: Trouble at
the CSIDH: Protecting CSIDH with Dummy-Operations Against Fault Injection
Attacks. In: 2020 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). pp. 57–65 (2020). https://doi.org/10.1109/FDTC51366.2020.00015

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
http://sike.org
https://doi.org/10.1109/FDTC51366.2020.00015


14 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

5. Cervantes-Vázquez, D., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.:
Extended supersingular isogeny diffie–hellman key exchange pro-
tocol: Revenge of the sidh. IET Information Security n/a(n/a).
https://doi.org/https://doi.org/10.1049/ise2.12027, https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12027

6. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

7. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular
Isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy – CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

8. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved Classical
Cryptanalysis of SIKE in Practice. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) Public-Key Cryptography – PKC 2020. pp. 505–534. Springer
International Publishing, Cham (2020)

9. Donald E. Knuth: The Art of Computer Programming, v.2. Seminumerical algo-
rithms. Addison-Welsley, 2nd edition (1981)

10. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A
Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key
Exchange Protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2018)

11. Hutchinson, A., Karabina, K., Pereira, G.: Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed SIKE. In: Cheon, J.H., Tillich, J.P.
(eds.) Post-Quantum Cryptography. pp. 296–315. Springer International Publish-
ing, Cham (2021)

12. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

13. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO’ 99. pp. 388–397. Springer Berlin Heidelberg,
Berlin, Heidelberg (1999)

14. Longa, P., Wang, W., Szefer, J.: The Cost to Break SIKE: A Comparative
Hardware-Based Analysis with AES and SHA-3. In: Malkin, T., Peikert, C. (eds.)
Advances in Cryptology – CRYPTO 2021. pp. 402–431. Springer International
Publishing, Cham (2021)

15. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

16. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-key Com-
pression for Isogeny-based Cryptography. In: Advances in Cryptology - ASI-
ACRYPT 2019 (December 2019)

17. Okeya, K., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Multi-
plication Algorithm with Recovery of the y-coordinate on a Montgomery-Form El-
liptic Curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware
and Embedded Systems — CHES 2001. pp. 126–141. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

18. Onuki, H., Aikawa, Y., Takagi, T.: The Existence of Cycles in the Supersingular
Isogeny Graphs Used in SIKE. In: 2020 International Symposium on Information
Theory and Its Applications (ISITA). pp. 358–362 (2020)

19. Pereira, G., Doliskani, J., Jao, D.: x-only point addition formula and faster com-
pressed SIKE. Journal of Cryptographic Engineering pp. 1–13 (2020)

https://doi.org/https://doi.org/10.1049/ise2.12027
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12027
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12027


Faster Key Generation of Supersingular Isogeny Diffie-Hellman 15

20. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts
in Mathematics. Springer (2009)

21. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér. A 273,
238–241 (1971)

22. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster Key Compression for Isogeny-Based Cryptosystems. IEEE Trans-
actions on Computers 68(5), 688–701 (2019)

A Point Doubling and Differential Addition

Algorithm 3 dadd: doubling and differential addition [3, Algorithm 5]
Input:(XP : ZP ), (XQ : ZQ), (XP−Q : ZP−Q) and A24 = (A+ 2)/4
Output: (X[2]P : Z[2]P ) and (XP+Q, ZP+Q)

1: t0 ← XP + ZP

2: t1 ← XP − ZP

3: XP ← t20
4: t2 ← XQ − ZQ

5: XQ ← XQ + ZQ

6: t0 ← t0 · t2
7: ZP ← t21
8: t1 ← t1 ·XQ

9: t2 ← XP − ZP

10: XP ← XP · ZP

11: XQ ← A24 · t2
12: ZQ ← t0 − t1
13: ZP ← ZP +XQ

14: XQ ← t0 + t1
15: ZP ← t2 · ZP

16: ZQ ← Z2
Q

17: XQ ← X2
Q

18: ZQ ← XP−Q · ZQ

19: XQ ← ZP−Q ·XQ

Remark 4. When ZP−Q = 1, one field multiplication can be saved in Line 19.

B Recovering the Y -coordinate
B.1 The case of the Montgomery ladder

Algorithm 4 Recovering the Y -coordinate after executing the Montgomery
ladder
Input:(xQ, yQ), (X[s]Q : Z[s]Q), (X[s+1]Q : Z[s+1]Q) and A
Output: (X[s]Q : Y[s]Q : Z[s]Q)

1: t0 ← xQ · Z[s]Q

2: t1 ← t0 +X[s]Q

3: t2 ← X[s]Q − t0
4: t2 ← t22
5: t2 ← t2 ·X[s+1]Q

6: t0 ← Z[s]Q + Z[s]Q

7: t0 ← A · t0
8: t1 ← t0 + t1
9: t3 ← xQ ·X[s]Q

10: t3 ← t3 + Z[s]Q

11: t1 ← t1 · t3
12: t0 ← t0 · Z[s]Q

13: t1 ← t1 − t0
14: t1 ← t1 · Z[s+1]Q

15: Y[s]Q ← t1 − t2
16: t0 ← yQ + yQ
17: t0 ← t0 · Z[s]Q

18: t0 ← t0 · Z[s+1]Q

19: X[s]Q ← t0 ·X[s]Q

20: Z[s]Q ← t0 · Z[s]Q



16 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

B.2 The case of the three-point ladder

Algorithm 5 Recovering the Y -coordinate after the t-th iteration of the three-
point ladder
Input:[2t]Q = (X0 : Z0), P + [s]Q = (X1 : Z1), [2t − s]Q− P = (X2 : Z2) to compute
P + [2t + s]Q = (X3 : Z3)
Output: P + [s]Q = (X1 : Y1 : Z1)

1: t0 ← X2 · Z3

2: t1 ← X3 · Z2

3: t0 ← t0 − t1
4: t1 ← X0 · Z1

5: t1 ← X1 − t1
6: t1 ← t21
7: Y1 ← t0 · t1

8: t0 ← Y0 + Y0

9: t0 ← t0 + t0
10: t0 ← t0 · Z1

11: t0 ← t0 · Z2

12: t0 ← t0 · Z3

13: X1 ← t0 ·X1

14: Z1 ← t0 · Z1

C Point Addition

Algorithm 6 is used to add a point P represented in projective coordinate to a
point Q represented in affine coordinate, and output the result P+Q = (XP+Q :
ZP+Q) on the elliptic curve E0.

Algorithm 6 Point differential addition
Input:(XP : YP : ZP ) and (xQ, yQ)
Output: (XP+Q : ZP+Q)

1: t0 ← xQ · ZP

2: t1 ← XP − t0
3: t1 ← t21
4: ZP+Q ← ZP · t1
5: t0 ← XP + t0
6: t1 ← t0 · t1

7: t0 ← yQ · ZP

8: t0 ← YP − t0
9: t0 ← t20

10: t0 ← t0 · ZP

11: XP+Q ← t0 − t1

Algorithm 7 is used to add a point P represented in projective coordinate
to a point Q represented in affine coordinate, and output the result P + Q =
(XP+Q : YP+Q : ZP+Q) on the elliptic curve E6.



Faster Key Generation of Supersingular Isogeny Diffie-Hellman 17

Algorithm 7 Point differential addition
Input:(XP : YP : ZP ) and (xQ, yQ)
Output: (XP+Q : YP+Q : ZP+Q)

1: t0 ← XP + ZP

2: t0 ← t0 + ZP

3: t1 ← xQ + 2
4: t2 ← yQ · ZP

5: t2 ← t2 − yQ
6: t3 ← t22
7: t4 ← t1 · ZP

8: t4 ← t4 − t0
9: t5 ← t24

10: t6 ← t5 · t4
11: t7 ← t0 · t5
12: t8 ← t3 · ZP

13: t8 ← a− t6
14: t8 ← a− t7
15: t8 ← a− t7
16: XP+Q ← t4 · t8
17: t9 ← t6 · YP

18: YP+Q ← t7 − t8
19: YP+Q ← t2 · YP+Q

20: YP+Q ← YP+Q − t9
21: ZP+Q ← t6 · ZP

22: XP+Q ← XP+Q − ZP+Q

23: XP+Q ← XP+Q − ZP+Q


	Faster Key Generation of Supersingular Isogeny Diffie-Hellman
	Introduction
	Preliminaries
	Isogeny
	Montgomery ladder
	Three-point ladder algorithm
	SIDH protocol

	Optimization of Kernel Generator Computation
	Case of Alice
	Case of Bob

	Implementation
	Conclusion
	Point Doubling and Differential Addition
	Recovering the Y-coordinate
	The case of the Montgomery ladder
	The case of the three-point ladder

	Point Addition


